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A sphere exhibits a prolonged residence time when settling through a stable
stratification of miscible fluids due to the deformation of the fluid-density field. Using
a Green’s function formulation, a first-principles numerically assisted theoretical
model for the sphere–fluid coupled dynamics at low Reynolds number is derived.
Predictions of the model, which uses no adjustable parameters, are compared with
data from an experimental investigation with spheres of varying sizes and densities
settling in stratified corn syrup. The velocity of the sphere as well as the deformation
of the density field are tracked using time-lapse images, then compared with the
theoretical predictions. A settling rate comparison with spheres in dense homogeneous
fluid additionally quantifies the effect of the enhanced residence time. Analysis of
our theory identifies parametric trends, which are also partially explored in the
experiments, further confirming the predictive capability of the theoretical model.
The limit of infinite fluid domain is considered, showing evidence that the Stokes
paradox of infinite fluid volume dragged by a moving sphere can be regularized by
density stratifications. Comparisons with other possible models under a hierarchy of
additional simplifying assumptions are also presented.

Key words: particle/fluid flows, Stokesian dynamics, stratified flows

1. Introduction
In the environment, understanding the behaviour of immersed falling particles is

often compounded by steep density gradients in the surrounding medium. Particulate
matter has been found to aggregate in regions of sharp stratification caused by
haloclines and thermoclines in the ocean and atmosphere (MacIntyre, Alldredge &
Gottschalk 1995; Condie & Bormans 1997; Sutor & Dagg 2008). Prolonged settling
rates affect many aspects of sedimentation, such as pollution-clearing times (Kellogg
1980; Turco et al. 1990), vertical distribution of marine snow (MacIntyre et al. 1995;
Widder et al. 1999), hyperpycnal plume formation in riverine outflows (Parsons,
Bush & Syvitski 1995), and can even help to determine the dispersion behaviour and
population growth of an organism (Denman & Gargett 1995; Condie & Bormans
1997). The mechanisms behind a settling organism in variable density fluid, which
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A sphere falling through sharply stratified fluid at low Reynolds number 437

have yet to be fully explored, will provide insight into its evolutionary adaptation.
This problem can also be applied to other geophysical phenomena. For example, the
movement of plume heads through layers of the Earth’s mantle has been shown to
be a possible cause of flood basalt events (Bercovici & Mahoney 1994; Jurine et al.
2005).

Stratification of immiscible fluids, where surface tension plays a dominant role, has
received some attention (see e.g. Manga & Stone 1995; Akers & Belmonte 2006). The
available literature providing the underlying dynamics for settling in stratifications of
miscible fluids, however, is sparse, though this is the natural medium for environmental
applications. Srdić-Mitrović, Mohamed & Fernando (1999) found an increased drag
on a sphere settling through sharply stratified fluids at moderate Reynolds number.
At a higher Reynolds number, Abaid et al. (2004) explored cases in which a falling
sphere will levitate and sometimes even reverse direction while passing through regions
of high stratification, greatly affecting the settling rate. Recently, Yick et al. (2009)
provided an experimental study of a sphere settling in a linear stratification at low
Reynolds number and proposed an enhanced drag coefficient to model the velocity
of the system numerically.

In this paper, we bring forth the effect of stratification by studying a single body, a
sphere, falling through a miscible, stable density transition at low Reynolds number,
which is a relevant regime for a wide range of bio- and geo-physical applications.
Similar to the higher-Reynolds-number experiments, we find that a sphere exhibits
a prolonged settling rate and slows down substantially through a sharply stratified
fluid. Unlike previous studies that have focused only on experimental or numerical
results, we will provide a theoretical understanding of the dynamics derived from
first principles, analysing and extending the model outlined in Camassa et al. (2009).
Specifically, we focus here on the model’s derivation and its predictions with respect to
the various parametric regimes identified by the appropriate non-dimensional groups.
New experimental results are presented to test some of the theoretical trends, and
their most notable mathematical limits are sketched within relevant subsets of the
parametric space. In particular, we study the dynamics of the model as the (horizontal)
scale of the fluid domain increases towards the free-space limit and extends beyond
the length scale of Oseen’s correction to the Stokes approximation. This study shows
that in the presence of (sharp) stratifications a mechanism of regularization for the
Stokes class of paradoxes could exist independently of that based on the fluid’s
inertia first considered by Oseen (see e.g. Batchelor 1967). Additionally, we investigate
a modification of Tanner’s result (Tanner 1963) for bottom effects to account for
sharp density jumps, which allows for an estimate of time scales of the sphere
slowdown. Finally, we probe the range of applicability of simplified models that
derive from extreme cases of the force balance laws on which the full model is
based.

This paper is organized as follows: § 2 presents the experimental set-up, data and
discussion of the prolonged residence time through the interface. In § 3, we develop
the equations behind the fluid–sphere interaction and present our theory on the final
equations of motion. Section 4 describes the numerics and the results from a direct
comparison between theoretical and experimental data. In § 5, the behaviour of the
sphere moving towards the interface is shown to be approximately that of a sphere
approaching a plane of zero vertical velocity, giving rise to a time scale for the sphere’s
slowdown. This time scale is used in § 6, where the trends due to parameter variation
are explored along with the extension of the model to free space. We study two other
possible models in § 7 and summarize our findings in § 8.
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Figure 1. Schematic of the experimental set-up.

2. Experiments
2.1. Methods

Clear cylindrical Plexiglas tanks with diameters ranging from 6.2 to 18.9 cm and
heights of either 31.75 or 52.07 cm are stratified with a top layer of lower-density
corn syrup poured over a higher-density (achieved by adding more salt) corn syrup
solution. The layers are separately heated, mixed with salt and adjusted with water
until homogeneous, and left to degas overnight. Evaporation is minimized by covering
free surfaces with airtight membranes and thermal convection is controlled by a
thermal bath. By using salt, the density of pure corn syrup can be increased from an
approximate density of 1.377 to 1.388 gml−1. Additionally, this allows us to control
the dynamic viscosity variations between the two layers, maintaining them within
a less than 0.2 Pa s range, which would not be possible if stratification were to be
achieved with water dilution alone. This process yields equal sugar concentration
in the top and bottom layers. The constant viscosity range we explore is between
1.6–3.5 Pa s (pure corn syrup is typically 3.5 Pa s at 25 oC). When the top layer is dyed
for visualization purposes, an equal volume of water is added to the bottom layer to
maintain nearly constant viscosity in the fluid. The dye used is standard water soluble
food colouring (either E143 or E129).

Spheres of diameter ranging from 0.08–1.27 cm and densities ranging from 1.360–
7.740 g ml−1 are released from rest inside the top layer along the centre axis of the
tank. Densities and viscosities are measured to within an error of 5 × 10−5 g ml−1 and
0.5%, respectively. For each experiment, photos are taken at specified time intervals
with a Nikon D2X or D3 camera aligned along the interfacial plane between the
two fluid layers, arranged as in figure 1. Horizontal parallax errors are minimized
by centring the tall cylindrical tank with respect to the camera frame, while vertical
parallax errors are corrected using the ruler as a fixed scale. By this method, the
maximum parallax error is bounded by 1.3 %. Using the image analysis program
DataTank, we extract the sphere position from each frame and calculate the velocity
using a seven-point least squares scheme.
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A sphere falling through sharply stratified fluid at low Reynolds number 439

Figure 2. Images, corrected for an optical distortion caused by the cylindrical tank, at 40 s
intervals of a sphere of radius 0.635 cm falling through a two-layer stratification of densities
1.37661 g cm−1 and 1.38384 g ml−1 and viscosity ∼1.7 Pa s in a cylinder of radius 5.4 cm. Due
to the strong change in refractive index across the density transition between the two fluids,
the stem boundary appears to have a slight jump in slope.

2.2. Enhanced residence time

An immersed translating sphere will entrain ambient fluid, regardless of the viscosity
or density variation (for potential inviscid flow this is known as Darwin drift, Darwin
1953, recently analysed in Camassa et al. 2008). In the case of a stratified fluid, the
entrained fluid is buoyant with respect to the surrounding medium. Figure 2 shows a
sphere that has dragged less dense, dyed fluid into the bottom layer. Notice the stem
of entrained fluid that persists at long lengths. Unlike the case of immiscible fluids,
where surface tension eventually leads to a pinch-off of the stem, for this case of
miscible fluids the stem persists in all our experiments and slowly diffuses away long
after the sphere settles to the bottom of the container.

Given sufficient depth in each layer, the sphere velocity will change from the
terminal velocity in the upper layer to the terminal velocity in the lower layer as
it passes through the density transition. However, instead of a monotonic transition
which would be imposed if the buoyancy force were to be simply determined by the
hydrostatic equilibrium fluid density undistorted by the sphere’s motion, the buoyant
entrained fluid creates an extra anomalous density force that causes the sphere to
slow down beyond the terminal velocity of the lower layer, as seen in figure 3. (The
initial acceleration from rest cannot be seen in the velocity plot as it is averaged into
the calculation of the derivative of the sphere position.) These data show that the
sphere reaches the theoretical terminal velocities computed using the drag force on a
sphere for a homogeneous fluid in a pipe (Happel & Byrne 1954) in both the upper
and lower layers. It is the slowdown that occurs between these two terminal velocities
that we are most interested in capturing.
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Figure 3. Velocity profile of a 0.635 cm radius, 1.46755 g ml−1 density sphere falling through a
fluid of upper layer density 1.37741 g ml−1 and lower layer density 1.37891 g ml−1 with viscosity
∼1.8 Pa s in a cylindrical tank of radius 9.45 cm. The theoretical terminal velocities are also
marked for each layer using the drag force for a sphere falling through homogeneous fluid in
a pipe (Happel & Byrne 1954).
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Figure 4. Graph of the velocity versus distance to the bottom of a tank for a sphere of radius
0.635 cm and density 1.46755 g ml−1 falling in homogeneous fluid of density 1.37955 g ml−1 and
viscosity ∼3.5 Pa s. Distances are normalized with the cylinder radius, R0.

The local minimum velocity occurs shortly after the sphere enters the lower layer,
and this minimum is an indication of a prolonged residence time near the interface
between the two layers. All the parameters of the experiment (relative densities,
viscosities, sphere and cylinder radii, initial velocity and distance of the sphere to the
interface, etc.) play a role in determining the interplay between the buoyant force of
the entrained fluid and that of the downward moving sphere.

Tanner (1963) demonstrated that for a sphere falling in a tube with a closed end,
the effect of the rigid bottom is negligible when the sphere is outside a cylinder radius
from the bottom (see Brenner 1961 for the half-space limit with an infinite bottom).
We have explored this trend by tracking a sphere falling through homogeneous fluid
in cylinders of varying sizes. The data from this study are consistent with Tanner’s
results, and are shown in figure 4, where the velocity is plotted as a function of distance
to the bottom of the tank, normalized by the cylinder radius, thus demonstrating the
role of increasing cylindrical tank radii in making the bottom effect extend further
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Figure 5. Schematic of the theoretical set-up and notation.

into the tank. Hence, in order for the sphere to reach terminal velocity in the top layer,
the sphere must be positioned at least one cylinder radius away from the interface,
and be able to fall in a region at least one cylinder radius away from the free surface
of the fluid. Similarly, the sphere must be allowed to fall in a region at least one
cylinder radius away from the interface and the bottom of the tank for the sphere to
attain terminal velocity in the bottom layer.

3. Theory
3.1. Equations of motion

We begin with the Navier–Stokes equations for an incompressible, Newtonian fluid
of velocity v(x, t) and variable density ρ(x, t) at time t and at a point x inside a
cylinder of radius R0 and outside a sphere of radius A (see figure 5) moving with
velocity V (t) = (0, 0, V (t))

∂ρ

∂t
+ v · ∇ρ = 0, ∇ · v = 0, (3.1)

ρ

(
∂v

∂t
+ v · ∇v

)
= ρ ĝ − ∇p + µ∇2v, (3.2)

v = V (t) for |x − Y (t)| = A, (3.3)

v = 0 for

√
x2

1 + x2
2 = R0, − ∞ < x3 < ∞, (3.4)

v → 0 for |x3| → ∞, (3.5)

where Y (t) is the position of the centre of the sphere in the laboratory frame
of reference, so that Ẏ3(t) = V (t). Here ĝ is the gravity acceleration vector (with
magnitude 981 cm s−2), oriented along the unit vector ẑ ≡ (0, 0, −1).

As the fluid density is variable, we define a constant (average) reference density
ρref = (ρ1 + ρ2)/2, where ρ1 is the density of the upper layer and ρ2 is the density of
the lower layer. Thus, we have a non-dimensional density ρ̃ = ρ/ρref and a constant
kinematic viscosity ν = µ/ρref . The dimensionless Reynolds, Strouhal and Froude
numbers are defined as Re = AU /ν, St = A/UT and Fr = U/

√
gA, respectively, where

U is the terminal velocity of the sphere in a homogeneous fluid of density ρref , T is the
deceleration time and g is gravity. The non-dimensionalized momentum component
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of the incompressible Navier–Stokes equation for the motion of the fluid is

Re St ρ̃
∂ ṽ

∂t̃
+ Re ρ̃ṽ · ∇̃ṽ =

Re

Fr2
ρ̃ ẑ − ∇̃p̃ + ∇̃2ṽ, (3.6)

with the pressure scaled by µU/A, and spatial coordinates and time scaled by A and T ,
respectively. From the experimental parameters, we find that St ∼ O(10−1), O(10−5) <

Re <O(10−2) and O(10−1) < Re/Fr2 <O(103). With these bounds, we can scale out
the inertial terms, simplifying (3.6) to the Stokes equation with variable density:

∇̃2ṽ = ∇̃p̃ − Re

Fr2
ρ̃ ẑ. (3.7)

Also note that these parameters allow us to show theoretically that the sphere’s
motion does not generate internal waves (see Appendix A), which is consistent
with our laboratory observations. Equation (3.7) can be re-cast in dimensional form
and augmented with continuity and incompressibility conditions to give us the full
equations of motion for the fluid under the Stokes’ approximation,

µ∇2v = ∇p − ρ ĝ, (3.8)

∇ · v = 0, (3.9)

v = V (t) for |x − Y (t)| = A, (3.10)

v = 0 for

√
x2

1 + x2
2 = R0, − ∞ < x3 < ∞, (3.11)

v → 0 for |x3| → ∞, (3.12)

∂ρ

∂t
+ v · ∇ρ = 0. (3.13)

In (3.13), we have ignored diffusion of salt, the stratifying agent for our fluid. Over
the course of our experiments, we see the persistence of sharp interfaces, made visible
by dye, between the upper and lower fluids as well as along the thin stems of upper
layer fluid dragged by the sphere. These observations, an example of which can be seen
in figure 2, seem to indicate that dye does not diffuse appreciably over the duration of
our experiments. Assuming that the diffusivity of dye is comparable to that of salt in
our fluid, lack of appreciable diffusion should apply to the stratifying agent as well. We
note that for water–salt solutions, the diffusivity of salt (as well as most ionic solutes)
is 1.5 × 10−5 cm2 s−1 (see e.g. Rard & Miller 1979), and there seems to be no reason
that this diffusivity would be enhanced in our viscous corn syrup solution. We remark
that fluid motion itself, in the form of shear flows, can enhance diffusivity through the
mechanism of Taylor dispersion (Taylor 1953), which essentially relies on the stretch-
ing of interfaces separating regions from high to low concentrations of diffusing solute.
In our experiments, these regions would likely occur in the stem or near the sphere
where the shear rate would be highest. However, at least for the range of experimental
parameters we have explored, there seems to be little evidence of enhanced diffusion
effects, as ultimately borne out by the good agreement between our non-diffusive
theory with the experimental data. We tested and corroborated these assumptions
further in experimental measurements of a naturally coloured salt, potassium iodide,
in corn syrup over a wide range of dilutions with water, as well as theoretically with
simple two-dimensional shear calculations. Details are reported in Lin (2009).

The equation of motion for the sphere can be written as

ms

dV (t)

dt
= ms ĝ +

∮
S

σ · n̂ dS, (3.14)
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where ms is the mass of the sphere, σ is the stress tensor, S is the surface of the
sphere and n̂ is the outward normal unit vector to this surface.

Taking advantage of the linearity of the Stokes equations, we split the fluid flow
into two parts,

v(x, t) = u(x, t) + w(x, t). (3.15)

The first part, u(x, t), is a Stokes flow in a cylinder with static initial density
distribution ρ0(x3) = ρ(x, 0), which can be absorbed into the pressure component
of the Stokes equations. This velocity will incorporate the boundary conditions on
the moving sphere. The second part, w(x, t), which we call the perturbation velocity,
satisfies homogeneous boundary conditions and is forced by the (typically small) term
ρ(x, t) − ρ0(x3). The equation of motion for the sphere becomes

ms

dV (t)

dt
= ms ĝ +

∮
S

σ u · n̂ dS +

∮
S

σw · n̂ dS, (3.16)

where σ u and σw are the stress tensors for u and w, respectively. The latter stress
tensor σw originates solely from the advection of the density field, and gives rise to
an effective buoyancy-like force, which we refer to as the anomalous density force to
distinguish it from the usual Archimedean buoyancy.

3.2. Stokes flow in a cylinder

The equations of motion for the velocity component u(x, t) in (3.15), written in the
frame of reference moving with the sphere (abusing notation a little, we will not
differentiate our notation to distinguish between lab and moving body frame, as long
as this does not generate confusion) are

µ∇2u = ∇ps − ρ0(x3 + Y3(t)) ĝ, (3.17)

∇ · u = 0, (3.18)

u = 0 for |x| = A, (3.19)

u = −V (t) for

√
x2

1 + x2
2 = R0, − ∞ < x3 < ∞, (3.20)

u → −V (t) for |x3| → ∞. (3.21)

Happel & Byrne (1954) use a method of reflections to decompose the flow into a
series

u = (u(0) + u(1)) + (u(2) + u(3)) + · · · , (3.22)

where

u(0) = −V (t), (3.23)

u(1) =

{
−u(0), r = A,

0, r → ±∞,
(3.24)

u(2) =

{
−u(1), R = R0,

0, Z → ±∞,
(3.25)

u(3) =

{
−u(2), r = A,

0, r → ±∞,
(3.26)

...
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This infinite sum truncated at the odd-labelled terms would satisfy the boundary
conditions on the sphere, while when the sum is truncated at the even-labelled terms
the boundary conditions on the cylinder are satisfied. The first term u(0) is a constant
flow (in space), whose inclusion changes the frame of reference from the lab frame to a
frame of reference moving with the sphere. The second term u(1) satisfies the boundary
conditions using a sphere in Stokes flow in free space. Happel & Byrne (1954) provide
the full solution for the third term u(2), which cancels out the contribution of u(1) on the
boundary of the cylinder. The magnitudes of u(0) and u(1) are O(1) and the sum of
the two velocities satisfies the boundary conditions on the sphere. The error incurred
on the cylinder walls has magnitude O(A/R0). The next reflection u(2) has magnitude
of order O(A/R0), and the sum u(0) + u(1) + u(2) satisfies the boundary conditions on
the cylinder so that this sum incurs an error on the sphere of order O(A/R0).

Happel & Byrne do not study the convergence nature of the series from this method
of reflections, but notice that each reflection contributes a multiplicative (small) factor
A/R0. To correct for the error made on the sphere by u(2), the next reflection u(3)

must be of order O(A/R0). Thus, u(2) and u(3) have the same order of magnitude. The
rest of the terms are not computed explicitly, but we can expect that this pattern be
repeated, so that the series expansion u = (u(0) + u(1)) + (u(2) + u(3)) + · · · decreases by
an order of magnitude in pairs, as indicated explicitly by the parenthetical grouping.

To approximate u consistently, we cannot simply use the first three terms u(0) +
u(1) + u(2), which are provided explicitly by Happel & Byrne (1954). The interface
would pass through the sphere when u(3) is neglected, as this term is of the same
order as u(2). While an explicit form of u(3) is not readily available, its most important
contribution in the dynamics of the sphere can be obtained by cancelling out the
maximum error −2.10444AV (t)/R0 incurred on the sphere with a Stokes flow solution
in free space. (Along with the convergence and consistency issues mentioned above,
we remark that the asymptotic properties of the reflection series as A/R0 → 0 are
not discussed by Happel & Byrne 1954. The asymptotic ordering of terms in (3.22)
would fail near the cylinder boundary, which would require techniques from matched
asymptotics to address this non-uniformity in a region near the cylinder’s boundary.)
With this correction, the second component of the series (3.22) can be re-written as

u
(1)
Z = −V (t)

(
1 + 2.10444

A

R0

)[
−3A

4r
− 3AZ2

4r3
− A3

4r3
+

3Z2A3

4r5

]
, (3.27)

u
(1)
R = −V (t)

(
1 + 2.10444

A

R0

)[
−3ARZ

4r3
+

3A3RZ

4r5

]
. (3.28)

Note that by including this cancellation we no longer satisfy the boundary conditions
on the sphere or the cylinder exactly, but the violation is consistent with the overall
asymptotic error of the retained terms as A/R0 → 0.

All computations shown in this paper use the above Happel & Byrne’s formulation
with the additional correction from (3.27) and (3.28). We remark that alternative
strategies for approximating homogeneous density Stokes fluid flow induced by a
sphere in uniform motion along the axis of a bounding cylinder exist, but we do
not explore them in this work, as our focus is on obtaining the correction velocity
w(x, t) coming from stratification, for which the homogeneous flow velocity u(x, t) is
simply a forcing term through its partial role in the density advection. More accurate
approximate solutions for this velocity can likely be obtained, e.g. by using the infinite
series formulation in Linton (1995).
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The approximate solution for the homogeneous fluid Stokes flow in a cylinder can
now be used with variable density and time dependent sphere’s velocity to find the
drag force due to this flow,

∮
S

σ s · n̂ dS = − ĝ
∫

Ωs

ρ0(x3 + Y3(t)) dΩs − 6πAµV (t)K, (3.29)

where Ωs is the sphere domain and K = (1−2.10444(A/R0)+2.08877(A/R0)
3 + · · · )−1

is the drag coefficient.

3.3. Perturbation velocity

For the stratification-induced flow, we define εG(x, t) = (ρ(x, t) − ρ0(x3 + Y3(t)))/ρref

and write the governing equations in a moving frame of reference,

µ∇2w = ∇pw − εG(x, t)ρref ĝ, (3.30)

∇ · w = 0, (3.31)

w = 0 for |x| = A, (3.32)

w = 0 for

√
x2

1 + x2
2 = R0, − ∞ < x3 < ∞, (3.33)

w → 0 for |x3| → ∞. (3.34)

The boundary conditions for w are homogeneous, and we can find an approximate
solution for w(x, t) using the free-space Green’s function due to Oseen (1927). This
is the solution of the equations

µ∇2W (x, y) = ∇P (x, y) − ρref ĝδ(x − y), (3.35)

∇ · W = 0, (3.36)

W = 0 for |x| = A, (3.37)

W → 0 as |x| → ∞, (3.38)

for a Stokeslet of strength ρref ĝ located at the point y outside a rigid sphere of radius
A surrounded by an infinite Stokes fluid. The resultant force on the sphere can be
computed using the reciprocal theorem (see Appendix D).

We look for an asymptotic expansion w =w(0) + w(1) + w(2) + w(3) + · · · for small
(ρ(x, t)−ρ0)/ρref . The first term of order O (εA/R0) can be written as the convolution

w(0)(x, t) =

∫
Ωf

εG( y, t)W (x, y) dΩf , (3.39)

p(0)
w (x, t) =

∫
Ωf

εG( y, t)P (x, y) dΩf , (3.40)

where Ωf is the fluid domain.
By interchanging the order of integration (which is allowed because of the

convergence properties determined by the integrands), the force calculation for the
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first-order approximation becomes∮
S

σ (0)
w ijnj dS =

∮
S

(
−p(0)

w δij + µ

(
∂w

(0)
i

∂xj

+
∂w

(0)
j

∂xi

))
nj dS

=

∫
Ωf

εG( y, t)
∮

S

(
−P (x, y)δij + µ

(
∂Wi(x, y)

∂xj

+
∂Wj (x, y)

∂xi

))
nj dS dΩf

=

∫
Ωf

εG( y, t)
Aρref ĝi

4

{
3

(
r2 + y2

3

)
r3

+
A2

(
r2 − 3y2

3

)
r5

}
dΩf , (3.41)

where r = | y|.
Equations (3.39) and (3.41) determine the first-order approximation to the fluid

flow and the resultant force on the sphere due to the density variation.

3.4. Theoretical model

Combining the results from §§ 3.2 and 3.3, we have the equation for the vertical
component of the velocity of the sphere and the advection of the fluid,

ms

dV (t)

dt
= msg − g

∫
Ωs

ρ0(x3 + Y3(t)) dΩs

− 6πAµV (t)
(
1 − 2.10444(A/R0) + 2.08877(A/R0)

3 + · · ·
)−1

+

∫
Ωf

εG( y, t)
Aρref g

4

{
3

(
r2 + y2

3

)
r3

+
A2

(
r2 − 3y2

3

)
r5

}
dΩf , (3.42)

∂ρ

∂t
(x, t) + (u(x, t) + w(x, t)) · ∇ρ(x, t) = 0. (3.43)

This can be further reduced when written in non-dimensional form,

Re St
4π

3

ρs

ρref

dṼ (̃t)

dt̃
=

Re

Fr2

(
4π

3

ρs

ρref

−
∫

Ω̃s

ρ̃0(x̃3 + Ỹ3(t)) dΩ̃s

)

− 6πṼ (̃t)
(
1 − 2.10444(A/R0) + 2.08877(A/R0)

3 + · · ·
)−1

+
Re

Fr2

∫
Ω̃f

εG( ỹ, t̃)
4

{
3

(
r̃2 + ỹ2

3

)
r̃3

+

(
r̃2 − 3ỹ2

3

)
r̃5

}
dΩ̃f , (3.44)

which shows that the sphere’s acceleration term dV/dt can be scaled out. We are left
with

Ṽ (̃t) =
Re

Fr2

(
4π

3

ρs

ρref

−
∫

Ω̃s

ρ̃0(x̃3 + Ỹ3(t)) dΩ̃s

+

∫
Ω̃f

εG( ỹ, t̃)
4

{
3

(
r̃2 + ỹ2

3

)
r̃3

+

(
r̃2 − 3ỹ2

3

)
r̃5

}
dΩ̃f

)/
(6πK), (3.45)

St
∂ρ̃

∂t̃
(x̃, t̃) + (ũ(x̃, t̃) + w̃(x̃, t̃)) · ∇̃ρ̃(x̃, t̃) = 0, (3.46)

where

K =
(
1 − 2.10444(A/R0) + 2.08877(A/R0)

3 + · · ·
)−1

. (3.47)
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In dimensional form and in the frame of reference moving with the sphere, we have
our final equations of motion for the sphere and fluid velocities

dY3

dt
(t; ρ) = V (t; ρ) = (6πAµK)−1

(
msg − g

∫
Ωs

ρ0(x3 + Y3(t; ρ)) dΩs

+

∫
Ωf

εG( y, t)
Aρref g

4

{
3

(
r2 + y2

3

)
r3

+
A2

(
r2 − 3y2

3

)
r5

}
dΩf

)
,

∂ρ

∂t
(x, t) + (u(x, t; V ) + w(x, t; ρ)) · ∇ρ(x, t) = 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.48)

We remark that the velocities advecting the density in this system satisfy the boundary
conditions stated in (3.19)–(3.21) and in (3.32)–(3.34). The detailed formulations for
the velocities u + w can be found in Appendices B and C. Equations (3.48) in
combination with formulae (B 1)–(B 4) and (C 1) for the approximation to the velocity
field constitute our final model for the settling of the sphere with the specified density
stratification.

Mathematically, this model is a coupled pair of integro-differential equations in both
ρ(x, t) and Y3(t; ρ), where the speed of the sphere V (t) determines u and the density
field ρ(x, t) determines the domain of integration for w. The initial data consist of
the initial position of the sphere Y3(0), and an initial fluid density distribution ρ0(x3),
inside a cylinder of radius R0 and outside a sphere of radius A centred along the
cylinder axis (where the sphere centre is constrained at all times for axially symmetric
solutions). These initial data completely determine the future evolution of the density
field by advection through the fluid velocities, whose combination satisfies the rigid
boundary conditions (to within the accuracy of the analytic approximations based
on Stokes flow theory). In writing the model (3.48), we have added ρ and V to the
functional arguments to emphasize the coupling between equations. In the remainder
of this work, however, we revert to the previously used standard notation to avoid
lengthy argument lists.

4. Results
4.1. Computation

Note that because the flow is axisymmetric, we only need to consider half of the
vertical cross-section of the cylinder to model the entire system. The Stokes portion u
can be separated into temporal and spatial components V (t) f (x). The function f (x)
is computed a priori on a two-dimensional grid in the fluid domain of interest.

For a two-layer fluid stratification, we use a step function for the density transition
and track points on the interface between the two layers of fluid. For a more diffused
stratification, we can track multiple isopycnal lines and interpolate to find the entire
density field. Since the system is axisymmetric, these density surfaces are initialized
as horizontal lines and advected using an ordinary differential equation solver with
the formulation as in (3.48). The velocity u for each tracked point is found by cubic
interpolation on the two-dimensional grid computed by f (x) and multiplied by the
current value of V (t). This is obtained by the fairly straightforward computation
(3.48), though the history term Y3(t) =

∫ t

0
V (s) ds must be tracked in time. The second

component of the density advection, w, is found by numerically computing the
convolution (3.39). Thus, the shape of the interface at each time iteration determines
the domain of integration not only for w but also for the formulation of the force
on the sphere (3.41). All velocity plots presented here are indicating the magnitude of
the sphere’s velocity.
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Figure 6. Sphere velocity comparisons from the experimental data and theoretical prediction
for experimental parameters matching those in figure 3.

Figure 7. The computed, theoretical interface in white overlaid upon images of a sphere
falling through stratified fluid with upper layer dyed for the same experimental parameters as
in figure 2.

4.2. Comparison with experimental results

Once all the experimental parameters are determined through (accurate) measure-
ments (i.e. viscosity and densities of the fluids, initial position and velocity of the
sphere, size of the sphere and cylinder, etc.), we can directly compare the experimental
data with numerical simulations. In figure 6, we see good agreement between the
theoretically computed velocity profile and the data. Additionally, with the data from
the experiment in figure 2, we can track the interface between the two fluids, and the
comparison with the computed interface is shown in figure 7. It is also interesting
to consider the effects on the interface evolution caused by neglecting the velocity
or force arising from the buoyant fluid in our model. Comparison of the resulting
approximations with experimental data are discussed in Camassa et al. (2009).

Next, we have explored experimentally a parametric range determined by varying
sphere sizes and velocities. In figure 8(a), the maximum terminal velocity is an order
of magnitude smaller than the previously shown experiment. Figure 8(b) shows data
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Figure 8. Theoretical and experimental velocity graphs for (a) a glass sphere of radius 0.24 cm
and density 1.4 g ml−1 settling through a stratification of 1.37484 g ml−1 and 1.37623 g ml−1

density fluids with an average viscosity of 3.4 Pa s and (b) a steel sphere of radius 0.04 cm
and density 7.74 g ml−1 settling through a stratification of 1.37720 g ml−1 and 1.37932 g ml−1

density fluids with an average viscosity of approximately 1.65 Pa s in a tank of 9.45 cm radius.
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Figure 9. Theoretical and experimental velocity profiles for a 0.635 cm radius, 1.46755 g ml−1

sphere in a stratified fluid of densities 1.38362 g ml−1 and 1.38535 g ml−1 with viscosity ∼2.2 Pa
s in cylindrical tanks of radius 9.45 cm, 5.4 cm and 3.1 cm.

from an experiment in which the sphere size is an order of magnitude smaller than
the previously shown comparisons and seems to have qualitative agreement with the
theory. However, the spheres in this last data set are too small to be tracked without
introducing large noise fluctuations, which make the comparison between theory and
experiments difficult in such cases.

Additionally, we can model the effect of the tank walls on the sphere by using
the same fluid stratification and varying the cylinder radius. The theoretical and
experimental velocity graphs in figure 9 show that with decreasing ratio of sphere-
to-cylinder radii, A/R0, the accuracy of the asymptotic approximation, as expected,
increases.

4.3. Instantaneous points of zero velocity

Points of zero (instantaneous) velocity can be visualized effectively by a plot of the
instantaneous streamlines. Figure 10(a) shows the computed streamlines from the full
theory (with the velocity in the lab frame). A streamline structure that includes fixed
points of different (elliptic and hyperbolic) types and instantaneously closed orbits is
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Figure 10. In the laboratory frame, the instantaneous streamlines for a sphere of radius
0.635 cm and density 1.5607 g ml−1 in a fluid of viscosity ∼3.0 Pa s in a cylinder of radius
9.45 cm computed using the full theory with (a) fluid of top layer density 1.38147 g ml−1 and
bottom layer density 1.38506 g ml−1 and (b) constant density.

clearly visible in this axial cross-section of the cylindrically symmetric flow. In this
plot, the origin is shifted to coincide with the centre of the sphere, and the initial
position of the interface is approximately 5.2 cm above the origin. The instantaneous
hyperbolic stagnation points along the cylinder’s axis, as well as the elliptic fixed
points at the centre of the closed streamline pattern above the sphere (note that all
these points change position in time), are solely due to the perturbation flow. (Fixed
points off the vertical axis in these cross-sectional plots represent rings of points in the
cylindrically symmetric flow where the velocity is instantaneously zero). In figure 10(b),
we plot the calculated streamlines from the theory in homogeneous fluid: the
instantaneous hyperbolic points of zero velocity above the sphere are absent. In
the stratified case, the hyperbolic point immediately above the sphere marks the
location where the upward motion of the fluid due to its buoyancy cancels the
downward motion due to the moving sphere. A similar stagnation point was reported
in the numerical results in Manga & Stone (1995), for the case of immiscible fluids.

Several remarks are in order. First, note that in these instantaneous streamline
plots time should be considered as a parameter, whose variation leads to bifurcations
of the velocity field. Thus, for instance, it can be expected that the two hyperbolic
fixed points along the axis above the sphere emerge simultaneously with the elliptic
fixed points and the connecting separatrix streamlines, in a bifurcation unfolding that
leaves the total index fixed to zero for that cross-sectional region of the fluid domain,
in agreement with the Poincaré index count for local bifurcations (see e.g. Ma &
Wang 2001). Similarly, the magnitude of the density jump between the fluid layers
can also be viewed as a bifurcation parameter. For large values of this parameter, it
is plausible that a different bifurcation structure and unfolding takes place as time
increases. While these bifurcation studies are interesting from a dynamical system
perspective, they transcend the main focus of this paper, and we leave a more
detailed analysis to future work.

Next, note that while figure 10(b) ought to represent the instantaneous streamlines
due to a sphere falling in homogeneous fluid in a cylinder, we obtain them by using the
approximate solution provided by Happel & Byrne (1954) along with our additional
corrections, shown in (3.27) and (3.28). As discussed in § 3.7, a consistent asymptotic
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approximation near the sphere requires the series u(1) + (u(2) + u(3)) + · · · (we neglect
u(0) since the streamlines are plotted in the lab frame) to be cutoff at the odd-labelled
terms. Thus, the sum will satisfy the boundary conditions on the sphere, but not
on the cylinder. Accordingly, the details of the instantaneous streamlines far from
the sphere in figure 10 cannot be entirely correct, and end up magnifying a small
error in the velocity field. For instance, the vertical velocity perturbation added in the
truncation of the method of reflections, to correct for the fluid velocity on the sphere,
generates a small flow far from the sphere which corresponds, in the streamline plots,
to the appearance of open streamlines (particularly evident in the homogeneous case
of figure 10(b) towards the top of the figure). This suggests a non-zero volume flux
through horizontal planes far from the sphere. In calculating flux, we see that while
u(2) is subdominant to u(1), the flux induced by u(1) + u(2) is zero. This illustrates the
non-uniformity in the asymptotic expansion of u using the method of reflections.

As shown from the model comparisons with experimental data in § 4.2, the errors
incurred in this approximation do not have significant dynamical effects on the sphere
motion, at least for the parametric range we have focused on. We further tested the
robustness of the approximation by exploring different ways to impose the boundary
condition on the sphere, e.g. by imposing that if interface points touch the sphere
they are assigned the sphere’s velocity and hence move with the sphere; this had no
noticeable effect on the sphere’s dynamics nor the interface away from the sphere.
This suggests that, as time progresses, the lower density fluid wrapping around the
front of the sphere reaches thicknesses so small as to have no appreciable effects on
the long time dynamics of the sphere, at least within the typical duration times of
our experiments.

The dynamical effects of the interface morphology, as well as the diagnostic
implications of the instantaneous streamline pattern with the appearance of fixed
points in their phase portrait, are illustrated in figure 11. Figure 11(a–c) depicts
displacements of the interface from its equilibrium position at three instants in time,
labelled a, b, c and marked by vertical dashed lines across the sphere’s velocity
versus time plot in figure 11(d ). As the figure demonstrates, the sphere attains its
local minimum velocity well before the upper density fluid wraps fully around the
sphere, which illustrates the need to accurately compute the interface shape to predict
the extrema quantitatively. The ‘neck’ of the interface, corresponding to the vertical
slope of the interface becoming a multi-valued function of the horizontal (radial)
coordinate, develops when the sphere is accelerating towards its lower-fluid terminal
velocity. The bifurcation in the streamline portrait leading to the appearance of the
hyperbolic fixed points in the wake of the sphere can be first detected at the time
t � 50 s, close to that of the minimum velocity, as shown by figure 11(e), which tracks
the two hyperbolic fixed points’ heights in time.

5. Approach to the interface
The perturbation stress (3.41) grows linearly with the density of the bottom layer

fluid. In the limiting case where the bottom density tends to infinity, the stress force
will also go to infinity and the sphere will come to rest before entering the lower
layer of fluid. Thus, the behaviour of the sphere probably approaches that of a sphere
falling towards a stationary interface of zero vertical velocity.

Two identical spheres approaching each other with equal, but opposite velocities
will have zero vertical flow on the plane defined by the points equidistant from the
two spheres. In free space, this construction has been solved by Happel & Brenner

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

38
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010003800


452 R. Camassa, C. Falcon, J. Lin, R. M. McLaughlin and N. Mykins

0.20

0.18

0.16

0.14

0.12

0.10
0 20 40 60 80 100

20 40 60 80 100

15

10

5

0

(a)

a
a b c

b

c

(d)

(e)

(b)

(c)

V
el

oc
it

y 
(c

m
 s

–1
)

V
er

ti
ca

l p
os

it
io

n 
(c

m
)

st
ag

na
ti

on
 p

oi
nt

s

Time (s)

Figure 11. (a–c) Snapshots of the streamline portrait, interface position and stagnation point
locations (indicated by small open circles) for a sphere of radius 0.635 cm and density
1.46755 g ml−1 in a stratified fluid of top layer density 1.37661 g ml−1 and lower layer
density 1.38384 g ml−1, with overall viscosity 3.62 Pa s, at three different instants in time.
(b) Corresponds to time t � 48 s at which the sphere’s minimum velocity V (t) is attained.
(d ) V (t) plot – the dashed vertical lines mark the snapshot times of the streamline portraits
(a, b, c) to the left. (e) Elevations of the two hyperbolic fixed points versus time in a moving
frame of reference (with the sphere stationary) past the bifurcation at t � 50 s.

(1965), who provide the formulation for the drag force

Fd = 6πAµV

(
1 +

3

4

A

d
+

9

16

(
A

d

)2

+
19

32

(
A

d

)3

+
3

8

(
A

d

)4

+ · · ·
)

, (5.1)

where d is half the distance between the centres of the spheres.
To visualize this limiting case, we show in figure 12 the velocity graphs of a sphere

as formulated by our full theory with increasing bottom fluid density, keeping all other
parameters the same. Solution (5.1) is obtained for the ideal free-space case. Hence,
for the purpose of this visualization, we need to minimize the cylinder wall effects in
our full theory. We pick the sphere to cylinder radius ratio A/R0 = 1/60. This ratio,
based on the study presented in § 6, is sufficient to guarantee that the cylinder-wall
boundary condition does not affect the model solution significantly, for most of the
range of increasing density jumps we consider in figure 12. As the difference in the
density of the sphere and the bottom fluid ρs − ρ2 decreases, we see that the velocity
profile approaches that of a sphere moving towards an interface with zero vertical
velocity, plotted in solid black.

We use this limiting case to estimate the time scale T for our experiments. To
leading order, the equation of motion for a sphere approaching a plane of zero
vertical velocity in free space (Happel & Brenner 1965) is

ms

dV

dt
= msg − mf g − 6πAµV (t)

(
1 +

3

4

A

H − Y3(t)

)
, (5.2)

where H is the initial distance from the centre of the sphere to the interface and
mf is the mass of upper fluid displaced by the sphere. If we again neglect the time
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Figure 12. Velocity versus time graphs for a sphere of radius 0.635 cm and density
1.46755 g ml−1 initiated 30 cm from the interface separating a top fluid density 1.37661 g ml−1,
viscosity 1.76 Pa s, and changing bottom fluid density. The ρs − ρ2 values decrease from 0.087
to 0.007 g ml−1 and the velocity graph approaches that of a sphere approaching an interface
with zero vertical velocity, shown as a solid line, i.e. the solution of (5.2).

derivative, we can solve the resulting first order ordinary differential equation (ODE)
for Y3(t) implicitly

t =
6πAµ

(ms − mf )g

(
Y3(t) − 3

4
A log

(
1 − Y3(t)

H

))
, (5.3)

while enforcing the initial condition that Y3(0) = 0. A time scale for a sphere
approaching a plane of zero vertical velocity can be defined by taking the difference
between the times when the sphere exhibits a 10 % departure from terminal velocity
to a 90 % departure (since the sphere comes to a stop at the interface, there is no
lower layer terminal velocity). The velocities at these times are as follows:

V10 % = 0.9 × 2

9

A2g(ρs − ρ1)

µ
, (5.4)

V90 % = 0.1 × 2

9

A2g(ρs − ρ1)

µ
. (5.5)

Evaluating the equation for the position of the sphere versus V (t),

Y3(t) = −3A

4

(
(ms − mf )g

6πAµV (t)
− 1

)−1

+ H, (5.6)

at these critical velocities yields the associated positions, which, once inserted into
(5.3), provide the time scale

T =
3

4

µ (40 + 9 log 9)

Ag(ρs − ρ1)
. (5.7)

We can visualize this time scale on a velocity plot, where the region of interest
is from 10 % deceleration from terminal velocity to 90 % towards the minimum
velocity attained. In figure 13, the solid velocity curve is computed using the full
theory for a density difference between the sphere and bottom fluid of 0.087 g ml−1.
The dashed plot is the velocity obtained from a sphere approaching an interface with
zero vertical flow using the same parameters as in the stratified case. The respective
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Figure 13. The time scales for a sphere in stratified fluid, in black, and a sphere approaching
an interface of zero vertical velocity (which is reminiscent of the Tanner study with a rigid
bottom), in grey, show that the time scale computed from (5.7) provides an estimate for the
deceleration time interval (same parameters as in figure 12).

time scales and regions of deceleration are shown, and indicate that the zero vertical
flow simplification will underestimate the time scale, thus overestimating the Strouhal
number. Since our theory assumes that St is not large, an upper bound is appropriate.

Note that this calculation can be repeated for the case when the interfacial plane is
replaced by a rigid wall, in which case the horizontal velocity components would also
have to vanish. The leading-order coefficient would then change from 3/4 to 9/8, and
would propagate through to the time scale formulation (5.7). As the stratified fluid
would allow a horizontal velocity along the interface, the rigid wall approximation
should provide an upper bound for the time scale of slowdown.

6. Non-dimensional trends
It may be of practical interest to explore trends resulting from parameter variations.

Given the model’s good agreement with the experimental data, and its derivation
from first-principle physics, it can be used as a predictive tool within its range of
validity. We can therefore explore parameters that will maximize the slowdown due
to stratification. Such trends will also provide an a priori intuition of the sphere’s
behaviour when immersed in continuously stratified fluid. Note that these studies
could run into regimes where finite Re effects become important, such as the Oseen
far-field correction beyond the length scale R � A/Re, where our theory can be
expected to break down.

With the time scale for deceleration estimated in (5.7), we can compute the Strouhal
number

St =
6K(A/R0)

40 + 9 log 9

(
1 +

1

2

�ρ/ρref

ρs/ρref − 1

)
. (6.1)

The non-dimensionalized model,

Ṽ =
Re

6Fr2
K (A/R0)

−1

(
4ρs

3ρref

−
∫ 1

−1

(1 − z̃2)ρ̃0(z̃) dz̃

+
�ρ

πρref

∫
Ω̃

1

4

(
3(R̃2 + 2Z̃2)√

R̃2 + Z̃2
3

+
R̃2 − 2Z̃2√
R̃2 + Z̃2

5

)
dΩ̃

)
, (6.2)

St
∂ρ̃

∂t̃
+

(
ũ +

Re

Fr2
w̃

)
· ∇̃ρ̃ = 0, (6.3)
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Figure 14. (a) The sphere velocity graphs for initial non-dimensional distance ỹ0 between the
sphere and the interface increasing from 2.5 (grey) to 25 (black). (b) A plot of the minimum
velocity with changing ỹ0 shows the slowdown increases with distance.
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Figure 15. (a) The sphere velocity graphs for non-dimensionalized sphere velocity ρs/ρref

changing from 1.05 (grey) to 1.5 (black). (b) A plot of the minimum velocity as a function of
ρs/ρref shows the minimum velocity attained increases with the sphere density.

w̃ =
�ρ

ρref

∫
Ω̃

W̃ dΩ̃, (6.4)

can be completely characterized by the following four parameters: ỹ0, ρs/ρref , �ρ/ρref

and Re/Fr2, therefore reducing the original seven parameter space, y0, A, R0, µ, ρ1,
ρ2 and ρs . For the parameter studies below, the nominal values, ỹ0 = 10, ρs/ρref =1.1,

�ρ/ρref = 0.01 and Re/Fr2 = 75, are held fixed unless otherwise specified.
In figure 14, the initial distance of the interface to a sphere located at the origin

changes from ỹ0 = −2.5 in grey to ỹ0 = −25 in black in increments of 2.5. The
minimum velocity attained is higher when the interface is initiated closer to the
sphere, as less deformation occurs and less buoyant fluid is entrained.

In figure 15, the sphere density is increasing from 1.05 (grey) to 1.5 (black) relative
to the average fluid density. As the sphere increases in mass and effectively ‘tunnels’
through the stratification, the force resulting from the density deformation becomes
less important. We see this reflected in the trends, where the minimum velocity
attained increases with ρs/ρref .

In figure 16(a), the density difference between the top and bottom layer is increasing
from 0.002 (grey) to 0.02 (black) in increments of 0.002 relative to the average density
of the fluid system. The density difference directly affects the density anomaly force
and will enhance the slowdown of the sphere. Figure 16(b) shows the slowdown of
the sphere to be more pronounced with increasing �ρ/ρref .
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Figure 16. (a) The sphere velocity graphs for non-dimensionalized fluid density jump �ρ/ρref

changing from 0.002 (grey) to 0.02 (black). (b) A plot of the minimum velocity as a function
of �ρ/ρref shows the slowdown is amplified with increasing density jump.
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Figure 17. (a) The sphere velocity graphs for non-dimensionalized parameter Re/Fr2

changing from 47 (grey) to 350 (black). (b) A plot of the minimum velocity as a function of
Re/Fr2 has a non-montonic trend.

In figure 17, Re/Fr2 changes from 46 (in grey) to 350 (in black) by uneven
increasing intervals. As this non-dimensional term multiplies as an overall coefficient
both the homogeneous Stokes and the density induced perturbation velocity, and
also determines the ratio A/R0, it is unclear what the effects of its variations are on
the sphere’s motion. The trend of the minimum velocity attained appears to be non-
monotonic. Note that in varying Re/Fr2 we are changing the ratio of gravitational to
viscous forces. With the exception of this parameter, which can be viewed as a drag
coefficient, all the trends have intuitive effects on the behaviour of the falling sphere.

While the previous figures document the behaviour arising for certain cross-sections
through the four-dimensional parametric space, a particular cross-section worth
focusing on concerns the effects of varying A/R0. We show in figure 18 the results
from the theoretical model when increasing the inverted ratio R0/A from 40 in grey
to 200 in black. At these scales, where both the Tanner and the far-field Oseen length
scales become important, the density effects of the present model are nonetheless
singled out. In particular, this study gives some information on the mathematically
relevant question of whether a well defined, physically acceptable free-space limit of
our theory (solely based on the Stokes approximation) exists due to the presence of
stratification. This is in contrast to the homogeneous fluid counterpart, where the
free-space limit leads to well known divergences, such as that of the volume of fluid
dragged by the moving sphere, which need to be corrected with the Oseen asymptotic
contribution of the inertia terms in the Navier–Stokes equations.
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Figure 18. Velocity plots for R0/A increasing from 40 (in grey) to 200 (in black) in increments
of 10 for a sphere falling through stratified fluid. The sphere is initiated at a distance y0/A = 40
away from the interface, within the Tanner length scale. The velocity curve marking the
transition through the non-dimensionalized Oseen length scale of 1/Re = 146 is shown as a
dashed curve.

For the results depicted in figure 18, the sphere is initialized at a distance of
y0/A= 40, so as the cylinder radius increases, the effects of the interface on the velocity
of the sphere will be reflected by a more immediate initial slowdown indicating that
a terminal velocity may not be achieved in the upper fluid. When R0/A increases
beyond the Oseen length scale of A/Re, this transition is marked in figure 18 as the
dashed curve. Since the velocity plots appear to be converging as R0/A increases,
it seems that a physically acceptable free-space limit may exist even in the absence
of an Oseen inertial correction. We remark that this conclusion hinges on the good
convergence exhibited by the model up to intermediate time scales (up to 150 s in
this figure). Further improvements on the model are needed to capture long-time
trends correctly, particularly at either small or large R0/A ratios. Small errors in
the asymptotic approximations of the boundary conditions discussed in § 4.3 do in
fact accumulate over long times and prevent the model dynamics from maintaining
the terminal velocity force-balance on long time scales. This may account for the
appearance of a relative maximum in the velocity plot, noticeable for the smaller
R0/A ratios of figure 18. The existence of a relative maximum would imply an
overshoot above the terminal velocity of the lower fluid, an additional feature with
respect to the monotonic increase to this limiting value after the minimum velocity
slowdown seen in most computations over intermediate time scales.

7. Comparison with other models
In § 7, we compare our results with that of two simple models, which could be

viewed as intuitive starting points in a straightforward generalization to the stratified
case of what is known for the case of homogenous fluids. However, as we will see, these
models fail to represent our experimental data, indicating that our full model (3.48)
may actually be the minimum required in the experimental range of parameters we
have explored.

7.1. Archimedean model

Possibly the simplest way to account for the higher-density lower fluid is to calculate
the volume of entrained fluid and directly apply its Archimedean buoyant force to the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

38
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010003800


458 R. Camassa, C. Falcon, J. Lin, R. M. McLaughlin and N. Mykins

V
ol

um
e 

of
 e

nt
ra

in
ed

 
fl

ui
d 

(c
m

3 )

0.40
0.38 50

40

30

20

10

0

0.34
0.36

0.32
0.30
0.28
0.26
0.24

(a) (b)
V

el
oc

it
y 

(c
m

 s
–1

)

Time (s)

Experiment
Archimedean

0 10 20 30 40 50

Time (s)
10 20 30 40 50 60 7060

Figure 19. Using an Archimedean model, (a) we compare the computed velocity profile and
the experimental data, and find that the velocity profile is monotonically decreasing due to a
(b) monotonically increasing volume of entrained fluid.

sphere. In this case, our equations of motion for the sphere and fluid in the moving
frame of reference would become

ms

dV (t)

dt
= msg − g

∫
Ωs

ρ0(x3 + Y3(t)) dΩs − 6πAµV (t)K

+ g

∫
Ωf

(ρ(x, t) − ρ0(x3 + Y3(t))) dΩf , (7.1)

∂ρ

∂t
(x, t) + u(x, t) · ∇ρ(x, t) = 0, (7.2)

where K = (1 − 2.10444(A/R0)+2.08877(A/R0)
3 + · · · )−1 is again the extra coefficient

for a Stokes drag in a pipe and Ωf is the volume of entrained fluid.
The numerical simulation of this model uses the approximation for u(x, t) given

in § 3.2 with parameters matching those in figure 3. The resulting velocity profile in
figure 19(a) is monotonically decreasing, due to the monotonically increasing volume
of entrained fluid, shown in figure 19(b). We remark, however, that drift volume
computations in cylinders are affected by the truncation approximation when using
the method of reflections. Also note that because this simplistic Archimedean model
does not take into account the buoyancy of the fluid in the advection equation, the
velocity of the sphere is unable to approach the terminal velocity of the bottom
layer after slowing down, even if the entrained volume were to reach a finite limit.
Additionally, this model does not account for the location of the entrained fluid
relative to the sphere. Hence, buoyant fluid at large distances from the sphere has a
significant effect on the system, and the centre of mass of the sphere with entrained
fluid may migrate outside of the sphere boundary. The Archimedean buoyancy force
calculated in this model is therefore an upper bound to the buoyant force of the
entrained fluid.

7.2. Modified Maxey–Riley model

Maxey & Riley (1983) provided a solution for the unsteady motion of a sphere in
a non-uniform flow. For the fluid velocity, the time derivative in the inertial term is
retained, corresponding to scalings for which the Strouhal number might be large
while keeping the Reynolds number small, and gives rise to the well-known Basset
history term in the final model. As a point of comparison, we modify this equation
of motion with a variable fluid density and zero ambient flow,
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Figure 20. Velocity profile computed from the modified Maxey–Riley model overlaid upon
the experimental data.

ms

dV (t)

dt
= (ms − mf )g − 1

2
mf

dV (t)

dt
− 6πAµV (t)

− 6πA2µ

∫ t

0

dV (τ )

dτ
(πν(t − τ ))−1/2 dτ, (7.3)

where

mf =

∫
Ωs

ρ(x3 + Y3(t)) dΩs. (7.4)

Again, we can compute the velocity predicted by this model using parameters from
the experiment in figure 3. The results are shown in figure 20. It is interesting to
note that the computed velocity profile appears monotonic, but as the inset reveals,
it can in fact present a slight dip in the velocity. This model does not account for the
deformation of the density field, and can only be justified under the assumption that
the sphere sees only the unperturbed background density distribution. Thus, the time
scale for the sphere falling through the density transition must be shorter than the
diffusion scale for the fluid, but longer than the time scale for the displaced fluid
to diffuse back to its original background stratification values. The phenomenon
of enhanced diffusion in regions of high shear flows, mentioned in § 3, could in
principle make such disparity of time scales possible, however this regime has yet to
be pinpointed with our experimental parameters. We remark that in the case of an
infinite linear stratification, for which the background stratification remains constant
in time, this model could apply under sufficiently large diffusivities.

8. Discussion
Our study of a sphere falling through fluid with (sharp) density stratifications shows

a significant slowdown beyond the terminal velocity of the bottom denser fluid when
the sphere approaches the region of high stratification. The full theoretical model
(3.42) and (3.43) we have derived from first principles shows good agreement with
the experimental data and has no adjustable parameters. While it does not lead to a
closed form solution, the numerical integration needed for its solution is limited to a
standard ODE code for the Lagrangian advection of the interface. This allows a fast
and accurate solution of the stratified fluid motion fully coupled to the rigid body
(sphere) dynamics through its moving boundary.
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From a mathematical perspective, it is interesting to consider the theoretical model
we have developed in the case of free space, which eliminates the approximations
needed to enforce the no-slip boundary condition on the cylinder wall, thereby
making the model exact for flows in the Stokes regimes. However, as is well known,
the slow decay at infinity of the velocity field induced by the moving sphere in
the Stokes approximation leads to divergences of integral quantities, giving rise to
inconsistencies of the free-space theory for homogeneous fluids sometimes collectively
referred to as ‘Stokes paradox’. This affects our theory as well, since integrals such
as those in the Oseen’s Green’s function convolution lose their convergence in the
free-space limit. However, it can be shown that infinite divergences due to the slow
decay at infinity of the interface displacement occur with opposite sign in the force
balance, suggesting that a regularization by cancellation of infinities could occur in
the stratified infinite case. Of course, the far-field fluid’s inertia is the ultimate physical
origin of the regularization of Stokes paradox divergences, which effectively cuts off
the domain of integration at the Oseen’s length scale A/Re, but the regularization
by sharp stratification suggested by our model could effectively introduce a cutoff
at shorter range for large enough density jumps. Another noteworthy generalization
of our theory for sharp density stratification is to approximate a broader range of
stratifications by ‘experimental discretization’ through multi-layer density profiles.
In particular, we are now considering both experimentally and analytically density
‘staircases’ approximating a linear density profile, as studied by Yick et al. (2009). We
expect that the dynamics of a sphere falling through a staircase stratification would
oscillate around a mean, which could be related to a linear stratification profile,
thereby providing direct comparison with the results of Yick et al. (2009). Finally,
a promising avenue of investigation is that of higher, but still moderate, Reynolds
number situations, which can easily be achieved experimentally when working with
corn syrup by increasing its water content. This regime should bring forth other
important effects such as the dynamical role played by internal gravity waves and the
nature of the overshoot of the entrained fluid as it returns to equilibrium (Lin 2009).
These will be the focus of a future publication.
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DataTank and was supported by NSF DMS-SCREMS 042241. The work was funded
by the NSF RTG DMS-0502266. R.C. is also supported by NSF DMS-0509423.
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HRD-0450099.

Appendix A. Internal gravity waves in a two-fluid system
Consider a two-fluid system of density ρ1 and velocity u(1) upper layer and density

ρ2 and velocity u(2) lower layer. Let x and z indicate the horizontal and vertical
directions, respectively. We have the following equations of motion:

u(j )
t = νj�u(j ) − 1/ρj ∇p(j ), (A 1)

∇ · u(j ) = 0, (A 2)

for j = 1, 2. Assuming

u(j ) = gj (z)e
−iωt+ikx, (A 3)

v(j ) = hj (z)e
−iωt+ikx, (A 4)
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and assuming that u(1) → 0 as z → ∞ and u(2) → 0 as z → −∞, we have the following
solutions:

u(1) = eikx−itω(A1e
−kz + B1e

−m1z), (A 5)

v(1) = eikx−itω

(
iA1e

−kz +
ik

m1

B1e
−m1z

)
, (A 6)

p(1) = ρ1

(
ω

k
A1e

ikx−kz−itω − gz

)
, (A 7)

u(2) = eikx−itω(A2e
kz + B2e

m2z), (A 8)

v(2) = eikx−itω

(
−iA2e

kz − ik

m2

B2e
m2z

)
, (A 9)

p(2) = ρ2

(
ω

k
A2e

ikx+kz−itω − gz

)
, (A 10)

where mj =
√

k2 − iω/νj . Matching velocities and stresses at the interface, we have
the following dispersion relation:

ωm1m2

(
k(ρ1 − ρ2)

2ω2 − (ρ1 + ρ2) (m2ρ1 + ρ2m1) ω2

+ gk(ρ1 − ρ2) (−m2ρ1 + k(ρ1 + ρ2) − ρ2m1)) = 0. (A 11)

Assuming limiting case 2µk2/(ρ1 + ρ2) 	
√

gk, we retrieve the root

ω = ±

√
gk(ρ2 − ρ1)

ρ1 + ρ2

+

√
2µρ1ρ2(∓1 − i)

√
ρ2ρ1 + ρ2

√
ρ1

(
gk5(ρ2 − ρ1)

ρ1 + ρ2

)1/4

−
2ik2µ

(
ρ2

1 + ρ2
2

)
(√

ρ1 +
√

ρ2

)2
(ρ1 + ρ2)2

.

(A 12)

On the other hand, assuming the very viscous limit of 2µk2/(ρ1 + ρ2) �
√

gk, we get
three negative roots (since in a stable stratification ρ2 >ρ1), all of which are purely
imaginary:

ω = − ik2µ

ρ1

, − ik2µ

ρ2

, − ig(ρ2 − ρ1)

4µk
. (A 13)

This limit corresponds to wavenumber k � (g(ρ1 + ρ2)
2/4µ2)1/3, which for our

experimental parameters are in the regime of wavelengths λ	 30 cm (using the
reduced gravity of g′ =2g(ρ2 − ρ1)/(ρ1 + ρ2)). Thus, for our container dimensions, all
internal waves are overdamped.

Appendix B. Stokes flow past a sphere in a cylinder
The asymptotic expansion for u = u(0) +u(1) + · · · , as formulated in Happel & Byrne

(1954) in cylindrical coordinate (R, θ, Z) with r =
√

R2 + Z2 is

u
(0)
Z = −V (t)

[
−3A

4r
− 3AZ2

4r3
− A3

4r3
+

3Z2A3

4r5

]
, (B 1)

u
(0)
R = −V (t)

[
−3ARZ

4r3
+

3A3RZ

4r5

]
, (B 2)

u
(1)
Z =

1

2π

∫ ∞

0

ûZ(R, λ) cos(λZ) dλ, (B 3)
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u
(1)
R =

1

2π

∫ ∞

0

ûR(R, λ) sin(λZ) dλ, (B 4)

P (2)

µ
=

1

2π

∫ ∞

0

P̂ (R, λ) sin(λZ) dλ, (B 5)

where

ûZ(R, λ) =
λR

2
(H (λ) + G(λ))I1(λR) + H (λ)I0(λR), (B 6)

ûR(R, λ) =
λR

2
(H (λ) + G(λ))I0(λR) − G(λ)I1(λR), (B 7)

P̂ (R, λ) = λ(H (λ) + G(λ))I0(λR), (B 8)

ûZ(R, λ) =
λR

2
(H (λ) + G(λ))I1(λR) + H (λ)I0(λR), (B 9)

ûR(R, λ) =
λR

2
(H (λ) + G(λ))I0(λR) − G(λ)I1(λR), (B 10)

and

H (λ) =

AV

{
3 −

(
6 +

A2

R2
0

α2

)
(K0(α)I2(α) + K1(α)I1(α))

}
I0(α)I2(α) − I1(α)2

, (B 11)

G(λ) =

AV

{
−3 +

A2

R2
0

α2 (K1(α)I1(α) + K2(α)I0(α))

}
I0(α)I2(α) − I1(α)2

, (B 12)

where Ij and Kj are modified Bessel functions of the first and second kind.

Appendix C. Perturbation velocity
The perturbation velocity is written as a convolution with the Green’s function

Wj (x, y),

w
(0)
j (x, t) =

∫
Ωf

εG( y, t)Wj (x, y) dΩf , (C 1)

where the Green’s function is written explicitly as Wj (x, y) = gTj3/8πµ (Oseen 1927)
and

Tjk =
δjk

r
+

(xj − yj )(xk − yk)

r3
− A

| y|
δjk

r∗ − A3

| y|3
(xj − y∗

j )(xk − y∗
k )

r∗3

− | y|2 − A2

| y|

{
y∗

j y
∗
k

A3r∗ − A

| y|2r∗3

[
y∗

j (xk − y∗
k ) + y∗

k (xj − y∗
j )

]

+
2y∗

j y
∗
k

A3

y∗
l (xl − y∗

l )

r∗3

}
− (|x|2 − A2)

∂φk

∂xj

, (C 2)

φk =
| y|2 − A2

2| y|3

(
3yk

Ar∗ +
A(xk − y∗

k )

r∗3
+

2yk

A
y∗

j

∂

∂xj

1

r∗

+
3A

| y∗|
∂

∂y∗
k

log
| y∗|r∗ + xjy

∗
j − | y∗|2

|x|| y∗| + xjy
∗
j

)
, (C 3)
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where y∗ = (A2/| y|2) y, r = | y − x|, r∗ = | y∗ − x|, and the convention of sum over
repeated indexes is used. Thus, the Green’s function can be viewed as resulting
from the superposition of appropriate singularities inside the radius A sphere at the
reflection point corresponding to the position y of the Stokeslet outside the sphere
(Higdon 1979). The pressure components of the Green’s function corresponding to
those of the velocity tensor Tjk(x, y) are

Pk = 2µ

[
xk − yk

r3
− A3

| y|3
xk − y∗

k

r∗3
−

(
φk + 2xl

∂φk

∂xl

)]
. (C 4)

Appendix D. Force exerted on a rigid sphere by a Stokeslet in an infinite
fluid

Using the general reciprocal theorem as stated by Happel & Brenner (1965), we
can solve for the force on a sphere due to a Stokeslet in free space. Given the Stokes
flow due to a sphere moving with velocity V in free space, we have the following
system of equations:

∇ · σ = 0, (D 1)

∇ · us = 0, (D 2)

us = V on ∂S, (D 3)

us → 0 as |x| → ∞, (D 4)

where ∂S is the surface of the sphere, whose solution is well known. Next, we would
like to solve the following system for the force on the sphere due to the perturbation
flow w:

∇ · σw = εG(x, t)ρref ĝ, (D 5)

∇ · w = 0, (D 6)

w = 0 on ∂S, (D 7)

w → 0 as |x| → ∞. (D 8)

Combining these two systems and using incompressibility results in the following
system:

∇ · (us · σw) = us · εG(x, t)ρref ĝ, (D 9)

∇ · (w · σ ) = 0. (D 10)

By subtracting these two equations and integrating over the fluid domain Ωf

(assuming the convergence of these integrals), we have∫
Ωf

∇ · (us · σw) dΩf −
∫

Ωf

∇ · (w · σ ) dΩf =

∫
Ωf

us · εG(x, t)ρref ĝ dΩf , (D 11)

which, upon applying the divergence theorem to the left hand side of the equation,
gives ∫

∂S

us · σw · n̂ dS −
∫

∂S

w · σ · n̂ dS =

∫
Ωf

us · εG(x, t)ρref ĝ dΩf . (D 12)

Using the boundary conditions yields∫
∂S

V · σw · n̂ dS =

∫
Ωf

us · εG(x, t)ρref ĝ dΩf . (D 13)
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Considering only the vertical component of the force leads to the expression(∫
∂S

σw · n̂ dS

)
3

=
ρref g

V3

∫
Ωf

εG(x, t)us3 dΩ

= ρref g

∫
Ωf

εG(x, t)

(
−3A

4r
− 3AZ2

4r3
− A3

4r3
+

3Z2A3

4r5

)
dΩf

= ρref g

∫
Ωf

εG(x, t)

(
−3A(2Z2 +R2)

4r3
+

A3(2Z2 − R2)

4r5

)
dΩf . (D 14)

Thus, the force on a sphere due to the perturbation flow is(∫
∂S

σw · n̂ dS

)
3

= ρref g

∫
Ωf

εG(x, t)

(
−3A(2Z2 + R2)

4r3
+

A3(2Z2 − R2)

4r5

)
dΩf .

(D 15)
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