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Abstract

Early warning for epilepsy patients is crucial for their safety and well being, in
particular, to prevent or minimize the severity of seizures. Through the patients’
electroencephalography (EEG) data, we propose a meta learning framework to improve
the prediction of early ictal signals. The proposed bilevel optimization framework can
help automatically label noisy data at the early ictal stage, as well as optimize the
training accuracy of the backbone model. To validate our approach, we conduct a
series of experiments to predict seizure onset in various long-term windows, with long
short-term memory (LSTM) and ResNet implemented as the baseline models. Our study
demonstrates that not only is the ictal prediction accuracy obtained by meta learning
significantly improved, but also the resulting model captures some intrinsic patterns of
the noisy data that a single backbone model could not learn. As a result, the predicted
probability generated by the meta network serves as a highly effective early warning
indicator.
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1. Introduction

Nearly one third of the patients with epilepsy continue to have seizures despite
optimal medication management [38]. According to the World Health Organization
(WHO) [52], epilepsy affects approximately 50 million individuals worldwide, ren-
dering it one of the most prevalent neurological disorders on a global scale. Seizures
result from abnormal discharges originating in a cluster of brain cells [13, 19]. These
discharges can originate in various regions of the brain, leading to a spectrum of
seizure manifestations, ranging from momentary lapses of consciousness or muscle
reflexes to prolonged and intense convulsive episodes.

Individuals with epilepsy often experience a heightened prevalence of physical
issues such as seizure-related fractures and abrasions [45]. Additionally, a greater
proportion of individuals with epilepsy also grapple with psychological disorders,
including anxiety and depression [41]. Furthermore, there exists substantial evidence
indicating that individuals with uncontrolled epilepsy over an extended period face
an elevated risk of enduring memory impairment, depression, anxiety, suicide and
other psychiatric conditions [35]. Despite the existence of certain clinical treatments, a
longitudinal study spanning over 20 years on idiopathic generalized epilepsies (IGEs)
revealed that individuals with epilepsy still report a diminished quality of life [9],
primarily attributed to the unpredictability of seizures and their adverse consequences.
Consequently, the development of early warning systems for epilepsy holds paramount
significance in addressing these challenges.

Electroencephalography (EEG) serves as a highly effective diagnostic instrument
for investigating the functional intricacies of the brain during epileptic seizures.
Extensive research has been dedicated to the prediction and treatment of epilepsy
through the use of EEG [1, 8, 10, 25, 40, 44, 53]. EEG signals, characterized by their
non-Gaussian and nonsmooth properties, are instrumental in quantifying electrical
brain activity. This, in turn, aids in diagnosing various types of brain disorders, so the
analysis of EEG measurements plays a key role in distinguishing between normal and
aberrant brain function. Throughout the past century, researchers have grappled with
the challenges inherent in epilepsy detection and prediction. Given that EEG signals
represent a key resource for monitoring brain activity preceding, during and following
epileptic seizures, epileptic seizure prediction research has primarily centred on the
analysis of EEG recordings.

Deep learning architectures have found applications across various medical
domains, including clinical imaging [29], genomics and proteomics [2], and disease
prediction [26]. Notably, deep learning algorithms have demonstrated their efficacy
in discerning intricate patterns within high-dimensional data, particularly in the
context of EEG data classification [4, 27, 39]. In particular, to introduce a universally
applicable method for all patients, Truong et al. [47] propose a prediction approach
based on convolutional neural networks (CNNs). Their methodology involved the
transformation of raw EEG data into a two-dimensional matrix through a short-term
Fourier transform (STFT). Subsequently, this image is input into a CNN to facilitate
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feature extraction and classification of pre-ictal and inter-ictal states. Generally
speaking, CNN-based architectures remain standard for EEG processing, in particular
for epileptic seizure detection, to this day [15, 18, 20].

It is important to note that the vast majority of high-performance seizure prediction
algorithms operate in a fully supervised setting, training exclusively on labelled
data. Nevertheless, it is essential to recognize that the process of labelling seizure
data is manual and costly, it requires the expertise of a neurologist and consumes
substantial resources. To address this challenge, Truong et al. [46] employ a generative
adversarial network (GAN) for unsupervised training. They feed STFT spectrograms
of EEG data into the GAN and use trained discriminators as features for seizure
prediction. This unsupervised training approach is particularly valuable as it not only
enables real-time predictions using EEG recordings, but also eliminates the need for
manual feature extraction. In a different approach, Tsiouris et al. [48] employ long
short-term memory (LSTM) recurrent networks for seizure prediction. They conduct
a comparative assessment of various LSTM architectures using randomly selected
input segment sizes ranging from 5 to 50 seconds. Their evaluation encompasses three
distinct LSTM architectures, each using feature vectors derived from EEG segments
as input. These feature vectors contain a diverse array of attributes, incorporating
temporal and frequency domain characteristics, as well as local and global metrics
derived from graph theory. LSTMs, and RNNSs in general, are another common way
to process EEG data due to their sequential nature [32], and generative adversarial
networks have been used many times for synthetic data generation [34], including
synthetic EEG generation [22, 23].

While the above research has demonstrated effectiveness in predicting seizures,
applications of deep learning for early seizure warning still encounter several chal-
lenges since EEG data have high frequency, high dimension and come under the
influence of complex noise distributions.

The first challenge revolves around the high cost of accurate and reliable labels.
Precise labelling of epileptic seizure and nonseizure EEG data is of fundamental
importance for model training, but the process of labelling EEG data necessitates
the expertise of physicians and can be a time- and resource-intensive endeavour. For
example, a recent work [20] presents a new CNN-based architecture based on a dataset
of only 79 EEG recordings labelled by three experts. Furthermore, labels produced by
physicians may not always be correct. EEG data labelling by physicians often rely on
their individual experiences, and it is not uncommon for different physicians to assign
different labels to the same dataset.

The second challenge is that the prediction for the onset of seizures under ambigu-
ous states between resting and seizure states is difficult, especially for long-term
prediction tasks. Additionally, epileptic seizures can be regarded as sudden and
infrequent transitions in brain dynamics, making it challenging to capture these rare
events in time.

In this work, we present a new framework tackling the above issues to make
early warnings for epileptic seizures. In response to the first and second challenges,
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we have implemented enhancements to the method of meta label correction [57].
This refinement enables the training of a primary model capable of providing highly
accurate predicted labels even when supplied with a limited quantity of clean data. As
for the third challenge, we develop the capability to predict early warning signals of
critical transitions via tipping point detection.

To summarize, we develop a new method to detect the early warning signals
integrating both data-driven models and the tipping dynamics. Our key contributions
in this work are as follows.

* Meta labelling: we split the original data into a clean part and a noisy part, and
subsequently integrate meta-learning into conventional methods to optimize both
labelled information from clean data and the complex feature patterns from noisy
data with automatically generated labels.

* Real data experiments: our experiments conducted on real-world EEG data
obtained from epilepsy patients reveal a substantial enhancement in predicted
accuracy; we additionally report a series of experiments conducted with various
input and output window sizes.

* Tipping point indicator: we find that the predicted probability obtained by the
meta learning framework can serve as an effective early warning indicator for
tipping phenomena; our study illustrates that meta learning can capture some
patterns between rest states and seizure states that a single backbone model could
not.

2. Meta labelling and tipping phenomena

2.1. Meta label correction High-quality labels are crucial for enhancing the
training performance of neural networks. Following the assumptions of [12, 49, 51], we
assume that labels with noise can be categorized into two distinct groups: one dataset
with clean or trusted labels and other datasets with noisy or weak labels. In many cases,
the dataset with clean labels is smaller than those with noisy labels, primarily due to
the limited availability of clean labels and the associated high cost of labelling. Direct
training on these smaller clean datasets can result in suboptimal performance, with
a pronounced risk of overfitting. Similarly, training exclusively on noisy datasets—or
a mix of both clean and noisy datasets—may also yield unsatisfactory outcomes, as
large-scale models can inadvertently fit and memorize the noise [56].

Our objective is to identify precursor features that contribute to seizures, enabling
us to distinguish data oscillations caused by other behaviours. For epileptic patients,
seizures often last only 30 seconds to 2 minutes, which makes seizure data scarce
compared with nonseizure data and leads to data imbalance issues. Moreover, accurate
labelling of seizure and nonseizure data serves as the foundation for model training,
a process typically requiring the expertise of a physician and demanding substantial
time and effort. Yang et al. propose the MMLC method to handle financial data with
partial feature information and poor label quality [54]. Here, we have far more clean
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data than noisy data. Our dataset is partitioned into two subsets: a smaller dataset
with potentially noisy or no labels during the period when seizures are possible, and
a larger dataset with clean and reliable labels during nonseizure period or post-ictal
period when the seizures have concluded.

Our aim is to employ clean data to facilitate the labelling of noisy data. Unlike
conventional label generation methods, our approach relies on making label judgments
for the data based on their predicted time domain, obviating the need to directly
obtain labels for the noisy data. This concept operates with a two-layer optimization
paradigm. Initially, we employ a meta model to predict labels for the noisy data and
subsequently refine our meta model using clean data. The main network uses these
corrected labels to classify noisy data.

2.2. Early warning indicators Under long-term noise disturbances, a dynami-
cal system may experience enormous fluctuations, which could lead to transitions
between metastable states [17, 21]. Sudden transitions between alternative states are
a ubiquitous phenomenon within complex systems, spanning a wide spectrum of
domains ranging from cellular regulatory networks to neural processes and ecological
systems [3, 43]. Numerous instances of abrupt regime shifts have been observed in
diverse research fields, including collapses of ecosystems [24, 50], abrupt climate
shifts [14, 30] and onset of certain disease states such as atrial fibrillation [37] or
epileptic seizures [31]. Warning signals for impending critical transitions are highly
desirable, owing to the formidable challenges associated with restoring a system to its
prior state subsequent to the occurrence of such transitions [16, 42]. Lade and Gross
[28] introduced a method for the identification of early warning signals, offering a
comprehensive integration of diverse information sources and data within the context
of a generalized model framework. Proverbio et al. [36] undertook a systematic
exploration of the characteristics and effectiveness of dynamical early warning signals
across various conditions of system deterioration.

An increase in the variance within the pattern of fluctuations [11] represents
a plausible outcome of critical slowing down when a system approaches a crit-
ical transition. This phenomenon can be rigorously demonstrated through formal
mathematical representations [7] and intuitively grasped. As the eigenvalue of the
system approaches zero, the influence of perturbations becomes increasingly enduring,
resulting in an amplified accumulation effect that subsequently augments the variance
of the system’s state variable. In principle, one might anticipate that critical slowing
down could impair the system’s capacity to trace these fluctuations, potentially
leading to an opposite effect on the variance [5, 6]. Nevertheless, investigations
into mathematical models consistently reveal that an elevation in variance typically
emerges and becomes discernible well in advance of the occurrence of a critical
transition [11]. Neubert and Caswell [33] introduced a pair of quantitative metrics for
characterizing transient dynamics, namely reactivity and the amplification envelope.
These metrics can be computed by using the Jacobian matrix in the vicinity of a
stable equilibrium. Reactivity offers an estimation of the system’s susceptibility to
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immediate perturbation-induced growth, while the maximum amplification quantifies
the highest magnitude that a perturbation can transiently achieve relative to the
system’s equilibrium.

In this work, one of our goals is to extract fluctuation patterns from data via the
meta learning network as an early warning indicator for state transitions in EEG time
series signals.

3. Our method

3.1. Automatic label optimization through meta learning The meta-model com-
prises two neural networks: a meta network and a main network. The meta network’s
objective is to enhance label accuracy for noisy data, while the main network’s
role is to achieve correct classification. We denote the parameters of the meta
network, considered as meta-knowledge, as @, denoting the meta network as g, (X', Y’).
Conversely, the main network’s parameters are denoted as w, and it computes the
function f,,(X’, y.), where y. represents the outcome obtained from the meta network.

The training process is illustrated in Figure 1. The data we feed into the meta
network are divided into two parts. One part is the historical data X’, input as a time
window of length & € R*, that is, X’ represents the EEG time series from time ¢ to
t + h. The other part is the known data Y’, and its time window size is denoted as
m € R*, that is, Y’ represents the EEG time series from time ¢ + & to time ¢ + h + m;
both X’ and Y’ are sequential in time. The meta network learns the label y. of data Y”,
where y. € {0, 1}. If the pattern of Y’ indicates that the patient had seizures during this
time period, the meta network should output y. = 1; otherwise, it should output y. = 0.
As for the main network, its objective is to learn the label of the next (unknown) EEG
signal window Y of the current time series data X, that is, the main network does not
know the sequential data Y and is supposed to predict the label of unknown Y with
known data X. This approach enables us to extract additional information about the
prediction horizon and historical data without being influenced by noisy labels. We
have already mentioned that labels given manually by experts can be subjective and
are certainly expensive; our approach can avoid this problem by generating noisy data
labels.

In every batch, we obtain both noisy and clean sample data. We initially input the
noisy samples, along with their corresponding (X’, Y”) pairs, into the meta network to
derive accurate labels. Subsequently, the noisy data X’ are used as input for the current
task’s classifier to generate the corresponding predicted labels. We update the main
network classifier’s parameters based on the loss between the corrected and predicted
labels. Following this, the clean data pair (X, y) is introduced to the new classifier, and
the classification loss is computed to facilitate the meta network’s update.

The bilevel optimization of our model can be formulated as follows:

Ir}lin ExyepLp(fw,(X),y) where
w,, = arg H}uinE(X’,Y’)ED’ [Lp (fuX"), ga X", YD1,
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FIGURE 1. The framework of meta label generation model.

Algorithm 1: Meta learning for noise label generation

Input: Clean dataset D = {X, y}, noisy dataset D’ = {X’, Y’}, learning rates u,
1 Initialize main network weights w and meta network weights «;
2 for n « 0 to episodes do
3 for k — O to K do
4 Lp = 3 2@, Y) In (fu(X') + (1 = go(X", Y) In (1 = fouxr));
5 Update main network parameters by gradient descent:
w—w-—uVy,lp.

6 end

7| Lp= 1%/ SN O (X)) + (1= yIn(1 = fur));

8 Update meta network parameters by gradient descent: @ «— @ —nVq.Lp
9 end

and where the loss function is defined as
| &
L@m:N;mmwna—mmuwm

that is, the cross entropy loss for a, b € R¥*2. Our algorithm is shown in Algorithm 1.

Updating the meta model presents a formidable challenge, as the resulting loss
function does not explicitly feature @. Consequently, we have to compute dw},/dc,
which involves second-order gradient computations. Several different methods exist
for this purpose. To circumvent resource-intensive demands, we employ the Taylor
expansion method, as detailed by Zheng et al. [57], to compute the Hessian matrix
(0°/00*) L (@, ).
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Denote the meta loss as
Lp(wy) = Ex yent(y, fw, (X))
Then, we have
min Lp(W;) = Lp(W,)
= Lp(w—nVuLp (@, w)).

Subsequently, the update rule for the meta-knowledge @ can be written as follows:

@ =a—-uVyLpw),). 3.1
Then, the meta-parameter gradient is shown as
0Lp(wy) o 0Lp(w)
TEDB — g (= 1V L (@, @) S 22
oo ligol* O

~ Vo (Vo Lp (@, )V Lp(@)).

3.2. Early warning probability indicator The capacity to discern transitions
between meta-stable states assumes a crucial role in the prediction and regulation
of brain function. In our model, the objective of the main network is to learn the
label of the next sequential data Y (unknown) based on the current time series data X,
that is, the main network does not know the sequential data Y and should predict the
label of unknown Y with known data X. Namely, the output of the main network is
the probability of epileptic seizures occurring within the subsequent sequential time
period following [¢, ¢ + h].

An escalation in the variance within the pattern of fluctuations, as established by
Carpenter and Brock [11], can serve as a credible indicator when a system is near a
tipping point and is experiencing a critical slowing down. We adopt the value of the
main network’s output as an early warning indicator in the context of epilepsy, that is,

Ip = fo(X), (3.2)

which could be seen as the probability of ictal seizure occurring in the next time
window. We conduct experiments in Section 4.2 to compare our early warning
indicator Ip with the variance of time series data.

4. Experiments

4.1. Data processing The scalp EEG data are recorded via the bipolar montage
method [55], where the voltage of each electrode is linked and compared with
neighbouring electrodes to form a chain of electrodes. Figure 2(a) shows a sample
of the data, and the red line represents time intervals identified as seizure occurrences
by experienced physicians in this case. The horizontal axis represents the time of the
test, while the vertical axis corresponds to specific brain regions where electrodes were
inserted. Each segment of EEG data was recorded with a 23-channel sampling rate of
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Electrodes
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Time

Time

FIGURE 2. A sample of our EEG data: (a) time series for the electrodes; the red part shows seizure states
and the grey part represents rest states; (b) variance of the EEG data.

256 Hz and recording duration of 1 hour, during which five seizures were recorded
for the subject. Our dataset is derived from this EEG data, collected at a frequency of
32 Hz'. Due to the high cost of acquiring such data, the size of the sample under
examination remains modest. Consequently, the development of an early warning
system based on this limited dataset becomes especially challenging. We collected data
from five epileptic episodes of an epileptic patient and used four epileptic episodes to
generate the training set and the remaining one episode as the test set. Figure 2(a)
shows one epileptic episode.

To establish the benchmark, we employ a sliding window technique, shifting the
window left and right with a 0.5-second step. We set the time window of X to
encompass 10 seconds, 15 seconds and 20 seconds, aligning precisely with durations
of historical data. For Y, however, we have considered time windows spanning 5, 10,
15 and 20 seconds; these windows indicate the length of our prediction horizon.

Our dataset is divided into clean data and noisy data. Noisy data refer to data
instances that are especially challenging for labelling due to their inherent complexity
and lack of clear, unequivocal categorization. To be precise, we define an indeterminate
zone around the clinically established onset time of epilepsy as the demarcation
point, that is, we define a time window spanning +10 seconds around this moment,
amounting to 40 samples in every epileptic episode, as noisy data. Then, we expand
the time window both forward and backward, collecting 40 clean data samples with
labels 0 and 1, respectively, on every side. In instances where the right boundary of the
Y-window intersects with this indeterminate, we designate the corresponding window
X and Y as noisy data; we denote noisy data as X” and Y’, and obtain the resulting noisy
dataset D’ = {X’, Y’}. Noisy data do not have fixed determined labels, and our objective
is to assign accurate labels to this data category without relying on expert annotations.
In essence, we aim to generate precise labels for this noisy dataset autonomously. The
rest of the data, which fall outside the indeterminate zones around onset times, is
categorized as clean data. The clean dataset is partitioned into two distinct segments:
one segment corresponds to the data obtained during the resting state, with label 0,

IThe datasets that support the findings of this study are available upon request.
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and the other segment comprises data recorded during the epileptic state, with label 1.
The clean dataset is denoted as D = {X, y}, where y € {0, 1} is the label.

Different electrodes have data with different orders of magnitude, so all data were
normalized, and then noisy and clean data were divided according to different tasks.
Figure 2(b) shows a sample of the covariance of the EEG data time series, with the
red dotted line showing an epileptic seizure in the sample. The figure illustrates how
growing variance could be seen as an indicator for an upcoming abrupt transition,
which is consistent with [11].

4.2. Experimental results

4.2.1. Performance comparison To test the performance of our approach, we have
conducted experiments with a number of different models. During testing, we rely on
the seizure onset moments delineated by physicians. Specifically, if the sample with
X-window or Y-window intersects with the ictal moment demarcated by physicians,
this sample is assigned with a label y = 1. Conversely, if neither the X-window nor
the Y-window intersect with seizure onset moment identified by the physician, it is
labelled by y = 0. Then accuracy is computed by comparing the model’s output labels
with the corresponding ground truth labels y, that is, the number of true positives and
true negatives divided by total sample size.

Table 1 provides a comprehensive overview of our classification results, comparing
the performance of the baseline LSTM model, the ResNet model and our proposed
model. Here, we use LSTM for the meta network and ResNet for the main network.
Columns in Table 1 show the length of the input (historical) time window |X|, and
the rows correspond to different sizes of the prediction horizon |Y|. It is clear that as
the prediction horizon |Y| (shown in the first column) grows, it becomes increasingly
difficult to make accurate predictions for all three models. The accuracy of the LSTM
model rises significantly as the length of the history duration becomes longer, because
longer sequences in the input data contain more information. ResNet, however, has
no particularly pronounced dependence on the input time length. Additionally, LSTM
shows a very promising predictive ability over short periods of time, but the accuracy
decreases rapidly as the prediction horizon length increases. The ResNet model,
however, still shows a good degree of adaptation for prediction lengths greater than
10 seconds.

Throughout all settings, our model shows substantial improvements in prediction
accuracy. Naturally, all three models achieve higher accuracy values at shorter
prediction ranges, but our model demonstrates excellent results for longer noisy data
as well. Our approach reduces the error rate by at least 2x in most cases: for 5 seconds
prediction horizons our model reduces the error rate from 5-7% to 2-2.5%, for 10
seconds, from 10-15% to 5-8%, and for 15 seconds and 20 seconds the error goes
down from 20-30% or higher to 15-25%. These results suggest that our approach
based on meta learning can very significantly improve the performance of baseline
models in epileptic seizure prediction tasks.
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TABLE 1. The accuracy of LSTM, ResNet and our method. Columns correspond to the duration of the
input data time X (shown in row 2) and rows correspond to different lengths of the prediction window Y.

Method LSTM ResNet Ours LSTM ResNet Ours LSTM ResNet Ours

Y| X|=10s [X]=20s [X]=30s

S5s 93.8%  92.5% 97.5%  95.0%  95.0% 98.8% 96.3%  93.8% 97.5%
10s 85.0%  86.3% 925%  81.5% 86.3% 91.7%  90.0%  88.8% 94.4%
15s 725%  T1.5% 838% 75.0%  78.8% 86.3% 763%  80.0% 88.9%
20s 62.5%  71.3% 76.3%  63.8%  70.0% 78.8%  663%  73.8% 82.5%

L0 — Lstm Probability ' LO] — ResNet Probability ' 107 — Meta Probability
i

5 o £ & o W 120 L] n a0 60 £ w130

(b) ResNet, |X| =20, |Y|=5 (c) Our model, |X| =20, [Y|=5

107 — Lstm Probability

101 — ResNet Probability 107 — Lstm Probability
'

1] £ o E3 & o 10 ] £ 3 & £ w0 120 L] E) an 6n & 1m0 10

(d) LSTM, |X] = 20, |¥] = 10 (e) ResNet, |X] = 20, [¥|=10  (f) Our model, |X| = 20, [¥] = 10

FIGURE 3. Predicted ictal probabilities (blue lines) and true ictal onset moments (red dashed lines): (a—c)
for |X| = 20 and |Y| = 5; (d—f) for |X| = 20 and |Y| = 10.

To show the efficiency of our predictions more intuitively, we compare predicted
ictal probabilities with the true ictal moment identified by experienced physicians.
Figure 3 illustrates the results with input duration |X| = 20 and prediction horizons
|Y| =5 (Figures 3(a), 3(b), 3(c)) and |Y| = 10 (Figures 3(d), 3(e), 3(f)). The horizontal
axis shows 120 consecutive time samples with an interval of 0.5 seconds, and the
vertical axis represents the output probability of the model. Solid blue lines show the
ictal probabilities learned by different models, and red dashed lines represent the true
ictal moment. It is clear that for the LSTM model and ResNet model, the predicted
onset time is approximately 5 seconds late compared with the real onset time. Both
models almost always output probability values of O or 1, with very few moments of
output probability between 0 and 1. This means that these two models can only learn
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FIGURE 4. A comparison of the proposed indicator /p (red solid line) with the variance indicator (blue

dashed line) for EEG data: (a) |X| = 20, [Y]| = 5; (b) |X|] = 20, Y = 10.

features of clean data, that is, they cannot capture the features of noisy data and make a
timely prediction. In contrast, our model has a clear fluctuation that occurs just before
and after the onset of the seizure (see the position of the red dashed line in Figures 3(c)
and 3(f)), which suggests that our model captures the changes in noisy data adequately.

4.2.2. Early warning prediction Early warning of epileptic seizures is of
paramount importance for individuals with epilepsy. In addition to the accuracy
associated with predicted label generation, our research also places a significant
emphasis on evaluating the early warning capacity inherent to the model.

Inspired by [11], we compare the tipping signal in terms of our indicator I7p and
the variance indicator. Figure 4 shows the variance from Figure 2(b) averaged over
a window of 0.5 seconds (dashed blue line) compared with the predicted probability
averaged over five experiments (solid red line), which we call the Ip indicator. Figure
4 illustrates that there is an earlier tipping point in our indicator /p than in the variance
indicator on the same data. It is clear that for any given reasonable threshold, our
indicator /p always gives an earlier warning than the variance indicator, which suggests

that our indicator /p is an effective early warning signal.

5. Conclusion

Early warning of epileptic seizures is of paramount significance for individuals
afflicted with epilepsy. In this study, we introduce a novel meta-learning framework
that can integrate with existing baselines to enhance the predictive capabilities for
early ictal signal detection, as evidenced by our results on EEG data obtained from real
patients. Our approach amalgamates diverse components (a CNN for the main network
and an LSTM for the meta network) to improve prediction accuracy. In addition, we
introduce the concept of meta label generation, a method that segregates the original
data into clean and noisy segments. This approach leverages the meta label generator
to effectively label noisy samples, thereby augmenting the overall data quality.
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Biological, physical and social systems frequently exhibit qualitative shifts in their
dynamics. The development of early warning signals that aim to anticipate these
transitions in advance remains a crucial objective for many problem settings, even
beyond epileptic seizure detection. We incorporate tipping dynamics as a pivotal
feature extracted from the data. Our study demonstrates that the output probability
produced by our proposed meta-network is a highly effective early warning indicator.
Our experimental findings show a remarkable improvement in prediction accuracy,
particularly in scenarios involving long-term predictions. In total, our method offers
a robust and innovative approach to the detection of early warning signals, effectively
bridging the gap between data-driven models and tipping dynamics.
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