
ReCALL 22(2): 152–171. 2010 r European Association for Computer Assisted Language Learning 152
doi:10.1017/S0958344010000054

Sintéiseoir 1.0: a multidialectical TTS
application for Irish

MÍCHEÁL MAC LOCHLAINN
Acadamh na hOllscolaı́ochta Gaeilge, Ollscoil na hÉireann Gaillimh, Roisı́n na

Mainiach, Carna, Cúndae na Gaillimhe, Éire

(email: gaoluinn@eircom.net)

Abstract

This paper details the development of a multidialectical text-to-speech (TTS) application,
Sintéiseoir, for the Irish language. This work is being carried out in the context of Irish as a
lesser-used language, where learners and other L2 speakers have limited direct exposure to L1
speakers and speech communities, and where native sound systems and vocabularies can be
seen to be receding even among L1 speakers – particularly the young.

Sintéiseoir essentially implements the diphone concatenation model, albeit augmented to
include phones, half-phones and, potentially, other phonic units. It is based on a platform-
independent framework comprising a user interface, a set of dialect-specific tokenisation
engines, a concatenation engine and a playback device.

The tokenisation strategy is entirely rule-based and does not refer to dictionary look-ups.
Provision has been made for prosodic processing in the framework but has not yet been
implemented. Concatenation units are stored in the form of WAV files on the local file system.

Sintéiseoir’s user interface (UI) provides a text field that allows the user to submit a
grapheme string for synthesis and a prompt to select a dialect. It also filters input to reject
graphotactically invalid strings, restrict input to alphabetic and certain punctuation marks
found in Irish orthography, and ensure that a dialect has, indeed, been selected.

The UI forwards the filtered grapheme string to the appropriate tokenisation engine. This
searches for specified substrings and maps them to corresponding tokens that themselves
correspond to concatenation units.

The resultant token string is then forwarded to the concatenation engine, which retrieves
the relevant concatenation units, extracts their audio data and combines them in a new unit.
This is then forwarded to the playback device.

The terms of reference for the initial development of Sintéiseoir specified that it should be
capable of uttering, individually, the 99 most common Irish lemmata in the dialects of An
Spidéal, Músgraı́ Uı́ Fhloı́nn and Gort a’ Choirce, which are internally consistent dialects
within the Connacht, Munster and Ulster regions, respectively, of the dialect continuum.
Audio assets to satisfy this requirement have already been prepared, and have been found to
produce reasonably accurate output. The tokenisation engine is, however, capable of pro-
cessing a wider range of input strings and when required concatenation units are found to be
unavailable, returns a report via the user interface.

Keywords: Irish, TTS, speech synthesis, dialect

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054


1 Background

Sintéiseoir 1.0 is an Irish language text-to-speech application which is in the early

stages of development. It was created as part of the author’s M.Sc., thesis (Mac

Lochlainn, 2008), in which a multidialectical framework for Irish language TTS

synthesis was designed. This research was carried out in the context of Irish as a

lesser-used language, where learners and other L2 speakers have limited direct

exposure to L1 speakers and speech communities, and where native sound systems

and vocabularies can be seen to be receding even among L1 speakers – particularly

the young. The intention is to develop a CALL resource to address these problems.

The research explores similar ground to that done in Trinity College, Dublin, and

which resulted in the, currently mono-dialectical, speech synthesiser abair.ie

(Coláiste na Trı́onóide, 2008).

1.1 Terms of reference

The project was approached with regard to the academic level at which the work was

being done and with regard to pragmatic constraints also: the research was carried

out single-handedly and on a part-time basis. In light of these, the following terms of

reference were set out:

> Develop a modular logical framework for Irish language TTS synthesis to

support an unlimited number of dialects.

’ Textual input will not be restricted to current standard Irish spelling; thus

dialectical written forms (historically established ones in particular) are

valid, as indeed are all utterable strings.

’ Audio output will conform to specific dialectical forms as opposed to

generalised regional abstractions.
> Develop a functioning software application based on the framework.
> The first version of the software will support the dialects of An Spidéal, Músgraı́

Uı́ Fhloı́nn and Gort a’ Choirce, which are internally consistent dialects within the

Connacht, Munster and Ulster regions, respectively, of the dialect continuum.

’ In view of time and resource limitations, however, support will be restricted,

in the first version of the software, to forms permitted in an lárchanúint,

which is a simplified, artificial dialect of the language.
> The first version of the software will only be required to successfully utter

single words, but must be able to do so with equal facility in each of the three

selected dialects.
> The software’s initial vocabulary will be the ninety-nine most common

lemmata of the Irish language, as identified in Buntús Gaeilge (1966).
> User input containing any of the 26 graphemes of the English alphabet and any

of the the vowels ‘‘á’’, ‘‘é’’, ‘‘ı́’’, ‘‘ó’’ and ‘‘ú’’ marked diacritically with an acute

accent will be considered valid.
> Prosodic processing will not be investigated nor implemented in the current

research.
> Accurate, consistent grapheme-to-phone translation will be effected but no

formal success/failure criteria will be defined with regard to intelligibility.

Sintéiseoir 1.0: A Multidialectical TTS Application for Irish 153

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054


2 Synthesis model

It was decided to base the framework on the concatenative synthesis model, in which

samples of prerecorded human speech are joined together to produce phonic con-

tinua. The samples themselves may be phones (discrete units of sound, produced by

the human articulatory apparatus), half-phones, diphones, triphones or larger units

such as half-syllables, syllables, words, phrases and even whole sentences.

The current version of Sintéiseoir essentially implements diphone synthesis, albeit

slightly augmented to deploy single phones to support monophonic utterances and

half-phones to initiate and terminate polyphonic ones. In this concatenation model,

discrete recordings are prepared of (ideally) all the phonotactically valid phone-

to-phone transitions in the language to be synthesised; thus supporting all possible

articulatory transitions.

3 The framework

3.1 The modules

The framework (Figure 1), which structures the dataflow of the TTS process, was

developed before any program coding was done.

Fig. 1. The framework and dataflow

154 M. Mac Lochlainn

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054


The first module is a user interface which allows the user to submit a grapheme

string for synthesis and select a dialect. This module also returns feedback such as

error messages, generated by itself or by subsequent modules. It forwards the user

input as a grapheme string in plaintext.

Following the UI are a set of tokenisation engines, arranged ‘in parallel’. Figure 1

depicts the three dialects selected for this research but any number of additional

dialects may be added at this stage. The tokenisation engine for the selected dialect

accepts the grapheme string forwarded by the UI, searches for specified substrings

and maps them, subject to the phonological system of that dialect, to corresponding

tokens that themselves correspond to concatenation units.

The third stage in the data flow is the concatenation engine. This retrieves the

relevant concatenation units from the appropriate file system. Their audio data are

extracted, concatenated and inserted into a new audio data unit, the nature of which

depends on the software environment in which the framework is implemented.

The fourth stage is the prosodic processing module. Although the terms of

reference placed prosody outside the scope of the project it is an inescapable aspect

of speech synthesis and will be addressed in future research, hence the inclusion of

the module in the framework. For the time being, however, it is a functionless

component which simply forwards the binary audio data unaltered.

The final module is the playback device.

3.2 Dictionary lookups

Due to the condition, stated in the terms of reference, that the framework should not

be tied to current standard Irish spelling, it was decided to exclude dictionary

lookups in favour of a purely rule-based tokenisation methodology. This is not set in

stone however; such functionality may be added to the framework in the future, in

which case the requisite module would be placed between the user interface and the

tokenisation engines. It would almost certainly refer to a collection of grapheme and

token string pairs stored in a database and the results of successful lookups would be

forwarded directly to the concatenation engine.

4 Tokenisation methodology

Tokenisation is, in this context, the process of replacing a grapheme string with a string

of textual hints or indicators, called tokens, that refer to corresponding phones; thus a

token string is a textual representation of a phone sequence to be uttered. The principle

is essentially that of traditional phonetic or, indeed, phonemic transcription.

There are 18 graphemes in the Irish alphabet (Figure 2). The non-native (that is,

English) graphemes ‘‘j’’ and ‘‘v’’ have some small historical presence in loan words. For

reasons that will be discussed presently, justification exists for permitting these, and also

the English graphemes ‘‘k’’, ‘‘q’’, ‘‘w’’, ‘‘x’’, ‘‘y’’ and ‘‘z’’, in the framework, if only to

support scientific notation and a small number of uncommon gaelicisations.

The system of broad transcription traditionally used by scholars of Irish linguistics

was considered an ideal notation for use in the tokenisation engines. This system,

which was based on that of Professor Daniel Jones in ‘An Outline of English Phonetics’

Sintéiseoir 1.0: A Multidialectical TTS Application for Irish 155

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054


(Ó Cuı́v, 1944), and which differs somewhat from that of the international phonetic

alphabet (IPA), has been subject to minor modification by various authors since its

initial use but has remained generally consistent. It follows the common form of a pair

of right-leaning stroke characters enclosing one or more alphabetical ones. Long vowels

are indicated by a following colon and palatalisation of consonants by a following

prime. The system is also shown in Figure 2, which lists the full inventory of the 56

phones permitted in an lárchanúint (Ó Baoill, 1986a; Ó Baoill, 1986b).

4.1 Filenames

Having decided upon the tokenisation format, it was clear that the same notation

was appropriate as a file-naming convention for the sound files carrying the con-

catenation units, albeit with the bounding strokes omitted as these are reserved

characters in filepath notation. Thus, the file b.wav carries the phone /b/, the file

F0g0.wav carries the phone /F0g0/, the file b0e.wav carries the diphone /b0e/ and so on.

Initial and terminal half-phones are denoted by prefixing the characters 0 and 1

respectively to the filenames: 0b.wav, 1b.wav and so on.

5 The phone inventory

The 56 phone inventory of an lárchanúint was slightly augmented following aspects of

the broad transcription used in Ó Cuı́v (1944), Ó Duilearga (1981) and Ó Sé (2000) as it

was felt that emphasis on simplification in an lárchanúint had resulted in certain sig-

nificantly different phones being represented by the same notational characters:

> /a/, which denotes both Cardinal 4, /a/, and Cardinal 5, />/.
> /=/, which denotes both the neutral vowel, /=/, and the near-close near-front

unrounded vowel, /F/.

Fig. 2. The phones and graphemes of Irish, as permitted in an lárchanúint

156 M. Mac Lochlainn

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054


These differences may be illustrated by contrasting /b0an/ (‘‘woman’’, in the nomi-

native singular) with /b>n/ (‘‘women’’, in the genitive plural), and />:ok=/ (instance)
with /io0k0F/ (water). Despite the implicative nature of broad transcription, and the

assertion that ‘‘This minor variation [in the pronunciation of the neutral vowel] (is

not significant and) does not change the word’’ (Ó Baoill 1986a:3), these distinctions

are significant, in that they indicate perceptible velarisation and palatalisation, and

they do change words, inasmuch as inappropriate use is perceived as highly unna-

tural by L1 speakers. To remedy this, it was decided to admit the phones />/, />:/,
and /F/ to the inventory.

At the same point during the research, it was decided to admit the phone /wai/ into

the inventory also. The phone /ek0o/ had been permitted in an lárchanúint to cater for

the Irish renderings of a very small number of scientific and mathematical terms such

as ‘‘X-ray’’, ‘‘X-chromosome’’ and ‘‘X-axis’’. /wai/ (‘‘Y-chromosome’’, ‘‘Y-axis’’)

had not been included, however, and it seemed reasonable to complete the com-

plementary pair here. (On subsequent reflection, it was realised that /Te:/ might be an

equally valid alternative to /wai/, as it conforms to traditional native pronunciation

of this non-native letter. This question will be revisited during future work.)

6 Designing the diphone set

Following Lenzo and Black (2000), it was decided to prepare a diphone inventory of

every possible Irish phone-to-phone transition by starting with a list of every 2-

permutation of the permitted phones and to then reduce this by excluding phono-

tactically invalid clusters. Since the following phones are only there to support a tiny

number of loan words, it was decided that they should be admitted as discrete

phones but excluded as diphone components:

> /ek0o/ and /wai/: Used as prefixes or suffixes only. A small number of diphones

may be compiled and recorded in the future to accommodate common usage.
> /w/: Required for only one uncommon loan-word (wig-wam) given in Ó Baoill

(1986b). This word is not given at all in Ó Domhnaill (1977), which is the most

comprehensive Irish-English dictionary based on current standard orthography.
> /kw/: Required for only one uncommon loan-word (for the English ‘quinine’)

in Ó Baoill (1986b), and one other very uncommon loan-word (for ‘quinol’) in

Ó Domhnaill (1977).

The total number of diphones is equal to the total number of 2-permutations (r) of

the remaining 56 phones (n), which was found using the formula:

Pðn; rÞ ¼ ðn!Þ=ðn�rÞ!

‘

Pð56; 2Þ ¼ ð56!Þ=ð56�2Þ!

¼ 3; 080

The online facility provided in Schmitt (2009) was used to generate a full list of 3,080

2-permutations of the ordinal numbers 1 to 56. This list was then subjected to a find

Sintéiseoir 1.0: A Multidialectical TTS Application for Irish 157

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054


and replace procedure to substitute each of the 56 phone symbols for corresponding

numerics (‘a’ for each ‘1’, ‘a:’ for each ‘2’ and so on), resulting in a list of phone pairs.

This was then edited manually to remove phone transitions considered invalid

according to the following criteria:

> Consonant clusters other than those permitted in Ó Baoill (1986a) or Ó Baoill

(1986b).

’ It was originally intended to excise all such clusters but close inspection

forced a reasessment. An lárchanúint is an extremely prescriptive paradigm

and certain clusters such as /l0o0/ and /g0o0/ were not listed as permitted.

However, these clusters occur in common words such as ailse, soilse, éigse

and laigse, which are accorded standard status in Ó Domhnaill (1977) and

which cannot be uttered without them, even within the strictures of an

lárchanúint. This suggested some oversight during editing or typesetting and

these clusters were, therefore, retained.
> All short-vowel clusters, as these would equate to diphthongs, of which the

only four that are permitted in an lárchanúint exist as phones already.
> All diphthong clusters, as these would equate to quodrothongs, which are

nonexistent in Irish.
> All vowel and diphthong clusters, as these would equate to triphthongs, which

are nonexistent or extremely rare in Irish, or indicate glides, which are not

generally within the scope of broad transcription.
> Unutterable clusters. This is a slightly subjective criterion, and no formal

verification was attempted due to time constraints. However, such clusters are,

by their nature, fairly obvious to any L1 or competent L2 speaker.
> Clusters considered unnatural to the language. This was, of course, a considerably

subjective criterion, albeit informed by linguistic competence. It mostly affected

clusters containing phones such as /z/ and /d0z0/, which are generally found only in

loan words, occurring natively only in certain dialects, but also applied to clusters

that are utterable only with difficulty by L1 speakers, or for which examples could

not be found in either standard or dialectical vocabularies.

Most long-vowel clusters were retained as a significant proportion (ten out of a total

thirty permutations) were found in words given in Ó Domhnaill (1977). Of the other

twenty, only the /a: >:/ and />: a:/ transitions were considered sufficiently unnatural

to warrant exclusion.

7 Designing the carrier material

Suitable carrier material (that is, uttered sound from which the concatenation units

are to be extracted) was required to facilitate the recording of the diphones, phones

and half-phones. Following Lenzo and Black (2000), it was decided to embed these

in specially designed nonsense words:

We believe that the use of nonsense carrier material makes the delivery of

the diphones more consistent. Also, the pronunciation of a phonetic string

is more clearly defined in these nonsense words than in elicited natural words.

We generate carrier phrases so that, where possible, we can extract the diphones

158 M. Mac Lochlainn

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054


from the middle of a word. As it takes time for the human articulation system to

start, we do not want to extract diphones from syllables at the start or end of

words, unless these transitions to or into silence (SIL) are part of the diphone in

question.

Lenzo and Black (2000)

7.1 Diphones

Following this approach, a set of single phones, compatible within the sound system

of the language, was prefixed and appended prosthetically to each item in the final

diphone set, with the result of creating a list of nonsense words, designed to be easily

and intuitively utterable to L1 speakers, and from which the diphone set could be

extracted after recording:

> The vowel /=/ was deployed next to velarised consonants.
> The vowel /F/ was deployed next to palatalised consonants.
> The consonant /b0/ was deployed next to front vowels.
> The consonant /b/ was deployed next to back vowels.

For example:

> /=/-/bc/-/=/
> /F/-/b0c0/-/F/
> /b0/-/eo0/-/F/
> /F/-/o0e/-/b0/
> /=/-/o>/-/b/
> /b/-/>s/-/=/

7.2 Single phones

Single phones were simply uttered and recorded in their entirety.

7.3 Half-phones

Compiling the half-phone inventory was slightly more involved. As these are only

used in the framework to initiate and terminate phonic continua they, paired with

their complementary halves, invariably precede or follow dissimilar phones, with the

resultant influence on their articulation. Merely chopping single phones in half

worked well enough for initial half-phones but produced audibly unnatural results at

the terminations. The following strategy, in which the initial and terminal half-

phones of the sequences are captured, was devised to remedy this:

> The pattern ,consonant. - /F/ - ,consonant. was deployed to capture

palatalised consonants.
> The pattern ,consonant. - /=/ - ,consonant. was deployed to capture

velarised consonants.
> The pattern ,vowel. - /b0/ - ,vowel. was deployed to capture front vowels.
> The pattern ,vowel. - /b/ - ,vowel. was deployed to capture back vowels.

Sintéiseoir 1.0: A Multidialectical TTS Application for Irish 159

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054


For example:

> /c/-/=/-/c/
> /c0/-/F/-/c0/
> /e/-/b0/-/e/
> />/-/b/-/>/

8 Recording the carrier material

Bearing in mind the terms of reference (and particularly limitations of time and

resources), only the diphones necessary to facilitate synthesis of the 99 lemmata

given in Buntús Gaeilge were recorded and prepared as concatenation units. All the

permitted half-phones and single phones were recorded, however.

Access to a dedicated recording environment was not available, therefore recording

was done in a room in an ordinary dwelling house in a remote, therefore quiet, area. As

many surfaces as possible, particularly those in front of and behind the speakers, were

covered with heavy quilts to attenuate reverberation. The microphone was a Rode

NT1-A, placed within an SE Electronics Reflexion Filter (to further reduce rever-

beration) and behind a 4 inch pop screen. It was connected to an Apple Mac computer

via an M-Audio Firewire Audiophile sound card. The recording software was Audacity

version 1.2.5.

8.1 Speakers

L1 speakers from An Spidéal and Gort a’ Choirce were selected to provide voices for

these dialects. Both are extremely fluent and knowlegeable native speakers, and are

also formal, experienced scholars of Irish linguistics. The author himself provided

the voice for the dialect of Músgraı́ Uı́ Fhloı́nn. The dialects were selected partly

because suitable speakers were available but also because they provide a broad

spectrum of geographical and linguistic representation (Figure 3).

Speakers were provided with a list of sounds to utter, with the carrier material

typewritten in the broad phonetic transcription described previously. They were

asked to speak at as constant a volume and pitch as possible, and with no prosody

whatsoever.

The author did not have any significant problem with these requirements but that

was undoubtedly because, as the author, he understood profoundly what was

required and not because of any superior linguistic ability; as noted in Lenzo and

Black (2000), delivering diphones is not a particularly natural endeavour, after all.

After a number of pilot sessions the other speakers were able to regulate volume,

although some prompting was required as they reached the end of the list, as they

tended to become quieter. However, given their scholastic background as linguists,

prosody proved to be surprisingly hard to eradicate and several re-takes were

required – even after work in the pilot sessions indicated that they had it under

control. Interestingly, in both cases the instruction ‘‘tabhair amach ar nós róbait é’’

(‘‘speak it like a robot’’) resulted in immediate improvement, whereas previous

requests had been phrased more formally.

160 M. Mac Lochlainn

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054


9 Editing and storing the concatenation units

Editing the single phones was a straightforward case of isolating the waveform of the

phones themselves from preceding and following silence, coughs, lip-smacks et cetera.

No formal procedure was devised for editing the half-phones and diphones, other

than to excise leading and trailing silence as close to the start and end of the

waveform as possible, and to make cuts at phone-centres as consistently as possible,

at corresponding points in the waveforms. This became more intuitive and easier as

the editing process progressed.

The edited concatenation units were stored as WAV files in a directory called meain

(media), in the program root on the local file system. Files for each dialect were seg-

regated into subdirectories named after the district in question: gortachoirce, musgrai

and spideal. This directory structure is a key aspect of the concatenation process.

Fig. 3. The geographical distribution of dialects currently supported by Sintéiseoir

Sintéiseoir 1.0: A Multidialectical TTS Application for Irish 161

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054


10 Developing the software

The software was written in the Java programing language, which was chosen

because it is widely supported and platform-independent. A free piece of software

called the Java Runtime Environment or the Java Virtual Machine must be installed

on a computer (or other device) for it to be able to run Java but versions of this are

available for all common computer and mobile operating systems.

Java is an object-orientated language, meaning that that every conceptual entity to

which something can be done is considered an object. These objects have certain

definable attributes. Thus, for instance, to create a white text field 100 pixels wide by

50 pixels high on screen the programmer must instantiate a text field object and give

it those dimensions as attributes. A colour object must then be instantiated, given the

attribute of being white, and then designated as an attribute of the text field object.

Well-written Java programs are made-up of of discrete components called classes,

each of which has some fixed, defined function. Classes may be compared to the

component parts of physical machines.

All coding was done by hand, using the BlueJ development tool running on an Apple

Mac and OS X. The software design exactly follows the structure of the framework,

with the modules realised as Java classes. No calls are made on external programs.

Generally, a revision was saved every time a significant element of functionality was

achieved or a major problem was overcome. In total, 21 revisions were completed.

Since the dataflow through the framework was already known, the basic code that

forms the Java class structure was written and saved in its entirety before any pro-

gram functionality was undertaken. Similarly, the graphical user interface (GUI)

class was completely coded before work on any of the others was begun as the

required functionality had already been defined; only a very few minor adjustments

had to be made to this class later on during development.

All the other classes were coded by working progressively backward through the

framework, from playback to tokenisation. This ‘back-to-front’ approach was taken

because although the general input and output characteristics of each module were

known, the Java language defines data types formally and quite rigorously and it was

found easiest to code each class by deciding what its input data format would be, creating

requisite functionality to manipulate data of that kind, and then processing the results to

conform to a given output format, which was always a known factor as the subsequent

module in the dataflow had already been coded, and its input data format fixed.

10.1 The GUI

The user interface (Figure 4) provides a text field to accept user input (which initially

displays a default message inviting the user to enter some text), a set of radio buttons

to select the target dialect, buttons to initiate synthesis and to clear all fields and

selections and a text area to display textual feedback to the user.

The underlying code includes a number of filters to reduce or eliminate the pos-

sibility of invalid or extraneous data being forwarded to the tokenisation engines:

certain graphotactically invalid strings are rejected, as are numerics and other non-

alphabetic characters (except for the apostrophe, if located in an orthographically

162 M. Mac Lochlainn

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054


valid position in the string), as numerics and non-alphanumerics are not yet sup-

ported by the synthesiser. Leading and trailing whitespace is stripped-out, and any

uppercase characters are folded-down to lower case.

The interface will not forward data to the tokenisation engines unless a dialect has been

selected. Meaningful textual feedback is returned to the user whenever errors occur.

The class outputs two plaintext strings to the tokenisation engines: that of the user

input and also a dialect hint, which is set internally by the program when the user

selects the dialect for synthesis.

10.2 Tokenisation

This is the most complicated class in the software, and has by far the most lines of code.

Its internal dataflow can be seen in Figure 5. It was decided to create a fork in the

Fig. 4. Sintéiseoir’s graphical user interface

Sintéiseoir 1.0: A Multidialectical TTS Application for Irish 163

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054


dataflow for input strings containing only one grapheme, the reasoning being that most

of the tokenisation processing applied to longer strings was redundant in these cases.

10.2.1 Multiple graphemes. User input is parsed to convert the grapheme string to

a token string, where the initial and terminal tokens correspond to half-phones and

the rest to diphones. This is done in the following series of operations:

(1) The string is reduced by substituting specified substrings with corresponding

phone tokens. For this technique to work of course, substrings must be

Fig. 5. The main operations performed by the tokenisation engines

164 M. Mac Lochlainn

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054


evaluated in order of length, with the longest processed first. Graphemes that

correspond directly to phones are left unaltered. To facilitate the processing

of phones whose tokens contain two or more characters (diphthongs and

some consonants), these tokens are replaced temporarily by a set of single

non-alphabetical place-holder characters.

(2) The string is then inspected to identify consonants and consonant clusters

adjacent to the vowel characters ‘‘e’’, ‘‘é’’, ‘‘i’’ or ‘‘ı́’’, and which are therefore

palatalised. Following primes are inserted after each of these consonants. Where

‘‘e’’ or ‘‘i’’ are themselves adjacent to long back vowel characters, and where ‘‘é’’

or ‘‘ı́’’ are adjacent to short back vowel characters, a glide is indicated, rather

than a full vowel. In these cases the short vowel character is dropped from the

string as glides are already encapsulated in the concatenation units.

(3) A separation character is inserted between each phone token (palatalised

consonants are not separated from their following primes).

(4) The terminal alphabetic character of each phone token is copied and the copy

inserted immediately after the following separation character. In the case of

the final character in the string, a new separation character is also inserted.

Thus, the string is converted from one of phone tokens into one of a half-

phone followed by diphones and terminated with another half-phone. Once

this process is complete, any place-holder characters inserted into the string

at stage (1) are replaced by their corresponding diphthongs and consonants.

(5) The numeric characters ‘‘0’’ and ‘‘1’’ are inserted in front of the initial and

terminal half-phones respectively, so that they correspond to initial and

terminal half-phone filenames.

(6) The grapheme string has now become a token string, but is still a plaintext

object. At this point, however, it is convenient to place the tokens in a binary

object called an array, introducing binary data into the dataflow for the first

time. An array is a container object of fixed size, wherein stored elements are

completely separate from each other. This operation involves splitting the

string on the separation characters, which are then discarded.

(7) This array is forwarded to the concatenation engine.

10.2.2 Single graphemes. A small number of Irish words are spelt with a single

grapheme. These include ‘‘a’’ (which represents several homonyms) ‘‘é’’ (him), ‘‘ı́’’

(her) and ‘‘ó’’ (from). Of these, only ‘‘a’’ is not pronounced similarly to the corre-

sponding phone.

As most of the graphemes in the written language correspond directly to an identical

phone symbol in the phonetic notation, it was decided that these should simply be

placed in a one-element array, forwarded directly to the concatenation engine and

uttered as their corresponding phones (velarised, in the case of consonants). Textual

feedback is returned to the user interface to inform the user that they are hearing phones

rather than words or vocalisations of graphemes. In the case of ‘‘a’’ and the following

graphemes, however, it was necessary to map to a different phone symbol:

> The graphemes ‘‘>’’ and ‘‘>́’’ are mapped to the phones />/ and />:/.
> The grapheme ‘‘á’’ is mapped to the phone /a:/.

Sintéiseoir 1.0: A Multidialectical TTS Application for Irish 165

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054


> The grapheme ‘‘a’’ is mapped to the phone /=/.
’ In this case, the textual message returned to the user interface informs the

user that they are hearing a word and not a phone.
> The grapheme ‘‘c’’ is mapped to the phone /k/
> The grapheme ‘‘j’’ is mapped to the phone /d0z0/
> The grapheme ‘‘q’’ is mapped to the phone /kw/
> The grapheme ‘‘x’’ is mapped to the phone /ek0o/
> The grapheme ‘‘y’’ is mapped to the phone /wai/

10.2.3 Output. This class outputs two separate data entities:

> A string array in which each element corresponds to the filename of a

soundfile, without the file extension.
> The plaintext dialect hint, which was first instantiated by the GUI. This takes

the form ‘‘,dialect./’’: ‘‘gortachoirce/’’, ‘‘muograi/’’ et cetera.

10.3 Concatenation

This is the module in which plaintext and binary encapsulations of plaintext are

replaced completely by binary audio data in the dataflow.

Before describing the concatenation process, it may be helpful to discuss the WAV

file format briefly, as this is the medium in which the concatenation units are stored.

Most computer literate people with more than superficial familiarity with multi-

media will know that WAV files are common, standard containers for storing

uncompressed sound; providing high fidelity but at the cost of relatively large file-

sizes. The reality is more complex, however, as the WAV format permits data to be

encoded in various ways – and, indeed, compressed. Therefore, a WAV file created

by one device or program may have a somewhat different internal structure from a

WAV file created by another. This structure is determined by a series of parameters

including sample rate (the number of times per second that the original analogue

sound was measured, or ‘‘sampled’’, during digital recording), sample size (the range

of memory values made available to store each sample), the number of channels

(mono or stereo), signed (the capacity to represent negative integers) and big-endian

(the order in which the bytes of data are stored). The values of these parameters in

the concatenation unit files must be known in order to manipulate these files. Thus,

of course, it was necessary to decide upon and adhere to a specific format to use

when recording the human speakers. Also, WAV files are not solely composed of

audio data, but of three ‘‘chunks’’ of information: The RIFF chunk which identifies

the file as a WAV file, The FORMAT chunk which identifies parameters such as

sample rate and the DATA chunk which contains the actual data (samples)’’ (Niagra

College Canada, Technology Division, 2009). The audio data are stored in a series

of ‘frames’.

When the concatenation class is instantiated it creates:

> An object called a vector into which the concatenation units are to be placed

(vectors are container objects, similar to arrays but of variable size).
> An integer object carrying a value of ‘‘0’’.

166 M. Mac Lochlainn

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054


The class iterates through the string array that was forwarded by the tokenisation engine,

extracting each element (filename) in turn. On each iteration it performs two operations:

(1) The following temporary text string is concatenated:

‘‘meain/’’1,dialect hint. 1 ,filename. 1 ‘‘.wav’’

This provides a file path to the relevant concatenation unit: ‘‘meain/’’ references the

sound file repository, the dialect hint extends the path to the subdirectory of the

selected dialect, the filename references the file itself and the string ‘‘.wav’’ provides

the file extension. By referencing the file extension here rather than earlier in the

dataflow it only appears once in the code, reducing the scope for error. Also, should

the file format be changed for any reason, only this one reference need be updated.

(2) This concatenated string is used to retrieve the file in question. Its audio data

frames are then extracted and placed in a new audio data object, called an Audio-

InputStream. This object is then placed in the vector and the integer object is

incremented by the number of audio data frames retrieved.

Thus, with each iteration (Figure 6), the components of the phonic continuum to

be synthesised are assembled incrementally in the vector and a record is kept, in the

integer object, of the total number of data frames – the frame length.

After the final iteration the vector is passed to an enumeration object, which passes

each element in the vector, sequentially, to a SequenceInputStream object. This is the

Java object that actually concatenates the discrete elements of audio data into one

logical unit. The result is passed, along with the format parameters of the source

WAV files and the total frame length, to an AudioInputStream object. This object is

then forwarded to the signal processing module.

10.4 Signal processing

As stated, this class has no functionality in this version of the software. It contains only

enough code to accept an AudioInputStream and to output it again, unprocessed. In

future versions, prosodic processing and discontinuity smoothing at concatenation unit

Fig. 6. Concatenation units assembled incrementaly in a vector object

Sintéiseoir 1.0: A Multidialectical TTS Application for Irish 167

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054


interfaces may be implemented in this class, although it is more likely that two separate

classes will be created to implement these operations as they are really different tasks.

10.5 The playback device

This was the simplest functional module to code. It accepts the AudioInputStream

object and its format parameters, and performs only three main operations:

(1) The AudioInputStream’s data format is retrieved and used to create a

DataLine.Info object.

(2) The DataLine.Info object is used to create a Clip object, which is a data line

whose audio data can be loaded prior to playback.

(3) The Clip object is then started and the audio data sent to the the host

computer’s audio subsystem. Thus, the audio output is never saved as a file

(although the code could easily be modified to do so) but played aloud.

10.6 UNICODE

As the notational system of the tokens includes several non-ASCII characters

(ASCII is a formally defined but basic set of letters, numbers and punctuation marks

for American English), operating system and application support for UNICODE

was clearly essential. PC, Mac, UNIX and UNIX-like operating systems have,

generally, supported UNICODE for years, as has Java, but many of the software

(and Web) applications that run on them still do not. A few minor problems related

to character encoding were encountered during the project:

> The sound-editing software was unable to save files with names that included

non-ASCII characters. Such attempts failed silently, giving the user no

indication that the save operation had failed. As a workaround, such files were

saved with temporary, one character filenames and then renamed as

appropriate within the operating system itself.
> It was found impossible to include non-ASCII characters in filenames when

renaming files located on the desktop. This was noteworthy as it did not

happen when renaming files elsewhere in the file system, within file browser

windows. Since all project files were stored elsewhere in any case, the problem

did not affect the work unduly.

11 Results and conclusions

Results were assessed, and conclusions drawn, based mainly on the project’s terms of

reference. However, some of the broader requirements of the text-to-speech domain

were also considered.

11.1 Software functionality

Sintéiseoir 1.0 was tested on the following platforms (fully patched and updated),

which were current at the time, and was found to work correctly and consistently:

> Apple Mac OS X 10.4.11 (desktop); Java 1.5.0_13-121
> Microsoft Windows 2000 Professional SP4; Java 1.6.0_05-b13

168 M. Mac Lochlainn

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054


> Microsoft Windows XP Professional SP3; Java 1.6.0_05-b13
> Ubuntu Linux 8.04 (desktop); Java 1.6.0_06

11.2 Functional vocabulary

At the completion of the project, Sintéiseoir 1.0 was able to successfully utter each of

the ninety-nine specified lemmata in each of the three specified dialects.

It was decided to further test its current functional vocabulary by submitting to it,

individually, the words contained in the thesis abstract. This particular block of text

was selected because although the thesis was written in a formal register of the Irish

language, it used a large number of common words and words of differing lengths.

Also, importantly, the abstract was written at the beginning of the research and was

never intended to be used in this manner. Thus, it was considered to stand as valid

test material.

The abstract contained 298 words in total. Multiple instances were excluded and

because Sintéiseoir does not currently support non-alphabetic characters (other than

the apostrophe in certain positions), numeric characters and prefixes followed by a

hyphen were also excluded. The final inventory was 187 words. Sintéiseoir uttered 31

of these correctly, representing a success rate of 16.57%. Of those 31 words, 5 were

not on the list of lemmata – 2.67% of the total.

Whilst the tokenisation algorithms will undoubtedly benefit from development,

error data returned to the user interface indicated that failures were most often due

to the small number of available concatenation units.

11.3 Pitch and duration

As the project’s terms of reference excluded work on prosody, no particular expectations

existed with regard to pitch or duration and no criteria for success or failure were

specified. In the event, the lack of processing for pitch caused no undue problems.

Indeed, it was felt that the pitching of Sintéiseoir’s utterances was quite naturalistic.

However, this was undoubtedly due to its current restriction to single-word utterances

and, to an extent, the difficulty experienced by the human speakers in completely

removing prosody from their voices whilst recording the carrier material.

The absence of duration processing was found to cause a problem in the case of the

neutral vowel (/=/) however. In Irish, the duration of this vowel is dictated by its

position in the word (initial, medial or terminal) and by dialect. Inappropriate

articulation is very noticeable, particularly to L1 speakers. For example, a classic

shibboleth of L2 speakers is the pronunciation of the definite article ‘‘an’’ (/=n/) with
a stressed and relatively protracted initial vowel (/o’n/) when it is correctly little more

than a glottal stop.

Six of the ninety-nine lemmata specified in the terms of reference, agam, agat, aige,

acu, ansin and anois, begin with the neutral vowel. Without duration processing this

vowel was quite protracted in all three dialects when uttered by Sintéiseoir.

The first four of these are the prepositional pronoun ‘‘by’’, in the first person

singular, the second person singular, the third person masculine, singular and the

third person plural – ‘‘by me’’, ‘‘by you’’, ‘‘by him’’ and ‘‘by them’’. This protracted

Sintéiseoir 1.0: A Multidialectical TTS Application for Irish 169

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054


initial vowel is appropriate for northern and mid-western dialects, where polysyllabic

words are generally uttered with stress on the first syllable, and although it is

inappropriate for southern dialects, in which the second syllable is stressed, it remains

intelligible. Therefore, given that prosodic processing was not a project requirement,

it was decided to let this pronunciation stand.

However, the initial vowel of the last two words (‘‘there’’ and ‘‘now’’, respectively)

are generally of very brief duration in normal speech, to the point of a glottal stop or

even omission, and sounded grossly unnatural when uttered by Sintéiseoir. With

reference, again, to the absence of a prosodic processing requirement, it was decided

to define a short exceptions list for these and certain other words as a workaround,

and excise this initial phone completely at the tokenisation stage. The resulting

utterances were found to be naturalistic.

It is intended that this workaround be abandoned in favour of appropriate pro-

sodic processing in future versions of the software.

11.4 Intelligibility

As with pitch and duration, no criteria were laid down to assess the intelligibility of

utterances generated by Sintéiseoir. All successfully synthesised words were found to

be comprehensible, despite the existence of audible discontinuities between certain

concatenation units.

However, as repeated, long-term exposure will often render the most poorly

formed speech intelligible it was decided that at least a rudimentary external

assessment of intelligibility was warranted. This was done by playing the fourteen

lemmata of more than one syllable (agus, abair, anois, agat, duine, ansin, agam,

amach, isteach, muise, aige, eile, éigin and oı́che), in each of the three dialects, to six

L1 speakers who had not heard Sintéiseoir’s output previously. None had any dif-

ficulty identifying them, although the discontinuities between concatenation units

were mentioned.

11.5 Further development

In addition to the obvious need to expand the single word functionality of the

synthesiser, future research will be shaped by the following factors:

11.5.1 An lárchanúint. An lárchanúint was only made a consideration in order to

reduce the complexity of the project to a level commensurate with an M.Sc., thesis.

While it served well enough in this regard, its prescriptive, heavily-simplifying nature

proved to be fundamentally incompatible with the overall aim of genuine L1 dialect

support. Such dialectical variation as there is arises mostly from variations in the

vowel sounds uttered by the human speakers – a freedom only partially permitted

within an lárchanúint – rather than from the tokenisation process. Therefore, it will

have no place in further development of this research.

11.5.2 Concatenation units. Even the perfect speech synthesiser would be of only

academic interest without a voice. Therefore, development of the concatenation unit

set is, perhaps, the most pressing requirement, it being too limited at this point to

170 M. Mac Lochlainn

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054


support a speech synthesiser with any practical functionality. The presence of audible

discontinuities in existing units must also be addressed by re-editing or, if necessary,

re-recording.

Recording the human speakers and preparing the sound-files is a slow and tedious

process, and the multi-dialectical nature of the framework multiplies the number of

man-hours required by the number of supported dialects – currently three. There is,

however, no alternative to undertaking this work as a matter of priority.

11.5.3 The coding platform. Although there is nothing fundamentally wrong with

building the program on the Java platform, and delivering it as a locally running

executable, the luxury of Web-based delivery, particularly in an age where the Web

application is on the ascendant, was keenly felt during testing. Web apps are also far

more readily accessible to their target user-base and one need only to look to abair.ie

to see the inherent benefits of this approach.

In principle, the existing code might easily be adapted to the client/server model,

with the user interface converted to a Java applet running on the end user’s computer

and the rest of the program running remotely on a Web server. However, it is

intended that the next version of the software be completely rewritten using

XHTML, CSS and Javascript on the client side and Apache Webserver, PHP and,

possibly, MySQL on the server side; these technologies, between them, provide the

requisite functionality, and form key aspects of the Internet’s infrastructure.

References

Buntús Gaeilge (1966), Baile Átha Cliath: An Roinn Oideachais.

Coláiste na Trı́onóide, Baile Átha Cliath, Centre for Language and Communication Studies

(2008) abair.ie http://www.abair.ie/.

Lenzo, K. A. and Black, A. W. (2000) Diphone Collection and Synthesis http://www.cs.

cmu.edu/ , awb/papers/ICSLP2000_diphone/.

Mac Lochlainn, M. (2008) Forbairt Chreat Ílchanúnach Téacs-go-hUrlabhrtha don Ghaelainn,

unpublished thesis (M.Sc.), University of Limerick.

Niagra College, Canada, Technology Division (2009) CTEC1631 Course Notes: WAV File

Format http://technology.niagarac.on.ca/courses/ctec1631/WavFileFormat.html.

Ó Baoill, D. P. (ed.) (1986a) Lárchanúint don Ghaeilge (Téip Léirithe). Baile Átha Cliath:

Institiúid Teangeolaı́ochta Éireann.

Ó Baoill, D. P. (1986b) Lárchanúint don Ghaeilge (Tuarascáil Taighde). Baile Átha Cliath:

Institiúid Teangeolaı́ochta Éireann.

Ó Cuı́v, B. (1944) The Irish of West Muskerry, Co. Cork. Baile Átha Cliath: Institiúid Ardléinn

Bhaile Átha Cliath.

Ó Domhnaill, N. (1977) Foclóir Gaeilge-Béarla. Baile Átha Cliath: Rialtas na hÉireann.

Ó Duilearga, S. (ed.) (1981) Leabhar Stiofán Uı́ Ealaoire. Baile Átha Cliath: Comhairle

Bhaloideas Éireann.

Ó Sé, D. (2000) Gaeilge Chorca Dhuibhne. Baile Átha Cliath: Institiúid Teangeolaı́ochta

Éireann.

Schmitt, S. R. (2009) Permutation generator http://home.att.net/, srschmitt/script_permutations.

html.

Sintéiseoir 1.0: A Multidialectical TTS Application for Irish 171

https://doi.org/10.1017/S0958344010000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0958344010000054

