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in weighted Bergman-type spaces on the unit disk. Our method of proof requires no regularity conditions
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1. Introduction

This paper studies cyclicity of singular inner functions in two different classes of weighted
Bergman-type spaces. In both cases, our proofs rely crucially on Carleson’s corona the-
orem. An interesting feature of this method of proof is that regularity conditions on the
weights can be avoided.

We begin by considering weighted �2 spaces, viewed as spaces of analytic functions in
the unit disk. We say that a sequence of positive numbers ω = (ω(n))n�0 is a weight
sequence if ω(n) ↗ +∞ and log ω(n) = o(n) when n → ∞. With every weight sequence
ω we associate the weighted Bergman space A2

ω which consists of all analytic functions
f(z) =

∑∞
n=0 anzn on the open unit disk D such that

‖f‖2
ω,2 =

∑
n�0

|an|2
ω(n)2

< ∞.

∗ Present address: IMB UMR 5251, Université de Bordeaux I, 351 cours de la Libération, F33405 Tal-
ence cedex, France.

https://doi.org/10.1017/S1474748012000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748012000035


816 O. El-Fallah, K. Kellay and K. Seip

A function f in A2
ω is said to be cyclic in A2

ω if the set of functions pf with p a polynomial
is dense in A2

ω.
We will prove the following theorem.

Theorem 1.1. Let ω be a weight sequence. If

∑
n�1

(log ω(n))2

n2 = ∞, (1.1)

then every function in H∞ without zeros in D is cyclic in A2
ω.

This result has its roots in work of Beurling [1] and Nikolskii [6, § 2.6, Theorem 2].
Requiring a certain regularity condition on ω, Beurling proved that every function in
H∞ without zeros in D is cyclic in ⋃

n�1

A2
ωn ,

equipped with the inductive limit topology, if and only

∑
n�1

log ω(n)
n3/2 = ∞. (1.2)

The Hilbert space case was considered by Nikolskii [6, § 2.6, Theorem 2] who proved
that whenever ω is log-concave, i.e. ω2(n) � ω(n + 1)ω(n − 1), the divergence condition
(1.2) implies that every function in H∞ without zeros in D is cyclic in A2

ω. Beurling
used Bernstein’s approximation theorem, while Nikolskii relied on a theorem on quasi-
analyticity that requires the log-concavity condition. Beurling pointed out at the end
of his paper that he could not dispense with a certain convexity condition and that it
remained an open problem to obtain a general sufficient condition for cyclicity.

Thus the novelty of Theorem 1.1, besides the method of proof, is the absence of any
regularity condition on ω. In the second remark after Theorem 1.2 below, we will give
an example showing that Theorem 1.1 enables us to deal with weights that are not
covered by Nikolskii’s theorem, in spite of the fact that the divergence condition (1.1)
implies (1.2).

We now turn to our second result, which deals with a situation in which growth restric-
tions are non-radial. Let E be a closed subset of T and let Λ be a non-increasing and
positive function on ]0, 2] such that Λ(0+) = +∞. We denote by B∞

Λ,E the space of all
analytic functions f on D such that

‖f‖Λ,E,∞ = sup
z∈D

|f(z)|e−Λ(d(z,E));

here d(·, ·) stands for Euclidean distance on C. Let I be the singular inner function
defined by

I(z) = e−(1+z)/(1−z).

Gevorkyan and Shamoyan showed in [4] that if E = {1} and Λ satisfies certain regularity
conditions, then I is cyclic in B∞

Λ,{1} if and only if Λ fails to be integrable. We will now
prove the same result without any additional assumption on Λ.
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Theorem 1.2. The singular inner function I is cyclic in B∞
Λ,{1} if and only if

∫ 2

0
Λ(t) dt = ∞. (1.3)

Several remarks are in order before we turn to the proofs of our theorems.

(1) Cyclicity of the singular inner function I was first considered in weighted approxi-
mation theory by Keldyš [5] and Beurling [1]. See also [6, § 2.8, Theorem 1]. The idea of
using the corona theorem in this context goes back to Roberts [8].

(2) We next give an example of a weight that satisfies (1.1) but to which Nikolskii’s
theorem does not apply. Set

log ω(n) = 22j−1
, n ∈ [22j

, 22j+1
),

for j = 1, 2, . . . . Then clearly (1.1) holds, but we may check that if ω̃ is log-concave and
ω̃ � ω, then ∑

n�1

log ω̃(n)
n3/2 < +∞.

To see this, let g be the linear function that satisfies g(22j−1
) = 22j−3

and g(22j

) = 22j−2
.

By concavity, ω̃(n) � min(22j−1
, g(n)) for n in the interval [22j

, 22j+1
). A straightforward

computation shows that the piecewise linear function

h(n) = min(22j−1
, g(n)), n ∈ [22j

, 22j+1
),

satisfies ∑
n>4

h(n)
n3/2 < ∞.

(3) The assumption that ω is non-decreasing implies that the shift operator is a contrac-
tion on A2

ω, a fact that plays an essential role in the proof of Theorem 1.1 given below.
One may ask if this monotonicity can be dispensed with. While we cannot rule out the
possibility that it can be relaxed, the following example shows that it cannot simply be
removed. Namely, let ω be any sequence such that ω(2n) = 1. Then U(z2) is not cyclic
in A2

ω when U is an arbitrary inner function. Indeed, if there is a sequence of polyno-
mials pn such that ‖pn(z)U(z2) − 1‖ω,2 → 0, we may write pn(z) = qn(z2) + zhn(z2);
then ‖qn(z2)U(z2) − 1‖ω,2 → 0 which means that U is cyclic in H2. But this contradicts
Beurling’s theorem.

(4) We have the following relation between the two kinds of Bergman spaces considered
in the present work. We denote by µ normalized Lebesgue measure on D and define B2

Λ,T

to be the space of all analytic functions f on D such that

‖f‖2
Λ,T,2 =

∫
D

|f(z)|2e−2Λ(1−|z|) dµ(z) < ∞.
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A simple computation shows that f(z) =
∑∞

n=0 anzn belongs to B2
Λ,T if and only if

‖f‖2
Λ,T,2 =

∑
n�0

|an|2
ω(n)2

< ∞,

where

ω(n)−2 =
∫ 1

0
r2n+1e−2Λ(1−|z|) dr, n � 0. (1.4)

Note that this moment sequence ω is log-concave. Conversely, if ω is a log-concave weight
sequence, then there exists a Λ such that

cω(n) �
( ∫ 1

0
r2n+1e−2Λ(1−|z|) dr

)−1/2

� Cω(n)

for positive constants c and C independent of n � 1 [2, Proposition 4.1]. However, in
general, we cannot write A2

ω as B2
Λ,T.

(5) In [6, §§ 2.6, 2.7], Nikolskii proved, under some regularity conditions on Λ, that I is
cyclic in B2

Λ,T if and only if ∫ 2

0

√
Λ(t)

t
dt = ∞. (1.5)

It is interesting to note when Λ and ω are related as in (1.4), then, under suitable
regularity conditions on Λ, (1.5) is equivalent to (1.2) and (1.3) is equivalent to (1.1) [6,
§ 2.6, Lemmas 1 and 2]. As will be pointed out in § 3, a slight variant of our proof of
Theorem 1.2 gives that (1.3) is in fact sufficient for every singular inner function U to
be cyclic in B2

Λ,T. Note that, again, no additional regularity condition on Λ is required.

2. Proof of Theorem 1.1

Our proof of Theorem 1.1 will rely on three lemmas.
The first lemma gives a convenient reformulation of condition (1.1) of Theorem 1.1.

We will use only one of the implications of the lemma, but we find the result to be of
some general interest and give therefore the simple proof of the full equivalence between
the two conditions.

Lemma 2.1. Let ω be a weight sequence. Then the divergence condition (1.1) of Theo-
rem 1.1 holds if and only if there exists a sequence of non-negative integers (nj)j�0 such
that log ω(nj+1) � 2 log ω(nj) and

∑
j�0

(log ω(nj))2

nj
= ∞. (2.1)

Proof. If (1.1) holds, then we define nj inductively by setting n0 = 1 and requiring

nj+1 = min{n > nj : log ω(n) � 2 log ω(nj)}.
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Since
nj+1−1∑
n=nj

(log ω(n))2

n2 � 4(log ω(nj))2
nj+1−1∑
n=nj

1
n2 � 4

(log ω(nj))2

nj − 1
,

we conclude that condition (1.1) of Theorem 1.1 implies (2.1).
To prove the reverse implication, we observe that if log ω(nj+1) � 2 log ω(nj) for every

j, then ∑
l : (nj/2)�nl�nj

(log ω(nl))2

nl
� 4

(log ω(nj))2

nj
.

Thus we may assume that the sequence (nj) satisfies the exponential growth condition
nj+1 � 2nj , in which case we have

(log ω(nj))2

nj
� 4

nj+1−1∑
n=nj

(log ω(n))2

n2 ,

and so (2.1) implies the divergence condition (1.1) of Theorem 1.1. �

Since ω is non-decreasing, the shift operator S defined by Sf(z) = zf(z) is a completely
non-unitary contraction on A2

ω. It follows that for f in H∞, f(S) makes sense by H∞

functional calculus. Therefore, by von Neumann’s inequality, we have

‖fϕ‖ω,2 = ‖f(S)ϕ‖ω,2 � ‖f(S)‖ ‖ϕ‖ω,2 � ‖f‖∞‖ϕ‖ω,2

for every ϕ in A2
ω.

We are now prepared for our application of the corona theorem.

Lemma 2.2. Let ν be the singular measure of U and set c2 = ν(T). Then for every
non-negative integer n, there is a function fn in H∞ such that

‖1 − fnU‖ω,2 � eA(c
√

n+1)

ω(n)
, (2.2)

‖fn‖∞ � eA(c
√

n+1), (2.3)

with A an absolute constant.

Proof. Note that

inf
z∈D

[|U(z)| + |z|n] � inf
z∈D

[
exp

(
−2c2

1 − |z|

)
+ |z|n

]

� e−2c
√

n = δn.

By Carleson’s corona theorem (see [3] and [7, p. 66]), there exist fn, gn ∈ H∞ such that

fnU + zngn = 1,

‖fn‖∞ � 25δ−3
n , ‖gn‖∞ � 25δ−3

n ,
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which implies that (2.3) is satisfied for some absolute positive constant A. We observe
that (2.2) also holds by the observation above and the estimate

‖1 − fnU‖ω,2 = ‖zngn‖ω,2 � ‖gn‖∞‖zn‖ω,2.

�

In order to apply the preceding lemma, we need the observation that we may use
functions in H∞ instead of polynomials when we check whether a bounded function is
cyclic in A2

ω.

Lemma 2.3. Let V be an arbitrary function in H∞. Then the closure in A2
ω of the set

of functions pV with p a polynomial equals the closure in A2
ω of the set of functions fV

with f a function in H∞.

Proof. The result follows from the inequality

‖1 − pV ‖ω,2 � ‖1 − fV ‖ω,2 + ‖V ‖∞[ω(0)]−1‖f − p‖H2 .

�

Proof of Theorem 1.1

Let f be a function in H∞ without any zeros in D. We write f = FU , where F is
an outer function and U is a singular inner function with associated singular measure ν.
Since F is outer, F is cyclic in H2 ⊂ A2

ω. Hence it remains only to prove that U is cyclic
in A2

ω.
By Lemma 2.3, it suffices to show that we can make ‖1 − fU‖ω,2 as small as we please

by choosing a suitable f in H∞. Let m1, m2, . . . , mN be arbitrary positive integers and
λj associated positive numbers such that

N∑
j=1

λ2
j = 1.

Set Uj = Uλ2
j and let fj be a function such that

‖1 − fjUj‖ω,2 � exp[A(cλj
√

mj + 1) − log ω(mj)],

‖fj‖∞ � exp[A(cλj
√

mj + 1)], j = 1, . . . , N.

By Lemma 2.2, such a function exists for every j, with A an absolute constant. Since

1 − U

N∏
j=1

fj = 1 − U1f1 + U1f1(1 − U2f2) + · · · +
N−1∏
j=1

Ujfj(1 − UNfN ),

we get ∥∥∥∥1 − U
N∏

j=1

fj

∥∥∥∥
ω,2

�
N∑

j=1

exp
[ j∑

k=1

A(cλk
√

mk + 1) − log ω(mj)
]
.
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Now choose mj = nj+j0 for some j0, where (nj) is the sequence obtained from Lemma 2.1.
This means that log ω(nj+1) � 2 log ω(nj) and also that (2.1) holds. Let N = N(j0) be
such that

N = min
{

M :
M∑

j=1

(log ω(nj+j0))
2

nj+j0

� (4Ac)2
}

and set

λj =
log ω(nj0+j)√

nj0+j

( N∑
k=1

(log ω(nj0+k))2

nj0+k

)−1/2

.

By our choice of sequence (nj), we have then

λj � 1
4Ac

log ω(nj0+j)√
nj0+j

and
j∑

k=1

log ω(nj0+k) � 2 log ω(nj0+j).

Thus we get

∥∥∥∥1 − U

N∏
j=1

fj

∥∥∥∥
ω,2

�
N∑

j=1

exp[Aj − 1
2 log ω(nj0+j)] � C√

ω(nj0+1)

for an absolute constant C. This finishes the proof since ω(nj0+1) → ∞ when j0 → ∞.

3. Proof of Theorem 1.2

For the proof of Theorem 1.2, we need the following two lemmas.

Lemma 3.1. Suppose that 0 < δ < 1 and let fδ be the outer function defined by

fδ(z) = exp
(

− Λ(δ)
∫

δ<|t|<π

eit + z

eit − z
dt

)
.

If a is in ]0, (2π)−1], then we have

|fδ(z)| � e−4π2Λ(δ)a for
|1 − z|2
1 − |z|2 � aδ, (3.1)

‖fδ‖Λ,{1},∞ � e−πΛ(δ). (3.2)

Proof. We first prove (3.1). Let z be a point in D such that

|1 − z|2
1 − |z|2 � aδ.

Then we have 1 − |z| � |1 − z| � 2aδ, which implies that

log |fδ(z)|−1 = Λ(δ)
∫

δ<|t|<π

1 − |z|2
|eit − z|2 dt � 8aδΛ(δ)

∫
δ<t<π

dt

(|eit − 1| − 2aδ)2
.
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Using that |eit − 1| � 2t/π for 0 � t � π and that a � (2π)−1, we obtain the desired
estimate (3.1).

We will now prove (3.2); we will do this by showing that for every z in D, we have

|fδ(z)| � e−πΛ(δ)+Λ(|1−z|). (3.3)

When |1−z| � δ, this inequality holds because |fδ(z)| � 1 and Λ is a decreasing function.
To deal with the case |1 − z| > δ, we argue as follows. Let Eδ be the sub-arc of points eit

on the unit circle satisfying δ � |t| � π. Then we may write

log |fδ(z)| = −Λ(δ)
∫

δ<|t|<π

1 − |z|2
|eit − z|2 dt = −Λ(δ)2π	(z, Eδ, D),

where 	(z, Eδ, D) denotes harmonic measure of Eδ at z in D. A simple geometric argu-
ment shows that when |z−1| > δ, z lies in the domain bounded by Eδ and the hyperbolic
geodesic between the endpoints of Eδ. Therefore, 	(z, Eδ, D) � 1

2 , and (3.3) follows. �

Lemma 3.2. Let c be a positive number and n a positive integer such that 4π2cn �
Λ(1/n), and set Ic(z) = e−c(1+z)/(1−z). Then there exists a bounded analytic function gn

such that

‖1 − gnIc‖Λ,{1},∞ � eB
√

cnΛ(1/n)−πΛ(1/n),

‖gn‖∞ � eB
√

cnΛ(1/n),

where B is a universal constant.

Proof. Applying Lemma 3.1 with δ = δn = 1/n and a =
√

cn/(Λ(1/n)), we obtain

|fδn
(z)| + |Ic(z)| � min(e−4π2aΛ(δ), e−c/(aδ)) = e−4π2

√
cnΛ(1/n)

and
‖fδn

‖Λ,{1},∞ � e−πΛ(1/n).

By the corona theorem, we obtain the desired estimates. �

Proof of Theorem 1.2

Assume first that Λ is integrable. We will use Keldyš’s method [5,6] to prove that this
implies that I is not cyclic. So suppose to the contrary that I is cyclic. Then there exists
a sequence of polynomials (pn) such that ‖Ipn − 1‖Λ,{1},∞ → 0. Thus, in particular,
we have C = supn ‖Ipn‖Λ,{1},∞ < ∞. Since |I∗(ζ)| = 1 for all ζ in T \ {1}, we obtain
|pn(ζ)| � CeΛ(|1−ζ|). Let F be the outer function given by

F (z) = exp
( ∫ 2π

0

eit + z

eit − z
Λ(|1 − eit|) dt

2π

)
.

By the generalized maximum principal, |pn(z)| � C|F (z)| for all |z| < 1. But we also
have limn→∞ pn(z) = 1/|I(z)|, so that |I(z)|−1 � C|F (z)|, but this is impossible since I

is a singular inner function and F is an outer function.
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The proof of the converse is essentially the same as the proof of Theorem 1.1, and we
will therefore only sketch the argument. We begin by noting that

∫ 2

0
Λ(t) dt = ∞ ⇔

∑
n�1

Λ(1/n)
n2 = ∞.

So, by Lemma 2.1, there exists a sequence (nj) such that

Λ(nj+1) � 2Λ(nj) and
∑
n�1

Λ(1/nj)
nj

= ∞.

We fix j0 and choose N so large that

N∑
j=j0+1

Λ(1/nj)
nj

� 4π2B2. (3.4)

Following the scheme of proof for Theorem 1.1, we make the choice

Uj = Iλ2
j
,

where

λ2
j =

Λ(1/nj)
nj

( N∑
k=1

Λ(1/nj0+k)
nj0+k

)−1

.

By our assumption (3.4), Lemma 3.2 applies with c = λ2
j and n = nj for j0 + 1 � j �

j0+N . The rest of the proof follows step by step the last part of the proof of Theorem 1.1.
We omit the details.

Let us note that if we in the latter argument replace the function fδn
in Lemma 3.2 by

z[nΛ(1/n)] (here [x] denotes the integer part of x), then we obtain the result mentioned
in Remark 5 of the introduction: if Λ fails to be integrable, then every singular inner
function is cyclic in B∞

Λ,T.
We finally mention that, by the same method of proof, we may replace B∞

Λ,{1} in
Theorem 1.2 by B2

Λ,{1}, which is the Hilbert space of analytic functions f on D such that

‖f‖2
Λ,{1},2 =

∫
D

|f(z)|2e−2Λ(|1−z|) dµ(z) < ∞.
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5. M. V. Keldyš, Sur l’approximation en moyenne par polynomes des fonctions d’une vari-
able complexe, Mat. Sb. 16(58) (1945), 1–20.

6. N. K. Nikolskii, Selected problems of weighted approximation and analysis, Proceedings
of the Steklov Institute of Mathematics, Volume 120 (American Mathematical Society,
Providence, RI, 1974).

7. N. K. Nikolskii, Treatise on the shift operator (Springer, 1986).
8. J. W. Roberts, Cyclic inner functions in the Bergman spaces and weak outer functions

in Hp, 0 < p < 1, Illinois J. Math. 29 (1985), 25–38.

https://doi.org/10.1017/S1474748012000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748012000035

