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Fulminant viral hepatitis: molecular and
cellular basis, and clinical implications
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Fulminant hepatic failure is defined by the sudden onset of severe liver injury
accompanied by hepatic encephalopathy in an individual who previously had
no evidence of liver disease. This disease causes multiple organ failure and is
associated with a high mortality. The most frequently recognised cause of
fulminant or subfulminant hepatic failure is viral hepatitis. Data are now
emerging to support the hypothesis that, irrespective of the aetiology of
fulminant hepatic failure, the host’s immune response (including production of
proinflammatory cytokines and mediators) contributes to microcirculatory
disturbances that result in hypoxic injury and cell death (apoptosis). Impairment
of the scavenger function of the reticuloendothelial cell system further
contributes to reduced hepatic blood flow and ischaemic necrosis. An increased
understanding of the molecular pathogenesis of fulminant hepatic failure
now enables new molecular therapeutic modalities to be tested. Given the
complexity of this multi-dimensional disorder, the challenge is to provide a
rational basis for treatment. This might include enhancement or suppression
of immune responsiveness by manipulation of endogenous cytokine synthesis
or by cytokine administration and, at the same time, use of strategies to increase
hepatic regeneration.
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Viral hepatitis remains a major public health
problem and the most common cause of liver

disease worldwide. Annually, 300 000 cases of

acute viral hepatitis (acute inflammation of the
liver occurring within 2-6 weeks of infection)
occur in the USA, fortunately only rarely
resulting in fulminant hepatitis. Fulminant
hepatic failure (FHF) is a clinical syndrome
characterised by massive necrosis of liver cells
and severe impairment of liver function, and
differs from acute viral hepatitis in that, in
addition to the liver necrosis, patients show
disturbances in mental function — that is, hepatic
encephalopathy (see below). FHF is associated
with high mortality, with more than half of the
patients who develop this syndrome dying
without emergency liver transplantation (Refs
1, 2). The poor outcome reflects the severity of
liver damage, the lack of liver regeneration and
the multiple organ failure that results from
systemic release of proinflammatory cytokines
(Refs 2, 3, 4). Clinically, patients with FHF develop
signs of multiple organ failure, including
hepatic encephalopathy, and renal, cardiac and
pulmonary failure, and they often die of infection
secondary to the systemic inflammatory response
syndrome (Ref. 5). Hepatitis viruses, drugs and
shock can cause FHF, with viruses and drug-
induced liver injury accounting for most cases
of FHF. Regardless of the causal agent, the
morphological changes of massive hepatic cell
death are similar. Virus-induced liver damage
generally results from a complex and prolonged
interplay between virus replication and host
defence.

The inability to propagate human hepatitis
viruses in culture and the lack of suitable animal
models have impeded determination of the
pathological mechanisms accounting for FHF.
However, insights into the pathogenesis of viral
FHF have been forthcoming from animal models
of FHF induced by murine hepatitis virus strain
3 (MHV-3; Ref. 6), transgenic models of hepatitis
B virus (HBV) infection (Ref. 7) and clinical cases
of FHF (Ref. 5). The evidence generated to date
strongly suggests that FHF is caused by the release
of inflammatory cytokines, resulting in massive
liver necrosis with failure of compensatory hepatic
regeneration. This article begins by briefly
reviewing current knowledge of viral aetiologies
of FHF and viral factors involved in the pathology
of FHE, and then focuses on the host response in
the process of virus-induced FHE. It ends by

discussing the implications for future therapy -

of FHF.

Aetiology of fulminant viral hepatitis
The most frequently recognised cause of
fulminant or subfulminant hepatic failure is viral
hepatitis (Ref. 8), although in many cases the
aetiology of FHF is indeterminate. The causes of
FHF vary geographically. In developed countries,
acute hepatitis induced by HBV, either alone or
in association with viral co-infection, is the most
common identifiable cause of fulminant viral
hepatitis. However, the highest overall incidence
of fatal hepatitis has been reported among cases
of sporadic acute non-A non-B hepatitis (Refs 9,
10), and the disease is rarely associated with
infection by hepatitis C or E viruses (HCV, HEV)
(Refs 11, 12). Interestingly, reactivation of viral
replication in carriers of HBV can also lead to
fulminant hepatitis. This has been observed in
both cancer and transplant patients following
cessation of immunosuppressive therapy. For
instance, discontinuation of even low-dose
methotrexate (7.5-10 mg orally weekly) can
reactivate HBV infection and lead to fulminant
hepatitis (Ref. 13).

Non-hepatitis viruses, such as herpes simplex
virus, cytomegaloviruses, adenoviruses, Epstein—
Barr virus (EBV) and varicella, have also been
shown to cause fulminant hepatitis, especially in
immunocompromised individuals (Ref. 14). For
instance, herpetic fulminant hepatitis is frequently
associated with burns, cancer, pregnancy or renal
transplantation — all conditions in which the
host immune defences are diminished (Ref. 15).
EBV-induced fulminant hepatitis has also been
reported in a patient after liver transplantation
(Ref. 16). Furthermore, human parvovirus B19
virion and mRNA encoding its nucleocapsid
(core) protein have been detected in livers from
patients with fulminant hepatitis. Viruses that
have been shown to cause FHF are listed in
Table 1.

Clinical features of virus-induced FHF
FHF is defined by the sudden onset of severe liver
injury accompanied by hepatic encephalopathy
in an individual who previously had no evidence
of liver disease (Ref. 17). This disease causes
multiple organ failure with an extremely high
mortality rate (Ref. 18). Hepatic encephalopathy
is the hallmark feature of FHF and is caused by
liver damage. It is classified by disturbances of
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Table 1. Aetiologies of fulminant viral
hepatitis (tab001glt)

Hepatitis viruses Frequency? Refs
Hepatitis A 31% 93
Hepatitis B 29.2% 93
Hepatitis C Rare, co-infection® 94, 95
Hepatitis D+B Rare, co-infection® 96
Hepatitis E Rare, co-infection® 96
Non-ABCDE 38.8% 93
Hepatitis G Rare, co-infection® 96
Herpes viruses Rare 97
Yellow fever Rare 98
aPercentage of cases of fuminant viral hepatitis
attributed to different viruses.
b Co-infection with hepatitis B virus.

cerebral mentation (Ref. 19): grades I and II are
associated with mild decreases in the level of
consciousness, whereas grades IIl and IV are more
severe [characterised by stupor and incoherence
(grade III) to frank coma (grade IV)].

A major complication of FHF is cerebral
oedema, which is the leading cause of death,
especially early in the course of FHF. The
diagnosis of cerebral oedema is difficult, and
computerised tomography scans of the head have
not proven to be particularly useful. Cerebral
oedema often leads to intracranial hypertension
and cerebral herniation of the uncus of the brain
across the falx cerebrum, resulting in brain death
in 25% of cases (Ref. 20).

Other major complications of FHF include:
(1) hypoglycaemia, as a result of impaired
gluconeogenesis; (2) disturbances in acid-base
balance characterised by respiratory alkalosis and
metabolic acidosis, as a result of increased lactate
production (Ref. 21); and (3) severe coagulopathy
owing to decreased synthesis of clotting factors
II, V, VII and IX, as well as the presence of
disseminated intravascular coagulation arising
from both hepatic cell necrosis and infection
(Ref. 22).

As a consequence of hepatic necrosis, the
immunological competence of the patient is

directly compromised. This is thought to arise
from a combination of decreased complement
synthesis, leukocyte dysfunction and bacterial
translocation across leaky capillaries as a result
of cytokine release (Ref. 23). Subsequently,
patients develop bacterial infections, which are a
high cause of mortality. Fungal infections occur
in a third of patients with FHF and are often
associated with bacterial infections or occur as a
consequence of the use of broad-spectrum
antibiotics (Ref. 24).

Other organ systems are affected by both the
direct release of inflammatory cytokines and
the haemodynamic changes that occur as a
consequence of their release. Patients have a high
incidence of renal, pulmonary and cardiac
dysfunction and often succumb to renal failure
secondary to the hepatorenal syndrome.

Immunopathogenesis of FHF

The role of viral proteins
Most hepatitis viruses are non-cytopathic, and
liver damage in the acute as well as the chronic
stages is the result of host immune responses
directed at viral- or self-antigens expressed on
the surface of infected hepatocytes via the major
histocompatibility complex (MHC) (Fig. 1) (Ref.
25). It is believed that the immune response to
one or more viral proteins is responsible for both
viral clearance and liver injury during infection.
In transgenic mice expressing hepatitis B surface
antigen (HBsAg), acute necroinflammatory liver
disease occurs only following infusion of HBsAg-
specific cytotoxic T lymphocytes (CTLs) (Fig. 1)
(Ref. 7). However, viral proteins also have other
roles in the immunopathogenesis of FHF (Table 2).

Patients with FHF caused by HBV have a
high incidence of mutations in the precore region
of HBV. The precore region is upstream of the
coding region for the core protein and mainly
contains promoter elements for the core protein
(HBcAg) of HBV. The exact significance of these
viral mutations is not known, but it has
recently been shown that the mutations could
lead to transcription of the HBV x protein (HBx),
which is encoded by the smallest open reading
frame of HBV. Although investigators have
suggested that HBx enhances cell growth by
activation of cellular oncogenes, it is now
known that HBx inhibits focus formation (viral
plaque formation) (Refs 26, 27) and induces
hepatic apoptosis in the early stage of HBV
infection. HBx causes hepatocytes to be more
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Figure 1. Virus-specific cytotoxic T lymphocyte (CTL) responses, and roles of proteins of hepatitis B
virus. (a) After hepatitis B virus (HBV) enters a hepatocyte through an unknown virus receptor, (b) a number of
viral proteins are synthesised, including HBc antigen (HBcAg), HBsAg and HBx protein. At the same time, the
virus undergoes self-replication. (c) HBsAg peptide is presented at the hepatocyte cell surface by the major
histocompatibility complex (MHC) and (d) induces an antigen-specific CTL response through the T-cell
receptor (TCR). (e) Core protein (HBcAg) can move into the nucleus of the cell and modulate expression of
host genes. (f) HBx protein can interfere with signal transduction and promote the apoptosis pathway. (g)
Surface antigen (HBsAg)-specific CTLs send a death signal to hepatocytes through Fas—Fas ligand (FasL)
interaction and the binding of tumour necrosis factor (TNF) to its receptor (TNFR). (h) Subsequently, the
caspase pathway is activated, which leads to hepatocyte apoptosis. (i) In addition, HBsAg-specific CTLs
secrete interferon y (IFN-y) and activate secondary immunoresponses, which lead to recruitment of lymphocytes
and macrophages and activation of the immune system to kill the virus-infected cell (fig001glt).
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susceptible to staurosporine, cycloheximide and
tumour necrosis factor (TNF), each of which can
cause hepatocyte apoptosis (Refs 28, 29). Thus,
although HBx is strongly associated with the
oncogenicity of HBV, under certain conditions
HBx might also contribute to the development of
FHF through induction of the apoptotic pathway,
discussed in more detail below.

It has also been suggested that the severity
of fulminant hepatitis B is closely associated
with the number of mutations in the core
promoter and precore gene of HBV, although
the mechanism underlying this observation is
not clear (Ref. 30). Mutations in the promoter
region of the viral genome have been shown to
enhance the conformational stability of the
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Table 2. Viral proteins and their roles in fulminant hepatic failure (tab002glt)

Virus Protein Proposed function

HBV Core Induces hepatocyte
apoptosis

Precore
Surface

HBV Surface Enhances hepatocyte
sensitivity to IFN-y

HCV Core Enhances hepatocyte
sensitivity to TNF

HBV HBx Enhances cell growth
Inhibits focus formation
Induces hepatocyte
apoptosis

HBV Precore mutants  Allows escape from
tolerance
Affects HBx and core
expression

HBV Core Alters cellular function

HCV Core

MHV-3 Nucleocapsid Alters cellular function

Abbreviations: CTL, cytotoxic T lymphocyte; ER, endoplasmic reticulum; HBV/HCV, hepatitis B/C virus:
IFN-y, interferon y; MHV-3, murine hepatitis virus strain 3; TNF, tumour necrosis factor.

Mechanism Refs
Virus-specific recognition by CTLs 25
Formation of filamentous particles 11

in ER

Inhibition of NF-kB transcription 36
factor

Activation of cellular oncogenes 26
Unknown 26,27
Sensitisation of hepatocytes 29

to TNF

Increased viral replication 31,32
Alters promoter activity 33
Modulates gene expression 34
Induces expression of fgl2 38,39
prothrombinase

encapsidation signal in the viral RNA, thereby
enhancing HBV replication rate (Refs 31, 32). In
addition, the precore protein has been shown to
inhibit HBV replication effectively, allowing a
growth advantage of the precore ‘escape’ mutants
over the wild-type viruses (Ref. 33).

Viral proteins also contribute to FHF by
affecting host cellular functions directly. For
instance, the core protein of HCV modulates
expression of host cellular genes, such as c-myc,
c-fos, and those encoding p53 and p21, and viral
genes, including those of HBV (Fig. 1) (Ref. 34).
HBYV surface proteins form long branching
filamentous particles that accumulate in the
endoplasmic reticulum and cause hepatocytes to
become hypersensitive to the cytopathic effects
of interferon y (IFN-y) (Ref. 7). Viral mutants that
do not express HBV e antigen (HBeAg), which is
part of the nucleocapsid, are believed to be

responsible for the loss of tolerance to the wild-
type virus (Ref. 4) in HBV carriers, which leads to
fulminant hepatitis B (Ref. 35).

Cells expressing the viral core protein in vitro
exhibit enhanced sensitivity to TNF by inhibiting
activation of the transcription factor NF-kB,
which might also contribute to apoptosis-induced
liver cell death through the Fas and Fas ligand
(FasL) pathway (Refs 36, 37; and see below).
Recently, the nucleocapsid protein of MHV-3
has been suggested to induce the expression of
unique proteases (fgl2/fibroleukin) that can
cleave prothrombin to thrombin, which is
crucial in the pathogenesis of murine fulminant
hepatitis (Ref. 38). It has been postulated that the
HCV and HBV proteins can contribute to human
fulminant viral hepatitis in a similar manner
by stimulating the expression of the human
counterpart of fgl2 prothrombinase (Ref. 39).
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Host response

The role of CTL responses

Direct killing of infected hepatocytes by
MHC class I-restricted CD8* CTLs is a major
determinant of viral clearance in acute and
fulminant hepatitis (Ref. 40). The CTL response
is relatively weak and is narrowly restricted
in persistently infected patients. Although a
vigorous polyclonal and multispecific CTL
response to HBV has been observed in patients
with acute or fulminant hepatitis, the CTL-
mediated killing itself might not be sufficient to
cause the massive hepatocyte necrosis that is the
hallmark of FHF (Ref. 41). Indeed, antigen-specific
CTLs have been shown to be capable of not
only destroying HBV-infected hepatocytes, but
also initiating a series of immune responses that
lead to the recruitment of other inflammatory
cells that can destroy infected hepatocytes (Refs
33, 42). Moreover, antigen-specific CTLs actively
secrete IFN-y, which causes macrophages to
produce proinflammatory monokines such as
TNF-a and interleukin 1 (IL-1), and this might
contribute to the pathogenesis of fulminant
hepatitis (Ref. 7).

Macrophage activation

Macrophage activation plays a key role in the
massive liver destruction that characterises viral
FHE. Infiltrating macrophages and increased
numbers of activated Kupffer cells are classical
features of viral FHF. Activated macrophages
induce tissue damage by various mechanisms,
including release of cytokines, production of
reactive oxygen species, and lysosomal protein
release (Ref. 43). Macrophage release of cytokines
leads to the recruitment of other inflammatory cells
(particularly neutrophils), which are responsible
for many of the systemic effects of inflammation.
In the transgenic HBsAg mouse model of FHE,
the delayed-type hypersensitivity reaction
initiated by IFN-y-activated macrophages is
responsible for the bulk of liver necrosis (Ref. 7).
Macrophages have been shown to produce liver
injury by releasing free radicals. This leads to
oxidative DNA damage that is seen in fulminant
hepatitis produced by p-galactosamine (Ref. 44).
Furthermore, activated macrophages can
produce immune coagulants, including tissue
factor (co-receptor for factor VII) and fgl2, both
of which have been shown to disrupt the hepatic
microcirculation and result in fibrinoid necrosis
(Ref. 45).

Effect of cytokines

Viral FHF is accompanied by local and
systemic increases in cytokine levels. These
cytokines are induced by viral replication
(Ref. 46) and are further amplified by the
infiltration of mononuclear leukocytes.
Systemic increases in IL-1, TNF-a and IL-6
have been detected in patients with viral FHF
(Refs 3, 47), and Kupffer cells in the liver
have been shown to be the source of these
proinflammatory mediators (Ref. 48). Evidence
suggests that local production of cytokines such
as TNF-a and IFN-y in T-cell-driven models of
FHF (see below) is essential to the development
of liver necrosis (Ref. 48). The local release of
cytokines also exerts other effects, including
interference of cell growth (regeneration),
hepatocyte apoptosis, leukocyte infiltration and
activation, and upregulation of vascular adhesion
molecules.

Liver cell apoptosis

Fulminant hepatitis is defined histopathologically
as a massive necroinflammation of liver tissue.
The mechanism underlying the liver injury is
still unclear, like those of other types of viral
hepatitis. As discussed in an earlier section,
hepatocyte apoptosis caused by host immune
responses against virus-infected cells is
believed to play an important role during the
process of liver necrosis. Apoptosis, or
programmed cell death, is a morphologically
distinguished form of cell death. Among all
of the genes that have been identified as being
involved in the apoptosis process, a family of
cysteine proteases known as caspases has been
shown to play a critical role in the initial and
execution phases of apoptosis (Ref. 49). Activation
of these caspases drives the terminal events of
programmed cell death, including chromatin
condensation, DNA fragmentation, breakdown
of the nuclear membrane, externalisation of
phosphatidylserine and formation of apoptotic
bodies. Hepatocytes undergoing apoptosis are
characterised by pyknosis (i.e. shrinkage and
condensation of the cell), followed by
membrane budding and karryorrhexis (i.e.
fragmentation of the nucleus of the cell). The
final irreversible process involves breaking up of
apoptotic cells (Councilman bodies) into clusters
of apoptotic bodies that are then phagocytosed
by macrophages or resident Kupffer cells
(Ref. 36).
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During HBV infection, virus-specific CTLs
recognise HBV antigens preselected by the MHC
on infected hepatocytes, which subsequently
triggers processes within infected hepatocytes that
result in apoptosis. Hepatocyte apoptosis has the
potential to destroy the liver, even in the absence
of significant inflammatory infiltrates. Although
this event might be limited to very few cells, it
has been observed that direct interaction between
CTLs and target cells results in widely scattered,
acidophilic, Councilman bodies in patients with
acute viral hepatitis (Ref. 7), and it is now known
that apoptosis in the liver can result in fulminant
hepatitis (Ref. 50). Although the exact role of
apoptosis in FHE, and the mechanism underlying
it, still requires definition, Fas and TNF-a appear
to play important roles.

Fas and FasL are strongly expressed in many
hepatocytes during the development of FHF,
and intraperitoneal injection of anti-Fas antibody
results in rapid liver destruction in mice (Ref.
51). Further observations suggest that soluble
Fas protein prevents hepatic apoptosis and liver
destruction, without affecting early infiltration of
inflammatory cells (Ref. 37). TNF-a is also critical
for inducing hepatocytes to undergo apoptosis.
Recently, a significant increase of TNF-a and
its receptor, TNFR-1, was reported in patients
who died of FHE and the levels of expression
of TNF-a and TNFR-1 strongly correlated with
the number of apoptotic hepatocytes (Refs 52, 53).
Both FasL- and TNF-a-induced hepatocyte
apoptosis have been suggested to be mediated
through the Fas-associated death domain
(FADD)/ caspase-8, which leads to release of
mitochondrial cytochrome ¢, activation of
caspase-3 and, finally, apoptosis of hepatocytes.
Although there is strong evidence suggesting
Fas and apoptosis play important roles in FHF,
there are examples in which the role of Fas is less
clearly defined.

The role of the coagulation pathway

Activation of the coagulation cascade is an
integral component of host inflammation (Ref.
54). Tight interactions exist between inflammatory
cascades and coagulation: not only is coagulation
activated by many bioactive substances, including
endotoxin, cytokines, bacterial products and
viruses, but experimental evidence in animal
models indicates that the coagulation cascade also
plays a crucial role in the outcome of septic and
inflammatory insults (Ref. 55). Activation of the

coagulation system results in the generation of -

factors that have direct inflammatory effects, such
as thrombin, Factor Xa and the fibrinopeptides.
These factors eventually result in fibrin deposition,
which simultaneously causes microvascular
thrombosis, leukocyte accumulation and
upregulation of the inflammatory response.

Thrombin appears to be a pivotal mediator
in liver injury and, in particular, in acute viral
fulminant hepatitis (Ref. 56). The local production
of thrombin might explain the fibrin deposition
observed during acute liver injury. In addition,
in the wound healing process, thrombin is
likely to target the sinusoidal endothelium,
leading to activation of endothelial cells,
secretion of proinflammatory mediators and
adhesion of leukocytes, which together potentiate
the inflammatory response (Ref. 57). Activation
of the coagulation system in the inflamed liver
can also occur through the upregulation of
coagulation factor receptors. For example,
expression of thrombin receptor on mononuclear
cells is dramatically increased in clinical viral FHF
(Ref. 57). Marked upregulation of thrombin
receptor immunostaining was observed in
specimens obtained from patients with fulminant
hepatitis, in which massive hepatocyte necrosis
is associated with activation of tissue-repairing
systems.

Furthermore, it is now appreciated that, as part
of their inflammatory repertoire, macrophages
and endothelial cells produce immune
coagulants including tissue factor and a
direct prothrombinase (fgl2) that are intimately
involved in the pathogenesis of experimental
and human fulminant hepatitis (Ref. 6),
rejection of xeno- and allo-transplants and the
massive tissue necrosis associated with bacterial
sepsis (Refs 58, 59, 60). Infusion of neutralising
antibodies to these potent coagulants either
ameliorates or prevents these inflammatory
conditions, supporting their role in the
pathogenesis of such diseases.

Models of FHF
There are two major problems that have impeded
understanding of the pathogenesis of fulminant
hepatitis. First, there is no suitable cell line that
allows propagation of human hepatitis viruses in
vitro. Second, large-animal models that closely
resemble the clinical syndrome of FHF seen in
human patients are unavailable. Despite these
difficulties, two small-animal (rodent) models of
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virus-induced FHF have provided great insight
into the molecular mechanism of virus-induced
FHF (Fig. 2). The first is a transgenic HBV model
of FHF in which HBV proteins are overexpressed
in mice (Ref. 7). The second involves the RNA
Coronavirus MHV-3 (Ref. 6), which produces a
strain-dependent pattern of FHF in inbred strains
of mice (Ref. 45).

Transgenic mouse model of FHF

Transgenic expression of HBsAg in inbred mice
has led to a fatal necroinflammatory liver disease
model to examine HBV-induced fulminant
hepatitis (Ref. 7). Injection of MHC class I-
restricted HBsAg-specific spleen cells and cloned
HBsAg-specific CTLs into HBsAg-transgenic
mice induces an acute necroinflammatory liver
disease (Ref. 61). The development of disease is
divided into three stages, ranging from single-
cell necrosis to massive destruction of most
hepatocytes.

In stage one, within1 h of injection of CTLs,
a few hepatocytes undergo apoptosis as a
result of direct interaction with the specific
CTLs. Histopathological studies show features
consistent with acute viral hepatitis, including
the presence of scattered, acidophilic Councilman
bodies. The second stage, occurring at 12-24 h
post-injection of CTLs, is characterised by
increased hepatocellular apoptosis and the
formation of necroinflammatory foci. Non-
HBsAg-specific inflammatory cells, especially
radiosensitive mononuclear cells and neutrophils,
are pivotal to this injury. The third stage, at
24-72 h post-injection, is characterised by massive
liver necrosis, inflammatory cell infiltration and
hyperplasia of sinusoidal lining cells (Kupffer
cells). This histopathological feature matches
the pathogenic liver changes seen in patients
who have HBV-induced fulminant hepatitis.
Non-HBsAg-specific inflammatory cells,
typically of macrophage origin, play a critical
role in the massive hepatocellular necrosis. Prior
administration of antibodies to IFN-y reduces
cell death by over 97%, demonstrating the
importance of this cytokine in the development
of fulminant hepatitis, perhaps through activation
of macrophages (Ref. 7).

Although the transgenic HBsAg model is an
elegant means of dissecting the pathogenic
mechanisms of FHF, the model has limitations in
that it differs markedly from the clinical situation,
in which a replicating virus exists.

MHV-3-induced FHF model

MHV-3 infection in fully susceptible BALB/c]J
mice causes FHF characterised by macrophage
activation and marked production of
proinflammatory mediators, sinusoidal
thrombosis and hepatocellular necrosis (Refs 62,
63). Sequential studies have shown that the
development of fulminant viral hepatitis always
follows the same pattern and is similar to the
clinical situation. Following MHV-3 infection, the
virus replicates predominantly but not exclusively
in the liver, and within 24-48 h evidence of
macrophage activation and sinusoidal thrombosis
is seen. Infiltrating mononuclear cells and
neutrophils are observed in areas of hepatic
necrosis.

Figure 3 suggests a mechanism for the
pathogenesis of MHV-3-induced FHF. The viral
load itself does not appear to be responsible for
the development of massive liver necrosis. It has
been shown that following MHV-3 infection,
macrophages and endothelial cells express the
prothrombinase fgl2, which cleaves prothrombin
to the active moiety thrombin. This results in
deposition of fibrin in the sinusoids, disturbances
of hepatic microcirculation and hepatocyte
necrosis. Induction of fg12 in endothelial cells and
Kupffer cells is enhanced by CD3*CD4" T helper
2 (Th2) cells, whereas CD3*CD4* Thl cells can
suppress induction of fgl2, fibrin deposition and
hepatic necrosis. Several lines of evidence have
implicated expression of this gene product in the
pathogenesis of fulminant murine hepatitis. First,
activity of the prothrombinase correlates with
the severity of the disease (Ref. 64). Second, there
is concordance between expression of fgl2
prothrombinase in the liver and fibrin deposition.
Third, neutralising antibodies to fgl2 attenuate
the pathological and clinical manifestations
associated with MHV-3 infection (Ref. 63).

It is now known that the nucleocapsid
protein of MHYV is responsible for the liver-
specific transcription of fgl2. Using a series of
nucleocapsid and fgl2 promoter constructs
upstream of a luciferase reporter gene, it was
demonstrated that only the nucleocapsid from
strains of MHV that produce FHF induces
transcription of fgl2. Furthermore, several
important hepatocyte-specific transcription-
factor-binding sites have been tentatively
identified in the promoter of fgl2, which might
explain the liver-specific nature of MHV-3-
induced FHF (Ref. 38).
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Figure 2. Animal models of fulminant viral hepatitis. (a) Transgenic model. Injection of hepatitis B surface
antigen (HBsAg)-specific cytotoxic T lymphocytes (CTLs) into HBsAg-transgenic mice can cause fulminant
hepatic failure. CTLs first recognise hepatocytes through the T-cell receptor (TCR) and HBsAg peptide presented
at the cell surface by the major histocompatibility complex (MHC). This process initiates hepatocyte apoptosis
through Fas—Fas ligand (FasL) interaction and tumour necrosis factor (TNF) expression. At the same time,
CTLs secrete interferon y (IFN-y), leading to recruitment of intrahepatic macrophages and antigen-nonspecific
lymphocytes and neutrophils — with subsequent expression of inflammatory cytokines, including fgl2
prothrombinase, TNF and interleukin 1 (IL-1), which amplify the local cytopathic effect of the specific CTL
response. (b) Murine hepatitis virus strain 3 (MHV-3) model. Infection of BALB/cJ mice with MHV-3 activates
sinusoidal Kupffer cells/macrophages and endothelial cells to express fgl2. Activated T cells produce IFN-y,
which then activates fgl2 expression by both circulating and resident macrophages. The fgl2 prothrombinase
then activates the coagulation pathway, which produces fibrin matrix that blocks blood flow and therefore
causes hepatocyte necrosis. The massive necrosis finally leads to fulminant hepatic failure (fig002glt).
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Figure 3. Proposed mechanisms for the pathogenesis of murine hepatitis virus strain 3 (MHV-3)-induced
fulminant hepatic failure. Infection by MHV-3 prompts Kupffer cells and macrophages to express fgl2
prothrombinase, which activates the coagulation pathway by cleaving prothrombin to thrombin. Thrombin then
cleaves fibrinogen to insoluble fibrin, which contributes to intravascular thrombosis. Virus-infected macrophages
induce a T helper 2 (Th2)-cell response that, in combination with the response of activated macrophages,
leads to the expression of inflammatory cytokines, including tumour necrosis factor (TNF), platelet-activating
factor (PAF), interleukin 1 (IL-1), transforming growth factor B (TGF-B) and interferon y (IFN-y), as well as
thrombin. These cytokines activate endothelial cells, which in turn enhances cell adhesion and contributes
to thrombosis. In addition, activated Th2 cells induce B cells to become plasma cells and produce antibody
against MHV-3. Furthermore, MHV-3-infected macrophages produce alpha-2-globulin (GC), which is a
component of the extracellular actin-scavenger system, and fibronectin, which decrease the scavenger
function of macrophages. Both pathways eventually lead to liver necrosis (fig003glt).
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The similarity in the putative promoter
elements in human and mouse fgl2 suggests
that both the mouse and the human genes are
regulated in a similar manner. It is believed
that the pathogenesis of the MHV-3-induced
fulminant hepatitis model has the same
characteristics as the pathogenesis of human
viral hepatitis (Ref. 38). The core proteins of
HBV and HCV are known to have the ability

to modulate host immune function (Ref. 34).
Therefore, it is conceivable that HBV and
HCV core proteins induce human hepatitis
through a similar mechanism to that of MHV-3
(Ref. 34). Indeed, a recent study involving
patients with FHF has shown that human fgl2
prothrombinase expression correlated with the
development of hepatic necrosis and thrombosis
(Ref. 6).
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Clinical implications and
future therapies
Virus-induced FHF presents a markedly
proinflammatory milieu in which parenchymal
destruction is mediated by a combination of
lymphocyte- and macrophage-dependent
processes. Clinical and experimental data
described above suggest that the combination
of apoptosis, increased production of oxygen
free radicals, and activation of the cytokine

(Fig. 4). On the basis of current understanding -

of the role of inflammatory mediators in
vasoconstriction, thrombosis and hepatic necrosis,
new forms of treatment have been directed at
modifying the early inflammatory events,
preserving blood flow to the liver or providing
temporary hepatic support in the hope that the
liver will regenerate.

Pharmacological approaches

and clinical implications
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Figure 4. Summary of pathogenesis of virus-induced fulminant hepatic failure. Following infection of
hepatocytes by hepatitis B virus (HBV), HBV-derived viral peptides are presented to the T-cell receptor (TCR)
on cytotoxic T lymphocytes (CTLs) by the major histocompatibility complex (MHC). CTLs induce hepatocyte
apoptosis through Fas—Fas ligand (FasL) interaction. CTLs also recruit antigen-nonspecific lymphocytes
and neutrophils and activate macrophages through secretion of interferon y (IFN-y). Macrophages and
neutrophils amplify the local cytopathic effect of CTLs by secretion of inflammatory cytokines. In addition,
activated macrophages/Kupffer cells might produce fgl2 prothrombinase, which activates the coagulation
pathway by cleaving prothrombin to thrombin. Thrombin then promotes the formation of fibrin matrix and
blocks blood flow in the liver, leading to liver necrosis. All these effects — hepatocyte apoptosis, inflammatory
cytokines and coagulation — are important participants in the pathogenesis of fulminant viral hepatitis
(fig004glt).
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prostaglandins and N-acetyl cysteine, have been
investigated as possible treatments for FHF.

Prostaglandins

The use of prostaglandins might be beneficial
in patients with FHF because prostaglandins
have a vasodilatory action, can inhibit cytokines
and have positive effects on the microcirculation,
by improving blood flow and inhibiting
aggregation of platelets and adherence of white
blood cells (Ref. 65). Infusion of prostacyclin
(PGI,) to patients with FHF was shown to
increase oxygen delivery and consumption (Ref.
21). Interest in prostaglandin E (PGE) analogues
led to a clinical trial in 1989, with promising
positive results (Ref. 66). However, a recent
randomised, double-blind trial involving 41
patients with FHF treated with either intravenous
PGE, or placebo failed to show an overall
benefit for PGE, therapy. Nevertheless, in a
recent study, patients with post-operative liver
failure were treated with PGE, as a continuous
hepatic arterial infusion. The rationale for this
approach was to achieve high concentrations of
the agent within the liver and to avoid systemic
distribution of the drug, which is associated
with side effects (Ref. 67). The infusion resulted
in elevation of total hepatic blood flow and
oxygen delivery to the liver with a resultant
increase in bile flow and patient recovery. No side
effects were observed. Whether this approach is
of use in the treatment of FHF awaits further
studies.

N-Acetyl cysteine

N-acetyl cysteine is an established antidote
following acetaminophen (paracetomol) overdose
(Ref. 68). Recently, it has been suggested that even
late administration of N-acetyl cysteine improves
the outcome of acetaminophen-induced FHF
(Ref. 68). The increased survival was attributed
to an improvement in haemodynamics and
oxygen transport by enhancement of tissue
oxygen delivery and consumption. However, the
beneficial effect might also be related to the
inhibition of production of proinflammatory
cytokines such as leukotrienes, TNF and oxygen
free radicals. Furthermore, the benefit achieved
might be secondary to enhanced production of
nitric oxide, with inhibition of aggregation and
adhesion of platelets. This agent has now been
used successfully to treat patients with fulminant
viral hepatitis (Ref. 68).

Molecular approaches

Charcoal haemoperfusion and

adsorbent columns

Charcoal is an effective adsorbent for a wide
range of potentially toxic substances. Although
the circulating levels of toxic substances were
significantly decreased in patients treated by
charcoal haemoperfusion (Ref. 69), an
improvement in survival over conventional care
was not noted in a subsequent controlled trial
(Ref. 19). Recent work has suggested that a variety
of circulating cytokines and endotoxin could
be effectively removed in vitro using a variety of
adsorbent columns (Ref. 70) and, thus, this form
of therapy could be important in combination
with other modalities.

Hepatocyte columns

A potentially promising approach is the
development of a ‘bioartificial liver’: in essence,
a hollow-fibre dialysis cartridge that contains
living hepatocytes (Ref. 71). Two such devices are
now being evaluated clinically. In the first,
hepatocytes derived from a well-differentiated
human hepatoblastoma cell line are perfused with
the patient’s whole blood treated with heparin
(to prevent coagulation in vitro) (Ref. 72). In
the second, pig hepatocytes are perfused with
plasma in a technique similar to plasmapheresis
(Ref. 73). Use of both of these devices
experimentally in animal models of FHF has
resulted in improvements in hepatic synthetic
function (albumin and coagulation factors), and
metabolism and excretion of ammonia and
bilirubin. Furthermore, in clinical trials involving
patients with FHE, use of these porcine hepatocyte
columns resulted in improvements in hepatic
synthesis (increased albumin and coagulation
factors), metabolism (ammonia) and excretion
(bilirubin), as well as improvement in neurological
function of the patients as indicated by an
increase in the level of consciousness (reduction
in coma scale). Whether these devices can
provide sufficient liver function to support a
patient with acute liver failure to complete
recovery has not yet been determined. To date,
the results suggest that at best these devices only
bridge patients with FHF to transplantation. This
might be explained by the fact that the devices
currently used contain only about 200 g of
hepatocytes, as compared with 1200 g in the
typical adult human liver. In addition, there are
no accessory cells such as bile-duct epithelial
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cells, Kupffer cells or endothelial cells, which all
contribute substantially to overall hepatic
function. Newer devices are being studied that
will examine these issues.

Regulation of cytokine production and

the coagulation cascade

With the development of new methods to
neutralise cytokines, it is now possible to alter the
outcome of severe inflammatory diseases by
specifically blocking the effects of a particular
cytokine (Ref. 74). Recently, it has been shown that
carbon-tetrachloride-induced liver injury could
be prevented by treatment with an anti-TNFR
antibody that neutralises the effects of TNF-a (Ref.
74). Furthermore, the lethality of MHV-3-induced
FHF can be prevented by the administration of a
monoclonal antibody to the MHV-3-induced
prothrombinase fgl2 (Ref. 63). These data provide
direct evidence for a role of cytokines in induced
FHF and demonstrate a rationale for using
antibodies to the cytokine or its receptor in the
treatment of these disorders.

Gene therapy

The application of gene therapy to the treatment
of hepatic disease has considerable potential.
Gene therapy allows not only the replacement of
genes, but also the disruption of offending,
harmful ones. The gene of interest would be
delivered by insertion into vectors that can be
administered safely. Several viral vectors are now
being examined in both preclinical and clinical
studies (Ref. 75). These include retroviral vectors,
adenoviral vectors and adeno-associated viral
vectors. Although the ideal method for gene
insertion has yet to be found, this technology
could be utilised to affect a number of processes,
including expression of cytokines and hepatic
transcription factors that control inflammatory
or hepatic-specific genes, as well as apoptosis,
hepatic regeneration and delivery of drugs. As
an example of the utility of such an approach,
recent studies in a rat model of FHF demonstrated
that infusion of a chimaeric IL-6 fused to a
truncated form of its receptor resulted in
reversal of severe hepatocellular injury and
increased liver regeneration (Ref. 76).

Inhibition of apoptosis

Caspase inhibitors

Apoptosis has emerged as an important pathway
in virus-induced FHF. A clearer understanding of

the programmed cell death pathway might -

provide new approaches to blocking apoptotic
cell death and ameliorating FHF. Currently,
therapeutics are being developed for various
caspase family members, with the most attention
being paid to caspase-3, a major contributor to the
apoptotic machinery in many cell types (Ref. 77).
Preclinical studies have used caspase inhibitors,
such as the caspase active-site mimetic peptide
ketones, which are molecules with relatively non-
selective caspase inhibition properties in animal
models of human disease (Ref. 78). This approach
has shown remarkable efficacy in preventing
disease (Refs 79, 80). For example, in animal
models of ischaemia—reperfusion injury of liver,
heart, kidney and intestine, inhibition of caspases
has demonstrated not only decreased apoptosis,
but also improved survival and improved organ
function. Importantly, caspase inhibition has
shown promise in animal models of infectious
disease (Ref. 81). In addition, it seems that the use
of a caspase inhibitor in the acute phase of disease
will have measurable clinical benefits in addition
to a general inhibition of apoptosis. Thus, caspase
inhibition could provide a novel therapeutic
strategy in treating patients with virus-induced
FHF.

Hepatocyte growth factors

A consistent feature of FHF is the lack of
hepatocyte regeneration in the face of massive
liver necrosis. Thus, a potential treatment for
virus-induced FHF could involve compounds that
enhance liver regeneration. One such molecule,
hepatocyte growth factor (HGF), has recently
been suggested as a potential therapeutic
agent. HGF has been shown to possess potent
hepatotrophic functions, such as enhancement
of liver regeneration and inhibition of hepatocyte
apoptosis (Refs 82, 83). In addition, HGF has a
similar ‘trophic’ function in kidney (Ref. 84) and
lung (Ref. 85). Thus, HGF might act on various
tissues as an anti-apoptotic and cytoprotective
agent to prevent multiple organ failure, which
is a characteristic of FHF. In addition to
enhancing hepatic regeneration, administration
of HGF abrogates Fas-mediated massive liver
apoptosis and FHF in mice. This function most
probably results from induction of the expression
of Bcl-xL, which is an anti-apoptosis molecule
that blocks Fas-mediated apoptosis (Ref. 86).
Paradoxically, patients with FHF have extremely
high levels of HGF yet lack evidence of hepatocyte
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regeneration. Preliminary data suggest that the
receptor for HGF on hepatocytes is lacking, or an
inhibitor of HGF binding or function is present
(Ref. 87). One approach to overcome this would
be to use gene therapy either to increase HGF
receptor expression or to permit post-receptor
effects to occur.

Transplantation

Hepatocyte transplantation

Hepatocyte transplantation has been used to
correct metabolic defects and to provide metabolic
support both in experimental animal models of
hepatic failure and in human metabolic disorders.
The intrasplenic transplantation of differentiated
adult hepatocytes in patients with hepatic
encephalopathy and multiple organ failure was
shown to correct high levels of ammonia in the
blood and provide short-term survival until liver
transplantation was performed (Ref. 88). Recently,
primary human hepatocytes were immortalised
utilising retrovirus-mediated transfer of an
oncogene that could subsequently be excised by
site-specific recombination (Ref. 89). The infusion
of these immortalised human hepatocytes
prevented lethality in a rat model of FHF (Ref.
89). This approach could potentially be utilised
in humans either as a bridge to transplantation
or until the native liver regenerated (Ref. 90).

Liver transplantation

For the most severe cases of FHF, transplantation
provides the only chance of survival (Ref. 5).
During the past decade, liver transplantation
has revolutionised the treatment of patients
with FHF (Ref. 71). With advances in
perioperative management, surgical technique,
and immunosuppression, one-year survival rates
now exceed 70%. Early identification of patients
unlikely to survive without liver transplantation
is essential if this therapy is to be successful.
Highly predictive prognostic criteria based on
clinical, biochemical and histological variables
have been developed (Ref. 91). Unfortunately,
liver transplantation is limited by the severe
shortage of cadaveric organ donors and the brief
time available in which to obtain a suitable liver.
It is estimated that only 10% of patients with FHF
undergo transplantation. The development of
live-donor transplantation from relatives, both for
adults and for children, has partially alleviated
this problem; it allows transplantation to occur
quickly and provides the recipient with an

excellent-quality organ to ensure that the patient
has the best chance to survive.

Another approach has been the use of auxillary
liver transplantation, in which part of the
recipient’s native liver is not removed in the hope
that the liver will regenerate, thereby removing
the necessity for life-long immunosuppression.
This technique has been adopted successfully
in several countries and might prove most
useful for patients with acetominophen-induced
FHF (Ref. 92).

Conclusions
This article has highlighted recent advances in our
understanding of the molecular mechanisms
contributing to hepatic necrosis in FHF. The
importance of the specific viral CTL response,
cytokines, coagulation factors and apoptosis in the
pathogenesis of FHF has been defined. This
increased knowledge has allowed new avenues
of therapy to be developed both in experimental
and in human FHF. Given the complexity of the

disease, the challenge is to provide a rational -

basis for the management of patients with FHEF,
using either enhancement or suppression of the
immune response by manipulation of endogenous
cytokine synthesis or by cytokine administration.
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