
Math. Struct. in Comp. Science (1998), vol. 8, pp. 447–479. Printed in the United Kingdom

c© 1998 Cambridge University Press

On the bisimulation proof method

D A V I D E S A N G I O R G I

INRIA-Sophia Antipolis, 2004 Rue des Lucioles, B.P. 93,

06902 Sophia Antipolis, France.

Email: davide.sangiorgi@inria.fr.

Received 19 June 1995; revised 3 November 1997

The most popular method for establishing bisimilarities among processes is to exhibit

bisimulation relations. By definition, R is a bisimulation relation if R progresses to R itself,

i.e., pairs of processes in R can match each other’s actions and their derivatives are again

in R.

We study generalisations of the method aimed at reducing the size of the relations to be

exhibited and hence relieving the proof work needed to establish bisimilarity results. We

allow a relation R to progress to a different relation F(R), where F is a function on

relations. Functions that can be safely used in this way (i.e., such that if R progresses to

F(R), then R only includes pairs of bisimilar processes) are sound. We give a simple

condition that ensures soundness. We show that the class of sound functions contains

non-trivial functions and we study the closure properties of the class with respect to various

important function constructors, like composition, union and iteration. These properties

allow us to construct sophisticated sound functions – and hence sophisticated proof

techniques for bisimilarity – from simpler ones.

The usefulness of our proof techniques is supported by various non-trivial examples

drawn from the process algebras CCS and π-calculus. They include the proof of the unique

solution of equations and the proof of a few properties of the replication operator. Among

these, there is a novel result that justifies the adoption of a simple form of prefix-guarded

replication as the only form of replication in the π-calculus.

1. Introduction

Bisimilarity has emerged among the most stable and mathematically natural concepts

formulated in concurrency theory over the past decades. It is widely accepted as the

finest (extensional) behavioural equivalence one would want to impose. Its robustness

and elegance are evidenced by various characterisations, in terms of non-well-founded

sets, domain theory, modal logic, final coalgebras, open maps (Aczel 1988; Abramsky

1991; Hennessy and Milner 1985; Rutten and Turi 1994; Joyal et al. 1994). Bisimilarity

has also been advocated outside concurrency theory; for instance, co-induction principles

based on bisimilarity have been proposed for reasoning about equality between elements

of recursively defined domains and data types (Fiore 1993; Pitts 1994).

We first consider bisimilarity on standard labelled transition systems: transitions are of

the form P
µ
−→ Q, where P and Q are called processes, and label µ is drawn from some

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

D. Sangiorgi 448

alphabet of actions. In such systems, bisimilarity, abbreviated ∼, is defined as the largest

symmetric relation R on processes such that

if (P ,Q) ∈ R and P
µ
−→ P ′, there is Q′ such that Q

µ
−→ Q′ and (P ′, Q′) ∈R. (∗)

(∼ can also be viewed as the greatest fixed-point of a certain monotone function on

relations, whose definition closely follows clause (∗).) A relation R which satisfies clause

(∗), without necessarily being the largest such relation, is called a bisimulation relation. By

definition of ∼, a bisimulation relation is contained in ∼, and hence it consists of only

pairs of bisimilar processes. This immediately suggests a proof method for ∼ (which is also

by far the most popular one): to demonstrate that (P ,Q) ∈ ∼ holds, find a bisimulation

relation containing the pair (P ,Q).

Note that in clause (∗), the same relation R is mentioned in the hypothesis and in

the thesis. In other words, when we check the bisimilarity clause on a pair (P ,Q), all

needed pairs of derivatives, like (P ′, Q′), must be present in R. We cannot discard any

such pair of derivatives from R, or even ‘manipulate’ its process components. In this

way, a bisimulation relation often contains many pairs strongly related with each other,

in the sense that, at least, the bisimilarity between the processes in some of these pairs

implies that between the processes in other pairs. (For instance, in a process algebra a

bisimulation relation might contain pairs of processes obtainable from other pairs through

application of algebraic laws for ∼, or obtainable as combinations of other pairs and of

the operators of the language.) These redundancies can make both the definition and the

verification of a bisimulation relation annoyingly heavy and tedious: it is difficult at the

beginning to guess all pairs that are needed; and clause (∗) must be checked on all pairs

introduced.

As an example, let P be a non-deadlocked process from a CCS-like language, and

!P the process defined by !P
def
= P | !P . Process !P represents the replication of P ,

that is, a countable number of copies of P in parallel. (In certain process algebras, e.g.,

the π-calculus, replication is the only form of recursion allowed, since it gives enough

expressive power and enjoys interesting algebraic properties – see Section 6.) A property

that we naturally expect to hold is that duplication of replication has no behavioural

effect, that is, !P | !P ∼ !P . To prove this, we would like to use the singleton relation

Rdef
= {(!P | !P , !P)} .

But R is easily seen not to be a bisimulation relation. If we add pairs of processes to R
in order to make it into a bisimulation relation, we might find that the simplest solution

is to take the infinite relation

R′def
= {(Q1, Q2) : for some R. Q1 ∼ R | !P | !P and Q2 ∼ R | !P } .

The size augmentation in passing from R to R′ is rather discouraging. But it does

somehow seem unnecessary, for the bisimilarity between the two processes in R already

implies that between the processes of all pairs of R′.
The study reported in this paper aims at relieving the work involved with the bisim-

ulation proof method. To anticipate, when applied to the previous example, our proof

techniques allow us to prove the property !P | !P ∼ !P simply using the singleton R.

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

On the bisimulation proof method 449

We generalise the bisimulation proof method by relaxing the bare recursion in (∗). First,

we introduce the notion of progression: a symmetric relation R progresses to a relation

S, which is abbreviated to R�S, if

(P ,Q) ∈ R and P
µ
−→ P ′ imply that there is Q′ such that Q

µ
−→ Q′ and (P ′, Q′) ∈ S.

(Therefore, a relation R is a bisimulation relation iff R � R holds.) We examine

progressions of the form R� F(R), where F is a function from relations to relations.

We are interested in functions F that are sound with respect to ∼, that is, such that

R � F(R) implies R ⊆ ∼. Questions we shall ask ourselves are: Which conditions

ensure soundness of functions? Which interesting functions are sound? Which interesting

properties are satisfied by the class of sound functions?

We show that a simple functorial-like condition, called respectfulness, guarantees the

soundness of a function F on relations. This condition requires that if R ⊆ S and

R� S hold, then F(R) ⊆ F(S) and F(R)� F(S) must hold too. A very useful

property of the class of respectful functions is that it is closed under important function

constructors like composition, union and iteration. Consequently, it suffices to define

a few primitive respectful functions: more complex functions can then be derived via

combinations of the primitive ones, and the soundness of the former follows from that of

the latter.

Among our primitive functions there will be the identity function and the constant-to-∼
function, which maps every relation onto ∼. Another primitive function worth mentioning

is a function C that gives us the closure of a relation R under contexts; that is, R� C(R)

holds if (P ,Q) ∈ R and P
µ
−→ P ′ imply that

there are processes P ′′, Q′′ and a context C such that

P ′ = C[P ′′], Q
µ
−→ C[Q′′] and (P ′′, Q′′) ∈R.

(∗∗)

Function C yields an ‘up-to context’ technique by which a common context in the

derivatives of two processes can be cancelled. We show that, in the case in which the

transition relation among processes is defined structurally on the operators of the language,

certain conditions on the form of the transition rules ensure the respectfulness of C. These

conditions are met in familiar process algebras like ACP (Bergstra and Klop 1984) and

CCS (Milner 1989).

Examples of respectful functions easily derivable from our primitive ones are: the

function that returns the transitive closure of a relation; the function that returns the

closure of a relation under polyadic contexts (i.e., contexts that might have more than one

hole); the function mapping a relation R onto ∼R∼, where ∼R∼ is the composition of

the three relations (this function gives us Milner’s bisimulation up-to ∼ technique (Milner

1989) – in our setting, it is recovered as a combination of the identity and constant-to-∼
functions). Again, more sophisticated functions (and hence proof techniques for ∼) can

in turn be derived from these ones; some of them will be described (and used) in later

sections.

A large part of the paper is devoted to applications of our proof techniques. For this, we

have chosen CCS and the π-calculus. CCS is perhaps the most studied process algebra.

The π-calculus is a process algebra that originates from CCS and permits a natural

modelling of systems with dynamic reconfiguration of their communication topology. We

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

D. Sangiorgi 450

show that our techniques yield simpler proofs of some standard theorems of CCS and

π-calculus. Examples are the unique solution of equations and the distributivity properties

of private replications. We also apply our techniques to derive a new normalisation result

for the π-calculus, asserting that every replication !P can be rewritten in terms of normal

replications ! α.P , where α is a prefix of the language. Normal replications are easier to

deal with. For instance, they enjoy simpler algebraic laws and are easier to implement.

Further applications of the techniques can be found in the proof of the main results

in Sangiorgi (1996) and Boreale and Sangiorgi (1995) – namely the full abstraction of

certain semantics of true-concurrent behavioural equivalences in the π-calculus and in

Sangiorgi (1995) – namely the characterisation of the equivalence induced on lambda-

terms by Milner’s encoding of the (lazy) lambda-calculus into the π-calculus.

Our interest in the π-calculus is motivated by (in addition to its relevance as a process

algebra) certain peculiarities of its transition system, which deviates from a standard

system, like the one for CCS, in some important aspects: first, the π-calculus is a special

case of a value-passing calculus, and hence the labels of its transitions may have more

than one component; and second, π-calculus transition rules utilise alpha conversion and

substitution on names (‘name’ is synonymous with ‘channel’). These features have to be

taken into account in the definition of bisimilarity and, among other things, may separate

bisimilarity and its induced congruence. The separation affects, for instance, the definition

of the function C (closure under contexts): for the use of clause (∗∗) it is fundamental that

bisimilarity be a congruence, since then, intuitively, P ′′ bisimilar with Q′′ implies C[P ′′]

bisimilar with C[Q′′]. If this is not the case, appropriate constraints have to be added

in (∗∗) on the form of context C or on the relationship between processes P ′′ and Q′′.

The peculiarities of π-calculus transition system also suggest other primitive respectful

functions. One is a function that allows us to apply injective substitutions on names to the

derivatives of two processes. This function yields a form of ‘up-to injective substitution’

technique, which is very handy when dealing with universally-quantified substitutions on

names, which are common in the π-calculus.

Related work

Some of the proof techniques described in the paper, or special cases of them, have already

appeared in the literature, but we should stress that there has never been a systematic

study of the topic. For instance, we feel that we lacked the capability of combining simpler

proof techniques into more powerful ones, which is made possible by the theory developed

in this paper.

We have already mentioned Milner’s bisimulation up-to ∼ technique (Milner 1989), in

which the closure of a bisimulation relation is achieved up to bisimilarity itself. The

portability of this technique onto weak bisimilarities (where a special action, called the

silent action, is distinguished from the others and partially ignored in the bisimilarity

clause) has been studied by Milner and Sangiorgi (Sangiorgi and Milner 1992).

Two special cases of the up-to-context technique had been put forward previously. In

Caucal (1990), Caucal defines a notion of self-bisimulation in the setting of BPA processes

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

On the bisimulation proof method 451

(they can be viewed as the processes generated by a context-free grammar), which allows

him to eliminate common prefixes and suffixes in the derivatives of two processes. Self-

bisimulations have been used in Caucal (1990), as well as in a number of other papers

(e.g., Christensen et al. (1995) and Hirshfeld et al. (1996)), to establish decidability results

for the classes of BPA and BPP processes (roughly, the latter differ from the former in

that the composition operator is commutative). Another form of up-to-context technique

is Milner, Parrow and Walker’s bisimulation up-to restriction (Milner et al. 1992), in which

common outermost restrictions in the derivatives of two processes can be discarded.

Finally, the up-to injective substitution technique for the π-calculus is also considered,

or mentioned, by Boreale and De Nicola (Boreale and De Nicola 1995), and Milner,

Parrow and Walker (Milner et al. 1992).

Structure of the paper

In Section 2 we develop the theory of progressions, sound functions and respectful

functions. In Section 3 we present the process algebra CCS, and apply to it our proof

techniques based on respectful functions. In Section 4 we present the syntax and the

operational semantics of the π-calculus. In Section 5 we examine how to transport the

theory of sound and respectful functions onto the non-standard transition system of the

π-calculus; we also introduce a new primitive respectful function, which allows us to work

up to injective substitution on names. In Section 6 we apply the theory of the previous

section to reasoning about bisimilarity among π-calculus processes. Finally, in Section 7

we report some conclusions and possible directions for future work.

2. Progressions and respectful functions

The results in this section hold for any transition system (Pr,Act,−→) with domain Pr, set

of actions (or labels) Act and transition relation −→ ⊆ Pr× Act× Pr. We use P ,Q and

R to range over Pr and call them processes; µ and λ range over Act. We write P
µ
−→ Q

when (P , µ, Q) ∈ −→, to be interpreted as ‘P may become Q by performing an action µ’.

We let R and S range over binary relations on processes, that is, if ℘ denotes the

powerset construct, then R and S are elements of ℘(Pr× Pr). The union of relations R
and S is R∪S, and their composition is RS (that is, (P , P ′) ∈ RS holds if for some P ′′,

both (P , P ′′) ∈ R and (P ′′, P ′) ∈ S hold). We often use the infix notation for relations;

hence P R Q means (P ,Q) ∈ R. We use letters I and J for countable indexing sets in

unions and sums.

Definition 2.1. (Progression) Given two relations R and S, we say that R progresses to

S, written R�S, if P R Q implies:

1 whenever P
µ
−→ P ′, there is Q′ such that Q

µ
−→ Q′ and P ′ S Q′;

2 the converse, that is, whenever Q
µ
−→ Q′, there is P ′ such that P

µ
−→ P ′ and P ′ SQ′.

When R and S coincide, the above clauses are the ordinary ones of the definition of a

bisimulation relation.

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

D. Sangiorgi 452

Definition 2.2. R is a bisimulation relation if R progresses to itself, that is, R� R holds.

Definition 2.3. Two processes P and Q are bisimilar, written P ∼ Q, if P R Q holds, for

some bisimulation relation R.

Therefore, if R progresses to itself, R is made of pairs of bisimilar processes. This is

the basis of the standard method for proving the bisimilarity between two processes: find

a relation R that progresses to itself and that includes the pair of given processes.

However, self-progressions R� R are special cases of progressions, but not the only

ones by which process bisimilarities can be inferred. In this paper, we look for general

conditions on progressions that guarantee this property. As we shall see, the flexibility

so gained will allow us to work with relations often much smaller than those needed to

exhibit self-progressions.

We shall consider progressions of the form R � F(R), where F is a function on

relations, that is, a function from ℘(Pr × Pr) to ℘(Pr × Pr). We call these first-order

functions just functions for short. Below, F and G range over such functions.

Definition 2.4. (Soundness) A function F is sound if, for any R, R � F(R) implies

R ⊆ ∼.

Not all functions are sound. An example is the function that maps every relation to

the universal relation Pr × Pr. We wish to determine a class of sound functions for

which membership is easy to check, that includes interesting functions and that satisfies

interesting properties. We propose the class of respectful functions.

Definition 2.5. (Respectfulness) A function F is respectful if whenever R ⊆ S and

R�S holds, then F(R) ⊆ F(S) and F(R)�F(S) also holds.

Remark 2.6. If we replaced the respectfulness requirement by two separate ones, namely

(a) R ⊆ S implies F(R) ⊆ F(S), and

(b) R�S implies F(R)�F(S),

we would get a stronger definition (i.e., a stronger condition onF) that would not capture

important sound functions, such as the function C for the closure under contexts (Section

2.1).

Remark 2.7. Bisimilarity can also be presented as the greatest fixed-point of a certain

monotone function on relations (Milner 1989, Section 4.6), for which the bisimulation

relations represent the post-fixed-points. Progressions and respectful functions can then

be defined in terms of this fixed-point machinery. We preferred the more operational

Definitions 2.1 and 2.5 because they are simpler to use – for the same reason that it is

easier to establish that a relation is a bisimulation relation from Definition 2.2 rather than

as a post-fixed-point. See the concluding section for more comments on fixed-points and

co-induction.

We show that any respectful function is sound. First, we need two lemmas.

Lemma 2.8. Let R def
=
⋃
i∈I Ri and suppose for all i ∈ I there is j ∈ I such that Ri� Rj

holds. Then R is a bisimulation relation.

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

On the bisimulation proof method 453

Lemma 2.9.

1 If, for some i ∈ I , S� Ri, then also S� (
⋃
i∈I Ri).

2 If, for all i ∈ I , Ri�S, then also (
⋃
i∈I Ri)�S.

Corollary 2.10. If for all i ∈ I there is j ∈ J such that Ri � Sj holds, then also

(
⋃
i∈I Ri)� (

⋃
j∈JSj).

Theorem 2.11. (Soundness of respectful functions) If F is respectful, then F is sound.

Proof. We have to show that if F is respectful and R� F(R) holds, then R ⊆ ∼.

Consider the following inductively-defined sequence of relations {Rn : n ≥ 0}:

R0
def
= R ,

Rn+1
def
= F(Rn) ∪Rn .

Fact: For all n ≥ 0,

1 Rn ⊆ Rn+1;

2 Rn� Rn+1.

Proof of the fact: (1) is by definition of Rn+1. For (2), we proceed by induction on n.

If n = 0, then R�F(R) ∪ R follows from the hypothesis R�F(R) and Lemma

2.9(1). Suppose n > 0. By definition of Rn and Rn+1, we have to show that

(F(Rn−1) ∪Rn−1)� (F(Rn) ∪Rn) . (1)

Since Rn−1 ⊆ Rn and, by induction, Rn−1 � Rn, from the respectfulness of F we

infer that F(Rn−1)�F(Rn). By Corollary 2.10, this and Rn−1� Rn prove (1).

We can now conclude the proof of the theorem. Since for all n, Rn� Rn+1, by Lemma

2.8,
⋃
nRn is a bisimulation relation and hence is contained in ∼. This is enough because

R is contained in
⋃
nRn.

Remark 2.12. The proof of Theorem 2.11 carries over also with a weaker definition of

respectfulness, namely

‘whenever R ⊆ S and R�S hold, then F(R)�F(S) holds too’.

However, in this way we would lose some important properties of the class of respectful

functions, for instance their closure under composition (Lemma 2.14).

Theorem 2.11 shows that a respectful first-order function yields a sound proof technique

for bisimilarity. We can push further and look for ways of combining respectful functions

in which respectfulness is preserved.

We call a function that takes first-order functions as arguments and yields back

another first-order function as a result, a second-order function or, briefly, a constructor.

A constructor is respectful if whenever its first-order function arguments are respectful,

then also the first-order function result is respectful. This hierarchy of functions could be

continued, by defining respectful third-order functions, respectful fourth-order functions

and so on... . We stop at second order because it will be enough for our purposes.

We shall present a few primitive functions and constructors, and prove that they

are respectful. They are rather simple, but give rise to interesting compounds, whose

respectfulness—and hence soundness—comes then for free.

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

D. Sangiorgi 454

The following are two simple primitive respectful functions:

I(R)
def
= R

U(R)
def
= ∼

I is the identity function. U is the constant-to-∼ function, mapping every relation onto the

bisimilarity relation. Later we shall introduce two further primitive respectful functions.

Roughly, one is a function that returns the closure of a relation under contexts (Section

2.1); the other is a function that allows us to manipulate a relation using injective

substitutions on names (this will be introduced when dealing with the π-calculus, in

Section 5).

The primitive constructors we consider are composition (◦), union (∪) and chaining (_),

which are defined as follows:

(G◦F)(R)
def
= G(F(R))

(
⋃
i∈IFi)(R)

def
=

⋃
i∈I (Fi(R))

(G_F)(R)
def
= G(R)F(R) =

{(P , P ′) : for some P ′′,(P , P ′′) ∈ G(R) and (P ′′, P ′) ∈ F(R) }.

(Note that, formally, for arity reasons, there is a different union operator for all

n ∈ {0, 1, . . . , ω}.) Before proving the respectfulness of these primitive functions and

constructors, let us see what we can derive from combinations of them. Examples of

derived functions are

for n > 0, Dn
def
= I_ . . . _I , n times

B def
= U_I_U

T def
=

⋃
n>0Dn .

Function Dn takes a function R and makes the composition of R with itself n times.

Function B represents the classical bisimulation up-to ∼, as in Milner’s book (Milner 1989)

(where the proof of the soundness of B is by checking that R ⊆ B(R) and that B(R) is a

bisimulation relation). Function T returns the transitive closure of a relation. The plain

definitions of these functions are

Dn(R)
def
= {(P , P ′) : for some P1, . . . , Pn+1 with P = P1 and Pn+1 = P ′,

it holds that PiRPi+1 for all 1 ≤ i ≤ n}
B(R)

def
= ∼ R ∼

T(R)
def
= {(P , P ′) : for some n > 0 and processes P1, . . . , Pn+1

with P = P1 and P ′ = Pn+1

it holds that Pi R Pi+1 for all 1 ≤ i ≤ n}.

Examples of derived constructors are exponentiation and iteration, defined using compo-

sition and union as follows:

Fn(R)
def
= F((. . . (F(R)) . . .)) , n times

F∗(R)
def
=

⋃
nFn(R) .

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

On the bisimulation proof method 455

We now come to the proof of the respectfulness of the primitive functions and con-

structors introduced above.

Lemma 2.13. (Identity and constant-to-∼ functions) The identity function I and the

constant-to-∼ function U are respectful.

Lemma 2.14. (Composition, union, chaining) Composition, union and chaining are re-

spectful constructors.

Proof. We only show the proof for chaining. Suppose F and G are respectful. We

check that G_F is respectful also. Suppose R ⊆ S and R� S. Then F(R) ⊆ F(S)

and G(R) ⊆ G(S), which gives (G_F)(R) ⊆ (G_F)(S). We also have to check that

(G_F)(R) � (G_F)(S). Take (P , P ′) ∈ (G_F)(R) with P
µ
−→ P1. Since (P , P ′) ∈

(G_F)(R), there is P ′′ such that (P , P ′′) ∈ G(R) and (P ′′, P ′) ∈ F(S). Moreover, since

by respectfulness of G and F it holds that G(R)� G(S) and F(R)�F(S), for some

P ′′1 and P ′1 the following diagram commutes:

P G(R) P ′′ F(R) P ′

µ ↓ µ ↓ µ ↓
P1 G(S) P ′′1 F(S) P ′1

This shows that (P1, P
′
1) ∈ (G_F)(S). In a symmetric way, one can show that if P ′

µ
−→ P ′1,

then there is P1 such that P
µ
−→ P1 and (P1, P

′
1) ∈ (G_F)(S). We conclude that

(G_F)(R)� (G_F)(S).

We saw that functions B, Dn and T, and constructors Fn and F∗ are definable in

terms of the primitive functions I and U, and of the primitive constructors composition,

chaining and union. Therefore, as a consequence of Lemmas 2.13–2.14, these derived

functions and constructors are respectful.

2.1. Closure of a relation under contexts

We now consider the case (which is standard in process algebras) in which the class of

processes is defined as the term algebra generated by some signature.

We work with one-sorted signatures Σ. We call the (possibly infinite) set of symbols in

Σ the operators of the language. Each operator has a fixed arity n ≥ 0. If the arity of the

operator is 0, we call it a constant operator, if it is n > 0 we call it a functional operator.

The term algebra over signature Σ, written PrΣ, is the least set of strings that satisfy:

— If f is an operator in Σ with arity 0, then f is in PrΣ.

— If f is an operator in Σ with arity n > 0, and t1, . . . , tn are already in PrΣ, then

f(t1, . . . , tn) is in PrΣ.

Thus, having a signature Σ, the process language is PrΣ and a process is an element of

PrΣ.

We shall also be interested in extensions of a signature Σ with constant operators. If

X is a set of symbols not in Σ, then Σ(X) is the signature that has all operators in Σ as

before, and in addition each symbol in X is an operator in Σ(X) with arity 0. We write

PrΣ(X) for the term algebra over Σ(X).

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

D. Sangiorgi 456

2.1.1. Closure under faithful contexts Let Σ be a signature and [·] be a symbol not in

Σ, called hole. A Σ-context is an element of PrΣ([·]) with at most one occurrence of the

hole [·] in it. We use C to range over Σ-contexts. If C is a Σ-context and P ∈ PrΣ, then

C[P] ∈ PrΣ is the process obtained from C by filling the hole [·] with P . We utilise

contexts to define a function CΣ on process relations that makes the closure of a relation

R under a certain class of contexts. Function CΣ will be one of our most useful primitive

respectful functions.

CΣ(R)
def
=

⋃
C faithful

{(C[P], C[Q]) : (P ,Q) ∈ R} . (2)

Before saying what a faithful context is, note that in the definition of CΣ the contexts

used may have at most one occurrence of a unique hole [·]. More sophisticated closures,

involving contexts that may contain different holes, and each of them an arbitrary number

of times, can be recovered as a combination of function CΣ and other respectful functions

of the previous section (see Lemma 3.2). Choosing a simple function CΣ makes the proof

of its soundness simple too.

Definition 2.15. A set Cont of Σ-contexts is a faithful context-set if for all C ∈ Cont and

P ∈ PrΣ, whenever C[P]
µ
−→ R, there exist C ′ ∈ Cont such that either

(a) R = C ′[P] and, for all Q, it holds that C[Q]
µ
−→ C ′[Q], or

(b) there are P ′ ∈ PrΣ and λ ∈ Act such that P
λ−→ P ′ and R = C ′[P ′] and, moreover,

for all Q,Q′ ∈ PrΣ such that Q
λ−→ Q′, it holds that C[Q]

µ
−→ C ′[Q′].

A Σ-context C is faithful if C ∈ Cont, for some faithful context-set Cont.

Remark 2.16. The use of Definition 2.15 is facilitated if Clauses (a) and (b) are merged.

Thus, if P
λ̂−→ Q means ‘P = Q or P

λ−→ Q’, then (a) and (b) can be rewritten as

follows:

— there are P ′ ∈ PrΣ and λ̂ such that P
λ̂−→ P ′ and R = C ′[P ′] and, moreover, for all

Q,Q′ ∈ PrΣ such that Q
λ̂−→ Q′ it holds that C[Q]

µ
−→ C ′[Q′].

The class of faithful contexts is usually very large. In familiar process algebras, such

as ACP and CCS, all contexts are faithful (we shall prove this for CCS in Section 3.2).

Indeed, faithful contexts correspond to Larsen and Liu’s 1-to-1 contexts (Larsen and Liu

1991) (1-to-1 meaning that these contexts have exactly one hole and that they produce

one action at a time).

Lemma 2.17. (Closure under contexts) The function C is respectful.

Proof. Suppose R ⊆ S and R� S. Clearly, C(R) ⊆ C(S) also. Thus, we only have

to prove C(R)� C(S). For this, we have to show that if P R Q holds, C is a faithful

context and C[P]
µ
−→ P ′′, then there are P ′, Q′ and a faithful context C ′ such that

P ′′ = C ′[P ′], Q
µ
−→ C ′[Q′] and P ′SQ′. By definition of faithfulness, if C[P]

µ
−→ P ′′, then

for some process P ′, faithful context C ′ and (possibly empty) action λ̂, we have P
λ̂−→ P ′

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

On the bisimulation proof method 457

and P ′′ = C ′[P ′]. Since R�S and R ⊆ S, for some Q′ the diagram

P R Q

λ̂ ↓ λ̂ ↓
P ′ S Q′

commutes. (Note that the hypothesis R ⊆ S is needed for the case in which λ̂ is empty,

when P ′ = P and Q′ = Q). Again by definition of faithfulness, we have C[Q]
µ
−→ C ′[Q′].

This proves that the diagram

C[P] C(R) C[Q]

µ ↓ µ ↓
C ′[P ′] C(S) C ′[Q′]

commutes, and concludes the proof.

2.1.2. The De Simone format for the transition rules The transition relation for the pro-

cesses of the language generated by a signature Σ can be defined structurally (Plotkin

1981), assigning a set of transition rules to each symbol in Σ. In some cases, it suffices to

look at the format of such transition rules to know that the contexts of the language are

faithful. We show that this is indeed the case for the rules in unary De Simone format over

Σ, which we will often just call De Simone format. It is a simplified version of the format

introduced by De Simone (De Simone 1985) (the main restriction is that only one action

at a time is observable). In Rule (3) below, Xr , 1 ≤ r ≤ n, and Yj , j ∈ J , are metavariables,

which are instantiated with processes when the rule is applied.

Definition 2.18. (Unary De Simone format) A transition rule

Xj

λj−→ Yj (j ∈ J)

f(X1, . . . , Xn)
µ
−→ t

(3)

is in unary De Simone format over Σ if:

— n is the arity of f in Σ.

— J ⊆ {1, . . . , n}.
— Xr , 1 ≤ r ≤ n, and Yj , j ∈ J , are distinct variables.

— t is a term in PrΣ(X ′1, . . . , X
′
n), where for all 1 ≤ r ≤ n, each X ′r occurs at most once in

t, and X ′r = Yr if r ∈ J , X ′r = Xr otherwise.

We show that all contexts of a language whose functional operators have transition

rules in De Simone format are faithful. Actually, we shall be a little more general, and

first consider the case in which only a subset of the functional operators have transition

rules in De Simone format; in this case we can prove the faithfulness of only a subset of

the contexts.

Definition 2.19. ((Σ,Σ′)-contexts) Take signatures Σ and Σ′ with Σ′ ⊆ Σ. Suppose the

meaning of each symbol in Σ′ is given using a set of transition rules in unary De Simone

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

D. Sangiorgi 458

format over Σ′. Then we say that a Σ-context C is a (Σ,Σ′)-context if

1 C ∈ PrΣ (that is, C is a process), or

2 C = [·], or

3 C = f(P1, . . . , Pi−1, C
′, Pi+1, . . . , Pn), where

— f ∈ Σ′,

— n is the arity of f,

— 1 ≤ i ≤ n,
— Pr ∈ PrΣ for r ∈ {1, . . . , n} − {i},
— C ′ is a (Σ,Σ′)-context.

The above inductive definition first asserts that all functional operators in Σ′ have

transition rules in unary De Simone format over Σ′ (that is, are definable within Σ′); then

a Σ-context C is a (Σ,Σ′)-context if all functional symbols above the hole of C are in Σ′.

Proposition 2.20. For any Σ and Σ′, all (Σ,Σ′)-contexts are faithful.

Proof. We show that the class of (Σ,Σ′)-contexts is a faithful context-set. We consider

a context C in such a class and verify the requirement in Definition 2.15 proceeding by

induction on the structure of C . The basic case, when C ∈ PrΣ or Σ = [·], is trivial.

In the inductive case, we have C = f(R1, . . . , Ri−1, C
′, Ri+1, . . . , Rn), for f ∈ Σ′ and

C[P] = f(R1, . . . , Ri−1, C
′[P], Ri+1, . . . , Rn). The last step of the derivation of C[P]

µ
−→ R

uses a rule in unary De Simone format, like Rule (3). Supposing i is in the set J named

in Rule (3) (the case where it is not is simpler), we can write this last step thus:

Rj
µj−→ Tj (j ∈ J − {i}), C ′[P]

µ′

−→ R′

f(R1, . . . , Ri−1, C
′[P], Ri+1, . . . , Rn)

µ
−→ R = C ′′[R′]

(4)

Context C ′′ is a (Σ,Σ′)-context: since f ∈ Σ′, by definition of (Σ,Σ′)-context, each transition

rule for f is in De Simone format over Σ′, and hence all functional operators above the

hole of C ′′ are in Σ′.

By induction, from C ′[P]
µ′

−→ R′ we infer that there is λ̂, P ′ and a (Σ,Σ′)-context D′

such that

P
λ̂−→ P ′ and R′ = D′[P ′] , (5)

and, moreover, for all Q,Q′ ∈ PrΣ with Q
λ̂−→ Q′, we also have

C ′[Q]
µ′

−→ D′[Q′] .

From (4) and (5), we get that R = C ′′[D′[P ′]] = D[P ′], for some (Σ,Σ′)-context D.

Moreover, from (4), but with C ′[Q]
µ′

−→ D′[Q′] in place of C ′[P]
µ′

−→ R′, we infer

f(R1, . . . , Ri−1, C
′[Q], Ri+1, . . . , Rn)

µ
−→ C ′′[D′[Q′]] = D[Q′] .

Summarising, we have found that if C[P]
µ
−→ R, then there are P ′, λ̂ and a (Σ,Σ′)-

context D such that P
λ̂−→ P ′, R = D[P ′] and for all Q,Q′ ∈ PrΣ with Q

λ̂−→ Q′, also

C[Q]
µ
−→ D[Q′]. This concludes the proof.

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

On the bisimulation proof method 459

Corollary 2.21. Consider the process language over a signature Σ in which the meaning

of all functional symbols in Σ is given using a set of rules in unary De Simone format

over Σ. Then all Σ-contexts are faithful.

Proof. With the hypothesis in the corollary, the (Σ,Σ′)-contexts are precisely the

Σ-contexts. Then the result follows from Proposition 2.20.

Corollary 2.21 applies to well-know process algebras like CCS (see Lemma 3.1) and

ACP. The De Simone format excludes, for instance, operators that, in order to release some

action, may require the release of a sequence of actions – as opposed to one action – from

some of their arguments (i.e., using the terminology in Groote and Vaandrager (1992),

these operators have lookahead greater than one), or operators defined with rules with

negative premises, where the requirement on some of the arguments is that they cannot

perform certain actions (Bloom et al. 1995; Groote 1990). Also, the format does not

capture value-passing process algebras, where actions have more structure – they can also

carry values. A special case of value-passing process algebra, namely the π-calculus, which

supports communication of names, will be examined in Sections 4–6.

In the remainder of this paper, to simplify the notation, we omit the indication of the

signature. We assume that there is a given signature Σ, and that all contexts and processes,

as well as quantification over them, are, or refer to, contexts and processes in Σ. Thus,

we shall call a Σ-context simply a context, and we shall abbreviate function CΣ in (2) as

C. Also, we shall abbreviate C(R) as RC and T(R) as RT (that is, RC is the closure

of R under faithful contexts and RT is the transitive closure of R). In applications of

our proof techniques, we shall often employ the sound function ∼ (−C)
T∼, which maps a

relation R onto the relation ∼ (RC)
T∼.

2.1.3. Beyond faithfulness Function C yields the closure with respect to the faithful con-

texts. You might reasonably think that the key property that makes C respectful is that

faithful contexts preserve bisimilarity, and you may therefore wonder whether C could be

strengthened to allow the closure under all contexts that preserve bisimilarity. Let us call

C? this variant of C. We show in this subsection that C? is not respectful.

Consider the simple process language

P := f(P) | a. P | 0

where a.− is a CCS-like prefix, 0 is the inactive process and f is an operator whose

behaviour is given by the rule

X
a−→ X ′ X ′

a−→ X ′′

f(X)
a−→ X ′′

.

Since the transition rules of the operators are in tyft format, all contexts of the language

preserve bisimilarity (Groote and Vaandrager 1992). Note, in particular, that the transition

rule for f uses a lookahead greater than one. Such lookaheads are allowed in the tyft

format but are not in the De Simone format. We can show that, on this language, C? is

not respectful. Take

R def
= {(a. 0, a. a. 0)}.

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

D. Sangiorgi 460

Processes a. 0 and a. a. 0 are not bisimilar. But the diagram

a. 0 a. a. 0

a ↓ a ↓
0 ∼ f(a. 0) C?(R) f(a. a. 0) ∼ a. 0

shows that R�∼C?(R)∼ holds: hence C? is not respectful since, otherwise, function

∼(C?(−))∼ would be so also, and we should have R ⊆ ∼.

The counterexample above still does not show that C? itself is not sound. However, it

does show that even if C? were sound its interest would be rather limited because it could

not be combined with very simple functions such as the constant-to-∼ function.

3. CCS: Operational semantics and proof techniques

We begin this section with a brief synopsis of its contents. We review the syntax and

the operational semantics of CCS. A quick inspection of the transition rules of the CCS

operators shows that all proof techniques for bisimilarity introduced in the previous

section can be applied to CCS processes. We use the techniques to derive a proof, simpler

than the one in Milner (1989), of a standard result of the calculus, namely the uniqueness

of solutions of equations.

3.1. The calculus

We assume an infinite set Names = {a, b, . . . , x, y, . . .} of names and a set of constant

identifiers Constants ranged over by A. The special symbol τ does not occur in Names and

in Constants. The class of the CCS processes is built from the operators of input prefix,

output prefix, silent prefix, parallel composition, sum, restriction, inaction, and constants:

P := α. P | P1 | P2 | P1 + P2 | ν aP | 0 | A

α := a | a | τ .

Following π-calculus syntax (Section 4), we use ν for restriction (ν aP is normally written

P \ a in CCS), and we omit the relabelling operator (which, anyhow, would not bring

complications into the theory we shall present). Moreover, for notational convenience, we

limit ourselves to finite restrictions and finite sums. We suppose that for each constant

A there is a defining equation of the form A
def
= P . We refer the reader to Milner (1989)

for details of the operators of the calculus. Sometimes we use
def
= as an abbreviation

mechanism to assign a name to expressions or relations to which we want to refer later.

In this section, P , Q, and R are CCS processes, and Pr is the class of all CCS processes.

The transition system describing the operational semantics of CCS process is shown in

Table 1; we have omitted the symmetric form of the rules for parallel composition and

summation. In a transition P
µ
−→ Q, the label µ can be an input a, an output a or a

silent move τ. We use α to range over prefixes and µ over actions. We distinguish between

prefixes and actions in analogy with the π-calculus, in which the alphabets for prefixes

and actions are different.

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

On the bisimulation proof method 461

pre: α. P
α−→ P sum:

P
µ
−→ P ′

P + Q
µ
−→ P ′

par:
P

µ
−→ P ′

P | Q
µ
−→ P ′ | Q

com:
P

a−→ P ′ Q
a−→ Q′

P | Q τ−→ P ′ | Q′

res:
P

µ
−→ P ′

ν aP
µ
−→ ν aP ′

µ 6= a, a const:
P

µ
−→ P ′

A
µ
−→ P ′

if A
def
= P

Table 1. The transition system for CCS

3.2. Our proof techniques in CCS

The operational semantics of CCS uses a standard labelled transition system. Hence, to

apply the whole theory of proof techniques for bisimilarity developed in Section 2 to CCS,

we only have to understand which contexts are faithful; these are needed in the definition

of function C (closure under contexts).

Lemma 3.1. All CCS contexts are faithful.

Proof. The CCS language can be described with the signature

Σ
def
= {a. , a. , τ. , | , ν , + , A : a ∈ Names, and A ∈ Constants}

whose symbols have the obvious meaning and the obvious arities. All functional operators

in Σ, namely {a. , a. , τ. , | , ν , + } are defined by transition rules in De Simone format. By

Corollary 2.21, all CCS contexts are faithful.

Therefore, the definition of function C in CCS becomes

C(R)
def
=
⋃
C

{(C[P], C[Q]) : (P ,Q) ∈ R} .

Lemmas 3.1, 2.17 and Theorem 2.11 ensure the soundness of C.

3.3. An application: The proof of the uniqueness of solutions of equations

An interesting example of the application of our proof techniques to CCS is the proof

of the uniqueness of solutions of equations, as from Milner’s book (Milner 1989). This

result says that if a context C obeys certain conditions, then all processes P that satisfy

the equation P ∼ C[P] are bisimilar with each other.

We use a tilde to denote a finite (and possibly empty) tuple. All notations we introduce

are generalised to tuples componentwise: thus, P̃ R Q̃ means that Pi R Qi, for each

component of the vectors P̃ and Q̃. For notational convenience, in this section we work

with polyadic contexts, that is, contexts that may contain an arbitrary number of different

holes [·]1, . . . , [·]n, and, moreover, each of these holes may appear more than once. If C

contains at most holes [·]1, . . . , [·]n, then we say that C is an n-ary context. Moreover, if P̃

is a vector of n processes, then C[P̃] is the process obtained by replacing each occurrence

of the hole [·]i with the i-th component of P̃ .

In Sections 2 and 3.2 we only considered the closure of a relation under monadic

contexts, i.e., contexts containing at most one hole; this closure was given by function C.

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

D. Sangiorgi 462

We can recover the closure of a relation under polyadic contexts as the transitive closure

of the closure under the monadic ones.

Lemma 3.2. If (Pi, Qi) ∈ R, i ≤ i ≤ n, and C is an n-ary context, then

(C[P1, . . . , Pn], C[Q1, . . . , Qn]) ∈ (RC)
T
.

Proof. Let P̃
def
= P1, . . . , Pn and Q̃

def
= Q1, . . . , Qn. We have to show that C[P̃] and C[Q̃]

are in the transitive closure of RC. We proceed by induction on the structure of C . All

cases are simple – we will only look at parallel composition. Suppose C = C1 | C2. By

induction,

(C1[P̃], C1[Q̃]) ∈ (RC)T and (C2[P̃], C2[Q̃]) ∈ (RC)T .

Hence also

(C1[P̃] |C2[P̃], C1[Q̃] |C2[P̃]) ∈ (RC)T and (C1[Q̃] |C2[P̃], C1[Q̃] |C2[Q̃]) ∈ (RC)T .

Since (RC)T is transitive, we infer (C1[P̃] | C2[P̃], C1[Q̃] | C2[Q̃]) ∈ (RC)T.

We say that a context C is weakly guarded if each occurrence of each hole of C is

within some subexpression of the form α. C ′. For instance, α.[·] is weakly guarded, but

[·] | α.[·] is not.

Lemma 3.3. (Milner 1989, Lemma 4.13) If C is weakly guarded and C[P̃]
µ
−→ P ′, then

P ′ is of the form C ′[P̃], and, moreover, for any Q̃, C[Q̃]
µ
−→ C ′[Q̃].

Proof. The proof is by simple induction on the structure of C . Intuitively, since C is

weakly guarded, the processes that fill the holes of C do not contribute to the first action

produced.

We write C̃ for a tuple of contexts C1, . . . , Cn; then C̃[P̃] is C1[P̃], . . . , Cn[P̃].

Proposition 3.4. (Unique solution of equations (Milner 1989, Proposition 4.14(2))) Suppose

C̃ are weakly guarded contexts, with P̃ ∼ C̃[P̃] and Q̃ ∼ C̃[Q̃]. Then P̃ ∼ Q̃.

Proof. Let n be the length of vectors C̃ , P̃ and Q̃, and take

Rdef
= {(Pi, Qi) : 1 ≤ i ≤ n} ,

and suppose Pi
µ
−→ P ′i (the case of a move from Qi is symmetric). From Lemma 3.3 we

deduce that there are C ′i and Q′i such that the following two diagrams commute:

Pi ∼ Ci[P̃]

µ ↓ µ ↓
P ′i ∼ C ′i [P̃]

Ci[Q̃] ∼ Qi
µ ↓ µ ↓
C ′i [Q̃] ∼ Q′i

By Lemma 3.2, this shows that R� ∼(RC)
T∼ holds. Since function ∼(−C)

T∼ is sound,

we infer R ⊆ ∼, which proves the proposition.

In the proof of Proposition 3.4, the cardinality of the relation R is the same as the

cardinality of the vector of given contexts C̃ . In particular, if we are dealing with only one

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

On the bisimulation proof method 463

context (i.e., only one equation), R consists of only one pair. For the proof of Proposition

3.4, Milner (Milner 1989) shows that

R′def
=
⋃
C

{(C[P̃], C[Q̃])}

is a bisimulation up-to ∼ (that is, R′� ∼R′∼ holds), proceeding by induction on the

structure of C . Note that in R′ the contexts in the union are all contexts – including the

unguarded ones.

4. The π-calculus

The π-calculus is an extension of CCS where names are exchanged as a result of a

communication. This allows us to model systems with dynamic linkage reconfiguration

and confers a remarkable expressiveness to the calculus, as testified, for instance, by

various works on the encoding of λ-calculus, of higher-order calculi, of object-oriented

languages and of non-interleaving behavioural equivalences (Milner 1991; Sangiorgi 1992;

Sangiorgi 1996; Boreale and Sangiorgi 1995; Walker 1994).

We briefly review the syntax and the operational semantics of the π-calculus. We refer

the reader to Milner et al. (1992) and Milner (1991) for more details. We maintain the

notations introduced for CCS, which will not be repeated. With respect to CCS, π-calculus

grammar differs in the prefixes, which now present an object part, and in the treatment

of constants, which are now parametrised on a tuple of names. In addition, π-calculus

grammar usually incorporates a matching construct to test for equality between names.

There are two forms of output prefix: the free output ab. P and the bound output a(b). P

(the latter is an abbreviation for ν b ab. P). We admit bound outputs in the syntax of the

calculus because of their important role in the operational semantic and in the algebraic

theory.

P := α. P | P1 | P2 | P1 + P2 | ν aP | 0 | A〈b̃〉 | [a = b]P

α := a(b) | ab | a(b) | τ .

Defining equations take the form A
def
= (̃c)P , which can be thought of as a procedure with

formal parameters c̃; then A〈b̃〉 is like a procedure call with actual parameters b̃. In the

prefixes a(b), ab and a(b) we call a the subject. The operators a(b).P , a(b). P , ν bP and

(b̃)P bind all free occurrences of the names b and b̃ in P . We use fn(P) to denote the set

of free names of P . For notational simplicity, we require that a process only has a finite

number of free names and that in a constant definition A
def
= (̃c)P , vector c̃ contains all

the free names of P . We suppose that it is always possible to alpha-convert bound names

of an expression to ‘fresh’ ones. We shall identify processes that only differ in the choice of

the bound names. The symbol = will mean ‘syntactic identity modulo alpha conversion’.

A substitution is a function from names to names. We use the standard notation for

substitutions, for example, {x/y} is the function that sends y to x and is identity on all

names but y. We use σ, ρ etc. to range over substitutions, and write Pσ for the agent

obtained from P by replacing all free occurrences of any name x by σ(x), with change

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

D. Sangiorgi 464

inp: a(c). P
ab−→ P {b/c} pre: α. P

α−→ P , if α is not an input

sum:
P

µ
−→ P ′

P + Q
µ
−→ P ′

par:
P

µ
−→ P ′

P | Q
µ
−→ P ′ | Q

if bn(µ) ∩ fn(Q) = ∅

com:
P

ab−→ P ′ Q
ab−→ Q′

P | Q τ−→ P ′ | Q′
close:

P
ab−→ P ′ Q

a(b)
−→ Q′

P | Q τ−→ ν b (P ′ | Q′)
if b 6∈ fn(P)

res:
P

µ
−→ P ′

ν aP
µ
−→ ν aP ′

a 6∈ n(µ) open:
P

ab−→ P ′

ν bP
a(b)
−→ P ′

a 6= b

const:
P {b̃/̃c}

µ
−→ P ′

A〈b̃〉
µ
−→ P ′

if A
def
= (̃c)P match:

P
µ
−→ P ′

[a = a]P
µ
−→ P ′

Table 2. The transition system for the π-calculus

of bound names if necessary to avoid captures. Similarly, ασ (or µσ) is the result of

applying σ to the prefix α (or action µ), and does not affect a bound name in α (or µ),

if any. Substitutions have precedence over the operators of the language. Also, σρ is the

composition of the two substitutions, in which σ is applied first; therefore Pσρ is (Pσ)ρ.

The operational semantics of the calculus is defined by the transition rules of Table 2.

The silent action P
τ−→ Q has the same meaning as in CCS. An input action takes the

form P
ab−→ Q and means ‘P receives name b at a and evolves to Q’. Note that label ab

does not have brackets around b, as in an input prefix a(b): This is to show that in the

input prefix name b is a binder (waiting to be instantiated), whereas in an input action b

represents a value (with which an input binder has been instantiated). An output action

can be either of the form P
ab−→ Q or P

a(b)
−→ Q; the latter means ‘P sends the private

(i.e., ‘fresh’) name b at a’. Bound outputs are the central argument of transition rules open

and close, the most original rules of the π-calculus with respect to CCS. All names in an

action are free, except if the action is a bound output, say a(b), in which case a is free but

b is bound. Bound and free names of an action µ (written bn(µ) and fn(µ), respectively)

are defined accordingly. The names of µ (written n(µ) for short) are bn(µ) ∪ fn(µ). We

also work up to alpha conversion on processes in transition systems, for which alpha

convertible agents are deemed to have the same transitions.

The reader familiar with the π-calculus will have noticed that we are using an early

transition system (Sangiorgi 1992) – since the bound names of an input are instantiated as

soon as possible, in the input rule – as opposed to a late transition system (Milner et al.

1992; Milner 1991) – where the instantiation is done later, in the communication rule.

The adoption of an early transition system naturally leads to the adoption of an early

bisimilarity, so christened in the literature to distinguish it from other formulations like

the late and the open (see, for instance, Ferrari et al. (1996)). Our ‘early’ choice is not

critical for the results we shall present, although some definitions (like that of function

CΣ in Section 5) depend upon this choice.

With the given early transition system, the definition of progression between relations

on π-calculus processes only differs from the standard one (Definition 2.1) because a side

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

On the bisimulation proof method 465

condition is added to ensure the ‘freshness’ of bound names of actions, as in the following

definition.

Definition 4.1. A progression R � S, between two relations R and S on π-calculus

processes, holds if for all P R Q

— whenever P
µ
−→ P ′ with bn(µ)∩ fn(Q) = ∅ , there is Q′ such that Q

µ
−→ Q′ and P ′SQ′,

and the symmetric clause, on the actions by Q.

The definitions of a bisimulation relation and of bisimilarity are the same as those for

CCS-like languages in Section 2. However, in contrast with CCS, in π-calculus bisimilarity

is not a full congruence, since it is not preserved by input prefix. This failure arises

because ∼ is not preserved by name instantiation. For instance, [a = b]ac. 0 ∼ 0, but

([a = b]ac. 0){a/b} 6∼ 0{a/b}, since ([a = b]ac. 0){a/b} = [a = a]ac. 0 is not a deadlocked

process. In consequence, we also have d(a). [a = b]ac. 0 6∼ d(a). 0. We therefore also

consider the congruence ∼c induced by ∼ (Milner et al. 1992).

Definition 4.2. (Congruence induced by ∼) We set P ∼c Q, pronounced ‘P and Q are

congruent’, if Pσ ∼ Qσ, for all substitutions σ.

5. Proof techniques for the π-calculus

In comparison with CCS, actions are more structured in the π-calculus (there is an object

part also) and the definitions of transition rules and progression involve alpha conversion

and substitution on names. These differences require straightforward modifications to the

theory of sound and respectful functions presented in Section 2. The only exception is

the definition of function C (closure under contexts) and the proof of its respectfulness.

The Definition 2.15 of faithful contexts (on which the definition of C is based) is limiting

in the π-calculus, because it does not capture all contexts. For instance, C
def
= a(x). [·]

is not faithful: if P
def
= x(y). 0, then C[P]

ab−→ P {b/x}, but there is no λ̂ such that

P
λ̂−→ P {b/x}. The problem has to do with substitutions, which play an important role

in the π-calculus and cannot be ignored. Besides substitutions, in the π-calculus a closure

under contexts should arguably take into account the difference between bisimilarity and

induced congruence. Intuitively, if we have to prove C[P] ∼ C[Q], then it is not sound,

in general, to cut the common context C and prove P ∼ Q, for P ∼ Q might not imply

C[P] ∼ C[Q]. One solution to this is to require that the hole occurs in C in a special

position, so to guarantee that C preserves the bisimilarity between P and Q. Another

solution is to prove that P and Q are congruent, rather than bisimilar.

We therefore revisit the definition of function C and the proof of its respectfulness for

the π-calculus. We call the new function Cπ . We recall that a context C is weakly guarded

if the possible occurrence of the hole [·] is within a subexpression of C of the form α. C ′;

otherwise C is non-weakly-guarded. We set

Cπ(R)
def
=

⋃
C non−weakly−guarded {(C[P], C[Q]) : (P ,Q) ∈ R}

⋃⋃
C weakly guarded {(C[P], C[Q]) : (Pσ,Qσ) ∈ R, for all σ} .

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

D. Sangiorgi 466

Remark 5.1. Note that if R is closed under substitutions, then Cπ(R) simply becomes⋃
C

{(C[P], C[Q]) : (P ,Q) ∈ R} .

Proposition 5.2. Function Cπ is respectful.

Proof. Suppose that R ⊆ S and R� S. Then, clearly, Cπ(R) ⊆ Cπ(S). We also

have to check that Cπ(R) � Cπ(S) holds. For this, given (C[P], C[Q]) ∈ Cπ(R) with

C[P]
µ
−→ R, we show that there are C ′, P ′ and Q′ such that

R = C ′[P ′], C[Q]
µ
−→ C ′[Q′] and (C ′[P ′], C ′[Q′]) ∈ Cπ(S) . (6)

We proceed by induction on the structure of C .

Case 1 C = [·].
Then C[P] = P , C[Q] = Q and (6) follows from the hypothesis R�S.

Case 2 C = a(x). C ′.

Then C[P] = a(x). C ′[P], C[Q] = a(x). C ′[Q], µ = ab, for some b, and

R = C ′[P]{b/x} = C ′′[P {b/x}],

for C ′′ = C ′{b/x}. Moreover, we have that C[Q]
ab−→ C ′′[Q{b/x}]. Since C is weakly

guarded, from the definition of Cπ we deduce that (P {b/x}σ, Q{b/x}σ) ∈ R for all σ.

This and the hypothesis R ⊆ S demonstrate (C ′′[P {b/x}], C ′′[Q{b/x}]) ∈ Cπ(S).

Case 3 C = C1 | T , or C = T | C1.

We will look at the case C = C1 |T . There are three possibilities to consider, according

to whether the action C[P]
µ
−→ R comes from C1[P] alone, from T alone or from

an interaction between C1[P] and T . We only consider the first, since the other two

are similar. So, suppose

C1[P]
µ
−→ R′ and R = R′ | T . (7)

By definition of Cπ , (C1[P] | T ,C1[Q] | T) ∈ Cπ(R) implies

(C1[P], C1[Q]) ∈ Cπ(R) . (8)

From (8) and (7), by induction, there are C ′1, P ′ and Q′ such that

R′ = C ′1[P ′], C1[Q]
µ
−→ C ′1[Q′] and (C ′1[P ′], C ′1[Q′]) ∈ Cπ(S) .

Moreover, using rule par, we have

C1[Q] | T
µ
−→ C ′1[Q′] | T . (9)

Finally, since (C ′1[P ′], C ′1[Q′]) ∈ Cπ(S) and the addition of a parallel component does

not change the guardedness of a context, we get

(C ′1[P ′] | T ,C ′1[Q′] | T) ∈ Cπ(S) . (10)

If C ′
def
= C1 | T , then R = C ′1[P ′] | T , (9) and (10) prove (6).

Case 4 C = ab. C ′, or C = τ. C ′ or C = C1 + T , or C = T + C1, or C = ν aC ′, or

C = A〈b̃〉, or C = [a = b]C ′.

These cases are easy.

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

On the bisimulation proof method 467

A useful fact, which is derived from Definition 4.2 of the congruence ∼c, is the following

corollary.

Corollary 5.3. Suppose that R�F(R) holds, for some sound function F, and suppose

that for two given processes P and Q, and for all substitutions σ, we have that (Pσ,Qσ) ∈R.

Then P ∼c Q.

A special case of this corollary occurs when the relation R itself is closed under

substitutions, in which case P ∼c Q holds for all pairs (P ,Q) in R.

5.1. Closure of relation under injective substitutions on names

A substitution σ on names is injective on a set V of names if for all a, b ∈ V , we have

σ(a) = σ(b) implies a = b. A substitution σ is injective if it is injective on the set of all

names.

A primitive respectful function, very useful in the π-calculus, is one that allows us to

work up to injective substitutions on names. It is called Sub and is defined as follows:

Sub(R)
def
= {(Pσ,Qσ) : (P ,Q) ∈ R and σ is injective on fn(P ,Q)} .

We will show that Sub is respectful, but first we need the following lemma.

Lemma 5.4. Let σ be a substitution injective on a finite set V of names with fn(P) ⊆ V .

Then there is an injective substitution ρ with σ(a) = ρ(a) for all a ∈ V , such that:

1 If P
µ
−→ P ′, then Pρ

µρ
−→ P ′ρ.

2 If Pρ
µ′

−→ P ′′, then there are P ′ and µ with P
µ
−→ P ′ and µρ = µ′, P ′ρ = P ′′.

Proof. We define the function ρ. Then, checking that ρ satisfies Clauses (1) and (2) can

be done by transition induction; all cases are simple, and we omit them. Let W , W− and

V− be the following sets of names:

W
def
= {σ(a) : a ∈ V }

W− def
= W − V = {a : a ∈W and a 6∈ V }

V−
def
= V −W = {a : a ∈ V and a 6∈W } .

Since σ is injective on V , sets V and W have the same finite cardinality; hence also sets

V− and W− have the same finite cardinality. Take an ordering of names in V− and W−,

say

W− = {a1, . . . , an} ,
V− = {b1, . . . , bn} .

The substitution ρ is specified as follows:

ρ(a)
def
=


σ(a) if a ∈ V
bi if a = ai ∈W−

a otherwise, that is a 6∈ (V ∪W−) .

Function ρ is injective: first, notice that names in V are mapped onto distinct names of

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

D. Sangiorgi 468

W , and that names in W− are mapped onto distinct names in V−. Hence ρ, restricted to

V ∪W , is an injective function from this set onto itself. Since names not in V ∪W are

mapped onto themselves, ρ is injective on all names (in fact, ρ is a bijection).

Proposition 5.5. Function Sub is respectful.

Proof. We have to show that if R ⊆ S and R� S, then Sub(R) ⊆ Sub(S) and

Sub(R)�Sub(S). The former is straightforward, so we only look at the latter.

Take (Pσ,Qσ) ∈ Sub(R) for some (P ,Q) ∈ R and σ injective on fn(P ,Q). Suppose

Pσ
µ′

−→ P ′′. We have to find Q′′ such that

Qσ
µ′

−→ Q′′ and (P ′′, Q′′) ∈ Sub(S) . (11)

Let ρ be the injective function that Lemma 5.4 associates to σ and the set of names

fn(P) ∪ fn(Q); thus Pρ = Pσ and Qρ = Qσ. By Lemma 5.4(2), there are µ and P ′ such

that P
µ
−→ P ′, µ′ = µρ and P ′′ = P ′ρ. Since R�S, the diagram

P R Q

µ ↓ µ ↓
P ′ S Q′

commutes, for some Q′. By Lemma 5.4(1), Qρ
µρ
−→ Q′ρ. Hence the diagram

Pρ Sub(R) Qρ

µρ ↓ µρ ↓
P ′ρ Sub(S) Q′ρ

commutes also. Therefore, for Q′′
def
= Q′ρ, since P ′ρ = P ′′, Qρ = Qσ and µρ = µ′, this

proves (11).

Having proved thatSub is respectful, we know that it is a sound function and, moreover,

we can safely combine it with other respectful functions, following the indications in

Section 2.

6. Applications of the proof techniques in the π-calculus

6.1. Use of the closure under injective substitutions on names

The closure under injective substitutions on names (that is, function Sub of Section

5.1) is useful for cases in which universal quantifications on substitutions are involved.

For instance, such quantifications are present (implicitly) in the clause of progression for

inputs and bound outputs (Definition 4.1), and (explicitly) in the definition of function

Cπ .

As a simple example of the application of function Sub, consider the processes

P
def
= a(x). ν b (xb | bx)

Q
def
= a(x). ν b xb. bx ,

and suppose we want to prove P ∼ Q. If we were to look for a bisimulation relation

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

On the bisimulation proof method 469

containing P and Q as a pair, then at least we would need

R def
= {(P ,Q), (0 | 0, 0)}

⋃⋃
c∈Names {(ν d (cd | dc), ν d cd. dc) : d 6= c} ⋃⋃
c∈Names

⋃
d∈Names {(0 | dc, dc) : d 6= c} .

Note that R contains three unions that range over the infinite set of names. These unions

are needed because, for all names d and c with d 6= c, processes P and Q can perform an

input action labelled ac and then a bound output action labelled c(d). Exploiting function

Sub, we can prove P ∼ Q by simply taking

R′ def
= {(P ,Q), (ν b (xb | bx), xb. bx), (0 | bx, bx), (0 | 0, 0)} ,

where b and x are any pair of distinct names. R′ only contains four pairs of processes. It

is easy to check that R′�Sub(R′) holds, and hence {(P ,Q)} ⊆ R′ ⊆ ∼.

We can do better than R′ using a combination of function Sub and simple respectful

functions for garbage collecting processes 0 from parallel compositions, and for discarding

pairs of syntactically equal derivatives (it is easy to define respectful functions that do

this). In this way, P ∼ Q can be proved by exhibiting a relation made of only two pairs

of processes, namely (P ,Q) and (ν b (xb | bx), xb. bx).

6.2. Unique solutions of equations

As with our treatment of CCS, we can use the function ∼(−Cπ)T∼ in the π-calculus to

get a simpler proof of the uniqueness of solutions of equations. Both the assertion and

the proof of the result are similar to those given for CCS in Section 3.3. There is, however,

an additional ingredient in the π-calculus, namely the use of parameters in constant

definitions and calls. Because of this, and because ∼ is not preserved by substitution of

names, the uniqueness result must be proved with respect to the congruence ∼c , rather

than the bisimilarity ∼. We omit the details.

6.3. Normalisation of replications

To express processes with an infinite behaviour, some presentations of the π-calculus use

the replication operator !P in place of recursive definitions. Intuitively, !P stands for

a countably infinite number of copies of P in parallel. It is easy to code replication up

using recursive definitions†. And if the number of recursive definitions is finite, then the

reverse direction holds also (Milner 1991).

The transition rule for replication is

rep:
P | !P

µ
−→ P ′

!P
µ
−→ P ′

.

In this and the following subsection, we exploit our proof techniques based on sound

functions to demonstrate some results about the replication operator. The main result of

† The recursive definition for !P would be !P
def
= P | !P ; in Section 1 replication was presented in this way.

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

D. Sangiorgi 470

this subsection is new. It says that, if we choose to have replication in the grammar of

the π-calculus, a simple form of replication suffices, namely normalised replications of the

form ! α.P . All ‘free’ replications !P can be coded up using normalised replications, up

to the bisimilarity congruence ∼c. The proof of this result is obtained in three steps, the

first of which uses our proof techniques, whereas the other two use a standard structural

induction. Subsection 6.4 considers certain distributivity properties of private replications,

which were first proved by Milner (Milner 1991).

Throughout this and the next subsection, we assume that the syntax of the π-calculus

expressions contains the replication operator !P in place of recursive definitions. The def-

inition of function Cπ and the proof of its soundness (Proposition 5.2) remain unchanged

if in the definition of Cπ we require that the hole of a context cannot occur underneath a

replication; this will suffice in the examples below. It is easy to extend this definition, and

allow holes of contexts also underneath replications, by utilising polyadic contexts.

Definition 6.1. We say that a replication !P is normal if P is of the form α. Q. A process

has normalised replications if all replications it contains are normal.

Normalised replications can be given the simple transition rule

rep-nor:
α.P

µ
−→ P ′

! α.P
µ
−→ P ′ | ! α. P

or, alternatively, the two rules

rep-inp: ! a(x). P
ab−→ P {b/x} | ! a(x). P

rep-pre: ! α. P
α−→ P | ! α. P , if α is not an input.

Remark 6.2. As an aside, we wish to point out that rule rep-nor (as well as rep-inp

and rep-pre) preserves the following pleasant property of π-calculus transition system in

Table 2, and which we state here very informally: if two inference proofs of transitions

P
µ
−→ P ′ and P

µ
−→ P ′′ involve the same prefix(es) of P , then P ′ and P ′′ are syntactically

the same (up to alpha conversion). This is a handy property to have, for example, when

examining the set of derivatives of a process, because it makes it easier to reason by

structural induction on processes. This property does not hold for rule rep. For instance,

we can infer

! ab. Q
ab−→ Q | ! ab. Q and ! ab. Q

ab−→ ab. Q | Q | ! ab. Q ;

in these transitions, the same prefix ab of ! ab. Q is consumed, but the derivatives Q| ! ab. Q
and ab. Q | Q | ! ab. Q are syntactically different.

Lemma 6.3.

1 P | !P ∼c !P ;

2 ! (P | Q) ∼c !P | !Q;

3 ! (P + Q) ∼c ! (P | Q).

Proof. Assertion (1) is trivial: because of the transition rule for replication, for each P ,

we have !P
µ
−→ P ′ iff P | !P

µ
−→ P ′. Assertions (2) and (3) can be proved by exhibiting

the appropriate progressions, both of which are of the form R� ∼RCπ∼. For (2), the

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

On the bisimulation proof method 471

relation to use is

R2
def
=
⋃
P ,Q

{(! (P | Q), !P | !Q)},

and for (3) it is

R3
def
=
⋃
P ,Q

{(! (P + Q), ! (P | Q))} .

Relations R2 and R3 are closed under substitutions, hence, by Corollary 5.3, they can be

used to prove ∼c equalities.

We consider the proof of R3� ∼(R3)Cπ∼ in detail. We check that ! (P |Q) can match

the moves by ! (P +Q); the converse, on the actions by ! (P |Q), can be treated similarly.

By transition induction, we prove that if ! (P + Q)
µ
−→ T1, then there is R such that

T1 ∼ R | ! (P + Q) and, for some T2, ! (P | Q)
µ
−→ T2 ∼ R | ! (P | Q) . (12)

This shows that (T1, T2) ∈ ∼R3
Cπ ∼, and we are done. Note that we use function Cπ to

cancel context R | [·]: according to the definition of Cπ , this is legitimate because R | [·]
is a non-weakly-guarded context (actually, in the case of relation R3 we could cancel any

context because R3 is closed under substitutions on names – see Remark 5.1).

To infer ! (P + Q)
µ
−→ T1, the last rule applied must have been of the form

(P + Q) | ! (P + Q)
µ
−→ T1

! (P + Q)
µ
−→ T1

.

Therefore, there are three cases to consider, depending on whether (P+Q)| ! (P+Q)
µ
−→ T1

comes from P + Q alone, from ! (P + Q) alone or from an interaction between P + Q

and ! (P + Q). We only look at the last case, assuming P is the summand of P + Q that

is used, and that it performs an input at a of the free name b. Thus we have, for some T ′1

and P ′ such that P
ab−→ P ′:

P + Q
ab−→ P ′ ! (P + Q)

ab−→ T ′1

(P + Q) | ! (P + Q)
τ−→ T1 = P ′ | T ′1

. (13)

By the induction assumption, for some R′, we have

T ′1 ∼ R′ | ! (P + Q) (14)

and, for some T ′2,

! (P | Q)
ab−→ T ′2 ∼ R′ | ! (P | Q) . (15)

Therefore we can infer

P | Q ab−→ P ′ | Q ! (P | Q)
ab−→ T ′2

(P | Q) | ! (P + Q)
τ−→ P ′ | Q | T ′2

! (P | Q)
τ−→ P ′ | Q | T ′2

. (16)

By (15),

P ′ | Q | T ′2 ∼ P ′ | Q | R′ | ! (P | Q) . (17)

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

D. Sangiorgi 472

L1 ν a (P + Q) ∼c ν aP + ν aQ

L2 ν a [b = c]P ∼c [b = c]ν aP if a 6∈ {b, c}
L3 ν a [a = b]P ∼c 0 if a 6= b

L4 ν a [a = a]P ∼c ν aP

L5 ν a α. P ∼c α. ν aP if a 6∈ n(α)

L6 ν a α. P ∼c 0 if α is an input or an output at a

L7 [a = b](P + Q) ∼c [a = b]P + [a = b]Q

L8 ! [a = b]P ∼c [a = b] !P

L9 ! α. P ∼c α. (P | ! α. P) if bn(α) ∩ fn(α.P) = ∅

Table 3. Some simple laws for the π-calculus

Moreover, from associativity and commutativity of parallel composition, and Lemma

6.3(1–2) we get

P ′ | Q | R′ | ! (P | Q) ∼ P ′ | R′ | Q | !P | !Q (18)

∼ P ′ | R′ | !P | !Q

∼ P ′ | R′ | ! (P | Q) .

Now, define R
def
= P ′ | R′. From (13) and (14), we have T1 ∼ R | ! (P + Q), and, from

(16–18), we have ! (P | Q)
τ−→∼ R | ! (P | Q). This proves (12).

In the proof of Assertions (2) and (3) of Lemma 6.3, the possibility of cutting contexts

off, achieved through the closure under contexts, reduces the size of the relations to exhibit

sensibly. Indeed, if we fix the processes P and Q to examine, and we content ourselves

with proving bisimilarity (rather then congruence) results, then relations R2 and R3 would

only contain one pair of processes. For instance, R3 would be

{(! (P + Q), ! (P | Q))} .

Without the closure under contexts, the relations R2 and R3 in the proof of Lemma

6.3 would consist of pairs of processes with at least a further component. For instance,

R3 would become

R′3
def
=
⋃
P ,Q,R

{(R | ! (P + Q), R | ! (P | Q))}

(R′3 progresses to ∼R′3∼). Having R′3 in place of R3 does not make the proof conceptually

more difficult, but it does make it more tedious.

Remark 6.4. Reasoning as above, one can prove the result !P | !P ∼ !P , mentioned in

Section 1, using the singleton relationRdef
= { !P | !P , !P }, and showing thatR� ∼(R)Cπ∼

holds.

Table 3 contains a few simple π-calculus laws, which will be used in Lemma 6.5. We

shall also use the expansion law, as formulated in Parrow and Sangiorgi (1995), and which

for ease of reference is reported in Table 4. We abbreviate the sum of processes Pi, i ∈ I ,
as
∑

i∈I Pi, and their parallel composition as
∏

i∈I Pi. We use M to range over (possibly

empty) match sequences; thus if M is [a = b][c = d], then MP is [a = b][c = d]P .

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

On the bisimulation proof method 473

Let P
def
=
∑

i Miαi. Pi and Q
def
=
∑

j Njβj . Qj where no αi (respectively, βj) binds a name free in Q

(respectively, P).

Then infer

P | Q ∼c
∑
i

Miαi. (Pi | Q) +
∑
j

Njβj . (P | Qj) +
∑

αi opp βj

MiNj [xi = yj]τ. Rij

where xi and yj are the subjects of αi and βj , respectively, and αi opp βj and Rij are defined as follows:

1 αi is xiu and βj is yj (v); then Rij is Pi | Qj{u/v};
2 αi is xi(u) and βj is yj (v); then Rij is ν w (Pi{w/u} | Qj{w/v}), where w is a fresh name;

3 the converse of (1);

4 the converse of (2).

Table 4. The expansion law for the π-calculus

Lemma 6.5. For each process P there is a process Q of the form
∑

i∈I Miαi. Pi such that

P ∼c Q. Moreover, the maximal number of nestings of replications in P and in Q is the

same.

Proof. The proof is by induction on the structure of P . The transformations we shall

impose do not modify the nesting of replications. If P = α. P ′, there is nothing to prove.

If P = P1 + P2, use induction twice. If P = [a = b]P ′, use induction plus Law L7. If

P = P1 | P2, use induction plus the expansion law. If P = ν aP ′ use induction plus Laws

L1–L6 to push a restriction underneath a sum, a matching, and a prefix, plus (possibly)

the laws

[a = b]0 ∼c 0

P + 0 ∼c 0

to garbage collect 0 processes. We are left with the case of replication, that is, P = !P ′.

By induction, P ′ ∼c
∑

j∈J Mjαj . P
′
j , and we can deduce

!P ∼c ! (
∑

j∈J Mjαj . P
′
j)

∼c ! (
∏

j∈J Mjαj . P
′
j) (Lemma 6.3(3))

∼c
∏

j∈J !Mjαj. P
′
j (Lemma 6.3(2))

∼c
∏

j∈J Mj ! αj . P
′
j (law L8)

∼c
∏

j∈J Mjαj . (Pj | !P ′j) (law L9).

Finally,
∏

j∈J Mjαj . (Pj | !P ′j) can be rewritten into the form
∑

i∈I Miαi. Pi by means of the

expansion law.

Theorem 6.6. For every process P there is a process Q with normalised replications such

that P ∼c Q.

Proof. The proof is by induction on the maximal number of nested replications in

P . If P does not have replications, there is nothing to prove. For the inductive case, we

proceed by induction on the structure of P . The only interesting case is when P = !P ′. By

Lemma 6.5, P ′ ∼c
∑

i∈I Miαi. P
′
i and the two processes have the same maximal number

of nested replications. By the induction on the number of nested replications, there are

processes P ′′i ∼c P ′i with normalised replications. We can thus derive

!P ∼c ! (
∑
i∈I

Miαi. P
′′
i) ,

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

D. Sangiorgi 474

and then, by Lemmas 6.3(2–3) and law L8,

∼c ! (
∏

i∈I Miαi. P
′′
i)

∼c
∏

i∈I !Miαi. P
′′
i

∼c
∏

i∈I Mi ! αi. P
′′
i ,

which is a process with normalised replications.

6.4. Distributivity properties of private replications

In Milner (1991), Milner shows certain distributivity properties for private replications

with respect to parallel composition and replication. The importance of these properties

has emerged in different situations, such as the correctness of the encodings of λ-calculus

and higher-order calculi into the π-calculus (Milner 1991; Sangiorgi 1992) and in reasoning

about data structures (Walker 1994).

The replication theorems Assume that a occurs free in R, P1, P2, and α.P only as subject

of output prefixes. Then†

1 ν a (! a(x).R | P | Q) ∼c ν a (! a(x).R | P) | ν a (! a(x).R | Q);

2 ν a (! a(x). R | ! α.P) ∼c ! ν a (! a(x). R | α. P).

For the proof of these assertions, Milner (Milner 1991) uses relations R1 and R2,

defined as below, and proves that they progress to ∼R1∼ and ∼R2∼, respectively. We let

N be the set of all processes that contain name a free only as subject of output prefixes:

R1
def
=

⋃
P ,Q,R∈ N, b̃⊆finNames

{(
ν b̃ ν a (! a(x). R | P | Q),

ν b̃ (ν a (! a(x). R | P) | ν a (! a(x). R | Q))
)}

R2
def
= ⋃
α.P ,Q,R∈ N, b̃⊆finNames

{(
ν b̃ ν a (! a(x). R | ! α.P | Q),
ν b̃ (! ν a (! a(x). R | α.P) | ν a (! a(x). R | Q))

)}
where b̃ ⊆fin Names means that b̃ is a finite tuple of names. Since R1 and R2 are

closed under substitutions on names, they give us ∼c equalities (Corollary 5.3); and the

assertions of the replication theorems follow for b̃ = ∅ and Q = 0.

The use of function Cπ (closure under contexts) allows us a few simplifications. In the

proof of (1), it allows us to eliminate the outermost vector of restrictions ν b̃ from R1,

and take

R′1
def
=

⋃
P ,Q,R∈ N

{(ν a (! a(x). R | P | Q), ν a (! a(x). R | P) | ν a (! a(x). R | Q))} .

† To simplify the case analysis in the proof, in the assertion of the second replication theorem we have used

a normalised replication ! α. P , in place of a ‘free’ replication !P as used by Milner (Milner 1991). Some

justification for this simplification comes from Theorem 6.6.

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

On the bisimulation proof method 475

In the proof of (2), the use of Cπ suggests a drastic simplification of R2, by taking

R′2
def
=

⋃
α.P ,R∈ N

{(ν a (! a(x). R | ! α.P), ! ν a (! a(x). R | α.P))} .

To see that R′2 progresses to ∼ (R′2)Cπ∼, suppose (Q1, Q2) ∈R′2, for

Q1
def
= ν a (! a(x). R | ! α. P) ,

Q2
def
= ! ν a (! a(x). R | α. P) .

We assume that α is an output at a, say α = ab; all other cases are similar. The only

moves that Q1 and Q2 can do (up to unfolding of replications) are

Q1
τ−→ ν a (R{b/x} | ! a(x). R | P | ! α.P)

def
= Q′1

Q2
τ−→ ν a (R{b/x} | ! a(x). R | P) | Q2

def
= Q′2 .

Now, let

C
def
= ν a (! a(x). R | R{b/x} | P) | [·] .

We have, by the first replication theorem and commutativity and associativity of parallel

composition

Q′1 ∼ ν a (! a(x). R | R{b/x} | P | ! α.P)

∼ ν a (! a(x). R | R{b/x} | P) | ν a (! a(x). R | ! α.P) = C[Q1] ,

Q′2 ∼ ν a (! a(x). R | R{b/x} | P) | Q2 = C[Q2] .

This shows that (Q′1, Q
′
2) ∈ ∼ (R′2)Cπ∼, and concludes the proof.

7. Conclusions and further developments

In this paper, we have studied generalisations of the bisimulation proof method that allow

us to reduce the size of the relations to exhibit (and hence relieve the work needed) for

establishing bisimilarity results. We have relaxed the self-progression requirement in the

definition of a bisimulation relation, namely R� R, and considered progressions of the

form R�F(R), where F is a function on relations. The sound functions are those for

which R�F(R) implies that R only contains pairs of bisimilar processes, for all R. We

have given a condition on functions, called respectfulness , which ensures soundness. We

have shown that the class of respectful functions contains non-trivial functions and and

that it enjoys closure properties with respect to important function constructors: thus,

sophisticated sound functions (and hence sophisticated proof techniques) can be derived

from simpler ones.

The usefulness of our proof techniques has been supported by various non-trivial

examples (drawn from CCS and the π-calculus), which include the proof of the unique

solution of equations and the proofs of a few properties of the replication operator.

Among these, there is a novel result, which justifies the adoption of the simple form of

replication ! α. P as the only form of replication in the π-calculus.

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

D. Sangiorgi 476

One of our most useful primitive proof techniques is an ‘up-to context’ technique, which

allows us to cancel a common context in the derivatives of two processes. We have shown

that the associated function is respectful if the contexts cancelled are faithful, but that it

loses respectfulness if the cancelled contexts are simply required to preserve bisimilarity –

a property weaker than faithfulness. We have also seen that if the transition rules for the

operators of the language are in unary De Simone format, all contexts of the language

are faithful. It remains to find out how far beyond faithfulness and the De Simone format

it is possible to go while preserving respectfulness. Groote and Vaandrager’s tyft format

(Groote and Vaandrager 1992) – but without lookaheads greater than one – and Bloom,

Istrail and Meyer’s GSOS format (Bloom et al. 1995) are examples of formats that would

be interesting to examine. Lookaheads greater than one, present in the tyft format, must

be disallowed in the light of the counterexample in Section 2.1.3.

Most of the respectful functions F that we have considered have the property that

if a relation R progresses to F(R), then F(R) is a bisimulation relation: that is, the

bisimulation relation is found after one application of the respectful function. However,

the definition of respectfulness (Definition 2.5) allows us greater freedom: in the proof of

soundness for respectful functions (Theorem 2.11), the bisimulation relation is constructed

from a sequence of relations in which the respectful function is applied unboundedly

many times. This suggests another direction to investigate, namely the search for other

useful respectful functions and function constructors, to be added to those we have

found.

In this paper, we have confined ourselves to strong bisimilarities, where all actions

are treated equally. A natural development of our work is to look at weak bisimilarities,

where a special action, called the silent action, is distinguished from the others and

partially ignored in the bisimilarity clause. Often a weak bisimilarity is not preserved by

dynamic operators, i.e., operators like CCS or π-calculus sum that can be discharged

when some action is performed. This introduces problems for the soundness of the up-to-

context technique similar to those we had to face in Section 5 with the π-calculus (where

bisimilarity is not a congruence) and which, therefore, might be dealt with in an analogous

way. In the weak case it might also be harder to establish results about combinations of

proof techniques (i.e., to develop a theory of sound or respectful function constructors).

The reason is that the soundness of some basic techniques for weak bisimilarities presents a

few rather delicate points whose fragility might be enhanced in combinations of techniques

(see, for instance, the study of ‘weak bisimulations up-to weak bisimilarity’ in Sangiorgi

and Milner (1992)).

We believe that our proof techniques could be very advantageous in higher-order

calculi like CHOCS (Thomsen 1990), or Higher-Order π-calculus (Sangiorgi 1992), i.e.,

calculi in which terms can be exchanged in a communication. For instance, a few rather

involved proofs in Sangiorgi (1992), dealing with the Higher-Order π-calculus, should

become simpler using some form of ‘bisimulation up-to context’ (see Remark 6.6.18 in

Sangiorgi (1992)). Our proof techniques should also be useful in higher-order functional

languages, for instance, for reasoning about applicative bisimilarity of programs (Abramsky

1989).

The bisimulation proof method stems from the theory of fixed-points and the co-

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

On the bisimulation proof method 477

induction principle (Milner 1989; Milner and Tofte 1991). On a complete lattice (i.e., a

partial order with all joins) the co-induction principle says

Let (D,<) be a complete lattice, and G : D → D a monotone function with greatest

fixed-point µG. To prove that x < µG it suffices to prove that x is a post-fixed-point of

G, that is, x < G(x).

When the bisimilarity relation ∼ is interpreted as the greatest fixed-point of a certain

continuous function on relations (Milner 1989, Section 4.6), this translates into saying that

to prove R ⊆ ∼, it suffices to prove that R is a bisimulation relation. We would like to see

whether our study of the bisimulation proof method leads to an interesting generalisation

of the co-induction principle. A possible generalisation, suggested by the definition of

respectful functions and the proof of Theorem 2.11, uses an auxiliary function F as

follows:

Theorem 7.1. Let (D,<) be a complete lattice, and G : D → D a monotone function with

greatest fixed-point µG. SupposeF : D → D and that, for all z, y ∈ D, z < y and z < G(y)

implies F(z) < F(y) and F(z) < G(F(y)). Then to prove x < µG it suffices to prove

x < G(F(x)).

Theorem 2.11 is an instance of this theorem, and the proof is essentially the same. A more

elegant but weaker formulation of Theorem 7.1 could require that F is monotone and

that F◦G < G◦F (that is, for all z, (F◦G)(z) < (G◦F)(z)). It is worth pointing out that if

F is monotone, the condition F◦G < G◦F is the same as the condition ‘for all z, y ∈ D,

z < G(y) implies F(z) < F(G(y))’. In terms of respectful functions for bisimilarity, this

formulation would amount to having the same conditions as in Remark 2.6.

Acknowledgements

The ideas in this paper were developed when I was visiting Jaco de Bakker and his group

at CWI (Amsterdam). I have benefited from discussions with people in CWI, especially

Jan Rutten and Daniele Turi. I would also like to thank Glenn Bruns, Martin Hofmann,

Marcelo Fiore, Robin Milner, Andrew Pitts, Peter Sewell, David N. Turner and David

Walker, whose suggestions helped me to improve the technical presentation. Thanks also

to the anonymous referees for detailed comments (including those on TeX!). This research

has been supported by the ESPRIT BRA project 6454 ‘CONFER’.

References

Abramsky, S. (1989) The Lazy Lambda Calculus. In: Turner, D. (ed) Research Topics in Functional

Programming, Addison-Wesley 65–116.

Abramsky, S. (1991) A Domain Equation for Bisimulation. Information and Computation 92 161–218.

Aczel, P. (1988) Non-well-founded Sets, CSLI lecture notes 14.

Bergstra, J. and Klop, J. (1984) Process Algebra for Synchronous Communication. Information and

Computation 60 109–137.

Bloom, B., Istrail, S. and Meyer, A. (1995) Bisimulation can’t be Traced. Journal of the ACM 42(1)

232–268.

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

D. Sangiorgi 478

Boreale, M. and De Nicola, R. (1995) Testing Equivalence for Mobile Processes. Information and

Computation 120 279–303.

Boreale, M. and Sangiorgi, D. (1995) A fully abstract semantics for causality in the π-calculus.

In: Mayr, E. and Puech, C. (eds) Proc. 12th Symposium on Theoretical Aspects of Computer

Science (STACS’95). Springer Verlag Lecture Notes in Computer Science 900. (To appear in Acta

Informatica.)

Caucal, D. (1990) Graphes Canoniques de Graphes Algébriques. Informatique Théorique et Appli-

cations (RAIRO) 24(4) 339–352.

Christensen, S., Hüttel, H. and Stirling, C. (1995) Bisimulation equivalence is decidable for all

context-free processes. Information and Computation 121(2).

De Simone, R. (1985) Higher Level Synchronising Devices in MEIJE-SCCS. Theoretical Computer

Science 37 245–267.

Ferrari, G., Montanari, U. and Quaglia, P. (1996) A π-calculus with Explicit Substitutions. Theo-

retical Computer Science 168(1) 53–103.

Fiore, M. (1993) A Coinduction principle for Recursive Data Types Based on Bisimulation. In:

Proc. 8th LICS Conf., IEEE Computer Society Press.

Groote, J. (1990) Transition System Specifications with Negative Premises. In: Baeten, J. and Klop,

J. (eds) Proc. CONCUR ’90. Springer Verlag Lecture Notes in Computer Science 458 332–341.

Groote, J. and Vaandrager, F. (1992) Structured Operational Semantics and Bisimulation as a

Congruence. Information and Computation 100 202–260.

Hennessy, M. and Milner, R. (1985) Algebraic Laws for Nondeterminism and Concurrency. Journal

of the ACM 32 137–161.

Hirshfeld, Y., Jerrum, M. and Moller, F. (1996) A polynomial-time algorithm for deciding bisimu-

lation equivalence of normed context-free processes. Theoretical Computer Science 158 143–159.

Joyal, A., Nielsen, M. and Winskel, G. (1994) Bisimulation from Open Maps. Tech. rept. RS-94-7.

BRICS. (Extract in Proc. LICS’93, IEEE Computer Society Press.)

Larsen, K. and Liu, X. (1991) Compositionality through an Operational Semantics of Contexts. J.

Logic Computat. 1(6) 761–795.

Milner, R. (1989) Communication and Concurrency, Prentice Hall.

Milner, R. (1991) The polyadic π-calculus: a tutorial. Tech. rept. ECS–LFCS–91–180. LFCS, Dept.

of Comp. Sci., Edinburgh Univ. (Also in: Bauer, F. L., Brauer, W. and Schwichtenberg, H. (eds.)

Logic and Algebra of Specification, Springer Verlag, 1993.)

Milner, R. and Tofte, M. (1991) Co-induction in relational semantics. Theoretical Computer Science

87 209–220.

Milner, R., Parrow, J. and Walker, D. (1992) A Calculus of Mobile Processes (Parts I and II).

Information and Computation 100 1–77.

Parrow, J. and Sangiorgi, D. (1995) Algebraic Theories for Name-Passing Calculi. Information and

Computation 120(2) 174–197.

Pitts, A. (1994) A Co-induction Principle for Recursively Defined Domains. Theoretical Computer

Science 124 195–219.

Plotkin, G. (1981) A Structural Approach to Operational Semantics. DAIMI-FN-19. Computer

Science Department, Aarhus University.

Rutten, J. and Turi, D. (1994) Initial Algebra and Final Coalgebra Semantics for Concurrency. In:

Proc. Rex School/Symposium 1993 ‘A Decade of Concurrency – Reflexions and Perspectives’.

Springer Verlag Lecture Notes in Computer Science 803.

Sangiorgi, D. (1992) Expressing Mobility in Process Algebras: First-Order and Higher-Order

Paradigms, PhD thesis CST–99–93, Department of Computer Science, University of Edinburgh.

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

On the bisimulation proof method 479

Sangiorgi, D. (1995) Lazy functions and mobile processes. Tech. rept. RR-2515. INRIA-Sophia

Antipolis. (To appear in ‘Festschrift volume in honor of Robin Milner’s 60th birthday’, MIT

Press.)

Sangiorgi, D. (1996) Locality and Non-interleaving Semantics in Calculi for Mobile Processes.

Theoretical Computer Science 155 39–83.

Sangiorgi, D. and Milner, R. (1992) The problem of ‘Weak Bisimulation up to’. In: Cleveland, W.

(ed) Proc. CONCUR’92. Springer Verlag Lecture Notes in Computer Science 630 32–46.

Thomsen, B. (1990) Calculi for Higher Order Communicating Systems, Ph.D. thesis, Department of

Computing, Imperial College.

Walker, D. (1994) Algebraic Proofs of Properties of Objects. Proc. ESOP’94. Springer Verlag Lecture

Notes in Computer Science 788 501–516.

https://doi.org/10.1017/S0960129598002527 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002527

