
10/22/2007-841–JFQA #42:4 Nardari and Scruggs Page 857

JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS Vol. 42, No. 4, Dec. 2007, pp. 857–892
COPYRIGHT 2007, SCHOOL OF BUSINESS ADMINISTRATION, UNIVERSITY OF WASHINGTON, SEATTLE, WA 98195

Bayesian Analysis of Linear Factor Models with
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Volatility, and APT Pricing Restrictions
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Abstract

We analyze a new class of linear factor models in which the factors are latent and the
covariance matrix of excess returns follows a multivariate stochastic volatility process.
We evaluate cross-sectional restrictions suggested by the arbitrage pricing theory (APT),
compare competing stochastic volatility specifications for the covariance matrix, and test
for the number of factors. We also examine whether return predictability can be attributed
to time-varying factor risk premia. Analysis of these models is feasible due to recent
advances in Bayesian Markov chain Monte Carlo (MCMC) methods. We find that three
latent factors with multivariate stochastic volatility best explain excess returns for a sample
of 10 size decile portfolios. The data strongly favor models constrained by APT pricing
restrictions over otherwise identical unconstrained models.

I. Introduction

We analyze a new class of linear factor models in which the factors are latent
and the covariance matrix of returns follows a multivariate stochastic volatility
(MSV) process. Linear factor models play a prominent role in theoretical and
empirical asset pricing. They have been a parsimonious means of describing the
covariance matrix of returns since the single-index model of Sharpe (1963). The
arbitrage pricing theory (APT) of Ross (1976), (1977) assumes that asset returns
follow a static linear factor model in which factors are latent. In the spirit of
the APT, we assume that factors are latent and organic to the return generating
process. Rather than prespecifying factors, we extract the latent factors from the
test assets themselves.1 We extend the traditional static linear factor model to
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1Our approach is similar to Geweke and Zhou (1996) who consider homoskedastic models.
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allow for two important features of the data: i) a time-varying covariance matrix
of returns in which factor and idiosyncratic shocks exhibit volatility shocks and
persistence (i.e., clustering), and ii) time-varying expected returns.

Our interest in this class of models is twofold. First, we are interested in the
features of the model that provide the best fit for the data. To that end, we com-
pare models with different specifications for the covariance matrix of returns and
different numbers of factors. Motivated by the empirical evidence on predictable
returns, we also consider models in which expected returns vary over time. Sec-
ond, we are interested in evaluating the linear pricing restriction implied by the
APT. We evaluate this implication by comparing unconstrained models to models
constrained by APT pricing restrictions.

We examine excess returns on 10 NYSE/AMEX/NASDAQ market capital-
ization (i.e., size) decile portfolios for the period from January 1952 to December
2003. We report a number of new and interesting empirical results. MSV is
clearly an important feature of the data. Models in which both factor and idiosyn-
cratic shocks follow stochastic volatility processes are strongly favored over mod-
els in which factor shocks and/or idiosyncratic shocks are homoskedastic. We find
that three latent factors best explain the variation in market capitalization decile
portfolio excess returns. We interpret these latent factors as: i) a stock market
factor, ii) a size factor, and iii) a small stock factor. We find that all three of these
latent factors are “priced” in the sense that exposure to them is rewarded with
constant risk premia. We find that the data strongly support models constrained
by APT pricing restrictions over otherwise identical unconstrained models. In
other words, models in which expected returns are linear in exposures to latent
factors are favored over models in which expected returns are independent of fac-
tor loadings. This is the central empirical prediction of the APT. None of our
conclusions are altered when expected returns are allowed to vary over time. We
find that models in which predictability is related to exposures to latent factors are
favored over models in which predictability is unconstrained. Using an extensive
battery of sensitivity checks, we demonstrate that our conclusions are remarkably
robust to changes in prior specification.

We adopt a Bayesian approach and exploit recent advances in Markov chain
Monte Carlo (MCMC) econometrics to estimate and compare models. The Bayes-
ian MCMC approach is attractive for a number of reasons. First, MCMC meth-
ods provide exact finite-sample posterior densities for model parameters and for
functions of interest. Popular classical methods for testing asset pricing models
(GMM, Fama-MacBeth, etc.) rely on asymptotic distributions to make inferences.
Second, MCMC techniques are especially well suited for estimating models with
latent variables. In our model, both the factor shocks and the stochastic volatil-
ities are latent. In order to estimate the model, one must employ a technique to
integrate the latent stochastic volatilities out of the likelihood function. Recent
advances in Bayesian statistical methods make estimation of high dimensional
MSV models feasible.2 Our MCMC algorithm samples the latent factor shocks
and latent stochastic volatilities conditional on the data and the other parameters
of the model. This enables us to effectively integrate over these “nuisance param-

2Examples include Jacquier, Polson, and Rossi (1994), Kim, Shephard and Chib (1998), and Chib,
Nardari, and Shephard (2002), (2006).
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eters” and obtain exact marginal posterior densities for the parameters of interest.
Third, the MCMC approach enables the estimation of latent factor shocks, fac-
tor loadings, risk premia, stochastic volatilities, and other parameters in a single
stage. This alleviates the errors-in-variables problem inherent in the two-pass
procedures typically employed to test the APT.3

At the heart of our analysis are model comparisons based on Bayes fac-
tors. We compare models with up to five latent factors, with four different covari-
ance matrix specifications, with and without time-varying expected returns, and
with and without APT pricing restrictions. A Bayes factor summarizes the sup-
port provided by the data in favor of one model relative to an alternative model.4

Since Bayes factors are constructed from marginal likelihoods, they measure the
model’s ability to explain the entire distribution (i.e., not just first moments) of
returns.5 Bayes factors also embed an implicit penalty for model complexity. The
ubiquitous likelihood ratio test with fixed significance level tends to favor less
parsimonious models as the sample size grows (see Kass and Raftery (1995),
O’Hagan (1994)).6 The risk of overfitting the data is greatly reduced in the
Bayesian framework. Bayes factors also permit the simultaneous comparison
of multiple models, regardless of whether the models are nested. Several non-
Bayesian model selection criteria need to be modified in nontrivial ways to ac-
commodate multiple and/or non-nested models (see Berger and Pericchi (1996)).
Several previous papers use Bayes factors or posterior-odds ratios to evaluate as-
set pricing models. Shanken (1987) and Harvey and Zhou (1990) use posterior-
odds ratios to evaluate portfolio efficiency. McCulloch and Rossi (1991) rely on
posterior-odds ratios to test APT pricing restrictions for a set of size portfolios and
Connor-Korajczyk factors. More recently, Avramov and Chao (2006) use Bayes
factors to compare competing, non-nested asset pricing models. Ours is the first
paper to compare linear factor models with latent factors and stochastic volatility
for factor/idiosyncratic shocks.

The remainder of this paper is organized as follows. Section II describes
the model. Our Bayesian MCMC estimation methodology is discussed in Section
III. Technical details are provided in the appendices. We describe the dataset in
Section IV. We employ Bayes factors to compare models in Section V. Section

3Papers that employ two-pass procedures to test the APT include Roll and Ross (1980), Connor
and Korajczyk (1986), (1988), Lehmann and Modest (1988), and Jones (2001). An alternative to the
two-pass approach is the systems estimation approach of Brown and Weinstein (1983), Burmeister
and McElroy (1988), McElroy and Burmeister (1988), and Brown and Otsuki (1993). These papers
employ a restricted nonlinear multivariate regression framework to test APT pricing restrictions on
the linear factor model. The APT-constrained model can be estimated simultaneously using the iter-
ated nonlinear seemingly unrelated regression (ITNLSUR) procedure (see, for example, McElroy and
Burmeister (1988)).

4Bayes factors are related to posterior odds. In non-technical terms, the posterior-odds ratio is
equal to the product of the prior-odds ratio and the Bayes factor. If the prior odds are 1:1 (i.e., each
model is equally likely a priori), then the Bayes factor is equivalent to the posterior-odds ratio.

5Marginal likelihoods are computed by taking the expectation of the likelihood function (or sam-
pling density) with respect to the joint prior density of the parameters. For a detailed discussion, see
Chib (1995) or Kass and Raftery (1995).

6The Akaike information criterion and its corrections may help overcome some of the drawbacks
of the likelihood ratio test. The Schwartz information criterion can be viewed as a rough, asymptotic
approximation to the Bayes factor. The performance of these information criteria in the context of the
complex dynamic structures we consider is not known.

https://doi.org/10.1017/S0022109000003422  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109000003422


10/22/2007-841–JFQA #42:4 Nardari and Scruggs Page 860

860 Journal of Financial and Quantitative Analysis

VI discusses the empirical results for models with constant risk premia. We ex-
amine models with time-varying expected returns in Section VII. Section VIII
summarizes our conclusions.

II. The Model

Our empirical model consists of i) a linear factor model for excess returns,
ii) a cross-sectional pricing restriction motivated by the equilibrium APT, iii) an
MSV model for factor shocks and idiosyncratic shocks, and iv) a linear instru-
mental variables model for time-varying expected returns or risk premia.

A. A Linear Factor Model for Excess Returns

Let yt denote the N-vector of excess asset returns and ft denote the K-vector
of latent (or unobservable) factor shocks in period t. In our linear factor model, the
realized excess return on an asset is the sum of its expected return, K systematic
shocks, and an idiosyncratic shock. In matrix notation, the linear factor model for
the excess return vector is

yt = μ + Bft + εt,(1)

where μ is an N-vector of asset expected returns and B is a N × K matrix of fac-
tor loadings (i.e., risk exposures or betas). We assume E[ft] = 0, E[εt] = 0, and
E[ftε′t] = 0. We further assume that the factor loading matrix B is time invari-
ant.7 We discuss cross-sectional restrictions imposed on μ by the APT in the next
subsection.

Our model differs from the familiar static factor model in two significant
ways. First, we assume that the factors are latent (unobservable). Second, we
assume that the covariance matrix of returns, Ωt, is time varying. Since factor
shocks are uncorrelated with idiosyncratic shocks by definition, Ωt can be de-
composed into systematic and idiosyncratic components:

Ωt = BDtB
′ + Vt,(2)

where Dt is a diagonal K × K covariance matrix of factor shocks and Vt is a
diagonal N × N covariance matrix of idiosyncratic shocks. The model for Dt and
Vt is described in detail in subsection C below.

B. APT Pricing Restriction

The linear factor model described in equation (1), which we refer to as the
unconstrained model, is a statistical model of asset returns. Asset pricing mod-
els impose cross-sectional restrictions on equation (1). The APT predicts that

7Engle, Ng, and Rothschild (1990) provide theoretical justification for the constant beta assump-
tion in the context of the consumption CAPM. Connor and Korajczyk (1989) discuss the strong
assumptions on preferences and distributions required to deliver an intertemporal variant of the APT
with constant betas. Aguilar and West (2000) also assume a time-invariant factor loading matrix.
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expected returns are linear functions of exposures to systematic (i.e., undiversi-
fiable) risk factors. We follow the competitive equilibrium version of the APT
(e.g., Connor (1984)) and impose the following exact pricing relation:

μ = Bγ,(3)

where B is the previously defined N × K matrix of factor loadings and γ is the
K-vector of time-invariant factor risk premia. Substituting (3) into (1) delivers the
constrained linear factor model:

yt = Bγ + Bft + εt(4)

= B(γ + ft) + εt.

We interpret γ as the vector of factor risk premia where the factor shocks are mean
zero (i.e., E[ft] = 0). Alternately, we could interpret γ as a vector of ex ante factor
means (i.e., E[ft]=γ). These two interpretations are statistically indistinguishable.
It is important to note that, conditional on contemporaneous portfolio returns,
factor shocks are not mean zero (i.e., E[ft|yt] =/ 0). It follows that ex post average
factor returns may not equal ex ante factor risk premia for a given finite sample.
Likewise, portfolio average returns may not equal portfolio expected returns for a
given finite sample.

Note that equation (4) does not include a separate intercept term. Many pa-
pers in the empirical asset pricing literature (e.g., Gibbons, Ross, and Shanken
(1989)) test the hypothesis that the intercepts (i.e., pricing errors or alphas) are
zero on average. This approach is not available when factors are latent and the
model is estimated in a single stage. This is because intercept terms, factor shocks,
and factor risk premia are not separately identified. We evaluate the hypothesis
μ= Bγ by using Bayes factors to compare unconstrained models to models con-
strained by APT pricing restrictions. Bayes factors are discussed in Section III.

Although the cross-sectional restrictions we impose are motivated by the
APT, we hesitate to characterize the constrained model as a dynamic variant of
the APT.8 It would be difficult to justify constant risk premia in a dynamic version
of the APT. However, the constant risk premia assumption is a reasonable starting
point for our analysis.9 We consider an extension of the model with time-varying
expected returns in subsection E below.

C. Multivariate Stochastic Volatility

An innovative feature of our model is the specification of the time-varying
covariance matrix. Previous papers that examine linear factor models with time-
varying covariance matrices typically assume some form of multivariate GARCH
model.10 We assume that both factor shocks and idiosyncratic shocks follow in-

8Dynamic versions of the APT are derived by, among others, Bossaerts and Green (1989) and
Connor and Korajczyk (1989). See Connor and Korajczyk (1995) for a review of these models.

9It should be noted that the prespecified factors or Connor-Korajczyk mimicking portfolios exam-
ined in other papers have heteroskedastic returns. Rarely do these papers model time-varying factor
risk premia. Ferson and Korajczyk (1995) is a rare exception.

10Papers that examine multivariate GARCH models include Engle, Ng, and Rothschild (1990), Ng,
Engle, and Rothschild (1992), and King, Sentana, and Wadhwani (1994). These papers all resort to
multiple-stage estimation procedures due to model complexity.
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dependent stochastic volatility processes. Stochastic volatility models are an at-
tractive alternative to models from the GARCH family because they allow for
exogenous volatility shocks.11 Since Dt and Vt are diagonal, any covariance be-
tween assets is due to the factor loading matrix. Our MSV model is based on
Chib, Nardari, and Shephard (2006).

We assume that the factor shocks and idiosyncratic shocks in (1) and (4)
follow a multivariate Gaussian distribution,(

εt
ft

)
∼ Nn+k

{
0,

(
Vt 0
0 Dt

)}
,(5)

where

Vt = Vt(ht) = diag{exp(h1,t), . . . , exp(hN,t)},
Dt = Dt(ht) = diag{exp(hN+1,t), . . . , exp(hN+K,t)},

and ht denotes the N + K-vector of time-varying latent log-variances. We further
assume that the log-variances, ht = (h1,t, . . . , hN+K,t), each follow an independent
stochastic volatility process:

hj,t = κj + φj(hj,t−1 − κj) + σjηj,t,(6)

where ηj,t
i.i.d.∼ N (0, 1) and E[ηtη

′
t ] = IN+K .

We refer to this covariance specification as the MSV model. In addition to
the MSV model, we estimate three constrained variants. Our goal is to deter-
mine whether intertemporal variation in the covariance matrix of returns is driven
by time-series heteroskedasticity in factor shocks, in idiosyncratic shocks, or in
both. In the stochastic volatility-in-errors (SVE) model, idiosyncratic shocks fol-
low independent SV processes while factor shocks are homoskedastic (Dt = D).
In the SVE model, each asset’s idiosyncratic shock has its own SV process. In
the second constrained model, the stochastic volatility-in-factors (SVF) model,
factor shocks follow independent SV processes while idiosyncratic shocks are
homoskedastic (Vt = V). In the final model, the classic factor (CF) model, both
factor and idiosyncratic shocks are homoskedastic. The CF model is comparable
to the model in Geweke and Zhou (1996).

D. Identification Issues

We must impose further structure on our model to deal with two identifica-
tion issues. The first issue arises when we move from a static factor model to
a dynamic model. In the most general dynamic model, both the covariance ma-
trix of the factors and the factor loading matrix could be time varying (e.g., one
could generalize equation (2) such that Ωt = BtDtB′

t + Vt). In practice, econo-
metricians typically choose to either estimate a model with dynamic factor load-
ings and static (i.e., homoskedastic) factors, or estimate a model with static factor
loadings and dynamic (i.e., heteroskedastic) factors. We adopt the latter approach
and assume that B is constant. Since our empirical work examines the returns

11Taylor (1994) and Ghysels, Harvey, and Renault (1996) review SV models.
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on characteristic-sorted portfolios (e.g., market capitalization decile equity port-
folios), we do not believe this assumption is too onerous.12 Ferson and Harvey
(1991) and Evans (1994) attribute most of the predictable variation in expected
returns to time-varying risk premia rather than time-varying risk exposures. Fur-
thermore, Ghysels (1998) finds that models with time-varying factor loadings can
lead to larger pricing errors than models with constant factor loadings.

The second identification issue is the familiar rotational indeterminancy prob-
lem. Since the K factors ( ft) are latent, we must impose (K2 + K)/2 restrictions
on the N ×K factor loading matrix B to fix the rotation. Let bij denote an element
of the matrix B where i is the row index and j is the column index. We impose the
constraints bij = 1 for i = j and bij = 0 for i < j. Aguilar and West (2000) refer
to this as a hierarchical structural constraint.13 This leaves NK − (K2 + K)/2 free
parameters to be estimated in B. The resulting loading matrix is:

B =

⎛
⎜⎜⎜⎝

1 0 · · · 0
b21 1 · · · 0
...

...
...

...
bN1 bN2 · · · bNK

⎞
⎟⎟⎟⎠ .(7)

E. Time-Varying Expected Returns

We also investigate whether linear factor models with latent factors, MSV,
and APT pricing restrictions can explain predictable variation in stock returns.
Many interpret stock return predictability as evidence of time-varying expected
returns. If this is the case, then the predictability of asset returns should be propor-
tional to systematic risk exposures. We address this issue by comparing models
with unconstrained return predictability to models in which return predictability
is due to time-varying latent factor risk premia.

Our specification for time-varying expected returns is simple, but widely
employed in empirical tests of conditional asset pricing models. We assume that
the vectors of portfolio expected returns (μt) or factor risk premia (γt) are linear
functions of predetermined state variables.14 Let zt−1 be a vector of instrumental
variables (with a one in the first row) known at the beginning of period t. For
unconstrained models, we assume μt = Mzt−1 where M is a conforming matrix
of coefficients. Substituting μt into (1) provides the unconstrained linear factor
model with time-varying expected returns:

yt = μt + Bft + εt = Mzt−1 + Bft + εt.(8)

If predictable stock returns are due solely to time-varying factor risk premia,
then predictability should be proportional to factor loadings.15 We investigate this

12Other papers that assume constant factor loadings (or betas) in a dynamic model include Camp-
bell (1987), Harvey (1989), Kirby (1998), Avramov (2004), and Avramov and Chao (2006).

13Geweke and Zhou (1996), who assume that both factor shocks and idiosyncratic shocks are ho-
moskedastic, constrain bij > 0 for i = j and assume that E[ftf ′t ] = IK .

14Papers employing related models include Campbell (1987), Harvey (1989), Shanken (1990), Fer-
son and Harvey (1991), Ferson and Korajczyk (1995), Kirby (1998), Avramov (2004), and Avramov
and Chao (2006).

15Gibbons and Ferson (1985) is an early example of this type of test.
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by allowing factor risk premia to be linear functions of predetermined informa-
tion variables. For the constrained model, we assume γt = Gzt−1 where G is a
conforming matrix of coefficients. We modify the exact pricing relation in (3) to
allow for time-varying factor risk premia:

μt = Bγt,(9)

where B is the previously defined N × K matrix of factor loadings and γt is the
K-vector of time-varying factor risk premia. Substituting (9) into (8) delivers the
constrained linear factor model with time-varying risk premia:

yt = Bγt + Bft + εt(10)

= B(γt + ft) + εt
= B(Gzt−1 + ft) + εt.

We interpret γt as the vector of conditional factor risk premia where the factors are
conditionally mean zero (i.e., E[ft|zt−1]=0). Alternately, we could interpret γt as a
vector of conditional factor means (i.e., E[ft|zt−1]= γt). These two interpretations
are statistically equivalent.

For the constrained model in (10), all return predictability is explained by
exposures to latent factors. In contrast, predictability is independent of loadings
on latent factors for the unconstrained model in (8). We employ Bayes factors to
determine which of these non-nested, polar views is supported by the data.16

Models with time-varying expected returns introduce new degrees of free-
dom and thus require further restrictions to ensure identification. The parameters
in the first K rows of the factor loading matrix B (see equation (7)) must be fixed.
Many latent factor models (e.g., Zhou (1994)) assume that the first K rows of the
B matrix are a K × K identity matrix. This approach ensures identification, but
implicitly assumes no covariance between the first K assets under consideration.
We take a different approach. We fix the off-diagonal elements in the first K rows
of B, but we do not assume that they are all zero.17 This approach ensures iden-
tification, but allows for nonzero covariance between the first K assets (i.e., the
reference assets).

III. Empirical Methodology

A. Bayesian Estimation

We employ Bayesian MCMC methods to estimate the models described
in the previous section in a single stage. Bayesian analysis requires three ele-
ments: the data, a likelihood function (i.e., sampling distribution) dictated by the
model specification, and prior beliefs about the parameters. For notational conve-
nience, let β denote the free elements of the loading matrix B and θj = (κj, φj, σj)

16In addition to these polar views, Avramov (2004) considers intermediate views. Avramov (2004)
examines the portfolio allocation decisions of investors with varying prior beliefs regarding asset
pricing models and return predictability. He finds that when prior beliefs deviate from a dogmatic
faith in an asset pricing model, optimal portfolio allocations can change dramatically.

17In our empirical work, we fix the off-diagonal elements in the first K rows of B at or near the
posterior estimates of the otherwise identical model with constant expected returns.
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denote the vector of parameters for the jth stochastic volatility process. Let
ψ=(γ, β, θ1, . . . , θN+K) denote the complete parameter vector for the constrained
linear factor model with constant risk premia. Let yt denote the N-vector of asset
excess returns in period t and y = (y1, . . . , yT) denote the full dataset. Follow-
ing Bayes rule, the joint posterior density of the parameters is proportional to the
product of the likelihood function and the prior density on the parameters:

π(ψ|y) ∝ p(y|ψ)π(ψ).

Bayesian inference is accomplished by examining the joint posterior density of
the parameters of interest.

The likelihood function for the models described in the previous section is
complicated because the factors and log-variances are latent. Let Ft−1 denote
the history of the {yt} process up to time t − 1, and let p(ht|Ft−1, ψ) denote the
density of the latent log-variances (ht) conditioned on (Ft−1, ψ). The likelihood
function for the model in (4), (5), and (6) is given by

p(y|ψ) =
T∏

t=1

∫
p(yt|ht, γ,B)p(ht|Ft−1, ψ)dht(11)

=
T∏

t=1

∫
φN(yt|Bγ,Ωt)p(ht|Ft−1, ψ)dht,

where the notation φN(.|μ,Σ) is used to indicate an N-variate Gaussian density
with mean vector μ and covariance matrixΣ, and whereΩt=Ωt(ht)=BDt(ht)B′+
Vt(ht) is the time-varying covariance matrix of asset excess returns.

Estimation of this model by maximum likelihood methods is impractical be-
cause the high dimensional integral in (11) is analytically intractable. Our MCMC
approach does not attempt to maximize the likelihood function in (11). Rather, we
construct a Gibbs sampler with a limiting distribution equal to the joint posterior
density π(ψ|y). Inference is based on summary statistics (e.g., mean, standard
deviation, critical values) describing the sample draws of parameters of interest
and test statistics constructed from the sample draws. The additional complexity
in the present case is that the joint posterior density is also very high dimensional.
We essentially augment the parameter space ψ with the latent factors and the
latent log-variances. One can think of the latent variables as nuisance parame-
ters that are “integrated out” by the Gibbs sampler. We analyze returns for 10
portfolios and up to five factors. The Gibbs sampler for the unconstrained five-
factor MSV model, the most parameter-rich specification with constant expected
returns, yields 90 parameters, five time series of latent factor shocks (624 obser-
vations each), and 15 time series of latent log-variances (also 624 observations
each). The strategy for sampling from this joint posterior density has to be care-
fully designed. We follow the approach suggested by Chib, Nardari, and Shephard
(2006); the essential steps are summarized in Appendix A.

B. Priors

It is possible to model prior beliefs on the parameters by adopting virtually
any reasonable distributional form. The choice is, by nature, subjective. Our goal
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is to minimize the impact of the priors on the posterior estimates and, especially,
on the model comparisons. Accordingly, we employ relatively uninformative (i.e.,
imprecise) priors. As a result, the posterior densities of the parameters are driven
primarily by the sample data. We employ only proper prior densities (i.e., den-
sities that integrate to one over the parameter space). Furthermore, we assume
that the distributions of the factor loadings, risk premia, and SV parameters are a
priori independent. For example, the joint prior density for the parameters of the
constrained MSV model can be factored

π(ψ) = π(γ)π(β)π(κ)π(φ)π(σ),

where π(γ) = π(γ1) · · ·π(γK), π(κ) = π(κ1) · · ·π(κN+K), etc.
In this subsection, we briefly describe our uninformative or “base” priors.

Our prior for each of the free elements in B is normal, bij ∼ N (b0
ij,B

0
ij). For

the base prior, the mean and variance hyperparameters are b0
ij = 0 and B0

ij = 9,
respectively. For APT-constrained models with constant risk premia, our priors
on the factor risk premia are also normal, γj ∼ N (γ0

j ,G
0
j ), where γ0

j = 0 and
G0

j = 1. Similarly, for unconstrained models we assume μi ∼ N (μ0
i ,M

0
i ) and

set μ0
i = 0 and M0

i = 1. Since we estimate the models with portfolio returns in
decimal form, these distributions represent extremely diffuse prior beliefs. For
models with time-varying expected returns, we need to specify priors for the G or
M matrices. Our priors on the elements of G and M are normal with mean zero
and a variance of 10.

For κj, the average log-variance for both factor and idiosyncratic shocks,
our prior is κj ∼ N (κ0

j ,K
0
j ), where κ0

j = −8 and K0
j = 25. At the prior mean,

this implies an average volatility of about 1.83% per month. Again, this prior is
very uninformative. Within one standard deviation of the mean, the prior allows
average volatilities to vary between 0.15% and 22% per month. For our prior on
φj, we follow Kim, Shephard, and Chib (1998) and Chib, Nardari, and Shephard
(2002). φj is constrained to the interval [−1, 1] (i.e., the region of stationarity) by
implementing a change of variable, φj =2φ∗j − 1, and assuming

φ∗j ∼ Beta
(
φ

(1)
j , φ

(2)
j

)
.

The hyperparametersφ(1)
j =20 and φ(2)

j =1.5 imply that φj has a mean of 0.86 with
standard deviation of 0.11. This moderately informative prior is consistent with
well-established empirical evidence of volatility persistence for stock returns.

The prior for σj (i.e., the volatility of the log-variance) is inverse gamma,
σj ∼ IG(ς0j , ξ

0
j ). For the base prior, the hyperparameters ς0j =2.39 and ξ0

j =0.347
imply that σj is distributed with a mean of 0.25 with standard deviation of 0.4.
For SVF, SVE, and CF models, the factor shocks and/or the idiosyncratic shocks
are homoskedastic. For these models, our priors on the diagonal elements of the
D and/or V matrices are inverse gamma. We choose the hyperparameters ς0j and
ξ0
j so that the prior densities for D and V roughly match the steady-state values

for Dt and Vt implied by our priors on κj. This choice of prior aims to “level the
playing field” when comparing homoskedastic and heteroskedastic models.
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C. Bayesian Model Comparison

We compare model specifications on a number of dimensions. Model com-
parisons of constrained (μ = Bγ) versus unconstrained (μ unrestricted) models
permit us to evaluate cross-sectional restrictions suggested by the APT. We eval-
uate the relative merits of the MSV, SVF, SVE, and CF specifications. And we
compare models with different numbers of factors.

We employ Bayes factors to compare models.18 In Bayesian analysis, Bayes
factors provide a unified way to compare the relative support that the data provide
for competing model specifications. Unlike classical test statistics, such as the
likelihood ratio statistic, Bayes factors can compare non-nested models. Bayes
factors also have the appealing property of implicitly penalizing models for addi-
tional parameters.19

The Bayes factor comparing model Mi to model Mj is defined as

BFij =
m(y|Mi)
m(y|Mj)

,(12)

where m(y|Mi) is the marginal likelihood of the data (y) given Mi. The marginal
likelihood is obtained by integrating the likelihood function with respect to the
prior density of the parameters. Since Bayes factors are constructed from marginal
likelihoods, they compare the relative abilities of competing models to explain the
distribution of asset returns. The computation of marginal likelihoods is discussed
in more detail in Appendix B.

In our empirical work, we report log Bayes factors (log10(BFij)). Note that
log10(BFij) = log10(m(y|Mi)) − log10(m(y|Mj)). Following Kass and Raftery
(1995), we evaluate the significance of a Bayes factor using a base 10 logarithmic
scale:

log10(BFij ) BFij Evidence against Mj

0 to 1/2 1 to 3.16 Not worth more than a bare mention
1/2 to 1 3.16 to 10 Substantial

1 to 2 10 to 100 Strong
> 2 > 100 Decisive

Bayes factors are closely related to posterior-odds ratios. The posterior-odds
ratio comparing Mi to Mj is defined

Kij =
π(Mi)
π(Mj)

· m(y|Mi)
m(y|Mj)

,

where π(Mi) is the prior probability on Mi, and π(Mi)/π(Mj) is the prior-
odds ratio. When the prior-odds ratio is 1:1 (i.e., equal prior probabilities), the
Bayes factor is equivalent to the posterior-odds ratio. In our empirical work, we
interpret Bayes factors under the assumption that all models are equally likely a

18See Kass and Raftery (1995) for an excellent review of Bayes factors.
19See O’Hagan (1994) for a discussion.
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priori. This is, by far, the most common approach (e.g., Shanken (1987), Har-
vey and Zhou (1990), Connolly (1991), and Avramov and Chao (2006)).20 If
the reader has different prior odds for a particular pair of models, it is simple to
compute the corresponding posterior odds for a given Bayes factor. McCulloch
and Rossi (1991) employ posterior-odds ratios to test APT pricing restrictions
between nested models.

Bayes factors are also closely related to posterior probabilities on models.
Say we want to compare L models simultaneously, and let π(Ml) denote the
prior probability of Ml. The posterior probability for Mi is

π(Mi|y) =
π(Mi)m(y|Mi)∑L
l=1 π(Ml)m(y|Ml)

.(13)

For example, imagine that we are comparing two models, Mi and Mj, with
equal prior probabilities (i.e., π(Mi) = π(Mj) = 0.5). If log10(BFij) = 2, then
π(Mi|y)=100/101 ≈ 0.99. Posterior probabilities are a convenient way to sum-
marize model comparison results when the number of models is greater than two.
Avramov and Chao (2006) use posterior probabilities in this manner.

It is well known that Bayes factors may be sensitive to the choice of priors
on parameters (see, for example, Klein and Brown (1984), McCulloch and Rossi
(1991), and Kass and Raftery (1995)). This sensitivity is a potential problem even
if samples are large and priors are uninformative. In the case of improper diffuse
priors (i.e., an extreme form of uninformative priors), Bayes factors are actually
undefined. We avoid this issue by employing only proper priors. Ideally, priors
should be “neutral” in the sense that they do not unduly bias the Bayes factor
in favor of a particular model or class of models.21 However, since non-nested
models may have very different parameters, it is virtually impossible to specify
“neutral” priors. We address the issue by carefully checking the sensitivity of
Bayes factors to prior specification. We perform two types of sensitivity analysis.
First, we replace the uninformed base priors with priors “informed” by analysis of
pre-sample data (i.e., training samples). We employ training samples of different
lengths to vary the informativeness of the priors. Second, we analyze the effects
of perturbing the uninformative priors by parameter type. We reports the results
of this sensitivity analysis in Section V.

IV. Data

A. Size Decile Portfolio Returns

We examine monthly excess returns for 10 NYSE/AMEX/NASDAQ mar-
ket capitalization decile portfolios for the sample period 1952:1 to 2003:12 (624
months). All returns are simple returns in excess of the one-month U.S. Trea-
sury bill yield. All data are provided by the Center for Research in Security

20Klein and Brown (1984) explicitly choose prior model probabilities that minimize appropriate
measures of prior information. The paper derives conditions on the prior precision matrices under
which equating prior probabilities leads to well-behaved posterior odds. Unfortunately, the Klein-
Brown framework cannot reasonably be extended to the classes of models (i.e., multivariate, latent
factor, stochastic volatility) considered in the present study.

21Kass and Raftery (1995) make a similar point.
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Prices (CRSP) at the University of Chicago. Many previous tests of the APT
(e.g., Connor and Korajczyk (1988), McCulloch and Rossi (1991), Ferson and
Korajczyk (1995), and Geweke and Zhou (1996)) have employed market capital-
ization decile portfolios as test assets. Extracting latent factors from size-sorted
portfolio returns is further motivated by Moskowitz (2003), who finds that “a size
factor has significant explanatory power for contemporaneous and future return
second moments” (p. 419).22

The descriptive statistics for portfolio excess returns reported in Table 1 ex-
hibit some well-known patterns. There is a strong inverse relation between mean
excess returns and market capitalization. Mean excess returns range from 53.3 ba-
sis points (bp) per month for the largest size decile portfolio (Cap10) to 1.321%
per month for the smallest size decile portfolio (Cap1). The relation between
standard deviation and size mirrors the inverse relation found for the means. Stan-
dard deviations range from 4.241% per month for Cap10 to 7.480% per month
for Cap1. Principal components analysis of the sample correlation matrix sug-
gests that one or two factors appear to be driving the covariance matrix of port-
folio returns. The first five eigenvalues of the sample correlation matrix are 8.91,
0.80, 0.14, 0.04, and 0.03. These five eigenvalues explain (cumulatively) 89.1%,
97.1%, 98.6%, 99.0%, and 99.3% of the common variation in portfolio excess
returns.

TABLE 1

Descriptive Statistics for Portfolio Return Data

Table 1 reports descriptive statistics for monthly excess returns for 10 NYSE/AMEX/NASDAQ market capitalization (Cap)
decile portfolios for the period 1952:1 to 2003:12 (624 monthly observations). All returns are simple returns (in percent) in
excess of the one-month Treasury bill yield.

Mean Std. Excess
Portfolio (%) Dev. Skewness Kurtosis

Cap1 1.321 7.480 1.241 7.224
Cap2 1.016 6.505 0.423 3.786
Cap3 0.845 6.154 0.072 3.628
Cap4 0.821 5.915 0.056 3.893
Cap5 0.760 5.748 −0.260 3.607
Cap6 0.751 5.642 −0.304 3.065
Cap7 0.715 5.476 −0.468 3.309
Cap8 0.705 5.176 −0.559 3.018
Cap9 0.681 4.878 −0.563 3.028
Cap10 0.533 4.241 −0.390 1.694

B. Instrumental Variables for Models with Time-Varying Expected
Returns

Our choice of instrumental variables for time-varying expected returns is mo-
tivated by previous empirical studies of conditional asset pricing models.23 We

22Moskowitz (2003) also reports that the market portfolio is the most important factor for explain-
ing the covariance matrix of returns. The explanatory power of book-to-market and momentum factors
is weak and negligible, respectively.

23Examples of this literature include Campbell (1987), Harvey (1989), Shanken (1990), Ferson and
Harvey (1991), Ferson and Korajczyk (1995), Kirby (1998), and Avramov (2004). Avramov (2002)
reviews and compares the forecasting power of many instrumental variables.
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employ five variables: a term structure yield spread, a default risk yield spread,
a short-term interest rate, the dividend yield on a broad equity index, and a Jan-
uary dummy variable.24 Term is the difference between the yields of 10-year
and one-year U.S. Treasury bonds. The yields are from the fixed term indices
of the CRSP Monthly U.S. Treasury Database. Qual is the difference between
the yields of BAA- and AAA-rated commercial debt. The data are provided by
Moody’s Investor Service and were obtained from the Federal Reserve Bank of
St. Louis. Bill is the yield on the U.S. Treasury bill with approximately one month
to maturity. Div Yld is the dividend yield on the CRSP value-weighted index of
NYSE/AMEX/NASDAQ stocks. Following Fama and French (1988), the div-
idend yield is the sum of the dividends paid on the index in the previous year
divided by the level of the index. All yields and spreads are annualized. All
instrumental variables are known at the beginning of the period in which asset
returns are measured.

V. Model Comparisons: Models with Constant Expected
Returns

We estimate a total of 40 models with constant expected returns: five choices
for K (i.e., one to five factors) for each of four volatility specifications (i.e., MSV,
SVF, SVE, and CF), with and without imposing cross-sectional restrictions sug-
gested by the equilibrium APT. We employ Bayes factors to compare models.
Table 2 reports Bayes factors (log10(BFij)) comparing each model to a reference
model: the three-factor MSV model constrained by the APT pricing restriction
(MSV3f). The Bayes factor for a given cell compares the model for the corre-
sponding row (Mi) to the reference model (Mj). For example, the Bayes factor
comparing the unconstrained three-factor MSV model (i.e., MSV3f*) to the APT-
constrained three-factor MSV model (i.e., MSV3f) is −26.45. This indicates that
the constrained model is decisively favored over the unconstrained model. Recall
that log10(BFij)=log10(m(y|Mi))−log10(m(y|Mj)). It follows that Bayes factors
comparing any other two models can be easily computed from those provided in
Table 2.25 Models with time-varying expected returns are considered in Section
VII.

We find strong evidence of stochastic volatility in both factors and residu-
als. For a given number of factors, the data decisively favor models with MSV
volatility specifications over other volatility specifications. MSV models have the
highest marginal likelihoods, followed, in order, by SVF, SVE, and CF specifi-
cations. The dominance of SVF models over SVE models suggests that SV is a
more important feature for factor shocks than for residual shocks. We conclude
that intertemporal variation in the covariance matrix of returns is driven by het-
eroskedasticity in both factor shocks and idiosyncratic shocks.

24Studies that report the forecasting power of these variables include Campbell (1987) for the term
structure yield spread; Fama and French (1989) for the default yield spread; Fama and Schwert (1977)
and Ferson (1989) for short-term interest rates; Shiller (1984) and Fama and French (1988) for the
dividend yield; and Keim (1983) for the January dummy.

25The Bayes factor comparing any other pair of models is simply the difference in Bayes fac-
tors from that column. For example, the Bayes factor comparing MSV3f* to CF3f* is −26.45 −
(−138.85) = 112.40.
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TABLE 2

Model Comparisons: Models with Constant Expected Returns

Table 2 presents Bayes factors (log10(BFij )) comparing models with constant expected returns for the period 1952:1 to
2003:12. Priors on parameters are uninformative. Each cell compares the model identified with the row (Mi ) to the model
identified with the column (Mj ). The model nomenclature indicates the stochastic volatility specification (MSV, SVF, SVE,
or CF), the number of factors, and whether the model is constrained or unconstrained (*) by APT pricing restrictions. We
interpret Bayes factors using the scale in Kass and Raftery (1995).

Mj Mj
Mi MSV3f Mi MSV3f

MSV1f −700.41 MSV1f* −711.51
MSV2f −46.36 MSV2f* −64.97
MSV3f 0.00 MSV3f* −26.45
MSV4f −9.15 MSV4f* −20.15
MSV5f −23.81 MSV5f* −28.17
SVF1f −1023.24 SVF1f* −1052.61
SVF2f −100.99 SVF2f* −118.21
SVF3f −53.46 SVF3f* −68.46
SVF4f −55.09 SVF4f* −58.22
SVF5f −55.98 SVF5f* −65.44
SVE1f −858.96 SVE1f* −863.46
SVE2f −102.92 SVE2f* −123.78
SVE3f −68.08 SVE3f* −80.98
SVE4f −72.19 SVE4f* −80.47
SVE5f −68.98 SVE5f* −71.79
CF1f −1037.79 CF1f* −1054.03
CF2f −186.62 CF2f* −199.25
CF3f −118.87 CF3f* −138.85
CF4f −119.05 CF4f* −137.96
CF5f −120.57 CF5f* −136.18

We find that the APT-constrained three-factor MSV model (i.e., MSV3f)
provides the best fit of the data. Of the 40 models with constant expected returns
compared in Table 2, the three-factor MSV model with APT pricing restrictions
(MSV3f) has the highest marginal likelihood. This is evident since all of the
Bayes factors in Table 2 are negative. If we assign equal prior probabilities to
each of the 40 models compared in Table 2, the posterior probability of model
MSV3f is 1.00.

For a given stochastic volatility specification, models with three or four fac-
tors are strongly favored over models with one, two, or five factors. Models with
three factors are decisively favored among constrained MSV and SVE specifica-
tions. For unconstrained MSV and SVF specifications, models with four factors
are decisively favored. For the remaining volatility specifications, the data favor
three- and four-factor models, but does not strongly distinguish between them.

Our test of the APT is based on Bayes factors comparing unconstrained mod-
els (μ unrestricted) to models constrained by the APT pricing restriction (μ=Bγ).
Without exception, APT-constrained models are decisively favored over uncon-
strained models holding the number of factors and the stochastic volatility spec-
ification constant. This suggests that the pricing restrictions implied by the APT
are supported by the data.

A. Sensitivity of Model Comparisons to Prior Specification

Given a large enough sample, posterior densities are relatively insensitive to
the specification of priors. In such cases, Bayesian estimation of parameters is
rather robust to prior specification. In contrast, model comparisons using Bayes
factors (or marginal likelihoods) may be sensitive to prior specification even when
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the sample evidence is very strong (see, for example, O’Hagan (Ch. 8, (1994)),
Kass and Raftery (1995)). In order to evaluate the robustness of the model com-
parison results reported in Table 2, we must analyze the sensitivity of marginal
likelihood computations to the specification of priors. We employ two types of
sensitivity analysis.

Our first approach is to replace the uninformative base priors with priors “in-
formed” by the results from a training sample. We employ pre-sample data to con-
struct training samples. Specifically, we use excess returns on 10 CRSP NYSE
size decile portfolios for 1927:1 to 1951:12. We examine sensitivity to train-
ing sample size by constructing five training samples ranging from 300 months
(1927:1–1951:12) to 60 months (1947:1–1951:12). Longer training samples pro-
vide more informative (i.e., more precise) priors. For a given training sample,
we estimate each of the 40 models using uninformative priors. For each model,
the posterior densities obtained from the training sample are used as a guide for
specifying the informed priors for the 1952:1–2003:12 “estimation” sample.26

The model comparison results are very robust to alternative prior specifica-
tions based on training samples. Table 3 summarizes the results of sensitivity
analysis to alternative priors. We consider six prior specifications: the unin-
formed base prior and five “informed” priors based on training samples of dif-
ferent length. For each prior, models are assigned a ranking (i.e., 1 through 40)
and a posterior probability. Like the Bayes factors reported in Table 2, these
model comparisons are based on estimated marginal likelihoods. Regardless of
prior specification, the APT-constrained three-factor MSV model is strongly fa-
vored by the data. Model MSV3f is ranked first for every prior, and assigned a
posterior probability of 1.00 for four of the six priors. It is clear from Table 3 that
one-factor models and homoskedastic (i.e., CF) models are decisively rejected by
the data. MSV models are strongly favored over SVF and SVE specifications, and
APT-constrained models are generally favored over unconstrained models. All of
these conclusions are relatively insensitive to prior specification.

Our second approach analyzes the effect of prior perturbations on model
comparison results. Our base priors are very diffuse, so we focus on the effects
of making priors more precise. Since the number of potential prior perturbations
is infinite, we confine ourselves to analyzing alternative priors that are economi-
cally interesting. The most interesting cases are alternative priors that are biased
against our empirical findings. We are interested in how precise these alternative
priors would have to be in order to alter our conclusions. We reestimate and com-
pare models with more precise (i.e., informed) priors that are intentionally biased
against our empirical findings. We consider three experiments along these lines.
The results are summarized below.27

26The means and standard deviations of the training sample posterior densities are used to cali-
brate the location and precision hyperparameters for the corresponding prior densities. Given possible
structural differences between the training and estimation samples (e.g., there was no Great Depres-
sion in the 1952–2003 sample), we do not want the informed priors to be overly precise. Accordingly,
we select precision hyperparameters such that the informed priors are less precise (i.e., standard devi-
ations roughly doubled) than would be suggested by strict interpretation of the training sample. The
resulting informed priors are still much more precise than their uninformed counterparts.

27More detailed analysis is available from the authors.
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TABLE 3

Sensitivity of Model Comparisons to Prior Specification

Table 3 presents model rankings and posterior probabilities for 40 models with constant expected returns or risk premia.
The data are size decile portfolios for the period 1952:1 to 2003:12. Priors are uninformative or informed by a training
sample. The model nomenclature indicates the stochastic volatility specification (MSV, SVF, SVE, or CF), the number of
factors, and whether the model is constrained or unconstrained (*) by APT pricing restrictions.

Training Sample Priors
Base
Priors 47–51 42–51 37–51 32–51 27–51

Model Rank Prob. Rank Prob. Rank Prob. Rank Prob. Rank Prob. Rank Prob.

MSV1f 33 33 33 35 34 33
MSV2f 7 5 7 8 10 13
MSV3f 1 1.00 1 1.00 1 1.00 1 0.62 1 0.95 1 1.00
MSV4f 2 3 4 3 0.10 2 0.05 2
MSV5f 4 6 3 4 5 5
SVF1f 37 37 37 38 38 38
SVF2f 21 24 29 23 23 24
SVF3f 8 17 20 11 8 19
SVF4f 9 15 18 15 18 20
SVF5f 10 16 15 17 16 16
SVE1f 35 35 35 34 35 35
SVE2f 22 21 19 18 21 15
SVE3f 14 9 8 10 7 9
SVE4f 18 10 9 9 13 8
SVE5f 16 11 10 12 11 12
CF1f 38 39 39 39 40 39
CF2f 31 32 30 31 32 31
CF3f 24 27 24 27 29 29
CF4f 25 23 22 26 25 27
CF5f 26 26 25 25 26 25
MSV1f* 34 34 34 33 33 34
MSV2f* 12 8 14 7 9 7
MSV3f* 5 2 2 2 0.28 6 3
MSV4f* 3 4 5 5 3 4
MSV5f* 6 7 6 6 4 6
SVF1f* 39 38 38 37 37 37
SVF2f* 23 25 28 24 24 23
SVF3f* 15 18 21 19 20 22
SVF4f* 11 19 17 16 19 21
SVF5f* 13 20 16 21 17 17
SVE1f* 36 36 36 36 36 36
SVE2f* 27 22 23 22 22 18
SVE3f* 20 14 11 20 14 11
SVE4f* 19 12 12 13 12 10
SVE5f* 17 13 13 14 15 14
CF1f* 40 40 40 40 39 40
CF2f* 32 31 31 32 31 32
CF3f* 30 28 26 28 30 30
CF4f* 29 29 27 29 27 28
CF5f* 28 30 32 30 28 26

In the first experiment, we attempt to challenge the conclusion that APT-
constrained models are favored over unconstrained models. The experiment fo-
cuses on the priors for μi in the unconstrained model. For each size portfolio, we
set the hyperparameter μ0

i equal to the sample mean of the portfolio’s returns, and
set M0

i to the standard error of the sample mean. These priors would be reasonable
for a researcher who believes that average portfolio returns are unrelated to factor
loadings (i.e., α=/ Bγ). Note that we have not tightened the priors on γ in the cor-
responding constrained models. Tightening the prior on μi for the unconstrained
model while retaining the base prior for the constrained model strongly biases
the model comparison against the APT pricing restriction. Yet, even with these
biased priors, APT-constrained models are still favored over their unconstrained
counterparts in most cases. In particular, the constrained three-factor MSV model
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remains decisively favored over the unconstrained model with a Bayes factor of
3.93.

The second experiment challenges our conclusion that the data favor models
with three factors. This experiment focuses on the joint prior for γ and B. Recall
that our base prior for each of the free elements in B is very diffuse and centered
on zero. The base prior on γ, the factor risk premia, is also very diffuse and
centered on zero. Now, consider a researcher who is biased against models with
more than two factors. To accommodate this view, we entertain alternative priors
that are increasingly precise, but still centered on zero, for the loadings on f3, f4,
and f5. Furthermore, our alternative priors on the factor risk premia (γ3, γ4, and
γ5) are much tighter: centered on zero with a standard deviation of only 10 bp
per month. The alternative priors for loadings and risk premia on f1 and f2 are
identical to the base prior. We reestimate constrained MSV models with three,
four, and five factors, and compare these models to the previously estimated two-
factor MSV model. Even with relatively tight priors, the constrained three-factor
MSV model is decisively favored over the otherwise identical two-factor model.
Only when the priors on Bi3, Bi4, and Bi5 become dogmatic (i.e., prior standard
deviations of only 0.003) does the data favor the two-factor model over the three-
factor model. Torturing the data in this manner clearly is not reasonable. Overall,
our conclusion that the data favor the three-factor model is very robust to these
prior perturbations.

The third experiment challenges the conclusion that homoskedastic models
are strongly rejected by the data. For this experiment, we perturb the priors on
φj and σj in (6) to reflect the belief that the Vt and/or Dt matrices in (5) are time
invariant. If the volatility of a particular factor or idiosyncratic shock (e.g., fj)
is homoskedastic, then φj = 0 and σj = 0. Accordingly, we consider alternative
priors on φj and σj that are more precise and closer to zero. We do not perturb the
prior on κj, the steady-state log-variance. When φj → 0 and σj → 0, κj must be
free to fit the level of the log-variance. We reestimate 24 models: three volatility
specifications (MSV, SVF, and SVE), two-factor through five-factor, constrained
and unconstrained. These priors should bias model comparison results in favor of
the CF models estimated under the base priors. Of all of the models compared, the
constrained three-factor MSV model is decisively favored by the data for all but
the most biased prior. When priors on φj are made unreasonably tight around zero,
the data favor the constrained three-factor SVF model over the constrained three-
factor MSV model. Our conclusion that the data decisively favor MSV models
over SVF, SVE, and CF models appears to be very robust to prior perturbations.

Taken as a whole, this extensive battery of sensitivity checks indicates that
our model comparison results are very robust to changes in the priors.

VI. Empirical Results: Models with Constant Expected
Returns

Section V reported that the data strongly favor the APT-constrained three-
factor MSV model over all other competing models with constant expected re-
turns. Accordingly, this section is devoted to further analysis of that model. Sub-
section A discusses the estimated factor loadings and factor risk premia. In sub-
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section B, we discuss cross-sectional variation in portfolio expected returns for
the APT-constrained and unconstrained variants of the model. We also analyze
the time series of latent factor shocks. Subsection C discusses the nature of the
stochastic volatility processes for factor shocks and idiosyncratic shocks. In sub-
section D, we revisit the comparisons between models with constant expected
returns discussed in Section V and summarize the main empirical differences be-
tween model specifications.

A. Factor Loadings and Factor Risk Premia

Table 4 reports summary statistics describing the posterior densities of each
parameter in the γ (constant factor risk premia) vector and the B (factor loading)
matrix. The mean of the posterior density, which we refer to as the posterior es-
timate, is analogous to the point estimate in frequentist methods. We evaluate
the precision of posterior estimates in two ways. The standard deviation of the
MCMC draws from the posterior density much like the standard error of the es-
timate. The 5% and 95% quantile values are the endpoints of a 90% Bayesian
confidence interval.

TABLE 4

Factor Loadings and Factor Risk Premia

Table 4 reports summary statistics describing the Bayesian posterior densities of parameters for the three-factor MSV
model with constant factor risk premia and APT pricing restrictions (MSV3f). The data are monthly excess returns for 10
NYSE/AMEX/NASDAQ market capitalization (Cap) decile portfolios for the period 1952:1 to 2003:12 (624 monthly obser-
vations). Priors on the parameters are uninformative. The model was estimated using Markov chain Monte Carlo (MCMC)
techniques. The posterior mean, standard deviation, and 5th and 95th percentile critical values for each parameter are
based on 10,000 Gibbs sampler iterations from a suitably constructed Markov chain.

Factor Risk Factor Average
Premia (γj ) Return (γj + fj )

(% per month) (% per month)

Factor Mean Std. Dev. 5% 95% Mean Std. Dev. 5% 95%

f1 0.961 0.190 0.645 1.270 0.742 0.015 0.716 0.766
f2 0.178 0.080 0.047 0.310 0.125 0.037 0.065 0.187
f3 0.315 0.112 0.133 0.501 0.503 0.073 0.383 0.626

Loadings on f1 (Bi1) Loadings on f2 (Bi2) Loadings on f3 (Bi3)

Port. Mean Std. Dev. 5% 95% Mean Std. Dev. 5% 95% Mean Std. Dev. 5% 95%

Cap1 1.061 0.035 1.004 1.119 −1.077 0.107 −1.254 −0.902 1
Cap2 1.052 0.024 1.013 1.092 −0.765 0.075 −0.889 −0.642 0.652 0.032 0.600 0.705
Cap3 1.035 0.018 1.006 1.064 −0.576 0.056 −0.670 −0.486 0.415 0.026 0.371 0.458
Cap4 1.019 0.014 0.997 1.042 −0.404 0.041 −0.473 −0.337 0.232 0.023 0.194 0.271
Cap5 1.012 0.010 0.995 1.028 −0.217 0.032 −0.271 −0.165 0.095 0.020 0.062 0.128
Cap6 1 0 0
Cap7 0.961 0.010 0.945 0.977 0.224 0.026 0.182 0.267 −0.069 0.021 −0.104 −0.035
Cap8 0.907 0.012 0.887 0.927 0.459 0.028 0.414 0.506 −0.078 0.020 −0.112 −0.046
Cap9 0.833 0.016 0.807 0.859 0.718 0.033 0.664 0.774 −0.060 0.023 −0.098 −0.022
Cap10 0.635 0.025 0.594 0.676 1 0

Since factors are latent, we impose a hierarchical structural constraint on the
loading matrix B. Since the manner in which B is constrained affects parameter
estimates and their interpretation, it deserves further explanation. Rather than
imposing an arbitrary constraint, we are guided by the results of a preliminary
principal components analysis. This analysis indicated that the Cap6 portfolio
was the most highly correlated with the first static factor. Accordingly, we assign
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Cap6 a factor loading of one on f1 and factor loadings of zero on the remaining
factors. Following this approach, we assign unit factor loadings on f2 and f3 to
Cap10 and Cap1, respectively.

We loosely interpret f1 as a “stock market factor.” The relation between Bi1

and size is relatively flat for all but the largest decile portfolios. For the smallest
size portfolios (Cap1–Cap3), posterior estimates of the factor loadings (Bi1) are
slightly greater than one. For portfolios Cap4 and Cap5, posterior estimates of
Bi1 are not significantly different from one (i.e., one falls within the Bayesian
confidence interval). The factor loadings decrease monotonically with size for the
larger stock portfolios (Cap7–Cap10). It is noteworthy that the relation between
Bi1 and size bears little resemblance to the inverse monotonic relation between
size and average excess returns reported in Table 1.

Exposure to f1 is rewarded with a significant risk premium. The posterior
estimate of γ1 is 0.961 with a Bayesian confidence interval of [0.645, 1.270]. This
indicates that the stock market factor has a significant constant risk premium of
about 96 bp per month per unit of exposure. Table 4 also reports the posterior
density of γ1 + f 1 (where f 1 is the time-series average of f1 shocks), which we
interpret as the ex post average factor return. The posterior estimate of γ1 + f 1
is 0.742 with a Bayesian confidence interval of [0.716, 0.766]. The tighter con-
fidence interval indicates that γ1 + f 1 is estimated with higher precision than γ1

alone. Taken together, the posterior estimates of Bi1 and γ1 suggest that exposure
to f1 can explain the average level of expected returns for size decile portfolios.
However, they cannot fully explain cross-sectional variation in expected returns
of size decile portfolios.

We loosely interpret f2 as a “size factor” since the factor loadings decrease
monotonically with size. Posterior estimates of Bi2 are negative for Cap1–Cap5,
and positive for Cap7–Cap9. We find that the size factor earns a small, but
significant, constant risk premium. The posterior estimate of γ2 reported in Ta-
ble 4 is 0.178 or about 18 bp per month with a Bayesian confidence interval of
[0.047, 0.310]. These estimates of Bi2 and γ2 suggest slightly lower expected re-
turns for small size portfolios and slightly higher expected returns for large size
portfolios.

We assign a unit factor loading on f3 to Cap1, the smallest market capitaliza-
tion decile portfolio. Posterior estimates of Bi3 are positive and decrease mono-
tonically with size from Cap2–Cap5. Posterior estimates of Bi3 for Cap7–Cap9
are close to zero. Factor loadings for Cap6 and Cap10 are constrained to be zero.
We loosely interpret f3 as a “small stock factor” that is distinct from f2 (the size
factor). Exposure to f3 also earns a significant constant risk premium. The poste-
rior estimate of γ3 is 0.315 (about 32 bp per month) with a Bayesian confidence
interval of [0.133, 0.501]. Higher factor loadings on f3 contribute substantially to
explaining the higher volatility and expected returns of small stock portfolios.

B. Analysis of Ex Post Average Portfolio Returns

In the models we estimate, ex post average excess returns can be decom-
posed into a constant expected return component (Biγ for the constrained model,
μi for the unconstrained model), an average factor shock component (Bif ), and
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an average idiosyncratic shock component (εi). Unlike frequentist methods, the
Bayesian estimation methodology does not constrain average factor shocks (f ) to
be zero. Rather, the latent factor shocks are sampled conditional on the data, the
latent stochastic volatilities, and the other parameters of the model.

How well does model MSV3f fit the cross section of average returns? Panel A
of Table 5 reports summary statistics describing the posterior densities of Biγ,
Bif , and Bi(γ + f ) for the APT-constrained three-factor MSV model. Posterior
estimates of Bi(γ + f ), the average return on portfolio i implied by the constrained
model, range from 59.5 bp per month for Cap10 to 115.7 bp per month for Cap1.
Posterior estimates of Bi(γ + f ) match the mean excess returns reported in Table 1
very closely. We conclude that the APT-constrained three-factor MSV model per-
forms adequately in explaining the cross section of average excess returns for size
decile portfolios.

TABLE 5

Decomposition of Ex Post Average Portfolio Returns

Table 5 reports summary statistics describing the Bayesian posterior densities of the risk premia and average factor shock
components for both the APT-constrained and unconstrained variants of the three-factor MSV model with constant risk
premia. Returns are expressed in percent per month. The data are monthly excess returns for 10 NYSE/AMEX/NASDAQ
market capitalization (Cap) decile portfolios for the period 1952:1 to 2003:12 (624 monthly observations). Priors on the
parameters are uninformative. The model was estimated using Markov chain Monte Carlo (MCMC) techniques. The
posterior mean, standard deviation, and 5th and 95th percentile critical values for each parameter are based on 10,000
Gibbs sampler iterations from a suitably constructed Markov chain.

Panel A. Constrained Three-Factor MSV Model

Posterior Density Posterior Density Posterior Density
of Bi γ of Bi f of Bi (γ + f)

Port. Mean Std. Dev. 5% 95% Mean Std. Dev. 5% 95% Mean Std. Dev. 5% 95%

Cap1 1.145 0.235 0.757 1.531 0.013 0.233 −0.371 0.394 1.157 0.042 1.087 1.228
Cap2 1.081 0.215 0.726 1.436 −0.068 0.214 −0.422 0.285 1.013 0.023 0.975 1.051
Cap3 1.023 0.204 0.685 1.357 −0.119 0.203 −0.454 0.219 0.904 0.018 0.875 0.934
Cap4 0.981 0.196 0.654 1.303 −0.159 0.196 −0.482 0.168 0.823 0.016 0.796 0.850
Cap5 0.964 0.192 0.644 1.278 −0.192 0.192 −0.506 0.127 0.771 0.016 0.745 0.797
Cap6 0.961 0.190 0.645 1.270 −0.219 0.189 −0.528 0.096 0.742 0.015 0.716 0.766
Cap7 0.942 0.183 0.636 1.238 −0.236 0.183 −0.533 0.069 0.706 0.015 0.682 0.730
Cap8 0.929 0.175 0.637 1.212 −0.238 0.175 −0.522 0.053 0.691 0.013 0.668 0.713
Cap9 0.909 0.167 0.631 1.177 −0.232 0.166 −0.501 0.045 0.677 0.016 0.650 0.703
Cap10 0.788 0.144 0.549 1.024 −0.192 0.141 −0.424 0.043 0.595 0.030 0.546 0.646

Posterior Density Posterior Density Posterior Density
of μi of Bi f of μi + Bi f

Port. Mean Std. Dev. 5% 95% Mean Std. Dev. 5% 95% Mean Std. Dev. 5% 95%

Cap1 1.250 0.242 0.852 1.641 0.014 0.237 −0.366 0.411 1.265 0.058 1.168 1.359
Cap2 1.074 0.220 0.709 1.432 −0.060 0.218 −0.413 0.305 1.014 0.033 0.960 1.067
Cap3 0.942 0.209 0.594 1.285 −0.108 0.207 −0.447 0.239 0.834 0.032 0.782 0.885
Cap4 0.970 0.201 0.638 1.304 −0.146 0.199 −0.477 0.185 0.824 0.030 0.774 0.873
Cap5 0.941 0.196 0.617 1.270 −0.178 0.194 −0.501 0.142 0.762 0.028 0.716 0.808
Cap6 0.952 0.192 0.640 1.273 −0.204 0.190 −0.522 0.106 0.748 0.025 0.707 0.790
Cap7 0.935 0.184 0.637 1.242 −0.219 0.183 −0.523 0.075 0.716 0.025 0.674 0.757
Cap8 0.928 0.176 0.645 1.224 −0.221 0.174 −0.515 0.058 0.707 0.023 0.668 0.745
Cap9 0.896 0.166 0.629 1.176 −0.215 0.164 −0.493 0.051 0.681 0.019 0.648 0.713
Cap10 0.682 0.148 0.442 0.930 −0.177 0.139 −0.413 0.051 0.505 0.055 0.415 0.594

Panel B. Unconstrained Three-Factor MSV Model

Recall that the Bayes factors reported in Table 2 indicate that the data deci-
sively favor APT-constrainedmodels over otherwise identical unconstrainedmod-
els. For completeness, Panel B of Table 5 reports summary statistics describing
the posterior densities of μi, Bif , and μi + Bif for the unconstrained three-factor
MSV model (i.e., MSV3f*). Comparing Panels A and B of Table 5 provides
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some intuition to complement the model comparison results. The patterns ob-
served in Panels A and B are generally similar. The posterior estimates of μi for
the unconstrained model exhibit slightly more cross-sectional variation than their
constrained counterparts, Biγ, but less cross-sectional variation than the sample
means reported in Table 1. This is probably because the μi vector is free to fit
the cross section of average realized excess returns without having to simultane-
ously explain the covariance matrix of returns (i.e., the APT pricing restriction).
That the Bayes factor favors the constrained model indicates that the improved fit
provided by the μi vector over the Biγ vector is not worth the cost of seven fewer
degrees of freedom.

Figure 1 plots the time series of cumulative factor returns (i.e., γj + fj) for f1,
f2, and f3. Figure 2 plots the time series of cumulative factor shocks (i.e., fj alone)
and is essentially equivalent to Figure 1 with the cumulative factor risk premia
removed. Each point represents the mean of 10,000 MCMC sample draws. Sev-
eral features of these plots are remarkable. First, the cumulative factor shocks
for f1 are negative for much of the sample period. Cumulative shocks for f1 are
relatively flat (i.e., close to zero) prior to 1968, drop sharply during 1969–1973,
and trend slightly downward for the last 20 years of the sample. This pattern
might indicate the existence of regimes with different risk premiums. Recall from
Table 4 that posterior estimates of γ1 + f 1 are about 20 bp per month lower than
posterior estimates of γ1 alone. This is consistent with the plot of cumulative
factor shocks for f1 in Figure 2. The behavior of the two size-related factors ( f2
and f3) is also interesting. Recall that the smaller size decile portfolios have neg-
ative factor loadings on f2 and that the larger size decile portfolios have positive
factor loadings on f2. The size factor ( f2) experiences a substantial decline from
the mid-1960s to the early 1980s. This is consistent with the size effect first doc-
umented by Banz (1981) and Reinganum (1981). The size factor rebounded in
the late 1980s and has been relatively flat since then. This corresponds with the
apparent end of the size effect documented by Schwert (2002). The small stock
factor ( f3) experienced substantial cumulative gains in the late 1960s and again in
the 1990s.

C. Factor and Idiosyncratic Stochastic Volatility Processes

Table 6 reports summary statistics describing the posterior densities of the
stochastic volatility parameters for the APT-constrained three-factor MSV model
with constant factor risk premia. For each of the factor and idiosyncratic volatility
processes, we report on each of the three parameters in equation (6). κj, the inter-
cept of the log-variance equation, is difficult to interpret. Instead, we report the
density of exp(κj/2) (in percent per month), which can be interpreted as a steady-
state standard deviation. φj is the persistence parameter and σj is the volatility of
the log-variance. The most volatile factor is f1, for which the posterior estimate
of exp(κj/2) is 4.78% per month. Given the factor loadings on f1, it is apparent
that the stock market factor accounts for most of the variance in portfolio ex-
cess returns. Posterior estimates of exp(κj/2) are 1.84% and 2.09% per month,
respectively, for f2 and f3. Idiosyncratic volatilities are small relative to factor
volatilities. The posterior estimates of exp(κj/2) are less than 1% per month for
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FIGURE 1

Cumulative Factor Returns

Time-series plots of cumulative returns (γj + fj ) for factors 1, 2, and 3 from the APT-constrained three-factor MSV model
with constant factor risk premia. Each point is the mean of 10,000 MCMC draws. Note the log scale for the y-axis.
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FIGURE 2

Cumulative Factor Shocks

Time-series plots of cumulative shocks (fj only) for factors 1, 2, and 3 from the APT-constrained three-factor MSV model
with constant factor risk premia. Each point is the mean of 10,000 MCMC draws. Note the log scale for the y-axis.
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eight of the 10 size decile portfolios. We conclude that idiosyncratic volatilities
contribute relatively little to total return volatility in a three-factor linear factor
model. Posterior estimates of the persistence parameters, φj, are greater than 0.9
for the latent factor volatilities, and greater than 0.79 for the idiosyncratic shock
volatilities. The small stock factor is the most likely to experience large volatility
shocks. The posterior estimate of σj for f3 is 0.499 with a confidence interval of
[0.244, 0.789]. Similarly, the posterior estimate of σj for the smallest size decile
portfolio (Cap1) is much larger than the posterior estimates of σj for the other size
decile portfolios.

TABLE 6

Stochastic Volatility Processes

Table 6 reports summary statistics describing the Bayesian posterior densities of parameters for the stochastic volatility
processes (equation (6)) for the APT-constrained three-factor MSV model with constant factor risk premia (MSV3f). The
data are monthly excess returns for 10 NYSE-AMEX-NASDAQ market capitalization (Cap) decile portfolios for the period
1952:1 to 2003:12 (624 monthly observations). Priors on the parameters are uninformative. The model was estimated
using Markov chain Monte Carlo (MCMC) techniques. The posterior mean, standard deviation, and 5th and 95th percentile
critical values for each parameter are based on 10,000 Gibbs sampler iterations from a suitably constructed Markov chain.

exp(κj /2) (% per month) φj σj
Factor/
Port. Mean Std. Dev. 5% 95% Mean Std. Dev. 5% 95% Mean Std. Dev. 5% 95%

f1 4.778 0.461 4.069 5.554 0.916 0.035 0.852 0.964 0.319 0.068 0.217 0.437
f2 1.837 0.245 1.472 2.264 0.959 0.022 0.918 0.987 0.206 0.057 0.126 0.309
f3 2.086 0.346 1.602 2.627 0.902 0.057 0.794 0.977 0.499 0.167 0.244 0.789
Cap1 1.336 0.154 1.091 1.599 0.875 0.048 0.788 0.943 0.541 0.114 0.362 0.735
Cap2 0.793 0.052 0.714 0.884 0.829 0.117 0.603 0.970 0.149 0.077 0.059 0.300
Cap3 0.794 0.063 0.698 0.901 0.937 0.039 0.865 0.982 0.177 0.060 0.096 0.288
Cap4 0.749 0.066 0.651 0.857 0.933 0.032 0.874 0.976 0.209 0.052 0.135 0.303
Cap5 0.689 0.028 0.642 0.735 0.794 0.114 0.576 0.936 0.119 0.052 0.053 0.218
Cap6 0.619 0.041 0.555 0.684 0.889 0.063 0.769 0.964 0.224 0.079 0.115 0.371
Cap7 0.641 0.102 0.493 0.813 0.977 0.015 0.950 0.993 0.133 0.036 0.085 0.198
Cap8 0.570 0.058 0.480 0.665 0.953 0.026 0.905 0.986 0.168 0.048 0.101 0.253
Cap9 0.475 0.039 0.419 0.534 0.868 0.109 0.654 0.983 0.115 0.047 0.054 0.204
Cap10 1.360 0.185 1.084 1.673 0.957 0.023 0.913 0.986 0.231 0.061 0.145 0.344

Figure 3 plots the time series of stochastic volatilities for f1, f2, and f3. All
three of these plots display clear evidence of volatility clustering and persistence.
This is consistent with the posterior estimates of φj and σj reported in Table 6. In
particular, the stochastic volatility plot for f3 shows that the small stock factor is
more prone to large volatility shocks (i.e., higher σj) and is less persistent (i.e.,
lower φj) than f1 or f2. With the exception of Cap1, plots of stochastic volatilities
for the idiosyncratic shocks are relatively flat and unremarkable.28 This is consis-
tent with high persistence and the relatively low posterior estimates of σj for Cap2
through Cap10. High volatility for f1 is associated with several episodes in the
1970s, the period surrounding the Federal Reserve regime change in 1979, the Oc-
tober 1987 stock market crash, and the Internet/technology “bubble.” The highest
volatilities for f2 and f3 both coincide with the collapse of the Internet/technology
bubble in 2000.

D. Model Comparisons Revisited

We have spent much of this section describing empirical results for the APT-
constrained three-factor MSV model since that specification is strongly favored

28We omit these plots to conserve space.
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FIGURE 3

Factor Stochastic Volatilities

Time-series plots of stochastic volatilities (in percent per month) for factors 1, 2, and 3 from the APT-constrained three-
factor MSV model with constant factor risk premia. Each point is the mean of 10,000 MCMC draws.
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by the Bayes factors reported in Table 2. Although detailed analysis of empirical
results for 40 different specifications is not practical, it is possible to summarize,
in general terms, the major differences between classes of models. In doing so,
we hope to provide some intuition for the Bayesian model comparison results.

For a given stochastic volatility specification, additional factors improve the
fit of the covariance matrix by explaining common variation in portfolio excess
returns. As one would expect, idiosyncratic volatilities decline as the number
of factors increases. We find that cross-sectional variation in the loading on f1
(Bi1) across stock portfolios changes little when f2 is added. We also find that the
precision of the posterior estimates of Bi1 decreases somewhat as the number of
factors increases for MSV and SVF models. However, increasing the number of
factors does not appear to significantly change estimates of B, μ, γ, or patterns in
cumulative factor shocks.

Behavior of factor shocks is generally similar across models. MSV and SVF
models behave somewhat differently than SVE and CF models because their fac-
tor volatilities are stochastic rather than static. For example, the cumulative de-
clines in f1 during 1973–1974 are larger for MSV and SVF models (see Figures 1
and 2) since the volatility of f1 is very high during that period (see Figure 3). Dif-
ferences in average factor shocks across models are associated with compensating
differences in posterior estimates of μ or γ, the constant expected returns or fac-
tor risk premia. For example, the posterior estimate of γ1 (i.e., the constant risk
premia for factor f1) in the APT-constrained three-factor CF model is 74.7 bp per
month. The comparable posterior estimate of γ1 for the APT-constrained three-
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factor MSV model (reported in Table 4) is 96.1 bp per month. The difference is
associated with the magnitudes of the average factor shocks for these two models.

The Bayes factors reported in Table 2 indicate that, all else equal, models
constrained by APT pricing restrictions are favored over unconstrained models in
every case. However, we find few substantive differences in posterior estimates
of B, θ, or in factor shocks between otherwise identical models. It appears that
any gains from estimating the N-vector μ, rather than the K-vector γ, are insuf-
ficient to overcome the implicit penalty for additional parameters imposed in the
computation of the marginal likelihood.

VII. Empirical Results: Models with Time-Varying Expected
Returns

In this section, we consider models with time-varying expected returns. We
are interested in two questions: i) do models with time-varying expected returns
provide a better fit of the data than models with constant expected returns, and
ii) is return predictability related to exposures to latent factors?

Panel A of Table 7 addresses the first question. It reports additional Bayes
factors comparing models with time-varying expected returns to model MSV3f
(the reference model for Table 2) for the period 1952–2003. Comparisons are
based on marginal likelihoods computed under uninformative base priors. Given
the decisive evidence in favor of models with MSV, we consider only MSV spec-
ifications in this section. Since the reference model (MSV3f) is the same, Bayes
factors comparing any pair of models from Tables 2 or 7 are easy to compute.
In Table 7, an asterisk (*) denotes an unconstrained model, and a dagger (†) de-
notes a model with time-varying returns or risk premia. Among models with
time-varying expected returns, the model with the highest marginal likelihood is
the three-factor MSV model constrained by APT pricing restrictions (MSV3f†).
Furthermore, a Bayes factor of 8.82 indicates that the data decisively favor the
APT-constrained three-factor MSV model with time-varying factor risk premia
(MSV3f†) over the otherwise identical model with constant factor risk premia
(MSV3f). Similar results hold for one- and two-factor MSV models, but not for
four- and five-factor MSV models. However, unconstrained MSV models with
time-varying expected returns are not favored over otherwise identical models
with constant expected returns.29 We conclude that allowing for time-varying risk
premia improves the fit of APT-constrained models with up to three factors, but
does not improve the fit for more parameter-rich models (i.e., constrained models
with more than three factors or unconstrained models). It should also be noted
that the improvement in marginal likelihoods from allowing for time-varying ex-
pected returns is much less than the improvement in marginal likelihoods from
allowing for stochastic volatility or adding a second latent factor.

29To make these comparisons, one must examine the differences between the Bayes factors re-
ported in Tables 2 and 7. For example, the Bayes factor comparing an unconstrained model with
time-varying expected returns (e.g., MSV3f†*) to an otherwise identical unconstrained model with
constant expected returns (e.g., MSV3f*) is the difference between the Bayes factor reported in Ta-
ble 7 (−58.05) and the Bayes factor reported in Table 2 (−26.45). The resulting Bayes factor, −31.60,
indicates that the data decisively favor the model with constant expected returns.
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TABLE 7

Model Comparisons: Models with Time-Varying Expected Returns

Table 7 presents Bayes factors (log10(BFij )) comparing models with time-varying expected returns for 1952:1 to 2003:12.
Priors on parameters are uninformative. Each cell compares the model identified with the row (Mi ) to the model identified
with the column (Mj ). The model nomenclature indicates the stochastic volatility specification (MSV), the number of
factors, whether expected returns/risk premia are constant or time varying (†), and whether the model is constrained by
APT pricing restrictions or unconstrained (*). We interpret Bayes factors using the scale in Kass and Raftery (1995).

Panel A. Bayes Factors Comparing Models with Time-Varying Expected Returns to Models with Constant Expected
Returns

Mj Mj
Mi MSV3f Mi MSV3f

MSV1f† −659.43 MSV1f†* −785.08
MSV2f† −27.15 MSV2f†* −130.98
MSV3f† 8.82 MSV3f†* −58.05
MSV4f† −10.94 MSV4f†* −81.87
MSV5f† −22.89 MSV5f†* −76.69

Panel B. Bayes Factors Comparing Models Constrained by APT Pricing Restrictions to Unconstrained Models

Mj

Mi MSV1f†* MSV2f†* MSV3f†* MSV4f†* MSV5f†*

MSV1f† 125.65
MSV2f† 103.82
MSV3f† 66.87
MSV4f† 70.93
MSV5f† 53.80

The second question we address is whether return predictability is related
to exposures to latent factors. If return predictability is due to time-varying risk
premia, as suggested by proponents of market efficiency and rational expecta-
tions, then it should be proportional to exposures (i.e., factor loadings) to latent
factors. We investigate by comparing APT-constrained models with time-varying
risk premia to otherwise identical unconstrained models with time-varying ex-
pected returns. Bayes factors making these comparisons are reported in Panel B
of Table 7. In each case, the data decisively favor the APT-constrained model
over the otherwise identical (and less parsimonious) unconstrained model. These
results are similar in spirit to those reported in Ferson and Korajczyk (1995). We
conclude that return predictability is related to exposures to latent factors.

The model comparisons discussed in this section are very robust to changes
in prior specification. Table 8 summarizes the results of sensitivity analysis to
alternative priors. As in Table 3, we consider six alternative prior specifications:
the uninformed base prior and five informed priors based on training samples
of different length. For each prior, Table 8 reports the rankings (1 through 20)
and posterior probabilities for the 20 MSV models with and without time-varying
expected returns/risk premia. Regardless of prior, the constrained three-factor
model with time-varying risk premia (MSV3f†) is ranked first and assigned a
posterior probability of 1.00. It is interesting to note that the corresponding model
with constant risk premia (i.e., MSV3f, the top-ranked model in Tables 2 and 3),
is ranked second for four of the six priors in Table 8.

We also compare models under alternative priors biased against time-varying
risk premia. Under the base prior, the densities of the elements of the G matrix
are i.i.d. normal and centered on zero. Under the “biased” prior, we tighten the
distributions around zero for all elements of the G matrix except those in the first
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TABLE 8

Sensitivity of Model Comparisons to Prior Specification

Table 8 presents model rankings and posterior probabilities for 20 models with both constant and time-varying expected
returns/risk premia. The data are size decile portfolios for the period 1952:1 to 2003:12. Priors are uninformative or
informed by a training sample. The model nomenclature indicates the stochastic volatility specification (MSV), the number
of factors, and whether the model is constrained or unconstrained (*) by APT pricing restrictions, and whether expected
returns/risk premia are time varying (†).

Training Sample Priors
Base
Priors 47–51 42–51 37–51 32–51 27–51

Model Rank Prob. Rank Prob. Rank Prob. Rank Prob. Rank Prob. Rank Prob.

MSV1f 18 17 17 20 18 18
MSV2f 11 8 13 14 15 14
MSV3f 2 2 2 3 4 2
MSV4f 3 6 7 5 5 4
MSV5f 7 10 6 6 7 9
MSV1f* 19 19 19 19 17 19
MSV2f* 13 14 15 12 14 13
MSV3f* 8 4 5 4 8 5
MSV4f* 5 7 8 8 3 6
MSV5f* 10 13 12 9 6 11
MSV1f† 17 18 18 18 20 17
MSV2f† 9 9 11 15 13 15
MSV3f† 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00
MSV4f† 4 3 3 2 2 3
MSV5f† 6 5 4 7 9 7
MSV1f†* 20 20 20 17 19 20
MSV2f†* 16 16 16 16 16 16
MSV3f†* 12 11 9 10 10 10
MSV4f†* 15 12 10 11 11 8
MSV5f†* 14 15 14 13 12 12

column (i.e., the constants). We find that the priors must be extremely tight in
order for constant risk premia models to dominate models with time-varying risk
premia. Details are available from the authors.

All of the results reports thus far are based on the 1952–2003 estimation
sample. As an additional robustness check, we partition the full 1927–2003 sam-
ple into training and estimation samples at different breakpoints, and repeat the
analysis described above. Table 9 reports model rankings and posterior probabili-
ties for seven estimation samples: 1927–2003 (estimated under the base prior; no
training sample), 1932–2003, 1937–2003, 1942–2003, 1946–2003, 1952–2003
(the sample analyzed in Table 8), and 1963–2003. The training sample in each
case begins in 1927. Unlike the analysis reported in Tables 3 and 8, this analysis
checks the sensitivity of the model comparison results to simultaneous changes in
the prior and in the estimation sample. The conclusion that APT-constrained mod-
els are favored over unconstrained models is very robust. Three-factor models are
strongly favored in most periods. However, five-factor models are favored in the
1942–2003 sample and four-factor models are favored in the 1963–2003 sample.
Models with constant risk premia are favored over models with time-varying risk
premia in two estimation samples: 1937–2003 and 1963–2003. Since the model
comparisons reported in Table 8 for the 1952–2003 estimation sample are rela-
tively insensitive to changes in priors, it is likely that the changes in model com-
parisons reported in Table 9 are due to changes in the estimation sample rather
than changes in the priors.

Tables 10 and 11 report summary statistics describing the posterior densities
(estimated under the base priors for the 1952–2003 sample) of the factor loading
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TABLE 9

Sensitivity of Model Comparisons to Sample Selection and Prior Specification

Table 9 reports model rankings and posterior probabilities for 20 models with both constant and time-varying expected
returns/risk premia. The data are size decile portfolios for the period 1927:1 to 2003:12. Each column reports results
for a different partition of the data into a training sample and estimation sample. The model nomenclature indicates the
stochastic volatility specification (MSV), the number of factors, and whether the model is constrained or unconstrained (*)
by APT pricing restrictions, and whether expected returns/risk premia are time varying (†).

Training N/A 27–31 27–36 27–41 27–45 27–51 27–62
Estimation 27–03 32–03 37–03 42–03 46–03 52–03 63–03

Model Rank Prob. Rank Prob. Rank Prob. Rank Prob. Rank Prob. Rank Prob. Rank Prob.

MSV1f 18 18 18 19 18 18 17
MSV2f 10 13 9 11 14 14 15
MSV3f 4 4 1 1.00 5 2 0.01 2 5
MSV4f 5 5 3 6 5 4 1 1.00
MSV5f 6 7 10 2 0.04 6 9 6
MSV1f* 17 19 19 18 19 19 19
MSV2f* 16 15 16 16 15 13 14
MSV3f* 9 10 6 8 9 5 7
MSV4f* 11 9 11 10 8 6 4
MSV5f* 12 8 12 12 7 11 9
MSV1f† 19 17 17 17 17 17 18
MSV2f† 13 3 7 14 13 15 13
MSV3f† 1 0.73 1 1.00 2 3 1 0.99 1 1.00 3
MSV4f† 2 0.27 2 4 4 3 3 2
MSV5f† 3 6 5 1 0.96 4 7 8
MSV1f†* 20 20 20 20 20 20 20
MSV2f†* 15 12 8 15 16 16 16
MSV3f†* 14 11 15 7 10 10 11
MSV4f†* 7 14 14 9 12 8 10
MSV5f†* 8 16 13 13 11 12 12

matrix (B) and the stochastic volatility parameters (exp(κj/2), φj, and σj) for the
APT-constrained three-factor model with time-varying risk premia. The results
are remarkably similar to those reported in Tables 4 and 6 for the otherwise iden-
tical constant risk premia model. This indicates that allowing factor risk premia
to be time varying has very little effect on posterior estimates of the model’s pa-
rameters. Likewise, plots of cumulative factor returns and stochastic volatilities
for the time-varying risk premia model are almost indistinguishable from Fig-
ures 1 and 3.30 The unique feature of the time-varying risk premia model is the
coefficient matrix G. Table 12 reports summary statistics describing the poste-
rior densities of the G matrix. The risk premia for f1 (the stock market factor)
is positively related to the default risk yield spread and the January dummy, and
inversely related to the short-term interest rate. This is somewhat consistent with
the literature on predictability of stock index returns. γ2 is inversely related to the
January dummy. And γ3 is positively related to the default risk yield spread and
the January dummy, and inversely related to the short-term interest rate and the
dividend yield.

VIII. Conclusions

We analyze a new class of linear factor models in which the factors are latent
and the covariance matrix of returns follows an MSV process. Our interest in this
class of models is twofold. First, we are interested in determining which features
of the model provide the best fit of the data. We examine models with different

30We omit these redundant plots to conserve space.
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TABLE 10

Factor Loadings for a Model with Time-Varying Factor Risk Premia

Table 10 reports summary statistics describing the Bayesian posterior densities of factor loadings for the APT-constrained
three-factor MSV model with time-varying factor risk premia (MSV3f†). The data are monthly excess returns for 10
NYSE/AMEX/NASDAQ market capitalization (Cap) decile portfolios for the period 1952:1 to 2003:12 (624 monthly obser-
vations). Priors on the parameters are uninformative. The model was estimated using Markov chain Monte Carlo (MCMC)
techniques. The posterior mean, standard deviation, and 5th and 95th percentile critical values for each parameter are
based on 10,000 Gibbs sampler iterations from a suitably constructed Markov chain.

Loadings on f1 (Bi1) Loadings on f2 (Bi2) Loadings on f3 (Bi3)

Port. Mean Std. Dev. 5% 95% Mean Std. Dev. 5% 95% Mean Std. Dev. 5% 95%

Cap1 1.050 −1 1
Cap2 1.038 0.011 1.020 1.055 −0.718 0.032 −0.770 −0.665 0.637 0.028 0.592 0.684
Cap3 1.027 0.009 1.013 1.041 −0.545 0.028 −0.590 −0.499 0.404 0.024 0.366 0.443
Cap4 1.016 0.009 1.002 1.030 −0.389 0.026 −0.431 −0.347 0.223 0.021 0.188 0.257
Cap5 1.012 0.008 1.000 1.025 −0.212 0.025 −0.253 −0.171 0.085 0.018 0.056 0.113
Cap6 1 0 0
Cap7 0.968 0.007 0.956 0.980 0.222 0.023 0.184 0.261 −0.066 0.018 −0.096 −0.036
Cap8 0.915 0.008 0.903 0.928 0.459 0.024 0.421 0.499 −0.071 0.017 −0.099 −0.043
Cap9 0.843 0.008 0.830 0.856 0.731 0.027 0.688 0.777 −0.044 0.020 −0.076 −0.011
Cap10 0.650 1 0

TABLE 11

Stochastic Volatility Processes for a Model with Time-Varying Factor Risk Premia

Table 11 reports summary statistics describing the Bayesian posterior densities of parameters for the stochastic volatility
processes (equation (6)) for the APT-constrained three-factor MSV model with time-varying risk premia (MSV3f†). The data
are monthly excess returns for 10 NYSE/AMEX/NASDAQ market capitalization (Cap) decile portfolios for the period 1952:1
to 2003:12 (624 monthly observations). Priors on parameters are uninformative. The model was estimated using Markov
chain Monte Carlo (MCMC) techniques. The posterior mean, standard deviation, and 5th and 95th percentile critical
values for each parameter are based on 10,000 Gibbs sampler iterations from a suitably constructed Markov chain.

exp(κj /2) (% per month) φj σj
Factor/
Port. Mean Std. Dev. 5% 95% Mean Std. Dev. 5% 95% Mean Std. Dev. 5% 95%

f1 4.637 0.469 3.922 5.401 0.935 0.030 0.881 0.974 0.259 0.060 0.168 0.364
f2 1.702 0.268 1.301 2.152 0.968 0.018 0.935 0.990 0.187 0.051 0.115 0.278
f3 1.831 0.298 1.380 2.332 0.927 0.038 0.855 0.977 0.439 0.115 0.269 0.649
Cap1 1.303 0.159 1.057 1.571 0.890 0.045 0.807 0.953 0.507 0.108 0.343 0.695
Cap2 0.814 0.049 0.736 0.895 0.825 0.114 0.605 0.967 0.154 0.082 0.063 0.315
Cap3 0.794 0.064 0.695 0.898 0.932 0.043 0.847 0.981 0.183 0.063 0.100 0.300
Cap4 0.748 0.062 0.650 0.853 0.932 0.033 0.870 0.975 0.207 0.052 0.130 0.300
Cap5 0.689 0.028 0.645 0.736 0.797 0.108 0.591 0.933 0.117 0.050 0.053 0.212
Cap6 0.620 0.043 0.555 0.689 0.893 0.064 0.768 0.966 0.220 0.077 0.111 0.359
Cap7 0.643 0.100 0.498 0.814 0.977 0.015 0.948 0.993 0.136 0.038 0.085 0.208
Cap8 0.576 0.068 0.485 0.678 0.954 0.025 0.908 0.986 0.171 0.047 0.104 0.256
Cap9 0.467 0.042 0.412 0.525 0.869 0.107 0.655 0.984 0.114 0.048 0.054 0.207
Cap10 1.379 0.194 1.092 1.703 0.960 0.023 0.918 0.987 0.220 0.060 0.140 0.330

numbers of factors, models with different specifications for the time-varying co-
variance matrix of returns, and models with predictable returns. Second, we are
interested in whether pricing restrictions implied by the equilibrium APT are sup-
ported by the data. We compare unconstrained models to models constrained by
APT pricing restrictions. We also examine the implications of the APT regard-
ing return predictability. If predictable returns are due to time-varying factor risk
premia, then asset pricing theory suggests that predictability should be related to
exposures to systematic risk factors. We compare models with unconstrained re-
turn predictability to models in which predictability is proportional to loadings on
latent factors.
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TABLE 12

Time-Varying Factor Risk Premia

In the APT-constrained model with time-varying expected returns, factor risk premia are linear in predetermined instrumen-
tal variables, γt = Gzt−1. Table 12 reports summary statistics describing the Bayesian posterior densities of coefficients
from the G matrix for the APT-constrained three-factor MSV model with time-varying factor risk premia (MSV3f†). The data
are monthly excess returns for 10 NYSE/AMEX/NASDAQ market capitalization (Cap) decile portfolios for the period 1952:1
to 2003:12 (624 monthly observations). Priors on parameters are uninformative. The model was estimated using Markov
chain Monte Carlo (MCMC) techniques. The posterior mean, standard deviation, and 5th and 95th percentile critical
values for each parameter are based on 10,000 Gibbs sampler iterations from a suitably constructed Markov chain.

γ1 γ2 γ3

z Mean Std. Dev. 5% 95% Mean Std. Dev. 5% 95% Mean Std. Dev. 5% 95%

Constant 0.001 0.008 −0.013 0.014 −0.001 0.003 −0.006 0.004 0.012 0.005 0.004 0.019
Term 0.100 0.248 −0.306 0.507 0.017 0.103 −0.153 0.186 −0.113 0.155 −0.367 0.141
Qual 2.248 0.689 1.106 3.374 0.099 0.269 −0.344 0.541 0.969 0.353 0.385 1.549
Jan 0.028 0.007 0.017 0.039 −0.022 0.003 −0.026 −0.017 0.031 0.004 0.025 0.038
Bill −4.827 1.183 −6.754 −2.886 −0.121 0.481 −0.920 0.666 −1.486 0.648 −2.547 −0.416
Div Yld 0.127 0.195 −0.191 0.452 0.109 0.080 −0.021 0.239 −0.364 0.102 −0.530 −0.197

We examine 50 years of monthly excess returns for 10 NYSE/AMEX/
NASDAQ market capitalization decile portfolios. Recent advances in Bayesian
MCMC techniques make estimation/comparison of models with latent factors and
latent stochastic volatilities feasible. Using Bayes factors, we compare models
on a number of dimensions. We find that linear factor models with MSV fit the
data far better than models with homoskedastic factor and/or idiosyncratic shocks.
Models with three latent factors best explain the common variation in size portfo-
lio excess returns. Although exposure to the first latent factor explains the average
level of portfolio expected returns, exposures to the second and third latent fac-
tors contribute substantially to explaining the cross section of portfolio expected
returns. In every case we examine, the data strongly favor models constrained
by APT pricing restrictions over otherwise identical unconstrained models. We
also find support for APT pricing restrictions in models with time-varying ex-
pected returns. As suggested by APT, the data strongly favor models in which
predictability is due to time-varying factor risk premia over models in which pre-
dictability is unrelated to factor loadings. Overall, we find no evidence against
the APT’s central prediction that expected returns should be related to loadings
on latent factors that explain common variation in asset returns. All conclusions
are very robust to the choice of priors.

Appendix A. MCMC Algorithm

In this appendix, we discuss the estimation of the constrained MSV model. Since es-
timation of the unconstrained model requires only a minor modification to our procedure,
we will omit its description for the sake of brevity.31 Similarly, since the SVE, SVF, and
CF models are special cases of the MSV structure, their respective MCMC estimation al-
gorithms do not present any additional complication and are not described in this appendix.
Complete details for the omitted algorithms are available from the authors.

Note that it is the stochastic volatilities themselves (ht), and not the parameters of the
SV processes (θ), that appear in the likelihood function (11). Marginalizing over ft, the
conditional sampling density of yt can be written

yt|ht, γ,B ∼ NN(Bγ,Ωt).(14)

31The parameter vector for the unconstrained model is ψ = (μ, β, θ1, . . . , θN+K).
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With this marginalization, the posterior distribution of β is not of a known form. A
Metropolis-Hastings (M-H) algorithm is, thus, necessary to carry out the sampling.32 Chib,
Nardari, and Shephard (2002) show that integrating out the factors and generating β by
M-H is essential to produce draws that efficiently converge to the target distribution.

Conditioning on β, the sampling of γ and the latent factors is straightforward as
the posterior updates are given by standard Bayesian results for multivariate regression
analysis (see, for example, Zellner (1971)).

Next, given β, γ, and f , each idiosyncratic and, respectively, factor shock can be
represented by

yjt − Bjγ − Bjft = εjt exp(hjt/2), j ≤ N

fjt = εjt exp(hjt/2), N + 1 ≤ j ≤ N + k,

where εjt
i.i.d.∼ N (0, 1). We exploit a clever change of variable suggested by Kim, Shep-

hard, and Chib (1998). Let

zjt =

�
ln(yjt − Bjγ − Bjft)2 = hjt + ln(ε2

jt), j ≤ N
ln(fjt)2 = hjt + ln(ε2

jt), N + 1 ≤ j ≤ N + k
.

Note that zjt is the sum of hjt and a log χ2 random variable with one degree of freedom.
Kim, Shephard, and Chib (1998) show that the density of a log χ2 random variable can be
approximated quite precisely with a seven-component mixture of Gaussian distributions.
This change of variable permits us to represent the MSV model as N + K independent
conditionally Gaussian state space models:

zjt|sjt, hjt ∼ N (hjt + msjt , υ
2
sjt) and(15)

hjt = κj + φj(hjt−1 − κj) + σjηjt, j ≤ N + K,(16)

where sjt is a discrete component indicator with mass function Pr(sjt) = qi, i ≤ 7, t ≤ T ,
and msjt , υ

2
sjt , and qi are the parameters of each component tabulated in Kim, Shephard,

and Chib (1998). Given the factors, the factor risk premia, and the free elements of B,
one can sample θj and the log-variances separately for each portfolio and factor series
using MCMC methods developed for univariate SV models.33 Let {hj.} denote the set of
T-vectors hj. = (hj1, . . . , hjT). For the APT-constrained model with constant factor risk
premia, the steps of the Gibbs sampler are summarized below.

MCMC Algorithm for Constrained MSV Model with Constant Risk Premia

1. Initialize {hj.} and γ.
2. Sample β, γ, {ft}|y, {hj.} by drawing:

(a) β from β|y, γ, {hj.}
(b) γ from γ|y, β, {hj.}
(c) ft from ft|yt, B, γ, {hj.}, t ≤ T .

3. Compute {zjt} for t ≤ T and j ≤ N + K.
4. Sample sj., θj, and {hj.} by repeating the following steps for j ≤ N + K:

(a) Draw sj. from sj.|zj., hj.

(b) Draw θj from θj|zj., hj.

(c) Draw hj. from hj.|zj., sj., θj.
5. Go to step 2 and repeat.

In our applications, we cycle through steps 2, 3, and 4 for 15,000 iterations. We discard
the initial 5,000 “burn-in” draws and retain the remaining draws for inferential purposes.

32Chib and Greenberg (1995) present a thorough illustration of the M-H algorithm.
33See Kim, Shephard, and Chib (1998) and Chib, Nardari, and Shephard (2006) for details on

univariate SV sampling.
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For models with time-varying expected returns, the sampling of vectors γ (for the
constrained model) and μ (for the unconstrained model) is replaced by the sampling of co-
efficient matrices G and M. Recall that γt =Gzt−1 in the constrained model and μt =Mzt−1

in the unconstrained model, where zt−1 is the vector of predetermined instrumental vari-
ables. Conditioning on B and f , the row by row sampling of G or M is straightforward
since the posterior updates are standard Bayesian results for multivariate regression analy-
sis (see, for example, Zellner (1971)).

Appendix B. Marginal Likelihood Calculation

We follow the approach suggested by Chib, Nardari, and Shephard (2006) for the
computation of marginal likelihood estimates. Using the Bayes rule, the marginal likeli-
hood of the data given model Mi is

m(y|Mi) =
p(y|Mi, ψ

∗
i )π(ψ∗

i |Mi)

π(ψ∗
i |y,Mi)

,(17)

where p(y|Mi, ψ
∗
i ) is the likelihood function under Mi, and π(ψ∗

i |Mi) and π(ψ∗
i |y,Mi)

are the corresponding prior and posterior densities of the parameters. Each density is
evaluated at the parameter vector ψ∗

i .
Using the basic marginal likelihood identity (see Chib (1995)) in (17), the log Bayes

factor comparing Mi to Mj can be written as

log p(y|Mi) − log p(y|Mj)(18)

= {log p(y|Mi, ψ
∗
i ) + log π(ψ∗

i |Mi) − logπ(ψ∗
i |y,Mi)}

−�
log p(y|Mj, ψ

∗
j ) + log π(ψ∗

j |Mj) − logπ(ψ∗
j |y,Mj)

�
.

Since (17) is an identity, the choice of vectors ψ∗
i and ψ∗

j is arbitrary. For computational
accuracy, we choose to evaluate these expressions at the posterior means from the MCMC
output. For each model being compared, there are two key quantities that must be com-
puted: the posterior ordinate π(ψ∗|y,M) and the likelihood ordinate p(y|M, ψ∗). Be-
cause of the high dimensionality of the vector ψ and the presence of the latent factors
and volatilities, calculation of π(ψ∗|y,M) and the likelihood ordinate p(y|M, ψ∗) is not
analytically tractable. Fortunately, Chib (1995) and Chib and Jeliazkov (2001) provide
simulation-based strategies to efficiently estimate the posterior ordinate. Furthermore,
building on the work of Pitt and Shephard (1999) and Doucet, de Freitas, and Gordon
(2001), Chib, Nardari, and Shephard (2002) develop filtering methods to estimate the like-
lihood ordinate. Chib, Nardari, and Shephard (2002), (2006) provide ample evidence of the
reliability of these approaches for computing marginal likelihood estimates in the context
of univariate and multivariate stochastic volatility models.
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