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SUMMARY
With an ability to mimic the human behaviour and replace human efforts in proper platforms,
humanoid robots have always acquired a special place among robotics practitioners. Being a com-
plex method of analysis, navigation and path planning, humanoid robots still possess an interesting
yet challenging area of investigation. In the current work, a novel navigational strategy has been pro-
posed for smooth and hassle-free movement of single as well as multi-humanoid robots in complex
environments. Here, the navigational plan is based on a virtual target displacement strategy which
is activated when the robot is unable to find a safe path along the actual target line. After detection
of a potential obstacle by the sensors of the robot, a number of virtual targets are generated around
the actual target. Then, the most feasible path and point to move are calculated by assigning suitable
weightage through several selected parameters to each target line and visualizing the safest path.
The proposed approach is implemented on a V-REP simulation platform, and the simulation results
are also validated against an experimental set-up prepared under test conditions. The validation of
simulation results against experimental counterparts has revealed satisfactory agreement between
them. To avoid possibility of any inter-collision during navigation of multi-humanoids under a com-
mon platform, a Petri-Net strategy has been integrated along with the proposed control strategy.
Finally, the developed approach is also assessed against another existing navigational controller, and
a significant performance improvement has been observed.
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1. Introduction
The prime motive behind the development of several intelligent methodologies to guide autonomous
robots is to attain complete autonomy without the need of any external regulation and operator
control. To attain such autonomy, a robotic agent needs to first map the environment and stabi-
lize its knowledge regarding the obstacle locations and its relative position in regard to the start
and end positions. However, such a type of navigation is called as a model-based approach that,
although seemingly easy to deal with, actually differs largely from the practical environmental con-
ditions that the robot may face during its navigation. Therefore, based on the preliminary knowledge
regarding environmental conditions supplied to a robotic agent, navigational approaches are classi-
fied as model-based and sensor-based approaches. While the model-based approaches are easy to
tackle with, the sensor-based approaches closely resemble practical navigational path. In model-
based approaches, the robot has initial information regarding the environmental conditions, while in
sensor-based approaches, the robot has no such information. Similarly, the methods developed for
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navigational purposes are also categorized as classical and artificial intelligent (AI) methodologies
based on the theoretical formulations of the techniques.1, 2 While most of the classical methods such
as regression analysis (RA), voronoi diagram (VD), edge detection (ED) technique, so on are derived
from the standard statistical procedures, AI methods such as artificial neural network (ANN), genetic
algorithm (GA), fuzzy logic control (FLC) are derived mostly from nature inspired phenomena. On a
broad range, each technique has been criticized with its own advantages and limitations. However, on
a broad side, classical methods can produce more converged results within a limited problem space,
and AI techniques can be more accurate than the classical ones although they might take some more
time in converging. The last few decades of robotics research are mostly devoted towards naviga-
tional analysis of different forms of robots. Although navigational analysis of all the forms of robots
are simultaneously important, humanoids have created their separate place in researcher’s mind by
virtue of their resemblance to human structure. Some of the prominent researches in the aspect of
navigation for humanoids and other forms of robots can be summarized over here.

Pun-Cheng et al.3 used an exact cell decomposition method to design an autonomous path plan-
ning approach for smooth navigation of mobile robots. Glavaski et al.4 proposed two classical
techniques based on exact cell decomposition and artificial potential field approaches to navigate
mobile robots in simulation environments. Cai and Ferrari5 used an approximate cell-decomposition-
based approach to detect multiple fixed target points during navigation of a mobile robot through
sensors employed on it. Bhattacharya and Gavrilova6, 7 used Voronoi-diagram-based approaches to
define an optimal path between source and target locations in a robotic path planning problem. Chen
et al.8 improvised the basic VD-based algorithm and obtained improved results by applying the
same in navigation of a mobile robot. Haihan and Li9 used Voronoi Diagram and Dijkatra’s algo-
rithm in a robot navigation problem and verified the approach in a simulation platform. Nattharith
and Güzel10 proposed a vision-integrated fuzzy-based control strategy for navigation of a target-
following mobile robot. Dirik11 discussed a fuzzy-logic-based navigational approach for hassle-free
movement of a mobile robotic agent in an indoor arena. Shi et al.12 developed a grid navigation model
based on fuzzy concepts and applied the same in simulation and experimental platforms. Al-Mutib
and Abdessemed13 incorporated fuzzy-based reactive patterns on a mobile robot navigating in an
indoor arena. Van Nguyen et al.14 applied fuzzy-based reactive behaviours on a robotic platform
and tested it successfully in an unknown environment. Zhong et al.15 used a self-organizing neural
network-based approach for navigation of a mobile robot in a complex environment. Sierakowski
and dos Santos Coelho16 used a bacterial colony-based navigational technique in smooth movement
of a mobile robot in simulation platforms. Jhankal and Adhyaru17 compared bacterial foraging-based
approaches with simulated annealing-based ones and reviewed regarding the advantages and limita-
tions of both. Chen et al.18 critically reviewed regarding the limitations of the basic bacterial foraging
method and proposed some modifications to overcome these limitations. Sharma and Satav19 used the
computational intelligence associated with bacterial foraging methods to navigate mobile robots in
cluttered environments. Patle et al.20, 21 used firefly algorithm (FA) as a potential navigation strategy
for mobile robots in obstacle-prone environments. They have verified their approach through multiple
simulations and experiments. Parhi et al.22–27 designed several intelligent algorithms for navigational
analysis of multiple mobile robots. Pal and Sharma28 reviewed regarding different swarm intelligence
methods and discussed regarding their potential use in several engineering optimization problems.
Hidalgo-Paniagua et al.29 proposed an FA-based approach for online monitoring of mobile robot nav-
igation in complex environments. Liu et al.30, 31 modified the basic firefly-based approach and used it
in navigation of an underwater robot. Brand and Yu32 developed an FA-based navigational controller
for a mobile robot and used it in a simulation environment. Lee et al.33 separated a complete prob-
lem of humanoid navigation into a series of small multi-objective optimization problems and tried
to solve each part by the introduction of evolutionary algorithms. Rath et al.34–36 discussed regard-
ing use of several nature-inspired algorithms in humanoid navigation. Ariffin et al.37 added a mobile
platform to a regular humanoid robot and proposed a sensor-based path finding strategy for the same.
Kumar et al.38–42 proposed various intelligent methodologies to plan smooth and hassle-free path for
humanoid robots. Karkowski et al.43 developed a footstep planning strategy for a humanoid model
and combined it with A* algorithm and adaptive action sets for smooth movement in a rough ter-
rain. Sahu et al.44, 45 developed humanoid motion planning schemes using swarm intelligence. Yoo
and Kim46 proposed a gaze-control-based navigational architecture for a humanoid model. Moulard
et al.47 developed a vision-based localization scheme for navigational analysis of humanoid robots.
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The review of existing works suggests that navigational analysis has been mostly applied on
wheeled robotic forms and the use of the same in humanoid navigation is limited. Although some of
the researchers have devoted their attention towards humanoid navigation, most of their approaches
are focused on posture control, stability analysis and footstep planning. Online obstacle detection in
complicated terrains and smooth avoidance of the detected obstacles is not yet fully explored in the
existing works. Along with that, navigation of multiple humanoids on a common platform and verifi-
cation of the simulation results in experimental platforms are yet to be completely defined in robotics
world. Although some of the intelligent algorithms may navigate humanoids in a simple terrain, in
complicated obstacle settings when there is possibility of arriving at a dead-end situation it is not
taken care of in the existing schemes. Therefore, the current work is dedicated towards the design,
development and implementation of a robust navigational strategy for humanoid robots capable of
smooth navigation in any environment cluttered with obstacles. The controller is based on a virtual
target displacement method named as DAYKUN-BIP Virtual Target Displacement (DVTD) strategy
in which the robot is made to move along the direction of a virtual target if the path along the actual
target is not collision-free. The selection of the virtual target line is governed by several factors nom-
inated carefully based on the detailed control strategy of the algorithm. The scheme of moving the
robot along a virtual target line helps in negotiating with a dead-end situation created by complicated
obstacle settings. The proposed algorithm is verified in a simulation platform and validated in an
experimental platform for navigational analysis of both single and multi-humanoid robots. To avoid
any possibility of arriving at a conflict regarding avoidance of dynamic obstacles in navigation of
multi-humanoids, a Petri-Net control strategy is integrated along with the proposed technique. The
results obtained from both simulation and experimental platforms are compared against each other,
and satisfactory agreement has been recorded. Finally, the developed navigational model is also val-
idated against another existing navigational method, and a significant performance enhancement has
been observed.

2. Control Architecture of DVTD Strategy
Mostly, classical methods are prone to continuous trapping at local minima; sometimes, AI tech-
niques also face the same problem. It happens due to the fact that the robot has sensibility towards its
immediate surrounding only and no prior knowledge regarding the global setting of the work envi-
ronment. Along with that, the robot also doesn’t remember the previous reactive behaviours it has
undergone through. Due to high attraction from the target in a target-following behaviour, the robot
sometimes gets trapped in a situation where it becomes very difficult to proceed further. To avoid
these difficulties, virtual target shifting methods48, 49 were derived. Although there were discussions
regarding the application of virtual target switching to mobile robots, the virtual target displace-
ment method for navigation of humanoids was never taken into consideration. Humanoid navigation
being the most discussed and challenging area of investigation of present-day robotics researchers
requires an intelligent target displacement strategy with smooth obstacle avoidance, target-following
behaviour along with avoiding being trapped at local minima.

2.1. Humanoid navigational model using DVTD strategy
The proposed control architecture of DVTD method can be discussed as follows. In the current work,
NAO robots are used as the humanoid platform. NAO is a medium-sized programmable humanoid
robot equipped with a large sensory network50 consisting of SONARs, infrareds, tactile sensors,
pressure sensors, force resistors, inertia board, cameras so on.

2.1.1. Analysis of obstacle intensity weight along target line. Figure 1 represents a typical arena
condition with a robot at source location, multiple obstacles positioned at random locations and a
predefined actual target. The initial heading angle of the robot is always directed towards the target
location as the robot always obeys the target-following behaviour.

After the sensors detect an obstacle within the set threshold limit (30 cm for the current investiga-
tion), and no movement along the target direction is possible as it may result in a collision with the
obstacles, the robot creates z number of virtual targets around the actual target along a curve of radius
Rg from robot’s current position, that is, the actual target is displaced to virtual target locations. Rg is
the length of the actual target from the robot’s current location.
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Fig. 1. Arena with actual and virtual targets.

T = Total possible direction of net feasible best position path (Total targets) = z + 1
The virtual targets are generated in a conical range of N◦ and they are created at an equal interval

of M◦ around the actual target. Here, N = 80
◦
.

For an example purpose, four virtual targets are created here around the actual target which makes
the total number of targets 5 (including actual target). The virtual targets are generated at an interval
of M = 20◦ around the actual target. The conical angle of visibility around each target is C/2◦ in
clockwise and C/2◦ in anti-clockwise direction from the robot’s current location to target position.
C◦ may vary from 0◦ to 60◦. Here, it is taken as 30◦. Now the robot calculates the total obstacle
weightage along each target line by the following formulations.

Let front obstacle distance (FOD), left obstacle distance (LOD) and right obstacle distance (ROD)
denote the nearest obstacle distances around front, left and right side respectively. Based on the
specifications of the sensors used in the current work, a maximum and minimum detection range has
been set as follows

Maximum obstacle distance (MAOD) = 250 cm, Minimum obstacle distance (MIOD) = 30 cm
The weightage of each obstacle (OW) at a distance ‘OD’ can be calculated by

OW = OD − MIOD

MAOD − MIOD
. (1)

For an example, front obstacle weight (FOW) can be calculated as

FOW = FOD − MIOD

MAOD − MIOD
.

Now the total obstacle weight along a target line can be calculated as

WK 1 = wt (0.6 × FOW + 0.2 × LOW + 0.2 × ROW), (2)

where wt is the target line weightage.
The actual target line is given a weightage of 1, and subsequently, there is a decrease of 0.5

z/2 for
each virtual target on either side. For example, if there are four virtual targets, where the first virtual
target gets a weightage of 0.75, the second virtual target gets a weightage of 0.5 in either side of
the actual target. It has to be noted that Rg has to lie within the MAOD set in the current problem;
otherwise, the actual target is assumed to be shifted to the MAOD length along its own line, and the
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Fig. 2. A sample target line subdivided to equal intervals.

The humanoid starts navigating towards the actual target

The sensors detect a potential obstacle within the set threshold limit:

DVTD strategy is activated

z number of virtual targets are generated around the actual target at equal intervals

Obstacle intensity weightage is calculated along each target line

Obstacle availability weightage is calculated along each target line

Step size weightage is calculated along each target line

Calculate the total global weightage along each target line

If (Total global weightage is zero for all target lines)

If (no-obstacle path available in front 1800 of robot’s current target line)

Robot moves in 900 on either side of robot’s current target line

Else

Robot searches for a no-obstacle path in 1800 in the back side

Else

The robot moves to the next step along the target line having maximum global weightage

If (Actual target is reached)

Stop navigation mode

Else if (Obstacle is detected)

Repeat the DVTD strategy to find next feasible step

Else

Keep in navigation mode until an obstacle is detected or actual target is reached

Fig. 3. Pseudo code of DVTD strategy.

virtual targets are generated accordingly. Thus, the obstacle weight is calculated along each target
line separately. It can be observed that a greater value of obstacle intensity weightage indicates a
safer path to move.

2.1.2. Analysis of obstacle availability weight at various intervals of a target line. Figure 2 repre-
sents a single target line and the obstacles around it. The target length Rg is divided into k equal
intervals at distances y1, y2, y3,. . . , yk from the robot’s current location.

At each boundary of the set interval, the availability of obstacles (OA) is found out.
If obstacle is available, OA = 1, if obstacle is not available, OA = 100.
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Fig. 4. Flowchart of DVTD strategy.

The total obstacle availability weightage along a target line is calculated as

WK 2 = wt ×
∑k

i=1
(k+1)−i

k × OA

k
, (3)

where wt carries the same meaning as explained in the previous section.
It can also be observed that a higher value of obstacle availability weightage indicates a safer path

to move.

2.1.3. Analysis of step size weightage. While selecting the next feasible point to move, the step size
carries an important role to play. If an obstacle is present within the next step size of movement, then
the robot cannot move to that point, and that path becomes a non-feasible path.

Hence, if obstacle is present within the step size, then WK 3 = 0, otherwise WK 3 = 1.
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Fig. 5. Petri-Net control strategy.

Fig. 6. Simulation results for navigation of a single humanoid using DVTD strategy.
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Fig. 7. Experimental results for navigation of a single humanoid using DVTD strategy.

2.1.4. Calculation of total global weightage along a target line. The total weightage along a target
line is calculated as

WK g = WK 1 × WK 2 × WK 3. (4)

As it is a maximization problem, the robot selects the target line having the maximum value of global
weightage as the next feasible direction to move and proceeds for a specific step size in that direction
and thus repeats the process unless reaches the actual target. There is a possibility that the value of
WK g may be zero for all possible lines; in that case, the robot will choose a random direction in front
180◦ (90◦ on either side of robot’s current target line in front side of the robot), and if no feasible
path is available in front side of the robot, then it searches for 180◦ in the back side (90◦ on either
side of robot’s current target line in back side of the robot) where there is absence of obstacles and
proceeds accordingly.

The entire process of navigational control using DVTD method is demonstrated as a pseudo code
in Fig. 3 and as a flowchart in Fig. 4.

3. Petri-Net Control Strategy
The proposed control strategy has been applied to both single and multi-humanoid platforms. While
navigating multi-humanoids on a common platform, the environment becomes a dynamic one. In a
dynamic environment, there may be some conflicts in deciding the safe direction of turn while multi-
humanoids come in the contact of a common obstacle. Therefore, a Petri-Net control strategy51, 52

is designed and integrated along with the proposed navigational model for smooth navigation of
multi-humanoids. The working of a Petri-Net control strategy can be explained by the help of Fig. 5.

In Fig. 5, an oval mark denotes the present location of the robot, and the bar symbol denotes
transition from one spot to another spot. The complete strategy is formulated using six spots, and
each spot can be summarized as follows:

Spot-1: In this spot, all the robots are ready to navigate towards their respective target locations.
Here, they are waiting for a start command, and the robots don’t have any information
regarding each other’s current location.
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Table I. Validation of simulation results against experimental results for track span in
navigation of a single humanoid.

Sl. No. Track span in simulation (cm) Track span in experiment (cm) Inaccuracy in %

1 273.54 289.7 5.58
2 273.86 289.9 5.53
3 274.31 290.3 5.51
4 273.8 291 5.91
5 273.15 291.4 6.26
Average 273.73 290.46 5.76

Table II. Validation of simulation results against experimental results for interval lapsed in
navigation of a single humanoid.

Sl. No. Interval lapsed in simulation (s) Interval lapsed in experiment (s) Inaccuracy in %

1 37.24 39.58 5.91
2 37.47 39.74 5.71
3 38.1 40.41 5.72
4 37.65 40.27 6.51
5 37.96 40.05 5.22
Average 37.68 40.01 5.81

Spot-2: In this spot, start command is already initiated, and the robots proceed towards their target
by the help of target-following behaviour. Here, the robots may encounter obstacles in their
path.

Spot-3: It denotes the detection of a dynamic obstacle by a robot.
Spot-4: To resolve the conflict of a dynamic obstacle, the robot having less distance left towards its

target is given a higher priority than the other robot, and it moves further while the other one
waits as a static obstacle.

Spot-5: It denotes a regularity check if any further dynamic obstacles are present.
Spot-6: It denotes a special waiting condition in which a robot detects another set of robots already

in a situation of conflict. In that case, the robot which has entered late to the system gets the
lowest priority and waits as a static obstacle until the conflict between the first set of robots
is resolved. After resolution of the conflict, the robot which was at a waiting condition
commences its journey again stating from Spot-2.

The above discussed strategy can be used as a very effective way of handling multi-humanoid robots
in a common platform.

4. Implementation of Proposed DVTD Strategy in Humanoid Navigation
As already stated, NAO humanoid robots are used as the platforms on which the proposed DVTD
strategy has been implemented. The working of the control strategy is verified in both simulation and
experimental platforms.

4.1. Navigation of a single humanoid using DVTD strategy
Here, Virtual Robot Experimental Platform (V-REP) has been selected as the suitable simulation
platform for humanoid navigational analysis taking into consideration its advantageous properties
like better collision detection and motion planning. Along with that, in V-REP, the humanoid is
represented as a complete model which is not possible in MATLAB platform. An arena size of
240 × 160 units has been designated as the navigational space for humanoid movement. Six static
obstacles are positioned at arbitrary locations of the arena, and the humanoid is fed with the logic
of the developed control strategy in the form of a code formulated in LUA language. After defining
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Fig. 8. Simulation results for navigation of multi-humanoids using DVTD strategy.

the specific source and target locations for the humanoid, it was set for motion towards its target.
Figure 6 represents the simulation results obtained from the navigation of a single humanoid by the
implementation of DVTD strategy.

The simulation results have revealed satisfactory results with the humanoid safely reaching the
target location without any collision with the obstacles present in the arena.

To validate the simulation results, an experimental platform has been prepared under test condi-
tions. The navigational space size is kept exactly same as 240 × 160 units, and the obstacles are also
designed to the exact size of the simulation platform conditions. By placing the obstacles at their
exact locations as that of the simulation, specific source and target locations are predefined for the
humanoid. In the experimental platform, the logic of the developed control strategy is implemented
on the humanoid by the help of python programming and the robot is operated on Wi-Fi mode.
Figure 7 represents the experimental results obtained from the navigation of a single humanoid by
the implementation of DVTD strategy.
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Fig. 9. Experimental results for navigation of multi-humanoids using DVTD strategy.

The experimental results have also revealed safe navigation of the humanoid from the source
location to the target location. The validation of the simulation results against the experimental
results has been performed through comparison of trajectory generated in navigation and suitable
selected navigational parameters. Here, track span and interval lapsed in reaching the target loca-
tion from the source location are selected as the two navigational parameters. These two parameters
are directly recorded from the simulation window and are recorded by the help of a measuring
tape and stopwatch, respectively, from the experimental platform. Tables I and II represent the
validation of simulation results against experimental results for track span and interval lapsed,
respectively.

The validation of simulation results against experimental counterparts earns minimal percentage
of inaccuracy within the acceptable limit. It can be noticed that the values in experimental parts show
a higher range than the simulation parts. The reason for the same is the presence of external hindrance
factors like slippage effect, frictional reductions, data transmission losses, so on in the experimental
platform which are ideal for the simulation platform.

4.2. Navigation of multi-humanoids using DVTD strategy
As discussed before, the Petri-Net control strategy is integrated along with the proposed navi-
gational model for smooth movement along with possible conflict resolution for navigation of
multi-humanoids. Here, the navigational space is kept constant as that of the previous section. Two
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Table III. Validation of simulation results against experimental results for track span in
navigation of multi-humanoids.

Simulation results Experimental results

Track span (cm) Inaccuracy in %

Sl. No. H1 H2 H1 H2 H1 H2

1 336.58 344.28 357.3 365.7 5.8 5.86
2 336.86 344.43 357.6 365.9 5.8 5.87
3 337.24 345.82 359.2 366.6 6.11 5.67
4 336.91 344.17 358.9 367.3 6.13 6.3
5 336.57 345.2 357.4 367.7 5.83 6.12
Average 336.83 344.78 358.08 366.64 5.93 5.96

Table IV. Validation of simulation results against experimental results for interval lapsed in navigation
of multi-humanoids.

Simulation results Experimental results

Interval lapsed (s) Inaccuracy in %

Sl. No. H1 H2 H1 H2 H1 H2

1 45.91 47.18 48.76 50.14 5.84 5.9
2 46.05 47.36 48.79 50.17 5.62 5.6
3 46.27 47.97 48.85 50.59 5.28 5.18
4 46.08 48.2 48.98 51.48 5.92 6.37
5 45.96 47.84 49.44 51.36 7.04 6.85
Average 46.05 47.71 48.96 50.75 5.94 5.98

humanoids and five static obstacles are used for the analysis. Specific predefined source and tar-
get locations are designated for each humanoid, and the logic of both DVTD and Petri-Net control
strategy is supplied to the humanoids. Fig. 8 represents the simulation results, and Fig. 9 represents
the experimental results obtained from the navigation of multi-humanoids by the implementation
of DVTD strategy, respectively. Similarly, Tables III and IV represent the validation of simula-
tion results against experimental results for track span and interval lapsed, respectively, for each
humanoid.

The navigational pattern followed by the humanoids and validation of navigational results from
both the platforms have also provided safe and convincing results which indicate the efficiency and
accuracy of the developed control strategy.

5. Assessment of the Proposed DVTD Strategy against Another Existing Navigational Model
The proposed DVTD strategy has been assessed against an existing navigational model to prove
performance enhancement of the control scheme. Al Yahmedi and Fatmi53 have developed a fuzzy-
logic-based navigational model for a robotic system and tested their approach in a simulation
platform. They have designed a fuzzy-logic-based navigational model along with the integration
of goal searching, obstacle avoidance, wall following and emergency situation behaviours with
the fuzzy-logic-based model. The simulation platform developed by Al Yahmedi and Fatmi53 has
been replicated, and an assessment has been performed in terms of trajectory followed and track
span. Fig. 10 represents the assessment in terms of trajectory followed and Table V represents the
assessment in terms of path span.

It can be observed that there is an improvement about 14% by using the developed DVTD strategy
compared to existing navigational model. Hence, the efficiency of the developed model is definitely
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Table V. Assessment of track span between fuzzy-based approach [38] and DVTD strategy.

Technique used Track span in units Enhancement in %

Fuzzy-based approach53 (Fig. 10(a)) 11.6 14.14
DVTD strategy (Fig. 10(b)) 9.96

Fig. 10. (a) Path generated using fuzzy-based approach53 and (b) path generated using DVTD strategy.

on an enhanced mode, and it can be used as a trusted navigational strategy for smooth and hassle-free
movement of different forms of humanoid robots.

6. Conclusions
Being the most intelligent species on the entire globe, human beings always attempt to derive dif-
ferent intelligent plans to reduce human efforts in repetitive tasks. Navigation and path planning of
humanoid models is one of the most prominent areas of research keeping in view of the growing
demand towards industrial automation and smart manufacturing. In the current investigation, a novel
DVTD-based navigational model has been proposed. In absence of an obstacle-free path along the
actual target line, some virtual targets are generated around the actual target. Among all the tar-
get lines, the safest direction of motion is calculated by assigning suitable weightages to obstacle
intensity, obstacle availability and step sizes. The proposed control strategy is implemented on a
simulation platform and validated against an experimental platform using single as well as multi-
humanoid robots. To avoid any possibility of inter-collision during navigation of multi-humanoids, a
Petri-Net strategy is integrated with the developed model. Finally, the developed navigational model
is also assessed against another existing navigational control scheme, and a significant improvement
in the efficiency is observed.
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