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ON THE ROBUSTNESS OF
HYPOTHESIS TESTING BASED
ON FULLY MODIFIED VECTOR

AUTOREGRESSION WHEN SOME

ROOTS ARE ALMOST ONE

HEIKKI KAUPPI
University of Helsinki

This paper proves that the fully modified vector autoregresékM-VAR) esti-

mator has second-order bias effects when some roots are local to Tinéye

bias effects are shown to result in potentially severe size distortions in FM-VAR
testing when the hypothesis involves near unit root variatlesiddition the

paper reveals that with the FM-VAR method near unit roots become estimated
as exact unit roots with convergence speed faster than the order of the sample
size Also this result implies problems for FM-VAR testings such “hyper-
consistent” estimates give rise to degenerate limit distributions under the null
hypothesis

1. INTRODUCTION

Fully modified vector autoregressigfM-VAR) was designed by Phillipsl995

to allow for robust statistical inference on an unrestricted vector autoregres-
sion (VAR) without any need to examine whether the data are stationary or
possibly contain unit roots and cointegratiofo allow one to ignore the
number of unit roots and their locatiofi.e., the cointegrating relations

the FM-VAR estimator treats all variables as potential unit root processes
and accordingly corrects the ordinary least squdf@sS) estimator for any
harmful correlation effects and for the endogeneity of the regressors that
may arise from cointegrating relations between these variabBlkshese
corrections are performed by using nonparametric kernel estimators in the
manner originally developed by Phillips and Han4d®890. Phillips (1995
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shows that whether the data are stationary or contain unit roots and cointegra-
tion these corrections yield convenient asymptotic estimation theory and re-
lated Wald tests on levels VARs have limiting distributions that are bounded
above by they? distribution with degrees of freedom equal to the number of
restrictions Therefore conventional critical values can be applied to obtain
valid (but conservativeasymptotic tests of hypothesis on the coefficients of a
VAR.!

On the other hancElliott (1998 shows that a set of commonly used pro-
cedures that are designed for testing hypotheses on cointegrating parameters
and that require pretesting for cointegrating rank tend to suffer from size
distortions when some roots are large but not exactly equal to bine
message is that these techniques can easily fail to produce valid inference
when some individual variables are inferred to be exact unit root pro-
cesses although they are in fact generated by highly autocorrelated pro-
cesses with roots slightly less than unijithough Elliott (1998 shows
that the problem arises in testing procedures for normalized cointegrating
vectors based on the full information maximum likelihood estimator or
an asymptotically equivalent estimatdris analysis does not deal with the
FM-VAR approach Given the promises of the FM-VAR methopdspecially
that it does not require knowledge of the location and number of unit,roots
one could easily believe that it could overcome the problem introduced by
Elliott (1998.

However this paper proves that although the FM-VAR testing procedure
requires neither pretesting for cointegrating rank nor explicitly imposing unit
root and cointegration restrictions in its formulations it is basically faced
with the same problem as the testing procedures studied by HIi688.

With local to unit root parametrization and related asymptotic theseydem-
onstrate that the FM-VAR estimator has second-order bias effects if some
roots are nearly oneThe bias effects are present in coefficient estimates of
local to unit root variablesand therefore Wald tests based on the FM-VAR
estimator have the potential to be severely size distorted in the same way as
the tests based on the methods studied by Eli®98. This is shown ana-
lytically, and a comparison to the result of Elli¢it998) is provided A simu-

lation study is reported showing that although the size distortions of the
FM-VAR testing procedure can be smaller in magnitude than those of the pro-
cedures covered by Elliott1998, they can often be unsatisfactorily highn
addition we show that with the FM-VAR estimator near unit roots become
estimated as exact unit roots with a convergence speed faster than the order of
the sample sizeTests based on estimates of this kind are not generally valid
if the investigated hypothesis happens to identify the corresponding direction
of the parameter spac€he only part of the parameter space where the FM-VAR
estimator works properly involves coefficients related to those variables or direc-
tions of the process where the standard stationary asymptotics provide a good
approximation
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2. SETUP AND RESULTS
The analysis is carried out in terms of the first-orderector autoregression
yt:Ayt—l+817 t:l7"'7T7 (l)

wheree, is iid(0,X,,) with >, positive definite and with finite fourth-order
cumulantsThe initial values iny, can be any random variablaacluding con-
stants whose distribution is independent ©f Although model(1) is a special
case of the one studied by Philligk995), it suffices for our purposes and allows
us to make our general point on the FM-VAR method that can be extended to
any higher order VARSs that possibly include a constant and a linear time trend
Suppose our primary interest is in testing an economic hypothesis that can
be expressed as linear restrictionsAsuch that

RvedA) =, (2)

whereR andr are known(q X n?) matrix of rankq andg-dimensional vector
respectivelyIf the system contains unit rogtthen standard test statistics for
this hypothesis such as a Wald statistic based on OLS estimati¢ géner-
ally do not have standard asymptotic distributioasch as gy? distribution
This result arises from the fact that the sample covariance of the nonstationary
linear combinations of the componentsypf, and the error of the system does
not converge to zerdut ratheyit converges weakly to a nonstandard distribu-
tion consisting of functionals of components of a vector Brownian mofitwe
associated distribution is mislocated or shifted away from the true parameter
valug and this fact generally distorts hypothesis tests based on the OLS esti-
mates(for a detailed discussigrseg e.g., Phillips, 1995.

There are different ways to try to overcome the inferential problems caused
by the possible presence of unit roots in a (ABne alternative is to employ
an error correction representation of VAReg e.g., Johansen1991), on which
equivalent restrictions to those on the original VAR model can be formulated
However this approach requires pretesting for cointegrating yamkich is
known to induce size distortions and pretest bias in many cadgeg&lliott,
1998. In contrastthe FM-VAR procedure of Phillip§1995 attempts to obtain
robust statistical inference on a levels VAR without the need to pretest the data
concerning unit roots and cointegration

To set up the formulas of the FM-VAR estimator and test statisgs-
pectively we define the following generic notatiofror any pair of covari-
ance stationary seriea;} and {b;} the long-run covariance matriQ,, =
S _..E(aib{), and the one-sided long-run covariance matdy, =
S oE(aikb). Correspondingly kernel estimators of these matrices are

defined by
A T_l A
Q=2 W(j/K) (), (3)

j=—T+1
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T-1
A= 2 W(i/K)Tan(}), (4)
j=0
wherew(-) is a kernel function with a lag truncation or bandwidth paramkter
and
Lo(D) =T 3 aubl, L)) =Tl (5)

1=t t+j=T

Often the series; andb; in (5) have to be replaced by appropriate estimators
in which case the subscripts are modified accordinghe following assump-
tions are from Phillipg1995.

Assumption KL(Kernel Condition. The kernel functiorw(-): R — [—1,1]
is a twice continuously differentiable even function with

(@ w(0) =1, w'(0) =0, w’(0) # 0, and either
(b) w(x) =0, |x| =1, with lim_1 1w(x)/(1 — |x|)? = constantor
(b)) w(x) = O(x~2), as|x| — oo.

Assumption BW(Bandwidth Expansion Rake The bandwidth parametdt
in the kernel estimate@) and(4) has an expansion rate of the foKn= O,(TX)
for somek € (3,3), where the expansion rate order symial is defined in
Phillips (1995 p. 1032.

Now, applying formula(43) of Phillips (1995 the FM-VAR estimator ofA
in (1) is given by

T T T -1
A" = 2:1 YeVio1 — QéAyQZylAy < 21 AYi 1 Y1 — TAAyAy>i| [21 Yi-1 yt,—1:| )
t= t= t=

(6)

where the subscripts and Ay in the estimated long-run covariance matrices
refer to the residual serieg =y, — /f\yt,l from an OLS estimation ofl) and

the serieAy, 4, respectively The corrections associated with the kernel esti-
mators in(6) are designed to remove any harmful correlations between the
nonstationary directions of the regressors and the errors of the model while
preserving the standard asymptotic theory for the stationary part of the param-
eter spacgfor details of the argumentsee Phillips 1995. The FM-VAR-
based Wald test statistic to test for the restrictions givet2jnis

1

T -1 -
W = (RvedA") —r)’ {R{iss ® <2 ytly{l) }R’} (RvedA") —r),
t=1
(7)

whereS,, = Tt 3, 8,8/ is the OLS estimator of ., from model(1).
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The asymptotic theory for the estimator and the test statist{€)imnd(7),
respectively can be found from Theorems7and 61 of Phillips (1995. To
get an idea how these theories should be modified when some of the roots in
the model are close to but not exactly equal to,ongpose tha has the
simple form

(0 G
A—<O F), 8

whereG is anr X (n — r) matrix andF is an(n — r) X (n — r) matrix. Parti-
tioningy; = (Y11, Y21)' conformably withA the model(1) may be written as

Vit = GYor 1 T €115 9
Yor = FYoi1 1 €. (10)

In particular we now assume thdt = | + T 1C, whereC is a fixed diagonal
matrix. If all diagonal elements i€ are zerosy,; is a vector random walk and
the model(1) hasn — r (exac) unit roots In this case the model reduces to the
leading example used by Philli§$999 to illustrate and motivate the FM-VAR
approachHowever if a diagonal element is negativeay then the correspond-
ing variable iny,, is mean reverting and the system has a root that is only local
to one Using this parametrization we obtain asymptotic results that provide
more accurate approximations than those obtained assuming a fixed parameter
(F) when the underlying process fg, is slowly mean reverting and the sam-
ple size is moderatécf. Elliott, 1998. The following theorem establishes the
limiting behavior of the FM-VAR estimator when the diagonal element€in
may be nonzeroNote that the error covariance matrix assumes the partition
.. =21, (i,j = 1,2) conformably with that ofy; (or &).

THEOREM 1 Let A* be an FM-VAR estimator for model (1) where A
is given by (8) with F= 1 + T~IC; and define ¢ = [I; Orx(n-r)], & =
[On-ryxr In—r], B"=1[l; —G],andB] =[G’ I, ]. Then, under Assump-
tions KL and BW, as B oo,

(@) TY2(A* = AB = N(0,3,. ® (I, + G'G)3z3(I, + G'G)),

(b1) Ta(A* — AB. = ZV3[y dW,5(9)Ic(S) (Jo Ie(s)Jc(9) dssi) ™t —
3,353 C,

(b2) Te(A* — AB, +C D0,

whereSgs = B'S,..B, 212 = 241 — 31,3573, and E(s) is an Ornstein—
Uhlenbeck process generated by the multivariate stochastic differential
equation dd(s) = Cl:(s)ds + dWs(s), J-(0) = 0, where W(s) denotes an

(n — r)-vector standard Brownian motion defined @1] that is given by the
weak limit of the partial sunt;¥2T Y23 e,.. Furthermore, W ,(s) is an
r-vector standard Brownian motion independent of( 8Y.
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Part(a) of Theorem 1 gives the asymptotic behavior of the FM-VAR estima-
tor to the stationary directions in the same way as fatjtof Theorem 57 of
Phillips (1995. We notice that the value o€ makes no difference to these
directions and thusthe coefficients of the “clearly” stationary variables in the
model are estimated with the same limiting theory whether the parameser
close to or equal to a unit rogidentity) matrix.

Part(bl) of Theorem 1 gives the asymptotic properties of the FM-VAR esti-
mator of the paramete® in (9). It shows that the Brownian motion that is
present in the distribution whey, has only exact unit roots is replaced by an
Ornstein—Uhlenbeck process when some of the roots are just local ta unity
This, of coursereflects the asymptotic properties of the local to unit root param-
etrization More important the result of par{b1) of Theorem 1 shows that a
small deviation from an exact unit root can result in a second-order bias term
—31,354C, in the limiting distribution of the FM-VAR estimatoin general
this term disappears only when there is no simultaneity in the madgwhen
31, = 0. Note also that the bias effect is especially present in the estimator of
the cointegrating coefficient for which the FM-VAR estimator is efficient in the
same way as conventional cointegrating parameter estimfafoRhillips, 1995.

This observation is closely related to Theorem 1 of Elli@898 and indicates

that near unit roots distort the FM-VAR estimator especially in that part of the
parameter space where the estimator behaves optimally when these roots are
exactly one Furthermoreit can be seen that the bias effects appear only for
those coefficients that are on variables with near unit roetsereas param-

eters on variables with exact unit roots are unaffected by the presence of near
unit roots in the system—this same observation holds for the conventional cointe-
gration estimators als@ee Elliotf 1998.

Part(b2) of Theorem 1 shows that with the FM-VAR method near unit roots
become estimated as exact unit roots with convergence speed that is faster than
the order of the sample siZeThis result is in contrast with the analysis of
Phillips (1995, which indicates that such “hyperconsistent” rates of conver-
gence can only occur when the system has a full set of unit fdutsswould be
n unit roots in the present modeHowever Theorem 1 shows that this can
happen even more generally and that estimates converge to exact unit roots
even when the true roots are just nearly oidste that the result holds whether
the system errors are contemporaneously correlated or not

The result of par{b2) of Theorem 1 has severe implications for FM-VAR
testing First, it is clear that FM-VAR hypothesis tests involving estimates of
this kind are not valid in the usual sense of a,tesicause their limit distribu-
tions are degenerate under the null hypoth&sis|, say® This problem would
be relevant if the FM-VAR method were used to test for the cointegrating rank
which is effectively a test for the number of unit roots in the syst€econd
such tests would have no asymptotic power against alternatives withif the
neighborhood of unityThis would be a weakness in the case of a cointegration
test because conventional tests for the cointegrating rank have power against
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such local alternativeseg e.g., Saikkonen and Liitkepohl1999. These remarks
indicate that the endogeneity corrections tend to invalidate any statistical infer-
ence on(nea) unit root coefficients in a VAR

The focus of the rest of this section is on showing how FM-VAR hypothesis
testing may be distorted by the local to unit root bias effects of fat} of
Theorem 1 Suppose the Wald test statistic (i) is applied to test a linear
restriction on the coefficients of,, in the firstr equations of the moddll)
whenA has the structure given i8). We then have the following result

COROLLARY 1. Suppose A has the form given in (8) and let ¥& an
FM-VAR-based Wald test statistic from (1) for the hypothesigdRA) = r,
where r is a g-dimensional vector and R is axqn? matrix of rank q(q =
r(n — r)) imposing restrictions on G only. Define a matrix Ruch that R=
Rs(e; ® &). Then, as T oo,

We = Z'TIZ + B, (11)
with

11 = [RVR;]Y?[Rs SRs] *[Re VRs ]2

and

B = [Rg veab)]' [Rg SR;] *Rg veab) + 2[Rs vedb)]' T1V?Z, (12)

where b= —3,33C, S = 353 ® (3F2[5Ic(9)(s)dsIH?) ", V =
(3,,3 ® 1)S, and Z is a g-vector of independent normal variables
with mean zero and variance unity. Furthermore, Z is independent of
15 3c(9)3c(9)' ds in (12).

If C =0 in Corollary 1 we have3 = 0 in (12) and Wg = >, 7 x?,
where y? are independenj? variates and the weights; are the eigen-
values of the matriYRgVR;][Rs SRs] 2. This result would be identical to
one implied by Theorem.& of Phillips (1995 whenF = I. Note that3;., =
S — 315303, = 34, implies IT = | and thus the weights7; satisfy
0 < 7r; = 1. Therefore the FM-VAR test is bounded above by the uswﬁl
distribution whenF = I. As this same distribution is used to obtain critical
values for the testit is clear that the FM-VAR test is asymptotically conser-
vative Note that in an “exact stationarity” casiee., if F were fixed with the
corresponding characteristic roots outside the unit root githke test statistic
Ws would be asymptoticallwg distributed(cf. Phillips, 1995 Theorem @1).

The most interesting result of Corollary 1 is that wher= | + T~1C with
nonzero diagonal elements @) then if there is simultaneity in the modele.,
31, # 0, the FM-VAR Wald test has a bias term given Byin (12). The first
and second terms i, respectivelycharacterize the mean and variance of the
bias which both depend upob andC. The mean term is always nonnegative
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and thus a deviation from an exact unit root tends to increase the size of the
test WhenZ3, is nonzergthis effect is absent only from hypothesis tests that
do not impose restrictions on coefficients of near unit root variataases where
Rsvecdb) = 0). This latter observation is similar to one obtained for the con-
ventional cointegrating parameter estimators and indicates that tests of hypoth-
eses imposing restrictions only on coefficients of variables with exact unit roots
are unaffected by the presence of near unit roots in the mldel“partially
misspecified” case in Ellioft1998.

To further illustrate the result of Corollary 1 and to see how it relates to that
of Elliott (1998 we consider a simple exampM/e assume that;; andy,, are
scalars(i.e.,, n = r = 1) and that we are testing for the hypothesis that the vari-
abley,; has no Granger-causal effect yn (i.e.,, G = 0). Then from Corollary
1 we see that the corresponding FM-VAR-based Wald test staticay has
the limit theory

W, = (1-p?)Z% + By, (13)

with

By = chZJO Je(s)2ds+ 2C\p2(1— p?) /fo Je(s)2dsZ (14)

wherep = 212/\1211222 andZ is a normal variate with mean zero and vari-
ance unity Now, let Wy denote a Wald test statistic for this same restriction
that has been computed by applying the full information maximum likelihood
estimator ofG assumingy,; is generated by a unit root procegsom the cor-
ollary of Elliott (1998, Wy would then have the limiting distribution

Wy = Z?% + By, (15)
where

C2p2 fl \/ pz \/ 1
r= J 2ds+ 2C f J 2d 16
By 1,2 ), c(s)“ds 1,2\ J, c(s)“dsz (16)

with p andZ just as in(14). We notice that the bias tert; in (16) is larger
than 3, in (14) and tends to infinity ap goes to oneHowever this difference
between the two distributions is just a reflection of the fact that the FM-VAR
test is asymptotically conservative in our data generating progé&ssmagni-
tude of this difference can be evaluated through simulations

Table 1 gives simulated approximations to the rejection probabilitied/r
3.84) and P(W; > 3.84), where Wy and Wy are given in(13) and (15),
respectively and 384 is the 5% critical value based on thé&-distribution
The results are in line with our theoretical findingsd we observe that the
asymptotic size of the FM-VAR test is clearly unsatisfactory with moderate
values ofp although it is not as high as the size of the testing procedures
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TABLE 1. Asymptotic rejection ratés

cC=0 C=-10 C=-20
p Wy owg W, Wy Wy W
0 507 507 502 502 515 515

0.1 4.83 494 552 567 595 609
0.2 4.59 506 674 7.32 904 978
0.3 4.00 502 881 1049 1459 1689
0.4 317 502 1190 1577 2226 2776
0.5 232 505 1614 2450 3254 4355
0.6 149 504 2112 3688 4505 6329
0.7 0.62 503 2735 5471 6031 8333
0.8 0.12 513 3533 7765 7636 9682
0.9 0.00 512 4592 9687 9163 9997

aThe first column gives different values far = 212/\/211222, (Zq1 = 3 = 1).
Entries in the rest of the columns give simulated approximations t@/Pr 3.84)
and P(Wj > 3.84), where 50000 replications and,200 observations for each
combination ofp andC were used

covered by Elliott(1998. Although this example indicates that the conserva-
tive nature of the FM-VAR test can help to reduce size distortions from a near
unit root in some situationsgt must be kept in mind that this property comes
with the price of lower power to reject false null hypothesikésan be seen
theoretically that ifW in (13) were size adjusted by dividing witfl — p?),

then the FM-VAR test would have size distortions as large as in the methods
studied by Elliott(1998.

Table 2 examines small sample properties of the actual FM-VAR test for the
hypothesisG = 0 in (1) when the sample siZEis 20Q and the data are gener-
ated by equation$9) and (10) with G = 0, 3,1, = 35, = 1, yp = 0, and with
various values op = 3.1, andC, respectivelyln these simulations the FM-VAR
estimator is computed by using the Parzen kernel functon in accordance
with Assumption BWwe have chosen to experiment values of the bandwidth
parameteK that are the closest integersTd26, T036 T046 T056 gndT 066
respectively The actual values oK are indicated in the tabl&he results of
Table 2 are clearly in line with those of Table dlthough the choice of the
bandwidth parameter seems to play a role in these resigtsever this is not
much of a surprise because Yamada and Ta®97) have recently demon-
strated by using another simulation setup that the size performance of the
FM-VAR test can be highly dependent upon the choice of the value of the band-
width parameter even with relatively large sample siZéserefore our simu-
lation results confirm our theoretical findings and indicate that FM-VAR
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TABLE 2. Rejection rates of the FM-VAR test with sample size

T =200

p C K=4 K=7 K=11 K=19 K=33
0 0 204 349 453 573 640
0.3 0 141 284 379 435 512
0.6 0 072 110 154 228 272
0.9 0 001 003 003 016 046
0 —10 313 487 623 7.68 814
0.3 —10 360 675 815 924 883
0.6 —10 612 1152 1357 1345 1238
0.9 —10 1253 2182 2519 2410 1818
0 —20 343 604 723 7.82 808
0.3 —20 545 845 994 990 883
0.6 —20 1059 1769 1827 1655 1162
0.9 —20 2434 3711 3706 2874 1952

aThe first two columns give different values fpr= 212/\[211222, (341 =32,=1), andC,
respectively The rest of the columns report rejection rates of the FM-VAR Wstvith dif-
ferent combinations of values gfandC. The Parzen kernel function was applied with the
bandwidth parameter valuésthat are indicated in the column headin@sn thousand rep-
lications were usedand the data were generated by using equatlprwhereA is as in(8)
with G=0, F =1+ C/T, andT = 200 An initial value ofy, = 0 was imposegdand the first
500 observations were droppékhe 5% y? critical value was usedand the actual nominal
size for eactp (whenC = 0) can be seen from Table(tolumns under headingj).

hypothesis testing can suffer from potentially severe size distortions when some
roots are almost but not exactly equal to one

3. CONCLUSION

This paper examined the robustness of hypothesis testing based on the FM-VAR
estimator when some of the roots of a VAR are large but less than one in abso-
lute value It was shown that the FM-VAR test can produce severe size distor-
tions when the hypothesis imposes restrictions on variables with near unit roots
As this problem occurs in the particular part of the parameter space where the
FM-VAR estimator is efficient in the same way as conventional cointegrating
parameter estimatarshis finding corresponds with that of Ellio{t998 and
confirms that estimation and testing procedures that are somehow based on an
assumption about exact unit roots and that are trying to treat these optimally
tend to fail when there is just a slight deviation from this assumptioaddi-

tion, we showed that with the FM-VAR method near unit roots become esti-
mated as exact unit roots with convergence speed that is faster than the order
of the sample sizeAlso this result implies problems for FM-VAR hypothesis
testing as such “hyperconsistent” estimates tend to give rise to degenerate limit
distributions under the null hypothesihe only part of the parameter space
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where the FM-VAR estimator is robust involves coefficients related to those
variables or directions of the process where the standard stationary asymptotics
provide a good approximatioi herefore overall our analysis indicates that
the FM-VAR method can easily produce invalid inference if some variables in
the system are considerably highly autocorrelated

As far as possible solutions to the problem studied here are conceheee
is currently only one alternative for FM-VAR that does not require prior knowl-
edge of the number dheap unit roots and their location in a VAR his is the
lag augmentation procedure of Toda and Yamanib®®5. Although this method
can provide valid inference on coefficients of a levels VAR with near unit roots
it has the disadvantage of being inefficient because of its ultimate intention to
overfit the modellt also suffers from difficulties arising from uncertainties in
finding sufficiently high lag order

NOTES

1. The usefulness of the FM-VAR approach has been recently discussed and promoted by Free-
man Housey Kellstedt and Williams(1998 and Quintog1998.

2. Yamada and Tod&1998 pp. 62—63 note that this holds for exact unit roots

3. Here we refer to the Wald test statistic defined in the usual way such as the 6fhe in
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APPENDIX

Proof of Theorem 1. Let F=[8:8,] and write

(A" = AF=[A; - B;C;IDr'F'F,

where
T A A

Ar = &Y 1F Br= QéAyF[F/QAyAyF]71,
=1

T

.
Cr=F [Z AYi 1 Y1~ TAAyAy:|F’ D;= 2 F'Yi1Yi-1F
t=1

t=1

We first derive asymptotic results fétr, By, Cr, andD+ and then subsequently apply

(A1)

these to prove the main theorefrom (9) and(10) we can derive the following nota-

tion for later use

B'Y=Uy= B'e +(=G(F—=1ys1);
— | S ———
Uy Oy
B'Ay, = AUy = B'Ag; + (—G(F = 1)?yy 5 — G(F — )5 1);
H_J (- ~ —
AUy, Ay,
BiYi = Yo = (I + GGy 1+ Bige +(F—1)yy g3
—
=Y
BLAY, = Uy = (I + G'G)ey + G'B'Agy + (F = 1Yo + G'G(F — 1)yy».
-— N . J
Uzt Yot
ConsiderAr. UsingF — | = T~1C and well-known limiting results we obtain

.
T Y2Are; =T Y2 gujyy + Oy(T 72) = N(0,3,, ® Sgp),
t=1
where g = '3, 8, and
T
T_lATeé =T E & Ya-1(l + G'G) + Op(T_l/z)’
t=1
with
1
331 f AW, ¢ 353
0

.
T 6y 1(1+GG)= . (1+G'G),
o 35372 f AW, 3 353/
0
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(A.5)

(A.6)

(A7)

(A.8)
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whereW; = Wy(s) and W, = W, (s) are standard vector Brownian motions 1]
that are given by the weak limits of the partial sumig®2T 23, and
s522T1 V238 e | respectivelywhereasle = Jc(s) is an Ornstein—Uhlenbeck pro-
cess defined by the multivariate stochastic differential equalilyis) = CJ:(s) ds +
dWs(s), Jz(0) = 0.

ConsiderBr andCy and usg(A.2)—(A.5) to write

Quay F= [Qeav, Qv (A.9)
R flAulAu1 QAU1U2
F'Qapny F= | & - , (A.10)
‘QAU1U2 Quzu2

where the subscriptsU; andU, refer to the serieaUy;—; andU,;_4, respectivelySim-
ilarly, write

T T
T2 AUy U — Ayuau, T71 > AUy 1 Y5 — Asu,u,
=1
A~ T A
U2t—1U:(t—1 - AUZAU1 L 2 U2t—1Y2,t—l - Au2U2

1 t=1

-
[

Tic, = (A.11)

M-

T—l

t

Lemma 1 which follows summarizes the asymptotic properties of each of the elements
in (A.9)—(A.11) similarly to Lemma 8L of Phillips (1999 for the C = 0 case In the
proof of Lemma 1 we work as in the proofs of Phillif#995 only with long-run covari-
ance matrix estimates that satisfy péb}i of Assumption KL(for additional comments
that apply here alssee Phillips 1995 pp. 1057-1058

LEMMA 1. Under Assumptions KL and BW, the following hold:

(a) QaulAu1 K™2My + Op(Kiz)

(b) QAU1U2 = K™2My + Op((KT)™Y2) + 0p(K™2) + Op(T);

(c) QUzUz (I1+G G)Ezz(l + G'G) + Op(l)

(d) QéAU =K 2M3 + Op((KT) ¥2) + 0,(K™2) + On(T ™ 1);

(e) quz Sl + G G) + 0 (1), whereX ., = (3, 2,);

(U 12'[ 1 AUy 1 Ufg AAulAu1 Op(K™2) + Op(T™h);

(9 T thluzt—lun—l - AuzAu1 = K™2Q, + O p((KT)™ ¥2) + o (K™ 2) +
Op(Tfl):

(hy T°* 2; 1 AUy 1 Y5 — AAulu2 =T My Vo FK2Qo + Op((KT)_l/Z) +
0 (K );

() T3 Uy 1 Vs — Au2u2 = (I + GO)[T 2 ep 1Yo 2+T 2CX
S Yo 2Yaol(I + G'G) + op(1).

The error terms of Q(KT)~%2) that appear in parts (b), (d), (9), and (h) are sharp.
Proof. Part (a): Use(A.3) to write

QAulAul = QAulAul + ZﬂAulAul + QAulACIl’ (A.12)
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where the first term corresponds!flgulAul in part(a) of Lemma 81 in Phillips (1995
p. 1058. Thus part(a) follows from Phillips (1995 provided that the two last terms in
(A.12) are at mosbp(K*Z). First, use(A.3) to write

Qpuyan, = =T 204,,,,C2G' — T 1Q,,,,,CG, (A.13)

where()Aulg2 = Op(K*Z) by part(b) of Lemma 81 in Phillips (1995. Secondthe first
term on the right-hand side ¢A.13) is 0,(T ~2), because

Quuyy, = Op(D), (A.14)

which can be proved by using similar lines to those in equatP in the proof of
part (c) of Lemma 81 in Phillips (1995 p. 1064. An important part of these deriva-
tions is the following intermediate result

K—-1
K™ > wi(j"/K)Ly,, () = 0y(D), (A.15)

j=—K+2

wherej* € [ j — 1, ] is defined for eacly. This result follows from arguments given in
the proof of Theorem 3 of Phillips (1991 pp. 432—433 in the same way as the respec-
tive result in Phillips(1995 p. 1065. (Note that in the proof of Theorem B of Phil-
lips, 1991 similar [intermediaté convergence resulfas e.g., Phillips, 1991, p. 433
the first resulf can be proved when an exact unit root process is replaced by a local to
unit root one)

Next, use the definition ofAd, in (A.3) to write
Qg a0, = TT4GC2Q,,, C2G' + 2T 3GCQ,,,, C2G' + T72GC1,,,,CG), (A.16)

€2Y2 £282

where the first term i,(T ~2), because

K—1

IT-20,,,.| = HT-Z > w(j/K)T,,( J)H

j=—K+1

K-1

:HTS > W(j/K)< > y2,t3+jyé,t3>

j=—K+1 1=t—3+j=T

K—1

.
K
=T~ 12? Kt 2 T71/2||y2,t73+j”T71/2”y2,t73H

t=1 j=—K+1

= $T‘12 K-t 2 O,(1) = —o b(1) = 0,(1), (A.17)

t=1 j=—K+1

where the last equality follows from Assumption BWsing the same argument as that
in (A.15) we can show that the second term(m16) is 0,(T ~2), whereas the last term
in (A.16) is Oy(T2), becauseﬂszp2 Q... Thus Q4. 10, = Op(T2), and part(a)
follows.
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Part (b): Use(A.3) and(A.5) to write

QAU1U2 = QAulv + QAulyZ + QAulu + Qaalyzy (A.18)

where the first term is an analog to the tefm2Aul in the second result of patb) of
Lemma 81 in Phillips (1995. Now, the result of partb) follows from Phillips (1995
provided that the three last terms(i.18) are at mosO,(T ). This is easily seen by
applying similar arguments to those in the proof of pait
Part (c): The proof is similar to those of parts) and(b) and thus is omitted here
Part (d): Use(A.3) to decompose

ﬁgAul = Q;;Aul + QéAﬂl (A.19)

and use similar algebra to that (P13 in Phillips (1995 p. 1064 to obtain

Qipn, = Qopu, — WK = D/K) (A= AT, (K) + W((—K +1)/K) (A= AT, (-K+ 1)

K—-1

+ 2 w(i/K) = w((j = D/KTA = AT, (), (A.20)

j=—K+2

where the subscript denotes the serieg_;. The first term in(A.20) is analogous to
ﬂquul in the first result of par{b) of Lemma 81 in Phillips (1995 and delivers the
first three terms on the right-hand side of paf). Thus it remains to be shown that the
rest of the terms ifA.20) and fléml in (A.19) are at mosD,(T ~1). These results can
be derived with similar arguments to those in the proofs of p@jtsand (b) and by
applying similar lines to those in equatio(813 and (P14 in Phillips (1995 p. 1064);
details are omitted here

Part (e): The proof is similar to that of pard) and hence is omitted here

Part (f): Use the definition ofAQ; in (A.3) to write
AAulAul = _T72AAu1y2CZG’ - TilAAulsZCGZ
where&Auie2 = Op(1), by similar arguments to those used right aftér20) and the
ones used in(A.15), whereas&Auls2 = 0p(1) by arguments given in the proof of
Lemma 81 in Phillips (1995. Therefore AAUlAOl = 0,(T~%). Furthermoresimilar der-
ivations to those fofA.16) imply Amlml = Op(T?). These lines together with well-
known limiting arguments vyield

t=1 t=1

T T
T 1Y AU, Uy — Asujau, = [Tl > AUy U — AAulAu1:| + Op(Til)»

(A.21)

where the term in the square bracketﬂg{Kz) (see Phillips 1995 Lemma 81, part
(e)). Thus part(f) follows.
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Part (g): In the same way as in the proof of pdfy we can deduce that

T T
T 1Y Uy qUfpq — Ay,au, = [Tl > Upeq Uy g — AuzAu1:| + Op(Til),
t=1

t=1

where the term in the square brackets has similar limit theory as in(fjpaof Lemma
8.1 of Phillips (1995, and thus part(g) follows.

Part (h): As in the proofs of partéf) and(g) we have
T ~
T 2 AUy 1Yz 9 — AAU1U2
t=1
T ~
=T 1Y AUy 1Y 1(l + G'G) — Apuyu, T O(TTH)
t=1

-
=T g Yora—T70 2 Up—p8p—2(1 + G'G) + Op(Til), (A.22)
t=1

where the last line corresponds to equati®i8 in the proof of part(g) of Lemma 81
of Phillips (1995, and thuspart (h) follows from Phillips(1995 p. 1067).
Part (i): Use(A.4) and(A.5) to write

T T T
T E Uy 1 Y31~ Ay,u, = T 2 v Ya T E Yar-1Yat-1
=1

t=1 t=1

where

T71

M=

.
Yor 1Yo 1= (I + G'G)CT 2 Z Yor—2Ya—2(l + G'G) + Op(Tfl)-
1 t=1

t

Furthermoreapplying well-known limiting arguments we get
T

T

T
v Yo = (1 + G'GT 2 &2—1Ya—2(l + G'G) + Vr + Op(Til)
t=1 t=1

with

Vi

t=

T T
T 2 G'B'Agi_1Y5 (I +G'G)+T71 E V18181
1 t=1

.
T3 G'B's_z85 (1 +G'G)
t=1

.
+T70 2 [(1 + G'G)ey_1 + G'B'Agy_1]e{_1 8, + 0,(1)

t=1

=G'B'Ip(l +G'G) + (1 +G'G)Zp By + G'B'E.. B+ 05(1) = A, +0y(D),
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where the last equality follows from the definition af,. Now, as A, LN A,,, and

A A, ,, and Aym areop(1) by similar arguments to those used in the proof of part

v2Yy2? T Yav2

(f), we obtain pari). |

It follows from Lemma 1 that we can apply analogous lines to those in Phillif85
p. 1065 to obtain

Br = [N+ Op((K3T " H)¥2) + 0,(K3T"H)¥2) 1 3,33(1+ G'G) ™ +0,(1)],
(A.23)

whereN is a fixed nonzero matrix andl,, = (27, =,,)’. Combining(A.23) and parts
(f)—(i) of Lemma 1 yields

T 1B, Cre} = O,(K2) + O,((KT) ¥2) (A.24)

and

T T
T'BrCre, =335 [Tl D Ena Yot T2CY y2l2yét2:|(| +G'G)
t=1 t=1
+ Op(Tfl/z) + OP(K?’/ZT*l) + Op(l). (A.25)

From Assumption BW we hav®,(K ~2T¥/2) + O,(K ~%2) = 0,(1) (cf. Phillips, 1995
Discussion &.(i)), and thus(A.24) and(A.25) combined with well-known limiting argu-
ments imply

T ¥2B;Cr =[0,(1) : O, (TY?)]. (A.26)

Next applying the formula of the partitioned inverse we get

[ar — brertbr] ™t —[ar — brertbr] byt

D;l=
T | —ertbilar — broptby] Tt [cr — brastby]?

where by well-known limiting arguments

.
Tlar=T 1> Uy U+ Op(Til) 2 DPPR

t=1

T
Tile =T 2 Uy 1Y 1= Op(l)r

t=1

T T
T2 =T 2> Y 1 Y3 1= (1 +G'C)T 2 Yo oVh (1 +G'G) + Op(T_l)'
=1 =1
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Using these results it is seen that

S55(1+ GG') + 0,(1)
TD;F'B = A.27
TIEB [ 0,7 (A27)
and
0,(1)
TZD-Fl F’BL = (A28)

T 1
(1+GG6)t [T 2 y2t2yét2:| + 05(1)
=1

We are ready to complete the proof of TheorenfFr part(a) normalize the first
column in(A.1) by \/T to get

NT(A" = AB =T Y2[A; —B;C,]TD:*F'B
=T Y2A;TDr1F'B + 0,(1),

where the last equation follows frofd.26) and(A.27). Thus for part(a) it remains to
combine the results ifA.6)—(A.8) with the one in(A.27).
For part(bl) use(A.6)—(A.8) and(A.24)—(A.28) to see that

eT(A" = A)B, = [T A =T B Cr]T2Dr F'B, =Py —3,3,3C + 0p(1),
where
T T T -1
Pr = [Tl D e Yoo~ T 18,350 > 82tlyét2:| [Tz > yztzyétz]
t=1 t=1 t=1
converges weakly to

-1
|: l/2f dvvlchl/Zr Elzzzzil.zl/zf dVVZJCEl/ZI] |:E%/22f JCJCEI/Zr:|

-1
= l/2f dvvl 2‘]021/2! <E%/22f JCJCEUZ/) ,

where= denotes equality in distribution andh., = Wy — 3,,35,2W, is a standard
Brownian motion independent &fb.
For part(b2) note that

&T(A" = AB =T(F' —F) = &[T 'A; — T 'B;C;]T?D; 'F/B,,
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whereF * = e, A*e,. It is then straightforward to appl§A.6)—(A.8) and(A.24)—(A.28)
to show that

T T T
T(F*—F) = (Tl E ot Yor_1 — [Tl 2 Sx_1Yho+ T72C E yzthétZ])
=1 t=1 t=1

T -1
X (TZ > y212Yét2> + 0p(2). (A.29)
t=1

GivenF =1 + T 1C we see tha€ cancels out from both sides ¢4.29) and thus it can
be written as

T T T -1
TF " =1)= [Tl DeaYhor— T 1Y 82t—1yét—2] <T2 > y2t—2yét—2>
t=1 t=1 t=1
+0,(1). (A.30)

This shows whyF * converges to an identity matrix and why we have ad@ewh the
left-hand side of parth2) of Theorem 1It remains to observe that the difference between
the two sums in the square brackets(M30) is justT e,rys 1 — T texoVs 1 =
0p(1), whereas the inverse ifA.30) is Op(1).

Proof of Corollary 1. Because the hypothesis imposes restriction&amly, there
indeed exists @ X (n(n — r)) matrix Rg such thatRvedA) = Rg(e; ®) &) ved(A) =
RgvedG) = r. Therefore letting

T -1
S=[e3..8]1® [ez <T 2 21 ytlyt’l) eé]
<

and using the fact th&g ved(G) = r under the null hypothesis we can write
W = (R vedT(G* — G)])'[Rs SRs] *(Rs vedT(G* — G)]), (A.31)

WhAere§:> S by similar arguments to those used in the proof of Theorgandl because
€26 =211=311 1 0p(1).

Next, becauseW;.,(s) and W,(s) are vectors of independent standard Brownian
motions ved [y dW,.,J5(f3dc I¢)Y?) is equal in distribution toN(0, 1,(n-r)) (€.g.,
Park and Phillips1988. Thus it follows directly from partb1) of Theorem 1 that

[ReVRs] ¥2{Rs vedT(G* — G)] — R vedb)} = Z=N(0, 1), (A.32)

whereV is Swhene, S, _ €] is replaced by, .,. Taken togethefA.31) and(A.32) show
the result in(11), whereas the independence statement holds be&ins@\.32) andJc
are jointly normal and uncorrelated u
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