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Abstract

This paper proposes the use of Constraint Logic Programming (CLP) to model SQL queries in a
data-independent abstract layer by focusing on some semantic properties for signalling possible
errors in such queries. First, we define a translation from SQL to Datalog, and from Datalog to
CLP, so that solving this CLP program will give information about inconsistency, tautology, and
possible simplifications. We use different constraint domains which are mapped to SQL types,
and propose them to cooperate for improving accuracy. Our approach leverages a deductive
system that includes SQL and Datalog, and we present an implementation in this system which
is currently being tested in classroom, showing its advantages and differences with respect to
other approaches, as well as some performance data.
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1 Introduction

Aiding programmers with both syntax and type checking at compile-time obviously im-

proves productivity. In the realms of SQL, current systems (both proprietary and open-

source) typically lack of more advanced techniques such as, in particular, the semantic

analysis of statements. After the syntax checking stage, such an analysis should point out

possible incorrect statements (e.g., missing or incorrect tuples in the actual outcome).

However, in this paper, we avoid actual execution of statements as done in other ap-

proaches (assessment tools, test case generation, data provenance. . . (Javid et al. 2012)),

and we target at the compile-time stage instead.

There are some indicators of bad statement design which can be used to raise seman-

tic warnings. In particular, we focus on SQL semantic errors as described in (Brass and

Goldberg 2006) that can be caught independently of the database instance. There are

many possible errors and, among them, the following are included: inconsistent, tautolog-

ical and simplifiable conditions, uncorrelated relations in joins, unused tuple variables,

constant output columns, duplicate output columns, unnecessary general comparison

operators, and several others.
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Applying such a semantic analysis to SQL is cumbersome because its syntax and se-

mantics do not facilitate expressing program properties (Guagliardo and Libkin 2017).

To ease this task we use Constraint Logic Programming (CLP) (Jaffar and Lassez 1987;

Apt 2003) as a reasoning setting for SQL statements. This way, we translate an SQL

statement into a constraint logic program that in particular models conditions and ex-

pressions. This CLP program is then evaluated to obtain properties of interest for the

semantic analysis. For example, obtaining a failed deduction indicates an inconsistent

condition.

CLP systems include different solvers for specific constraint domains such as Booleans,

finite domains, reals, and rationals. Each one is an instance of the generic schema CLP(X),

where X is a constraint domain which can be mapped to an SQL type. On the one hand,

since a WHERE condition generally includes columns of different types, then different do-

mains (and, therefore, constraint solvers) are expected to be involved in a single condi-

tion. On the other hand, the deduction power of each solver is limited by its constraint

propagators and the kind of constraints it can deal with. For example, while a finite

domain solver can handle non-linear constraints, a real solver cannot. Thus, we apply

solver cooperation (Hofstedt 2000) to enable solver cooperation for compatible domains

and interchange deductions to improve accuracy.

We have implemented our proposal in a deductive database system that includes SQL

as a query language. This system (Datalog Educational System – DES (Sáenz-Pérez

2011)) is an interactive tool mainly targeted at teaching, and it is appealing for SQL

learning with the aid of both syntax and semantic checking (as presented here). It has

experienced more than 76K downloads and has been used in more than 50 universities

around the world (cf. des.sourceforge.net/html/facts.html). Solving a query is via an

optimized translation into a Datalog program, which is then solved by its deductive

engine. Thus, we take advantage of this Datalog translation for the generation of a CLP

program. To the best of our knowledge, this is the first work dealing with SQL semantic

errors using CLP.

We are currently using the system for our Databases modules via a web interface

(desweb.fdi.ucm.es), retrieving data to evaluate the usefulness of the semantic warnings.

More than 200 student accounts have been created, and more than 3,000 logins have

been registered, including 600 guest account logins. Next, the proposal is motivated by

examples.

Motivating Examples Following (Brass and Goldberg 2006), a simple semantic error oc-

curs in the following query:

SELECT * FROM employees WHERE dept=’IT’ AND dept=’HR’;

Here, the condition is trivially false due to (probably) using the wrong logical operator.

Despite this, it is accepted and solved with no warning in current DBMSs.

Conditions also appear in database constraints, and may be identified as either incon-

sistent or tautological. Consider the following definitions, in which the constraint on the

salary has the minimum and maximum values interchanged (no definite tuple could ever

be inserted):

CREATE TABLE departments(dept VARCHAR(10) PRIMARY KEY, dname VARCHAR(20));
CREATE TABLE employees(ename VARCHAR(20), dept VARCHAR(10) REFERENCES departments,

salary INT CHECK salary BETWEEN 5000 AND 2000);
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Tautological conditions can occur as in the following statement (where the intention

would probably be to use AND instead of OR):

CREATE TABLE employees(ename VARCHAR(20), dept VARCHAR(10) REFERENCES departments,
salary INT CHECK salary > 2000 OR salary < 5000);

We can consider a more involved example including both database constraints in a table

and an SQL query. On it, a table is defined for containing gas products and describing

their composition as percentages, which must make a total of one hundred percent. The

SELECT query below would be inconsistent because it is asking for a gas product with

components summing more than 100%.

CREATE TABLE gas_products(name VARCHAR(20) PRIMARY KEY,
butane FLOAT CHECK butane BETWEEN 0 AND 100,
propane FLOAT CHECK propane BETWEEN 0 AND 100,
olefins FLOAT CHECK olefins BETWEEN 0 AND 100,
diolefins FLOAT CHECK diolefins BETWEEN 0 AND 100,
CHECK butane+propane+olefins+diolefins = 100);

SELECT name FROM gas_products WHERE butane>60 AND propane>50;

Finally, another possibility is a condition that can be simplified, which may be a

symptom of a wrong condition. For example:

SELECT butane, propane FROM gas_products
WHERE butane-propane=10 AND butane+propane=80;

This is equivalent to the simple condition butane=45 AND propane=35 because the con-

dition represents a system of linear equations with a single solution. Then, both output

columns are constants, and therefore symptoms of a wrong query. Other errors that

students typically make and are also covered by this tool are presented in Subsection 4.4.

Next sections detail our approach to identify such wrong uses of SQL conditions, and

consists in translating an SQL statement into a CLP program, which is evaluated for iden-

tifying inconsistency, tautology, simplifiable conditions, and constant output columns.

Since we use DES, which translates SQL to Datalog, we start from this translation (Sec-

tion 2) for generating the CLP program (Section 3). Section 4 presents the working

system with the techniques used to identify a collection of semantic errors, together with

performance data. Section 5 relates this work to other approaches and, finally, we present

in Section 6 our conclusions and points for future work.

2 From SQL to Datalog

In a first stage, we take advantage of the translation from an SQL query to a semantically

equivalent Datalog program. It builds upon the basic presentation in (Ullman 1988), and

extended in (Sáenz-Pérez 2017) (where formal results for semantic equivalence are given).

First, we specify the syntax of the language fragments we consider for both SQL and

Datalog, then we describe the translation, and finally some examples are presented.

2.1 SQL Syntax

In this section, we consider a fragment of standard SQL (ISO/IEC 2016). Despite our

approach supports a wider coverage of SQL than the considered here, we stick to the

grammar in Figure 1 for the sake of simplicity. There, true-typed words stand for termi-

nal symbols, ‘c’ for constants, ‘r’ for relations (either tables or views), and ‘a’ for relation
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Fig. 1. A grammar for a subset of standard SQL

attributes. In this grammar (and the one in the next subsection), we use the symbol ::=

for defining parts of the language, square brackets ([ ]) to delimit optional parts, and

vertical bars (|) to separate alternative parts. We assume a type inference system for syn-

tactically valid queries. Also, we assume that syntax comprehensions such as E BETWEEN

E1 AND E2 are re-written in their equivalent basic forms supported by the grammar. Each

relation alias Relation AS Alias in a FROM clause is re-written as a reference to the alias,

by adding a new relation Alias← Relation to the database, where the symbol ← stands

for relation definition.

A query can appear directly as a row-returning SQL statement, as well as in other

statements of the DML (Data Manipulation Language) such as INSERT and DELETE state-

ments. For example, in: INSERT INTO r query (where the results of query are inserted into

the relation ‘r’). DDL (Data Definition Language) statements such as CREATE TABLE can

include predicates (following the syntax of cond in Figure 1) in CHECK constraints. Note

that both conditions and expressions can include queries as it can be seen in the definition

of cond and exp, respectively. The DDL statement CREATE VIEW AS query also includes a

query (following the syntax of query in the same figure). Thus, queries and conditions

occurring in any part of an SQL statement are targets for the proposed semantic analysis.

2.2 Datalog Syntax

With respect to Datalog, we consider an extended Datalog language with duplicates and

metapredicates as shown in Figure 2, where rule stands for rules, goal for goals, exp for

expressions, ‘atom’ for an atom (possibly containing variables and constants), the comma

(‘,’) for a conjunction, and the semi-colon (‘;’) for a disjunction. c op and m op are the

same as in Figure 1 excepting <=, which is written as =<. The syntax of the logic includes

a universe of constant symbols, a set of variables, a set of user-defined predicates, and a

set of built-in metapredicate symbols (where the prefix operator not stands for negation,

the predicate distinct/1 for duplicate elimination, and top/2 for the first n solutions

of a goal). Following Prolog syntax, variables are written starting with either an upper-

case letter or an underscore, and the rest of symbols either starting with lower-case or

delimited by single quotes. The first form of rule in the figure is also known as a fact.

A Datalog database (also referred to as a program) contains facts and rules instead of

relation definitions as in SQL (tables and views, respectively). We consider also a type

system for Datalog for restricting valid rules with respect to type specifications.
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2.3 Translation

This section describes some examples of the translation of the considered SQL and Dat-

alog languages, extending the description in (Sáenz-Pérez 2017) with the clause DISTINCT

and the operators IN and EXISTS. Here, we refer to the function SQL to DL as defined there

(which we do not reproduce it here). It takes a relation name and an SQL query defining

a relation as input, and returns a multiset of Datalog rules providing the same meaning

as the SQL relation for the corresponding predicate with the same name as the relation.

For a query in the top-level, we assign a relation name (answer) to build the outcome.

From here on, set-related operators and symbols refer to multisets because SQL relations

can contain duplicates.

An SQL query is preprocessed before passing it to the translation function:

• If the keyword DISTINCT is specified in a query Q defining a relation r, this query

is re-written as follows, where a fresh relation r′ is introduced, and the notation

Q[X/Y ] means a syntactic replacement of X by Y in Q:

r ← SELECT DISTINCT * FROM r′ r′ ← Q[DISTINCT/ALL]

Note that a SELECT statement without a WHERE clause means an implicit true con-

dition.

• If a set operator includes (either implicitly or explicitly) the keyword DISTINCT in

a query Q ≡ Q1 s op Q2 defining a relation r, then it is re-written as:

r ← SELECT DISTINCT * FROM r′ r′ ← Q1 s op ALL Q2

In addition, we define a function to deal with a set of SQL relation definitions which

can appear as the result of SQL preprocessing:

Definition 2.1

The function SQLs to DL takes a set of SQL relation definitions as input and re-

turns the equivalent Datalog program: SQLs to DL ({r1 ← SQL1, . . . , rn ← SQLn}) =
n⋃

i=1

SQL to DL (ri, SQLi) �

Example 2.1

Given the following table schemas:

CREATE TABLE dept(id CHAR(10) PRIMARY KEY, name CHAR(20), location CHAR(20));

CREATE TABLE emp(name CHAR(20) PRIMARY KEY,

dept CHAR(10) REFERENCES dept(id), salary INT);

And a query in the top level that lists the employee names and their department names:

answer ← Q

Q ≡ SELECT emp.name, dept.name FROM emp, dept WHERE emp.dept=dept.id

Since it is a single query definition, we apply the function SQL to DL to obtain:

Fig. 2. A grammar for an extended Datalog language.
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SQL to DL (answer, Q) = {(answer(X1,X5) :- r1(X1,X2,X3,X4,X5,X6), true, true, X2=X4)}⋃
{(r1(X1,X2,X3,X4,X5,X6) :- emp(X1,X2,X3), dept(X4,X5,X6))} �

Example 2.2

Given the same table schemas as in the previous example, a query in the top-level that

lists the department names with assigned employees is answer ← Q, where:

Q ≡ SELECT dept.name FROM dept WHERE dept.id IN

(SELECT DISTINCT dept.name FROM emp, dept WHERE emp.dept=dept.id)

This is re-written as answer ← Q1 and r2 ← Q2, where:

Q1 ≡ SELECT dept.name FROM dept WHERE dept.id IN SELECT DISTINCT * FROM r2

Q2 ≡ SELECT dept.name FROM emp, dept WHERE emp.dept=dept.id

Since there are two relation definitions, we use Definition 2.1:

SQLs to DL ({answer ← Q1, r2 ← Q2}) = SQL to DL (answer, Q1)
⋃

SQL to DL (r2, Q2)

Q2 is almost identical to Q in Example 2.1; the differences are an absent argument in

the projection, and different names for relations and variables. The translation of answer

← Q1 is:

SQL to DL (answer, Q1) = {(answer(X2) :- dept(X1,X2,X3), true, X4=X1, r1(X4))}⋃ ∅⋃
{(r1(X4) :- distinct(r2(X4)))}, and then:

SQLs to DL ({answer ← Q1, r2 ← Q2}) =
{(answer(X2) :- dept(X1,X2,X3), true, X4=X1, r1(X4)),

(r1(X4) :- distinct(r2(X4))),

(r2(X8) :- r3(X5,X6,X7,X8,X9,X10), true, true, X6=X8),

(r3(X5,X6,X7,X8,X9,X10) :- emp(X5,X6,X7), dept(X8,X9,X10))} �

In these simple examples, the generated Datalog program can be simplified by remov-

ing true goals and explicit variable bindings (e.g., X4=X1), and by applying substitutions

(a goal X=X is a trivially true goal and thus it can also be removed). In addition, fold-

ing/unfolding techniques (Burstall and Darlington 1977; Tamaki and Sato 1984) are ap-

plied to further simplify the Datalog program generated. Here, unfolding can be applied

to user predicate calls for which the predicate consists of only one clause, thus removing

the predicate itself. Following Example 2.1, the translated program is simplified into the

following single rule (with a substitution [X4/X2]):

{(answer(X1,X5) :- emp(X1,X2,X3), dept(X2,X5,X6))}.

3 From Datalog to CLP

Once the Datalog program corresponding to an SQL query is obtained, we can reason

in the logical level about program properties of interest. Selecting a CLP language for

expressing such properties seems to be a natural choice for dealing with unbound variables

in conditions. Note that SQL conditions operate on data coming from their providers

(relation instances, either table contents or the result of solving a reference to a view).

However, our compile-time approach avoids inspecting such instances, thus leading to

non-ground conditions in general. If all the conditions are expressed as a constraint

problem, solvers can be used to infer some deductions.
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For example, the SQL condition r.a > s.b AND s.b > r.a is translated into its

Datalog equivalent X > Y, Y > X. Since X and Y are logic variables, the condition cannot

be tested by a Datalog deductive engine without resorting to retrieve data from the

database instance (this would make the condition ground for concrete data in safe rules

(Ullman 1988)). However, it can be posted to a solver which could deduce an inconsistent

state with the help of its constraint propagators. Similarly, a tautological condition can

be identified by determining whether its complement is false, as in the example in the

introduction: salary INT CHECK salary > 2000 OR salary < 5000. The condition would

be translated into X > 2000; X < 5000 and a constraint solver can deduce that its com-

plement X =< 2000, X >= 5000 is false. Such a solver can also simplify its constraint store.

For example, given the following condition posed in the introduction: butane-propane=10

AND butane+propane=80, its translation X-Y=10, X+Y=80 forms a conjunction of linear

equations for which a numeric solver can find the single solution X=45 and Y=35.

Therefore, our approach consists in translating the Datalog program into a CLP pro-

gram in which Datalog conditions are replaced by CLP constraints. Moreover, since

this CLP reasoning operates at compile-time, deductions are independent of database

instances. Nonetheless, as each variable occurring in the CLP program has attached

the domain of all possible values for its type, each base relation (table) in the Datalog

program is translated with the CLP constraints corresponding to the CHECK constraints.

This way, solving the CLP program represents an abstract solving of the original Datalog

program.

Next subsection identifies both SQL data types and their corresponding constraint

domains. Since there can be different solvers for compatible domains (with different de-

duction capabilities), in Subsection 3.2 we show how they interact to improve deductions

via cooperation.

3.1 Domains

Constraint solvers operate on specific constraint domains, which we map to com-

patible SQL data types. SQL standard data types include in particular exact nu-

meric (INTEGER, NUMERIC, DECIMAL, SMALLINT), approximate numeric (FLOAT, REAL, DOUBLE

PRECISION), Boolean (BOOL), character string (CHAR, VARCHAR), and datetime types (DATE,

TIME, TIMESTAMP).

Constraint domains are instances of the generic schema CLP(X) (Jaffar and Lassez

1987; Apt 2003), where X is a constraint domain. Typically, the following domains can

be found in existing implementations: FD (finite domain of integers, with both linear

and non-linear constraints), Q (rational numbers with linear constraints), approximate

numeric (R), and Boolean (B).

Further constraint solvers can be developed with the aid of Constraint Handling Rules

(CHR) which eases the task of implementing specific-application constraints. In particu-

lar, string solvers (which have received recently a large amount of research (Scott et al.

2013; Caballero and Ieva 2015)) could be developed over character strings, and so do

solvers over datetime types.

3.2 Solver Cooperation

Solver cooperation (Correas et al. 2018; Estévez-Mart́ın et al. 2009; Hofstedt 2000; Mon-

froy and Castro 2004) is a technique enabling solver interaction with the aim to early
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prune the search space during solving. This is possible because different solvers prune

the search space in different ways. For example, on the one hand, given the constraints

X+Y=2 and X-Y=0, the propagators of the CLP(FD) solver are typically not able to solve

the linear system, though the CLP(Q) does. On the other hand, considering the con-

straints X*X=4, X>0 and X<4, the CLP(FD) solver is able to solve the non-linear problem,

whereas CLP(Q) does not. Thus, provided that CLP systems enjoy different solvers, we

take advantage of them and make them to cooperate.

Logic programming (LP) systems include the Herbrand domain H that supports com-

putations with symbolic equality and disequality constraints over values of any type. In

the CLP setting, the domain H can directly cooperate with other solvers wherever each

variable is attached to a single CLP solver (in order to prevent domain clash).

Each condition occurring in the Datalog program is translated into a constraint term

which includes the target domain type. With this indication, the constraint is sent to

the corresponding solver(s) at CLP evaluation time. If a single solver X is available for a

given domain type, then the constraint operates on the same logic variables occurring in

the translated CLP program (i.e., a direct cooperation of H with X). Otherwise, when

more than a solver is available (on several domains Xi), a copy of each variable in the

constraint is created for each solver, and bridge constraints are imposed to make possible

the bidirectional communication between them.

Figure 3 illustrates our approach to solver cooperation (which differs from (Estévez-

Mart́ın et al. 2009) since we do not take projections into account). A bridge constraint

is denoted as XX1 #==X1,X2
XX2 , which relates two variables XX1 and XX2 in the domains

X1 and X2, respectively. In the figure, the constraint ctr(XH1 , . . . , X
H
n ) operating on the

domain H has n variables XHi (1 ≤ i ≤ n), and there are m compatible solvers for which

m equivalent Xj constraints ctr(X
Xj

1 , . . . , X
Xj
n ) are posted to them. For each solver Xj , new

X
Xj

i variables are created, which form the equivalent Xj constraint. Then, n ·m bridge

constraints are created of the form XHi #==H,Xj X
Xj

i (1 ≤ i ≤ n, 1 ≤ j ≤ m), relating each

pair of variables XHi and X
Xj

i once for each domain Xj .

For example, let us consider a condition X1 > X2 on the domain H, and the compatible

domains CLP(Q) and CLP(FD). The equivalent constraints in CLP(Q) and CLP(FD)

are respectively clpq:{XQ1 > XQ2 }, and XFD
1 #> XFD

2 (following the concrete syntax of Prolog

systems such as SICStus Prolog and SWI-Prolog, where clpq:{C} is the way to post the

constraint C to the CLP(Q) solver, and #> is the FD operator corresponding to >). Four

bridges are built in this case: XH1 #==H,Q XQ1 , X
H
2 #==H,Q XQ2 , X

H
1 #==H,FD XFD

1 , and XH2

#==H,FD XFD
2 .

3.3 Translation

In this subsection, we show the translation of a Datalog program ΠDL into a CLP program

ΠCLP such that ΠCLP represents ΠDL. We say that ΠCLP represents ΠDL if the meaning

Fig. 3. Solver Cooperation
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of ΠDL is included in the meaning of ΠCLP for any of its instance base relations. For a

Datalog program ΠDL, its meaning (denoted as �ΠDL�) is the set of ground facts inferred

for each relation. For a CLP program, its meaning (denoted as �ΠCLP �) is built from the

set of all the (possibly non-ground) facts inferred for each relation: for each non-ground

fact, all the type-compatible values constrained to the answer constraints are used to

build the ground facts. Thus, ΠCLP represents ΠDL if �ΠDL� ⊆ �ΠCLP �.

For example, the meaning of the Datalog program ΠDL = {r(X):-X=1;X=2} is {r(1),
r(2)} for a relation r that has integer type for its single argument. The meaning of the

CLP program (omitting domain annotations) Π1
CLP = {r(X):-X>0,X<3} is the same, pro-

vided the same integer type. Note that, whereas non-recursive Datalog enjoys finite mean-

ings (for finite relations), CLP can have infinite meanings as, e.g., Π2
CLP ={r(X):-X>0},

whose meaning would be {r(1), r(2), r(3), ...}. Both Π1
CLP and Π2

CLP represent the

meaning of ΠDL, but the first one does it with a much better precision than the second

one. The program Π3
CLP = {r(X):-X>0,X<2} (�Π3

CLP � = {r(1)}) does not represent ΠDL.

If a Datalog rule contains a call to a base relation (representing an SQL table), the

translated CLP program omits that call to keep our approach instance-independent.

For example, the program {r(X):-t(X), X>17}, with a call to the base relation t, is

translated into the CLP program {r(X):-true, X>17}. Moreover, if the table has CHECK

constraints, they are also added to the rule. Assuming that the declaration for this table is

CREATE TABLE t(a INT CHECK a>=0 AND a<=100), then the translation of the rule becomes:

r(X):-true, X>=0, X=<100, X>17.

Next definitions formalize this translation from Datalog rules into CLP rules:

Definition 3.1

The function DL to CLP takes a Datalog rule as input and returns a CLP rule.

DL to CLP ((head :- goal1, ..., goaln)) = (head :- goal′1 , ..., goal′n)
where DLGOAL to CLP (goali) = goal′i �

Definition 3.2

The function DLGOAL to CLP takes a Datalog goal as input and returns a CLP goal.

DLGOAL to CLP (rel) = ctrs

where rel is a base relation, and ctrs is the conjunction of user-defined constraints for

rel

DLGOAL to CLP ((goal1 , goal2)) = (goal′1 , goal′2)
where DLGOAL to CLP (goali) = goal′i

DLGOAL to CLP (meta) = goal′

where meta is either top(n,goal) or distinct(goal), and DLGOAL to CLP (goal) = goal′

DLGOAL to CLP (not(goal)) = true

DLGOAL to CLP (exp1 op exp2) = ctr(exp1 op exp2, type)

where op is a comparison operator, and type is the type of the expression

The constraints and types for a given user-defined relation are taken from its meta-

data. Relation types are used to annotate each logic variable in the program with its

corresponding type. �
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Note that a negated goal resulting from the translation of a relation defined by a

statement such as EXCEPT restricts the meaning of the relation. Here, we leave out this re-

striction because we do not deal with table instances. Thus, the goal translation becomes

simply true.

Proposition 1

The translation of a Datalog program ΠDL into a CLP program ΠCLP is a correct

abstraction, i.e., �ΠDL� ⊆ �DL to CLP (ΠDL)�. �

The proof of this proposition is straightforward by checking that no case of Definition

3.2 removes solutions.

We assume a compatible mapping between SQL types and Datalog types. From here

on, we consider a Datalog type system consisting of the data types string, integer and

float.

Example 3.1

Let us consider again the example of gas products presented in the introduction. The

result of the translation of the first SQL query into Datalog, followed by a simplification

is:

{ (answer(N) :- gas_products(N,B,P,O,D), B>60, P>50) }

Applying DL to CLP to this singleton, we get:

answer(N):-ctr(B>=0,float), ctr(B=<100,float), ctr(P>=0,float), ctr(P=<100,float),
ctr(O>=0,float), ctr(O=<100,float), ctr(D>=0,float), ctr(D=<100,float),
ctr(B+P+O+D=100,float), ctr(B>60,float), ctr(P>50,float).

The first 9 constraints correspond to the CHECK constraints in the CREATE TABLE state-

ment, whereas the last 2 constraints correspond to the conjunctive condition in the SQL

query. All the constraints have been annotated with the corresponding types declared for

the table. �

3.4 Reasoning about Conditions

There are two cases to be considered: First, a CLP program resulting from the translation

of an SQL query defining an n-ary relation r. In this case, the goal to test whether

the query is consistent, inconsistent or simplifiable is r(X1, . . . , Xn). Second, a CLP

program resulting from the translation of an SQL condition c, as those occurring in

CHECK constraints for a given relation r′. In this case, we build an SQL query of the form

SELECT * FROM r′ WHERE c defining a fresh relation r, and we refer back to the first case.

In addition, we assume a function solve(φ,ΠCLP ) that takes a goal φ to be solved in the

context of a logic program ΠCLP and returns either a success substitution or failure. This

function represents the abstraction of the original Datalog program (next section briefly

describes its implementation). Only deterministic goals are considered in the analysis.

Proposition 2

Given DL to CLP (ΠDL) = ΠCLP , if solve(φ,ΠCLP ) = ⊥, then solve(φ,ΠDL) = ⊥. �

This proposition follows Proposition 1 and states that if solving a goal φ for the logic

program ΠCLP that is an abstraction of another program ΠDL leads to failure, then

solving it for ΠDL also leads to failure. Thus, any inconsistent condition for an SQL
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query can be simply found by testing whether solve(φ,ΠCLP ) fails. The first example in

the introduction is an example of this:

φ = answer(N,D,S)

ΠCLP = { (answer(N,D,S) :- ctr(D=’IT’,string), ctr(D=’HR’,string) }
which fails, therefore identifying an inconsistent condition.

As well, a tautological condition can be found by complementing it and testing if

solve(φ,ΠCLP ) fails. An example of this is the table creation of employees (also in the

introduction). For it, the following query is built and translated into a fresh relation r

← SELECT * FROM employees WHERE salary <= 2000 AND salary >= 5000:

φ = r(N,D,S)

ΠCLP = { (r(N,D,S) :- ctr(S=<2000,integer), ctr(S>=5000,string) }
which also fails, therefore identifying a tautological condition. Obviously, this procedure

is not applied to true conditions, as it is the case of WHERE-less statements.

Proposition 3

Given DL to CLP (ΠDL) = ΠCLP , if solve(φ,ΠCLP ) = σ, and solve(φ,ΠDL) = θ, then

there exists η such that θ = η ◦ σ. �

This also follows Proposition 1 and states that the success substitution σ of solving φ for

the logic program ΠCLP is more general than θ (the one for ΠDL). Thus, a simplifiable

condition can be found by checking if any of the constrained variables in the program

is bound after a successful CLP evaluation. The last query in the introduction is an

example. Its translation is:

φ = answer(B,P)
ΠCLP = { (answer(B,P) :-

ctr(B>=0,float), ctr(B=<100,float), ctr(P>=0,float), ctr(P=<100,float),
ctr(O>=0,float), ctr(O=<100,float), ctr(D>=0,float), ctr(D=<100,float),
ctr(B+P+O+D=100,float), ctr(B-P=10,float), ctr(B+P=80,float)) }

By solving this, the program is instantiated to:

ΠCLP = { (answer(45,35) :-
ctr(45>=0,float), ctr(45=<100,float), ctr(35>=0,float), ctr(35=<100,float),
ctr(O>=0,float), ctr(O=<100,float), ctr(D>=0,float), ctr(D=<100,float),
ctr(45+35+O+D=100,float), ctr(45-35=10,float), ctr(45+35=80,float)) }

In this program, ground conditions can be replaced by true conditions (because it has

been proven by solve that they succeed). Therefore, they are simplifiable and a warning

can be raised.

4 System Implementation

In this section, a system implementing the proposed approach to SQL semantic error

identification is described. We developed this proposal in the deductive database system

DES (Datalog Educational System, des.sourceforge.net) version 6.0.

4.1 Defining Solver Cooperation

In the current implementation, there is opportunity for the cooperation of the exact nu-

merical solvers Q and FD. To implement this, we define the way for solving an integer
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constraint, which follows the approach described in Section 3.2. The following code ex-

cerpt shows posting an integer constraint to both solvers Q and FD (the case of a single

solver is a simplification of this predicate and its description is thus omitted):

1. post_clp_ctr(ctr(Cond,integer),InputBridges,OutputBridges) :-
2. Cond =.. [Op,L,R], copy_term([L,R],[FDL,FDR]), copy_term([L,R],[QL,QR]),
3. term_variables([L,R],Xs),
4. term_variables([LFD,RFD],XFDs), term_variables([LQ,RQ],XQs),
5. op_fdop(Op,FDOp),
6. CtrFD =.. [FDOp,LFD,RFD], CtrQ =.. [Op,LQ,RQ],
7. add_bridges(fd,Xs,XFDs,InputBridges,Bridges),
8. add_bridges(q,Xs,XQs,Bridges,OutputBridges),
9. catch(call(CtrFD),_,true), catch(clpq:{CtrQ},_,true).

This predicate has two input arguments and a third output argument. The first one is

the constraint, the second one is the list of already built bridges along solving, and the

third one is for the output bridges (possibly augmenting the input bridges with new ones).

Line 2 identifies the condition with its left and right arguments (L and R, respectively)

and makes a copy (to be sent later on) as part of the Q and FD constraints, which are

built in line 6, and posted to the corresponding solvers in line 9. The CLP operator for

the domain Q is the same as for Datalog, but its correspondence with the FD operator

has to be found (line 5) to build a syntactically correct FD constraint. Lines 7–8 build the

bridges between each variable XH in the original condition and its counterpart variables

XQ and XFD. Because of variable sharing, it may be the case that a bridge for a given

variable has been previously built. All the previous bridges are stored in the input list

InputBridges and no bridge is added by the predicate add bridges/5 if already present in

this list. This predicate has as input arguments the domain for which to build the bridge,

the variables in the condition, the copy of these variables in the constraint domain, and

the input bridges. Its last argument (OutputBridges) will contain the input bridges plus

the new one (if eventually created). For each variable in Xs, it calls add bridge/3, which

adds a new bridge if needed:

% Existing bridge: just retrieve bindings
add_bridge(bridge(D,X,Y),Bridges,Bridges) :- bridge_in(bridge(D,X,Y),Bridges), !.
% New bridge: add it to the output list
add_bridge(bridge(D,X,Y),Bridges,[bridge(D,X,Y)|Bridges]) :-
add_domain_binding_daemon(D,X,Y).

Here, a bridge has the form bridge(D,X,Y), where D is the domain, X is the variable

in the domain H, and Y is the variable in the domain D (this term corresponds to the

previous notation XH #==H,D YD). The predicate bridge in/2 checks if the input bridge

is already built and, if so, it retrieves the bindings for both variables. Otherwise, a new

bridge is created:

bridge_in(bridge(D,X,Y),[bridge(D,BX,Y)|_Bri]) :- var(BX), X==BX, !.
bridge_in(bridge(D,X,Y),[_|Bri]) :- bridge_in(bridge(D,X,Y),Bri).

Finally, the predicate add domain binding daemon creates a daemon (which suspends

the goal in its second argument until its first argument becomes ground). It is activated

by grounding either X in H or Y in D:

add_domain_binding_daemon(fd,X,FD):- freeze(X,FD#=X), freeze(FD,X=FD).
add_domain_binding_daemon(q,X,Q):- freeze(X,clpq:{Q=X}), freeze(Q,q_to_int(Q,X)).

The call to the predicate q to int converts compatible numbers between rationals and

integers.
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The function solve(φ,ΠCLP ) has been implemented with a CLP metainterpreter

written in Prolog. The predicate for to this function is clp evaluation(Goal, Program,

InputBridges, OutputBridges), where Goal is the argument corresponding to φ, and

Program corresponds to ΠCLP . The arguments InputBridges and OutputBridges are added

to keep track of the bridges being created during solving. The sketch of this predicate is

similar to a Prolog metainterpreter (Sterling and Shapiro 1994), but when a constraint

term is identified as a goal, it calls the predicate post clp ctr/3.

4.2 A System Session

A system session log for the examples in the introduction can be found at www.fdi.

ucm.es/profesor/fernan/DES/prole2018/examples.pdf, which we omit here for the sake

of space. In addition to these examples, note that our approach is applied to conditions

as complex as needed, including subqueries. For example, subqueries in expressions are

allowed:

DES> SELECT (SELECT ename FROM employees WHERE salary BETWEEN 5000 AND 1000)
FROM departaments WHERE dname=’Human resources’;

Warning: Inconsistent condition.
Warning: Missing join condition for [departments,employees].

The next condition includes a subquery in the WHERE clause and is inconsistent:

DES> SELECT ename FROM employees
WHERE salary<1000 AND salary>(SELECT salary FROM employees WHERE salary>2000);

Warning: Inconsistent condition.

Note that inconsistency in this case is due to the combination of the conditions of both

the root query and its subquery. The translations are:

ΠDL={(answer(A) :- employees(A, B,C), employees( D, E,F), F>2000, C>F,

C<1000)}
ΠCLP={(answer(A) :- ctr(F>2000,integer), ctr(C>F,integer),

ctr(C<1000,integer))}
where it can be seen that the last three constraints cannot be fulfilled.

4.3 Performance

This section describes the performance of our approach when dealing with queries of

relevant size. Our experience at classroom indicates that the tool successfully handles

students’ queries (including long queries for solving complex SQL puzzles which were

posed to outstanding students (Sáenz-Pérez 2019)). However, the tool might be used to

verify very long queries which are automatically generated by other tools (e.g., handling

of persistence in Object-Relational Mapping approaches such as Hibernate ORM). Thus,

this section analyses the cost of an SQL query translation (i.e., the function SQL to DL

to translate SQL into Datalog in Subsection 2.3, and the function DL to CLP to translate

Datalog into CLP in Subsection 3.3), and CLP solving (the function solve in Subsection

3.4). For the experiments we have selected a database with n empty tables, each one with

a column with a CHECK constraint over integers (so that solver cooperation is applied),

and a query Q1 consisting of n− 1 nested subqueries, inductively defined as:

Qn≡ SELECT tn.a FROM tn WHERE tn.a>n

Qi ≡ SELECT ti.a FROM ti WHERE ti.a>i AND ti.a IN (Qi+1)
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n SQL to DL DL to CLP solve Total DB2 Oracle

10 3 0 1 65 169 111
20 11 0 1 118 340 200
30 28 0 1 196 607 631
40 63 1 2 314 2,135 1,821
50 121 1 2 510 4,278 4,425
60 205 1 3 753 7,990 9,292
70 307 2 4 1,113 15,298 18,049
80 438 1 4 1,491 28,288 30,215
90 633 2 4 2,050 48,314 50,350

100 1,077 2 7 2,639 96,139 78,292

For a given n, Q1 is the test

query involving n correlated base

tables, and inheriting the con-

straints in each table definition.

The table to the right shows

times in milliseconds (got with

statistics/2 for walltime) for the

analysed steps. The column ‘To-

tal’ lists the total run time (this

includes other tasks such as pars-

ing and processing). In addition,

for the sake of comparing this to-

tal with those of well-known relational database systems, the two final columns ‘DB2’

and ‘Oracle’ show the total run time for IBM DB2 version 11.1.0 and Oracle version

11g via an ODBC connection from the tool. As a test platform, we used a Windows 10

64-bits OS running on an Intel Xeon CPU E3-1505M v5 (4 physical cores) running at

2.8 GHz, with 16GiB RAM. We used the source distribution of DES version 6.2 (with

a bit of extra code for measuring time) running on SICStus Prolog 4.4.1 64-bits. As

expected, both translating Datalog to CLP, and solving the CLP program take negli-

gible time, whereas the translation from SQL to Datalog takes a reasonable time. Note

that SQL to DL includes in particular program transformations (folding/unfolding), safety

checks, argument mode handling, and simplifications. Both DB2 and Oracle do not seem

to scale well with this kind of queries. Other database systems at hand (MySQL 5.7.13

and MS SQL Server 2014) could not handle so many nested levels (with a limit of 64 and

18, respectively).

4.4 Supported Semantic Errors

This section lists and briefly describes our approach to deal with all the supported seman-

tic errors (identified by numbers in (Brass and Goldberg 2006)) in our implementation.

The analysis incorporates the bindings produced along a successful CLP program solving.

• Error 1: Inconsistent condition. If the evaluation of the CLP program fails, a warn-

ing is issued. This can be easily extended to display the source condition correspond-

ing to the failing constraint by annotating each constraint with its corresponding

condition.

• Error 2: Unnecessary DISTINCT. A warning is issued if the query returns no dupli-

cates and includes this modifier with respect to the primary keys in the involved

relations.

• Error 3: Constant output column. As a consequence of CLP solving, a column can

become ground.

• Error 4: Duplicated column values. Two or more columns can be assigned to the

same logical variable representing its output.

• Error 5: Unused tuple variable. An unaccessed single relation in the FROM list

from the root query (Error 27 captures all other cases).

• Error 6: Unnecessary join. Check if no column in a join is used in addition to its

correlation, if any. Foreign keys are taken into account, otherwise, false positives

might be raised.
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• Error 7: Tuple variables are always identical. A warning is issued if two or more

relations produce the same tuples. This is accomplished by testing if the same goal

occurs more than once with the same variables.

• Error 8: Implied or tautological condition. The original Error 8 included an in-

consistent condition, which is checked in Error 1 above. Checking this is based on

testing whether the complement of the condition fails, meaning that the condition

is trivially true.

• Error 9: Comparison with NULL. This is performed in the SQL syntax tree by looking

for comparisons with null values.

• Error 11: Unnecessary general comparison operator. A warning is issued if LIKE

’%’ occurs, which is equivalent to IS NOT NULL by inspecting the SQL syntax tree.

Additionally it issues a warning about trivially true (resp. false) conditions as cte

LIKE ’%’ (resp. NOT LIKE). This might also be checked by a string solver in Error 1.

• Error 12: LIKE without wildcards. Again, this error is straightforwardly checked by

inspecting the SQL syntax tree.

• Error 13: Unnecessarily complicated SELECT in EXISTS-subquery. Detect patterns

different from SELECT * as the root in an existential subquery.

• Error 16: Unnecessary DISTINCT in aggregation function. A warning is issued if

either MIN or MAX is used with a DISTINCT argument, as well as if other aggregate is

used with a DISTINCT expression involving key columns. In both cases, the Datalog

translation is inspected.

• Error 17: Unnecessary argument of COUNT. A warning is issued if COUNT is applied to

an argument that cannot be null as a primary key. Metadata is used to determine

non-null arguments.

• Error 27: Missing join condition. A warning is issued if two relations are not joined

by a criterium. This includes Error 5 for a single unused relation.

• Error 32: Strange HAVING. A warning is issued if a SELECT with HAVING does not

include a GROUP BY by inspecting the SQL syntax tree.

• Error 33: SUM(DISTINCT ...) or AVG(DISTINCT ...). A warning is issued if duplicate

elimination is included for the argument of either SUM or AVG. If included, this might

not be an error, but it is suspicious because duplicates are usually relevant for these

aggregates.

5 Related Work

There are many tools targeted at learning SQL focusing on the answers of queries with

respect to database instances, i.e., comparing the output of queries with the output of

reference queries provided by experts (e.g., SQLator (Sadiq et al. 2004), WebSQL (Allen

2000), AsseSQL (Prior 2014), and QueryViz (Gatterbauer 2011)). Other set of tools are

focused on the semantic aspects of queries as SQL Tutor (Mitrovic 2012) which uses

Constraint-Based Modelling (CBM) to form models of its students, enabling the auto-

matic selection of problems based on these models. Another one is SQL-LTM (Dollinger

2010), a tutoring module relying on reference queries to which student queries are com-

pared.

The semantic-based system sqllint (Brass and Goldberg 2006) is the closest approach

to ours. They introduce the concept of soft keys (attributes used in practice for identifying

tuples, but that can have duplicates; e.g., the name of a person) which would be useful
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for some of their checks. A description of the way to identify such errors is given in (Brass

and Goldberg 2005), relying on ad-hoc consistency checks somewhat based on classical

techniques (Guo et al. 1996). With respect to subqueries, it only supports EXISTS (no

IN, >= ALL, . . . ) Their approach neither supports aggregates, nor UNION, nor LIKE, and

nor IS [NOT] NULL. As types, it includes only strings and integers, and expressions are

not allowed. Finally, it does not support CHECK constraints in table definitions. Note also

that, in contrast to DES, sqllint is only an analyzer, not a complete SQL system with

a solving engine which could be used for teaching.

6 Conclusions and Future Work

We have presented a system using constraint logic programming for the semantic analysis

of SQL statements (both DML and DDL). With the aim of detecting possible misuses

of syntactically correct SQL statements at compile-time, this system focuses on both

metadata and statements, instead of data from tables. There have been other approaches

to SQL analysis (targeted at comparing results for concrete database instances, and

based on CBM techniques), but ours mainly follows the same path as sqllint. However,

instead of using consistency techniques as in that work, we use CLP constraints and solver

cooperation to develop a precise analysis, which can deal with non-linear conditions and

queries as complex as needed. Reasoning at the logic level eases the development of

this approach, instead of using the more cumbersome SQL formulations for consistency

checking. Performance data show that the approach is practical, and well able to cope

with queries that other systems cannot afford.

Despite we have successfully evaluated the tool in classroom and students have appre-

ciated the semantic feedback, a more thorough evaluation must be done. As part of a

teaching innovation project, we are currently analysing the tool with both on-line ques-

tionnaires provided to students, and logging user sessions. While questionnaires include

selectable answers in a Likert scale (and also open answers to express additional specific

comments), logs can be inspected to observe the reaction of students to the semantic

warnings. In addition, there is ample room for future work as, for example, the devel-

opment (most likely, with CHR) of specific solvers for types such as strings and dates

(in addition to the already used, but simpler, domain H). Taking into account bindings

and domain pruning in negated CLP goals resulting from the translation of constructs

such as NOT IN and NOT EXISTS would also increase the precision of the analysis. Also, the

tool might propose simplified versions of conditions by decompiling the CLP constraint

store into SQL. Other potential additions include: a Boolean type and its handling with

a CLP(B) solver; taking advantage of subtypes (exact numeric types with limited range,

and string subtypes with bounded size); and implementing projections (Estévez-Mart́ın

et al. 2009). Finally, the proposal in this work can be applied to the semantic analy-

sis of Datalog queries and programs, and to other scenarios such as the verification of

automatically-generated SQL queries.
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