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This paper proves that the fully modified vector autoregression~FM-VAR! esti-
mator has second-order bias effects when some roots are local to unity+ These
bias effects are shown to result in potentially severe size distortions in FM-VAR
testing when the hypothesis involves near unit root variables+ In addition, the
paper reveals that with the FM-VAR method near unit roots become estimated
as exact unit roots with convergence speed faster than the order of the sample
size+ Also this result implies problems for FM-VAR testing, as such “hyper-
consistent” estimates give rise to degenerate limit distributions under the null
hypothesis+

1. INTRODUCTION

Fully modified vector autoregression~FM-VAR! was designed by Phillips~1995!
to allow for robust statistical inference on an unrestricted vector autoregres-
sion ~VAR! without any need to examine whether the data are stationary or
possibly contain unit roots and cointegration+ To allow one to ignore the
number of unit roots and their location~i +e+, the cointegrating relations!,
the FM-VAR estimator treats all variables as potential unit root processes
and accordingly corrects the ordinary least squares~OLS! estimator for any
harmful correlation effects and for the endogeneity of the regressors that
may arise from cointegrating relations between these variables+ All these
corrections are performed by using nonparametric kernel estimators in the
manner originally developed by Phillips and Hansen~1990!+ Phillips ~1995!
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shows that whether the data are stationary or contain unit roots and cointegra-
tion these corrections yield convenient asymptotic estimation theory and re-
lated Wald tests on levels VARs have limiting distributions that are bounded
above by thex2 distribution with degrees of freedom equal to the number of
restrictions+ Therefore, conventional critical values can be applied to obtain
valid ~but conservative! asymptotic tests of hypothesis on the coefficients of a
VAR+1

On the other hand, Elliott ~1998! shows that a set of commonly used pro-
cedures that are designed for testing hypotheses on cointegrating parameters
and that require pretesting for cointegrating rank tend to suffer from size
distortions when some roots are large but not exactly equal to one+ His
message is that these techniques can easily fail to produce valid inference
when some individual variables are inferred to be exact unit root pro-
cesses although they are in fact generated by highly autocorrelated pro-
cesses with roots slightly less than unity+ Although Elliott ~1998! shows
that the problem arises in testing procedures for normalized cointegrating
vectors based on the full information maximum likelihood estimator or
an asymptotically equivalent estimator, his analysis does not deal with the
FM-VAR approach+ Given the promises of the FM-VAR method, especially
that it does not require knowledge of the location and number of unit roots,
one could easily believe that it could overcome the problem introduced by
Elliott ~1998!+

However, this paper proves that although the FM-VAR testing procedure
requires neither pretesting for cointegrating rank nor explicitly imposing unit
root and cointegration restrictions in its formulations it is basically faced
with the same problem as the testing procedures studied by Elliott~1998!+
With local to unit root parametrization and related asymptotic theory, we dem-
onstrate that the FM-VAR estimator has second-order bias effects if some
roots are nearly one+ The bias effects are present in coefficient estimates of
local to unit root variables, and therefore Wald tests based on the FM-VAR
estimator have the potential to be severely size distorted in the same way as
the tests based on the methods studied by Elliott~1998!+ This is shown ana-
lytically, and a comparison to the result of Elliott~1998! is provided+ A simu-
lation study is reported showing that although the size distortions of the
FM-VAR testing procedure can be smaller in magnitude than those of the pro-
cedures covered by Elliott~1998!, they can often be unsatisfactorily high+ In
addition, we show that with the FM-VAR estimator near unit roots become
estimated as exact unit roots with a convergence speed faster than the order of
the sample size+ Tests based on estimates of this kind are not generally valid
if the investigated hypothesis happens to identify the corresponding direction
of the parameter space+ The only part of the parameter space where the FM-VAR
estimator works properly involves coefficients related to those variables or direc-
tions of the process where the standard stationary asymptotics provide a good
approximation+
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2. SETUP AND RESULTS

The analysis is carried out in terms of the first-ordern-vector autoregression

yt 5 Ayt21 1 «t , t 5 1, + + + ,T, (1)

where«t is iid ~0,S««! with S«« positive definite and with finite fourth-order
cumulants+ The initial values iny0 can be any random variables, including con-
stants, whose distribution is independent ofT+ Although model~1! is a special
case of the one studied by Phillips~1995!, it suffices for our purposes and allows
us to make our general point on the FM-VAR method that can be extended to
any higher order VARs that possibly include a constant and a linear time trend+

Suppose our primary interest is in testing an economic hypothesis that can
be expressed as linear restrictions onA such that

Rvec~A! 5 r, (2)

whereR andr are known~q 3 n2! matrix of rankq andq-dimensional vector,
respectively+ If the system contains unit roots, then standard test statistics for
this hypothesis such as a Wald statistic based on OLS estimation of~1! gener-
ally do not have standard asymptotic distributions, such as ax2 distribution+
This result arises from the fact that the sample covariance of the nonstationary
linear combinations of the components ofyt21 and the error of the system does
not converge to zero, but rather, it converges weakly to a nonstandard distribu-
tion consisting of functionals of components of a vector Brownian motion+ The
associated distribution is mislocated or shifted away from the true parameter
value, and this fact generally distorts hypothesis tests based on the OLS esti-
mates~for a detailed discussion, see, e+g+, Phillips, 1995!+

There are different ways to try to overcome the inferential problems caused
by the possible presence of unit roots in a VAR+ One alternative is to employ
an error correction representation of VAR~see, e+g+, Johansen, 1991!, on which
equivalent restrictions to those on the original VAR model can be formulated+
However, this approach requires pretesting for cointegrating rank, which is
known to induce size distortions and pretest bias in many cases~cf+ Elliott,
1998!+ In contrast, the FM-VAR procedure of Phillips~1995! attempts to obtain
robust statistical inference on a levels VAR without the need to pretest the data
concerning unit roots and cointegration+

To set up the formulas of the FM-VAR estimator and test statistic, res-
pectively, we define the following generic notation+ For any pair of covari-
ance stationary series$at % and $bt % the long-run covariance matrixVab 5

(k52`
` E~at1kbt

'!, and the one-sided long-run covariance matrixDab 5

(k50
` E~at1kbt

'!+ Correspondingly, kernel estimators of these matrices are
defined by

ZVab 5 (
j52T11

T21

w~ j0K ! ZGab~ j !, (3)
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ZDab 5 (
j50

T21

w~ j0K ! ZGab~ j !, (4)

wherew~{! is a kernel function with a lag truncation or bandwidth parameterK
and

ZGab~ j ! 5 T21 (
1#t, t1j#T

at1j bt
' , ZGab~2j ! 5 ZGba

' ~ j !+ (5)

Often, the seriesat andbt in ~5! have to be replaced by appropriate estimators,
in which case the subscripts are modified accordingly+ The following assump-
tions are from Phillips~1995!+

Assumption KL~Kernel Condition!+ The kernel functionw~{!: R r @21,1#
is a twice continuously differentiable even function with

~a! w~0! 5 1, w'~0! 5 0, w''~0! Þ 0, and either
~b! w~x! 5 0, 6x6 $ 1, with lim 6x6r1 1w~x!0~1 2 6x6!2 5 constant, or

~b'! w~x! 5 O~x22!, as 6x6 r `+

Assumption BW~Bandwidth Expansion Rate!+ The bandwidth parameterK
in the kernel estimates~3! and~4! has an expansion rate of the formK 5 Oe~T

k!
for somek [ ~ 1

4
_ , 23_!, where the expansion rate order symbolOe is defined in

Phillips ~1995, p+ 1032!+

Now, applying formula~43! of Phillips ~1995! the FM-VAR estimator ofA
in ~1! is given by

ZA1 5 F(
t51

T

yt yt21
' 2 ZV [«Dy ZVDyDy

21 S(
t51

T

Dyt21 yt21
' 2 T ZDDyDyDGF(

t51

T

yt21 yt21
' G21

,

(6)

where the subscripts[« and Dy in the estimated long-run covariance matrices
refer to the residual series[«t 5 yt 2 ZAyt21 from an OLS estimation of~1! and
the seriesDyt21, respectively+ The corrections associated with the kernel esti-
mators in ~6! are designed to remove any harmful correlations between the
nonstationary directions of the regressors and the errors of the model while
preserving the standard asymptotic theory for the stationary part of the param-
eter space~for details of the argument, see Phillips, 1995!+ The FM-VAR-
based Wald test statistic to test for the restrictions given in~2! is

W 5 ~Rvec~ ZA1! 2 r !' HRF ZS«« J S(
t51

T

yt21 yt21
' D21GR'J21

~Rvec~ ZA1! 2 r !,

(7)

where ZS«« 5 T21 (t51
T [«t [«t

' is the OLS estimator ofS«« from model~1!+

344 HEIKKI KAUPPI

https://doi.org/10.1017/S0266466604202043 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604202043


The asymptotic theory for the estimator and the test statistic in~6! and ~7!,
respectively, can be found from Theorems 5+7 and 6+1 of Phillips ~1995!+ To
get an idea how these theories should be modified when some of the roots in
the model are close to but not exactly equal to one, suppose thatA has the
simple form

A 5 S0 G

0 FD, (8)

whereG is anr 3 ~n 2 r ! matrix andF is an~n 2 r ! 3 ~n 2 r ! matrix+ Parti-
tioning yt 5 ~ y1t

' , y2t
' !' conformably withA the model~1! may be written as

y1t 5 Gy2t21 1 «1t , (9)

y2t 5 Fy2t21 1 «2t + (10)

In particular, we now assume thatF 5 I 1 T21C, whereC is a fixed diagonal
matrix+ If all diagonal elements inC are zeros, y2t is a vector random walk and
the model~1! hasn 2 r ~exact! unit roots+ In this case the model reduces to the
leading example used by Phillips~1995! to illustrate and motivate the FM-VAR
approach+ However, if a diagonal element is negative, say, then the correspond-
ing variable iny2t is mean reverting and the system has a root that is only local
to one+ Using this parametrization we obtain asymptotic results that provide
more accurate approximations than those obtained assuming a fixed parameter
~F! when the underlying process fory2t is slowly mean reverting and the sam-
ple size is moderate~cf+ Elliott, 1998!+ The following theorem establishes the
limiting behavior of the FM-VAR estimator when the diagonal elements inC
may be nonzero+ Note that the error covariance matrix assumes the partition
S«« 5 @S ij # , ~i, j 5 1,2! conformably with that ofyt ~or «t !+

THEOREM 1+ Let ZA1 be an FM-VAR estimator for model (1) where A
is given by (8) with F5 I 1 T21C; and define e1 5 @Ir 0r3~n2r !# , e2 5
@0~n2r !3r In2r # , b ' 5 @Ir 2G# , andb4

' 5 @G' In2r # . Then, under Assump-
tions KL and BW, as Tr `,

(a) T102~ ZA1 2 A!b n N~0,S«« J ~Ir 1 G'G!Sbb
21~Ir 1 G'G!!,

(b1) Te1~ ZA1 2 A!b4 n S1{2
102 *0

1 dW1{2~s!JC~s!'~*0
1 JC~s!JC~s!' dsS22

102'!21 2
S12S22

21C,
(b2) Te2~ ZA1 2 A!b4 1 C

p
&& 0,

where Sbb 5 b 'S«« b, S1{2 5 S11 2 S12S22
21S12, and JC~s! is an Ornstein–

Uhlenbeck process generated by the multivariate stochastic differential
equation dJC~s! 5 CJC~s! ds 1 dW2~s!, JC~0! 5 0, where W2~s! denotes an
~n 2 r !-vector standard Brownian motion defined on@0,1# that is given by the
weak limit of the partial sumS22

2102T2102 (t51
@Ts# «2t. Furthermore, W1{2~s! is an

r-vector standard Brownian motion independent of W2~s!.
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Part~a! of Theorem 1 gives the asymptotic behavior of the FM-VAR estima-
tor to the stationary directions in the same way as part~a'! of Theorem 5+7 of
Phillips ~1995!+ We notice that the value ofC makes no difference to these
directions, and thus, the coefficients of the “clearly” stationary variables in the
model are estimated with the same limiting theory whether the parameterF is
close to or equal to a unit root~identity! matrix+

Part~b1! of Theorem 1 gives the asymptotic properties of the FM-VAR esti-
mator of the parameterG in ~9!+ It shows that the Brownian motion that is
present in the distribution wheny2t has only exact unit roots is replaced by an
Ornstein–Uhlenbeck process when some of the roots are just local to unity+
This, of course, reflects the asymptotic properties of the local to unit root param-
etrization+ More important, the result of part~b1! of Theorem 1 shows that a
small deviation from an exact unit root can result in a second-order bias term,
2S12S22

21C, in the limiting distribution of the FM-VAR estimator+ In general,
this term disappears only when there is no simultaneity in the model, i+e+, when
S12 5 0+ Note also that the bias effect is especially present in the estimator of
the cointegrating coefficient for which the FM-VAR estimator is efficient in the
same way as conventional cointegrating parameter estimators~cf+ Phillips, 1995!+
This observation is closely related to Theorem 1 of Elliott~1998! and indicates
that near unit roots distort the FM-VAR estimator especially in that part of the
parameter space where the estimator behaves optimally when these roots are
exactly one+ Furthermore, it can be seen that the bias effects appear only for
those coefficients that are on variables with near unit roots, whereas param-
eters on variables with exact unit roots are unaffected by the presence of near
unit roots in the system—this same observation holds for the conventional cointe-
gration estimators also~see Elliott, 1998!+

Part~b2! of Theorem 1 shows that with the FM-VAR method near unit roots
become estimated as exact unit roots with convergence speed that is faster than
the order of the sample size+2 This result is in contrast with the analysis of
Phillips ~1995!, which indicates that such “hyperconsistent” rates of conver-
gence can only occur when the system has a full set of unit roots~this would be
n unit roots in the present model!+ However, Theorem 1 shows that this can
happen even more generally and that estimates converge to exact unit roots
even when the true roots are just nearly ones+ Note that the result holds whether
the system errors are contemporaneously correlated or not+

The result of part~b2! of Theorem 1 has severe implications for FM-VAR
testing+ First, it is clear that FM-VAR hypothesis tests involving estimates of
this kind are not valid in the usual sense of a test, because their limit distribu-
tions are degenerate under the null hypothesisF 5 I, say+3 This problem would
be relevant if the FM-VAR method were used to test for the cointegrating rank,
which is effectively a test for the number of unit roots in the system+ Second,
such tests would have no asymptotic power against alternatives within theT21

neighborhood of unity+ This would be a weakness in the case of a cointegration
test, because conventional tests for the cointegrating rank have power against
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such local alternatives~see, e+g+, Saikkonen and Lütkepohl, 1999!+ These remarks
indicate that the endogeneity corrections tend to invalidate any statistical infer-
ence on~near! unit root coefficients in a VAR+

The focus of the rest of this section is on showing how FM-VAR hypothesis
testing may be distorted by the local to unit root bias effects of part~b1! of
Theorem 1+ Suppose the Wald test statistic in~7! is applied to test a linear
restriction on the coefficients ofy2t in the first r equations of the model~1!
whenA has the structure given in~8!+ We then have the following result+

COROLLARY 1+ Suppose A has the form given in (8) and let WG be an
FM-VAR-based Wald test statistic from (1) for the hypothesis Rvec~A! 5 r,
where r is a q-dimensional vector and R is a q3 n2 matrix of rank q~q #
r ~n 2 r !! imposing restrictions on G only. Define a matrix RG such that R5
RG~e1 J e2!. Then, as Tr `,

WG n Z 'PZ 1 B, (11)

with

P 5 @RGVRG
' #102 @RG SRG

' #21 @RGVRG
' #102

and

B 5 @RG vec~b!# ' @RG SRG
' #21RG vec~b! 1 2@RG vec~b!# 'P102Z, (12)

where b 5 2S12S22
21C, S 5 S11 J ~S22

102 *0
1 JC~s!JC~s! dsS22

102'!21, V 5
~S1{2S11

21 J I !S, and Z is a q-vector of independent normal variables
with mean zero and variance unity. Furthermore, Z is independent of
*0

1 JC~s!JC~s!' ds in (12).

If C 5 0 in Corollary 1 we haveB 5 0 in ~12! and WG n (i51
q pi xi

2,
where xi

2 are independentx2 variates and the weightspi are the eigen-
values of the matrix@RGVRG

' # @RG SRG
' #21+ This result would be identical to

one implied by Theorem 6+1 of Phillips ~1995! whenF 5 I+ Note thatS1{2 5
S11 2 S12S22

21S12 # S11 implies P # I and, thus, the weightspi satisfy
0 , pi # 1+ Therefore, the FM-VAR test is bounded above by the usualxq

2

distribution whenF 5 I+ As this same distribution is used to obtain critical
values for the test, it is clear that the FM-VAR test is asymptotically conser-
vative+ Note that in an “exact stationarity” case, i+e+, if F were fixed with the
corresponding characteristic roots outside the unit root circle, the test statistic
WG would be asymptoticallyxq

2 distributed~cf+ Phillips, 1995, Theorem 6+1!+
The most interesting result of Corollary 1 is that whenF 5 I 1 T21C with

nonzero diagonal elements inC, then if there is simultaneity in the model, i+e+,
S12 Þ 0, the FM-VAR Wald test has a bias term given byB in ~12!+ The first
and second terms inB, respectively, characterize the mean and variance of the
bias, which both depend uponS andC+ The mean term is always nonnegative,
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and, thus, a deviation from an exact unit root tends to increase the size of the
test+ WhenS12 is nonzero, this effect is absent only from hypothesis tests that
do not impose restrictions on coefficients of near unit root variables~cases where
RG vec~b! 5 0!+ This latter observation is similar to one obtained for the con-
ventional cointegrating parameter estimators and indicates that tests of hypoth-
eses imposing restrictions only on coefficients of variables with exact unit roots
are unaffected by the presence of near unit roots in the model~the “partially
misspecified” case in Elliott, 1998!+

To further illustrate the result of Corollary 1 and to see how it relates to that
of Elliott ~1998! we consider a simple example+We assume thaty1t andy2t are
scalars~i+e+, n 5 r 5 1! and that we are testing for the hypothesis that the vari-
abley2t has no Granger-causal effect ony1t ~i+e+, G 5 0!+ Then from Corollary
1 we see that the corresponding FM-VAR-based Wald test statistic,Wg, say, has
the limit theory

Wg n ~12 r2!Z2 1 Bg, (13)

with

Bg 5 C2r2E
0

1

JC~s!2 ds1 2CMr2~12 r2!!E
0

1

JC~s!2 dsZ, (14)

wherer 5 S12YYMS11S22 andZ is a normal variate with mean zero and vari-
ance unity+ Now, let Wg

* denote a Wald test statistic for this same restriction
that has been computed by applying the full information maximum likelihood
estimator ofG assumingy2t is generated by a unit root process+ From the cor-
ollary of Elliott ~1998!, Wg

* would then have the limiting distribution

Wg
*n Z2 1 Bg

*, (15)

where

Bg
* 5

C2r2

12 r2 E
0

1

JC~s!2 ds1 2C! r2

12 r2 !E
0

1

JC~s!2 dsZ, (16)

with r andZ just as in~14!+ We notice that the bias termBg
* in ~16! is larger

thanBg in ~14! and tends to infinity asr goes to one+ However, this difference
between the two distributions is just a reflection of the fact that the FM-VAR
test is asymptotically conservative in our data generating process+ The magni-
tude of this difference can be evaluated through simulations+

Table 1 gives simulated approximations to the rejection probabilities Pr~Wg .
3+84! and Pr~Wg

* . 3+84!, where Wg and Wg
* are given in ~13! and ~15!,

respectively, and 3+84 is the 5% critical value based on thex1
2-distribution+

The results are in line with our theoretical findings, and we observe that the
asymptotic size of the FM-VAR test is clearly unsatisfactory with moderate
values ofr although it is not as high as the size of the testing procedures
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covered by Elliott~1998!+ Although this example indicates that the conserva-
tive nature of the FM-VAR test can help to reduce size distortions from a near
unit root in some situations, it must be kept in mind that this property comes
with the price of lower power to reject false null hypotheses+ It can be seen
theoretically that ifWg in ~13! were size adjusted by dividing with~1 2 r2!,
then the FM-VAR test would have size distortions as large as in the methods
studied by Elliott~1998!+

Table 2 examines small sample properties of the actual FM-VAR test for the
hypothesisG 5 0 in ~1! when the sample sizeT is 200, and the data are gener-
ated by equations~9! and ~10! with G 5 0, S11 5 S22 5 1, y0 5 0, and with
various values ofr 5 S12 andC, respectively+ In these simulations the FM-VAR
estimator is computed by using the Parzen kernel function, and in accordance
with Assumption BW, we have chosen to experiment values of the bandwidth
parameterK that are the closest integers toT 0+26, T 0+36, T 0+46, T 0+56, andT 0+66,
respectively+ The actual values ofK are indicated in the table+ The results of
Table 2 are clearly in line with those of Table 1, although the choice of the
bandwidth parameter seems to play a role in these results+ However, this is not
much of a surprise because Yamada and Toda~1997! have recently demon-
strated by using another simulation setup that the size performance of the
FM-VAR test can be highly dependent upon the choice of the value of the band-
width parameter even with relatively large sample sizes+ Therefore, our simu-
lation results confirm our theoretical findings and indicate that FM-VAR

Table 1. Asymptotic rejection ratesa

C 5 0 C 5 210 C 5 220

r Wg Wg
* Wg Wg

* Wg Wg
*

0 5+07 5+07 5+02 5+02 5+15 5+15
0+1 4+83 4+94 5+52 5+67 5+95 6+09
0+2 4+59 5+06 6+74 7+32 9+04 9+78
0+3 4+00 5+02 8+81 10+49 14+59 16+89
0+4 3+17 5+02 11+90 15+77 22+26 27+76
0+5 2+32 5+05 16+14 24+50 32+54 43+55
0+6 1+49 5+04 21+12 36+88 45+05 63+29
0+7 0+62 5+03 27+35 54+71 60+31 83+33
0+8 0+12 5+13 35+33 77+65 76+36 96+82
0+9 0+00 5+12 45+92 96+87 91+63 99+97

aThe first column gives different values forr 5 S12YYMS11S22, ~S11 5 S22 5 1!+
Entries in the rest of the columns give simulated approximations to Pr~Wg . 3+84!
and Pr~Wg

* . 3+84!, where 50,000 replications and 2,000 observations for each
combination ofr andC were used+
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hypothesis testing can suffer from potentially severe size distortions when some
roots are almost but not exactly equal to one+

3. CONCLUSION

This paper examined the robustness of hypothesis testing based on the FM-VAR
estimator when some of the roots of a VAR are large but less than one in abso-
lute value+ It was shown that the FM-VAR test can produce severe size distor-
tions when the hypothesis imposes restrictions on variables with near unit roots+
As this problem occurs in the particular part of the parameter space where the
FM-VAR estimator is efficient in the same way as conventional cointegrating
parameter estimators, this finding corresponds with that of Elliott~1998! and
confirms that estimation and testing procedures that are somehow based on an
assumption about exact unit roots and that are trying to treat these optimally
tend to fail when there is just a slight deviation from this assumption+ In addi-
tion, we showed that with the FM-VAR method near unit roots become esti-
mated as exact unit roots with convergence speed that is faster than the order
of the sample size+ Also this result implies problems for FM-VAR hypothesis
testing, as such “hyperconsistent” estimates tend to give rise to degenerate limit
distributions under the null hypothesis+ The only part of the parameter space

Table 2. Rejection rates of the FM-VAR test with sample size
T 5 200a

r C K 5 4 K 5 7 K 5 11 K 5 19 K 5 33

0 0 2+04 3+49 4+53 5+73 6+40
0+3 0 1+41 2+84 3+79 4+35 5+12
0+6 0 0+72 1+10 1+54 2+28 2+72
0+9 0 0+01 0+03 0+03 0+16 0+46
0 210 3+13 4+87 6+23 7+68 8+14
0+3 210 3+60 6+75 8+15 9+24 8+83
0+6 210 6+12 11+52 13+57 13+45 12+38
0+9 210 12+53 21+82 25+19 24+10 18+18
0 220 3+43 6+04 7+23 7+82 8+08
0+3 220 5+45 8+45 9+94 9+90 8+83
0+6 220 10+59 17+69 18+27 16+55 11+62
0+9 220 24+34 37+11 37+06 28+74 19+52

aThe first two columns give different values forr 5 S12YYMS11S22, ~S11 5 S22 5 1!, andC,
respectively+ The rest of the columns report rejection rates of the FM-VAR testWg with dif-
ferent combinations of values ofr andC+ The Parzen kernel function was applied with the
bandwidth parameter valuesK that are indicated in the column headings+ Ten thousand rep-
lications were used, and the data were generated by using equation~1!, whereA is as in~8!
with G 5 0, F 5 1 1 C0T, andT 5 200+ An initial value ofy0 5 0 was imposed, and the first
500 observations were dropped+ The 5%x1

2 critical value was used, and the actual nominal
size for eachr ~whenC 5 0! can be seen from Table 1~columns under headingWg!+
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where the FM-VAR estimator is robust involves coefficients related to those
variables or directions of the process where the standard stationary asymptotics
provide a good approximation+ Therefore, overall, our analysis indicates that
the FM-VAR method can easily produce invalid inference if some variables in
the system are considerably highly autocorrelated+

As far as possible solutions to the problem studied here are concerned, there
is currently only one alternative for FM-VAR that does not require prior knowl-
edge of the number of~near! unit roots and their location in a VAR+ This is the
lag augmentation procedure of Toda and Yamamoto~1995!+Although this method
can provide valid inference on coefficients of a levels VAR with near unit roots
it has the disadvantage of being inefficient because of its ultimate intention to
overfit the model+ It also suffers from difficulties arising from uncertainties in
finding sufficiently high lag order+

NOTES

1+ The usefulness of the FM-VAR approach has been recently discussed and promoted by Free-
man, Houser, Kellstedt, and Williams~1998! and Quintos~1998!+

2+ Yamada and Toda~1998, pp+ 62–63! note that this holds for exact unit roots+
3+ Here we refer to the Wald test statistic defined in the usual way such as the one in~7!+
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APPENDIX
Proof of Theorem 1. Let F 5 @b I b4# and write

~ ZA1 2 A!F 5 @AT 2 BT CT #DT
21F 'F, (A.1)

where

AT 5 (
t51

T

«t yt21
' F, BT 5 ZV [«DyF @F ' ZVDyDyF #21,

CT 5 F 'F(
t51

T

Dyt21 yt21
' 2 T ZDDyDyGF, DT 5 (

t51

T

F 'yt21 yt21
' F+

We first derive asymptotic results forAT , BT , CT , andDT and then subsequently apply
these to prove the main theorem+ From ~9! and ~10! we can derive the following nota-
tion for later use:

b 'yt 5 U1t 5 b '«t
asdsg

u1t

1 ~2G~F 2 I !y2t21!;
assssssdssssssg

Iu1t

(A.2)

b 'Dyt 5 DU1t 5 b 'D«t
asdsg

Du1t

1 ~2G~F 2 I !2y2t22 2 G~F 2 I !«2t21!;
assssssssssssssdssssssssssssssg

D Iu1t

(A.3)

b4
' yt 5 Y2t 5 ~I 1 G'G!y2t21 1 b4

' «t
asdsg

et

1 ~F 2 I !y2t21; (A.4)

b4
' Dyt 5 U2t 5 ~I 1 G'G!«2t

assssdssssg
u2t

1 G'b 'D«t 1 ~F 2 I !y2t21 1 G'G~F 2 I !y2t22+
assssssssssssdssssssssssssg

ry2t

(A.5)

asssssssssdsssssssssg
yt

ConsiderAT + Using F 2 I 5 T21C and well-known limiting results we obtain

T2102AT e1
' 5 T2102 (

t51

T

«t u1t21
' 1 Op~T2102! n N~0,S«« J Sbb!, (A.6)

whereSbb 5 b 'S«« b, and

T21AT e2
' 5 T21 (

t51

T

«t y2t21
' ~I 1 G'G! 1 Op~T2102!, (A.7)

with

T21 (
t51

T

«t y2t21
' ~I 1 G'G! n 1S11

2102E
0

1

dW1JC
' S22

2102'

S22
2102E

0

1

dW2JC
' S22

2102'2 ~I 1 G'G!, (A.8)
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where W1 [ W1~s! and W2 [ W2~s! are standard vector Brownian motions on@0,1#
that are given by the weak limits of the partial sumsS11

2102T2102 (t51
@Ts# «1t and

S22
2102T2102 (t51

@Ts# «2t , respectively, whereasJC [ JC~s! is an Ornstein–Uhlenbeck pro-
cess defined by the multivariate stochastic differential equationdJC~s! 5 CJC~s! ds1
dW2~s!, JC~0! 5 0+

ConsiderBT andCT and use~A+2!–~A+5! to write

ZV [«DyF 5 @ ZV [«DU1
ZV [«U2# (A.9)

F ' ZVDyDyF 5 F ZVDU1DU1
ZVDU1U2

ZVDU1U2
ZVU2U2

G , (A.10)

where the subscriptsDU1 andU2 refer to the seriesDU1t21 andU2t21, respectively+ Sim-
ilarly, write

T21CT 5 3T21 (
t51

T

DU1t21U1t21
' 2 ZDDU1DU1

T21 (
t51

T

DU1t21Y2t21
' 2 ZDDU1U2

T21 (
t51

T

U2t21U1t21
' 2 ZDU2DU1

T21 (
t51

T

U2t21Y2t21
' 2 ZDU2U2

4 + (A.11)

Lemma 1, which follows, summarizes the asymptotic properties of each of the elements
in ~A+9!–~A+11! similarly to Lemma 8+1 of Phillips ~1995! for the C 5 0 case+ In the
proof of Lemma 1 we work as in the proofs of Phillips~1995! only with long-run covari-
ance matrix estimates that satisfy part~b! of Assumption KL~for additional comments
that apply here also, see Phillips, 1995, pp+ 1057–1058!+

LEMMA 1 + Under Assumptions KL and BW, the following hold:

(a) ZVDU1DU1
5 K22M1 1 op~K22!;

(b) ZVDU1U2
5 K22M2 1 Op~~KT !2102! 1 op~K22! 1 Op~T21!;

(c) ZVU2U2
5 ~I 1 G'G!S22~I 1 G'G! 1 op~1!;

(d) ZV [«DU1
5 K22M3 1 Op~~KT !2102! 1 op~K22! 1 Op~T21!;

(e) ZV [«U2
5 S«2~I 1 G'G! 1 op~1!, whereS«2 5 ~S12

' S22!
';

(f ) T21 (t51
T DU1t21U1t21

' 2 ZDDU1DU1
5 Op~K22! 1 Op~T21!;

(g) T21 (t51
T U2t21U1t21

' 2 ZDU2DU1
5 K22Q1 1 Op~~KT !2102! 1 op~K22! 1

Op~T21!;
(h) T21 (t51

T DU1t21Y2t21
' 2 ZDDU1U2

5 T21u1,T21 y2,T21
' 1 K22Q2 1 Op~~KT !2102! 1

op~K22!;
(i) T 21 (t51

T U2t21Y2t21
' 2 ZDU2U2

5 ~I 1 G'G!@T21 (t51
T «2t21 y2t22

' ,1T22C 3

(t51
T y2t22 y2t22

' # ~I 1 G'G! 1 op~1!+

The error terms of Op~~KT !2102! that appear in parts (b), (d), (g), and (h) are sharp.

Proof. Part (a): Use~A+3! to write

ZVDU1DU1
5 ZVDu1Du1

1 2 ZVDu1D Iu1
1 ZVD Iu1D Iu1

, (A.12)
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where the first term corresponds toZVDu1Du1
in part ~a! of Lemma 8+1 in Phillips ~1995,

p+ 1058!+ Thus part~a! follows from Phillips~1995! provided that the two last terms in
~A+12! are at mostop~K22!+ First, use~A+3! to write

ZVDu1D Iu1
5 2T22 ZVDu1 y2

C2G' 2 T21 ZVDu1«2
CG', (A.13)

where ZVDu1«2
5 Op~K22! by part~b! of Lemma 8+1 in Phillips ~1995!+ Second, the first

term on the right-hand side of~A+13! is op~T22!, because

ZVDu1 y2
5 Op~1!, (A.14)

which can be proved by using similar lines to those in equation~P14! in the proof of
part ~c! of Lemma 8+1 in Phillips ~1995, p+ 1064!+ An important part of these deriva-
tions is the following intermediate result:

K21 (
j52K12

K21

w'~ j *0K ! ZGy2u1
~ j ! 5 Op~1!, (A.15)

wherej * [ @ j 2 1, j # is defined for eachj+ This result follows from arguments given in
the proof of Theorem 3+1 of Phillips~1991, pp+ 432–433! in the same way as the respec-
tive result in Phillips~1995, p+ 1065!+ ~Note that in the proof of Theorem 3+1 of Phil-
lips, 1991, similar @intermediate# convergence results@as, e+g+, Phillips, 1991, p+ 433,
the first result# can be proved when an exact unit root process is replaced by a local to
unit root one+!

Next, use the definition ofD Iu1 in ~A+3! to write

ZVD Iu1D Iu1
5 T24GC2 ZVy2 y2

C2G' 1 2T23GC ZV«2 y2
C2G' 1 T22GC ZV«2«2

CG', (A.16)

where the first term isop~T22!, because

7T22 ZVy2 y2
7 5 **T22 (

j52K11

K21

w~ j0K ! ZGy2 y2
~ j !**

5 **T23 (
j52K11

K21

w~ j0K !S (
1#t231j#T

y2, t231j y2, t23
' D**

# T21 (
t51

T K

T
K21 (

j52K11

K21

T21027y2, t231j 7T21027y2, t237

5
K

T
T21 (

t51

T

K21 (
j52K11

K21

Op~1! 5
K

T
Op~1! 5 op~1!, (A.17)

where the last equality follows from Assumption BW+ Using the same argument as that
in ~A+15! we can show that the second term in~A+16! is op~T22!, whereas the last term
in ~A+16! is Op~T22!, because ZV«2«2

p
&& V«2«2

+ Thus, ZVD Iu1D Iu1
5 Op~T22!, and part~a!

follows+
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Part (b): Use~A+3! and~A+5! to write

ZVDU1U2
5 ZVDu1y 1 ZVDu1 ry2

1 ZVD Iu1y 1 ZVD Iu1 ry2
, (A.18)

where the first term is an analog to the termZVu2Du1
in the second result of part~b! of

Lemma 8+1 in Phillips ~1995!+ Now, the result of part~b! follows from Phillips ~1995!
provided that the three last terms in~A+18! are at mostOp~T21!+ This is easily seen by
applying similar arguments to those in the proof of part~a!+

Part (c): The proof is similar to those of parts~a! and~b! and thus is omitted here+
Part (d): Use~A+3! to decompose

ZV [«DU1
5 ZV [«Du1

1 ZV [«D Iu1
(A.19)

and use similar algebra to that in~P13! in Phillips ~1995, p+ 1064! to obtain

ZV [«Du1
5 ZV«Du1

2 w~~K 2 1!0K !~ ZA 2 A! ZGyu1
~K ! 1 w~~2K 1 1!0K !~ ZA 2 A! ZGyu1

~2K 1 1!

1 (
j52K12

K21

@w~ j0K ! 2 w~~ j 2 1!0K !# ~ ZA 2 A! ZGyu1
~ j !, (A.20)

where the subscripty denotes the seriesyt21+ The first term in~A+20! is analogous to
ZVu0Du1

in the first result of part~b! of Lemma 8+1 in Phillips ~1995! and delivers the
first three terms on the right-hand side of part~d!+ Thus, it remains to be shown that the
rest of the terms in~A+20! and ZV [«D Iu1

in ~A+19! are at mostOp~T21!+ These results can
be derived with similar arguments to those in the proofs of parts~a! and ~b! and by
applying similar lines to those in equations~P13! and~P14! in Phillips ~1995, p+ 1064!;
details are omitted here+

Part (e): The proof is similar to that of part~d! and hence is omitted here+
Part ( f ): Use the definition ofD Iu1 in ~A+3! to write

ZDDu1D Iu1
5 2T22 ZDDu1 y2

C2G' 2 T21 ZDDu1«2
CG',

where ZDDu1«2
5 Op~1!, by similar arguments to those used right after~A+20! and the

ones used in~A+15!, whereas ZDDu1«2
5 op~1! by arguments given in the proof of

Lemma 8+1 in Phillips ~1995!+ Therefore, ZDDu1D Iu1
5 op~T21!+ Furthermore, similar der-

ivations to those for~A+16! imply ZDD Iu1D Iu1
5 Op~T22!+ These lines together with well-

known limiting arguments yield

T21 (
t51

T

DU1t21U1t21
' 2 ZDDU1DU1

5 FT21 (
t51

T

Du1t21u1t21
' 2 ZDDu1Du1G1 Op~T21!,

(A.21)

where the term in the square brackets isOp~K 2! ~see Phillips, 1995, Lemma 8+1, part
~e!!+ Thus, part ~f ! follows+
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Part (g): In the same way as in the proof of part~f ! we can deduce that

T21 (
t51

T

U2t21U1t21
' 2 ZDU2DU1

5 FT21 (
t51

T

u2t21u1t21
' 2 ZDu2Du1G1 Op~T21!,

where the term in the square brackets has similar limit theory as in part~f ! of Lemma
8+1 of Phillips ~1995!, and thus, part ~g! follows+

Part (h): As in the proofs of parts~f ! and~g! we have

T21 (
t51

T

DU1t21Y2t21
' 2 ZDDU1U2

5 T21 (
t51

T

Du1t21 y2t21
' ~I 1 G'G! 2 ZDDu1u2

1 Op~T21!

5 T21u1T21 y2T21
' 2 T21 (

t51

T

u1t22«2t22
' ~I 1 G'G! 1 Op~T21!, (A.22)

where the last line corresponds to equation~P18! in the proof of part~g! of Lemma 8+1
of Phillips ~1995!, and thus, part ~h! follows from Phillips~1995, p+ 1067!+

Part (i): Use~A+4! and~A+5! to write

T21 (
t51

T

U2t21Y2t21
' 2 ZDU2U2

5 T21 (
t51

T

yt21Y2t21
' 1 T21 (

t51

T

ry2t21Y2t21
'

2 ZDyy 2 ZDy ry2
2 ZD ry2y 2 ZD ry2 ry2

,

where

T21 (
t51

T

ry2t21Y2t21
' 5 ~I 1 G'G!CT22 (

t51

T

y2t22 y2t22
' ~I 1 G'G! 1 Op~T21!+

Furthermore, applying well-known limiting arguments we get

T21 (
t51

T

yt21Y2t21
' 5 ~I 1 G'G!T21 (

t51

T

«2t21 y2t22
' ~I 1 G'G! 1 VT 1 Op~T21!

with

VT 5 T21 (
t51

T

G'b 'D«t21 y2t22
' ~I 1 G'G! 1 T21 (

t51

T

yt21«t21
' b4

5 2T21 (
t51

T

G'b '«t22«2t22
' ~I 1 G'G!

1 T21 (
t51

T

@~I 1 G'G!«2t21 1 G'b 'D«t21#«t21
' b41 op~1!

5 G'b 'S22~I 1 G'G! 1 ~I 1 G'G!S2« b41 G'b 'S«« b41 op~1! 5 Dyy 1 op~1!,
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where the last equality follows from the definition ofDyy+ Now, as ZDyy
p
&& Dyy, and

ZDy2 ry2
, ZD ry2y2

and ZD ry2 ry2
areop~1! by similar arguments to those used in the proof of part

~f !, we obtain part~i!+ n

It follows from Lemma 1 that we can apply analogous lines to those in Phillips~1995,
p+ 1065! to obtain

BT 5 @N 1 Op~~K 3T21!102! 1 op~~K 3T21!102! I S«2S22
21~I 1 G'G!21 1 op~1!# ,

(A.23)

whereN is a fixed nonzero matrix andS«2 5 ~S12
' S22!' + Combining~A+23! and parts

~f !–~i! of Lemma 1 yields

T21BT CT e1
' 5 Op~K22! 1 Op~~KT !2102! (A.24)

and

T21BT CT e2
' 5 S«2S22

21FT21 (
t51

T

«2t21 y2t22
' 1 T22C (

t51

T

y2t22 y2t22
' G~I 1 G'G!

1 Op~T2102! 1 Op~K 302T21! 1 op~1!+ (A.25)

From Assumption BW we haveOp~K22T 102! 1 Op~K2102! 5 op~1! ~cf+ Phillips, 1995,
Discussion 8+5+~i!!, and thus, ~A+24! and~A+25! combined with well-known limiting argu-
ments imply

T2102BT CT 5 @op~1! I Op~T 102!# + (A.26)

Next applying the formula of the partitioned inverse we get

DT
21 5 F @aT 2 bT cT

21bT
' #21 2@aT 2 bT cT

21bT
' #21bT cT

21

2cT
21bT

' @aT 2 bT cT
21bT

' #21 @cT 2 bT
' aT

21bT #21 G ,
where, by well-known limiting arguments,

T21aT 5 T21 (
t51

T

U1t21U1t21
' 1 Op~T21!

p
&& Sbb ,

T21bT 5 T21 (
t51

T

U1t21Y2t21
' 5 Op~1!,

T22cT 5 T22 (
t51

T

Y2t21Y2t21
' 5 ~I 1 G'G!T22 (

t51

T

y2t22 y2t22
' ~I 1 G'G! 1 Op~T21!+
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Using these results it is seen that

TDT
21F 'b 5 FSbb

21~I 1 GG' ! 1 op~1!

Op~T21! G (A.27)

and

T 2DT
21F 'b4 5 3

Op~1!

~I 1 G'G!21FT22 (
t51

T

y2t22 y2t22
' G21

1 op~1!4 + (A.28)

We are ready to complete the proof of Theorem 1+ For part ~a! normalize the first
column in~A+1! by MT to get

MT ~ ZA1 2 A!b 5 T2102 @AT 2 BT CT #TDT
21F 'b

5 T2102AT TDT
21F 'b 1 op~1!,

where the last equation follows from~A+26! and~A+27!+ Thus, for part ~a! it remains to
combine the results in~A+6!–~A+8! with the one in~A+27!+

For part~b1! use~A+6!–~A+8! and~A+24!–~A+28! to see that

e1T~ ZA1 2 A!b4 5 e1 @T21AT 2 T21BT CT #T 2DT
21F 'b45 PT 2 S12S22

21C 1 op~1!,

where

PT 5 FT21 (
t51

T

«1t y2t21
' 2 T21S12S22

21 (
t51

T

«2t21 y2t22
' GFT22 (

t51

T

y2t22 y2t22
' G21

converges weakly to

FS11
102E

0

1

dW1JC
' S22

102'2 S12S22
21S22

102E
0

1

dW2JC
' S22

102'GFS22
102E

0

1

JC JC
' S22

102'G21

[ S1{2
102E

0

1

dW1{2JC
' S22

102'SS22
102E

0

1

JC JC
' S22

102'D21

,

where[ denotes equality in distribution andW1{2 5 W1 2 S12S22
21W2 is a standard

Brownian motion independent ofW2+
For part~b2! note that

e2T~ ZA1 2 A!b4 5 T~ ZF1 2 F! 5 e2 @T21AT 2 T21BT CT #T 2DT
21F 'b4,

358 HEIKKI KAUPPI

https://doi.org/10.1017/S0266466604202043 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604202043


where ZF1 5 e1 ZA1e2
' + It is then straightforward to apply~A+6!–~A+8! and~A+24!–~A+28!

to show that

T~ ZF1 2 F! 5 ST21 (
t51

T

«2t y2t21
' 2 FT21 (

t51

T

«2t21 y2t22
' 1 T22C (

t51

T

y2t22 y2t22
' GD

3 ST22 (
t51

T

y2t22 y2t22
' D21

1 op~1!+ (A.29)

GivenF 5 I 1 T21C we see thatC cancels out from both sides of~A+29! and thus it can
be written as

T~ ZF1 2 I ! 5 FT21 (
t51

T

«2t y2t21
' 2 T21 (

t51

T

«2t21 y2t22
' GST22 (

t51

T

y2t22 y2t22
' D21

1 op~1!+ (A.30)

This shows why ZF1 converges to an identity matrix and why we have addedC on the
left-hand side of part~b2! of Theorem 1+ It remains to observe that the difference between
the two sums in the square brackets in~A+30! is just T21«2T y2,T21

' 2 T21«20y2,21
' 5

op~1!, whereas the inverse in~A+30! is Op~1!+ n
Proof of Corollary 1. Because the hypothesis imposes restrictions onG only, there

indeed exists aq 3 ~n~n 2 r !! matrix RG such thatRvec~A! 5 RG~e1 J e2! vec~A! 5
RG vec~G! 5 r+ Therefore, letting

ZS5 @e1 ZS«« e1
' # J Fe2ST22 (

t51

T

yt21 yt21
' D21

e2
'G

and using the fact thatRG vec~G! 5 r under the null hypothesis we can write

WG 5 ~RG vec@T~ ZG1 2 G!# !' @RG ZSRG
' #21~RG vec@T~ ZG1 2 G!# !, (A.31)

where ZSn S, by similar arguments to those used in the proof of Theorem 1, and because
e1 ZS«« e1

' 5 ZS11 5 S11 1 op~1!+
Next, becauseW1{2~s! and W2~s! are vectors of independent standard Brownian

motions, vec~*0
1 dW1{2JC

' ~*0
1 JC JC

' !2102! is equal in distribution toN~0, Ir ~n2r !! ~e+g+,
Park and Phillips, 1988!+ Thus it follows directly from part~b1! of Theorem 1 that

@RG ZVRG
' #2102$RG vec@T~ ZG1 2 G!# 2 RG vec~b!% n Z [ N~0, Iq!, (A.32)

where ZV is ZSwhene1 ZS«« e1
' is replaced byS1{2+ Taken together~A+31! and~A+32! show

the result in~11!, whereas the independence statement holds becauseZ in ~A+32! andJC

are jointly normal and uncorrelated+ n
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