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We extend the conductance and canonical paths methods to the setting of general finite

Markov chains, including non-reversible non-lazy walks. The new path method is used to

show that a known bound for the mixing time of a lazy walk on a Cayley graph with a

symmetric generating set also applies to the non-lazy non-symmetric case, often even when

there is no holding probability.
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1. Introduction

Beginning with the work of Jerrum and Sinclair, geometric concepts such as conductance

[8, 10] and canonical paths [14, 4] have played an important role in studying the

mixing time of finite ergodic Markov chains. These methods were originally applied

only to reversible lazy walks, and while little is lost in dropping reversibility or laziness

[4, 6, 5, 12, 7], extensions which allow for dropping both conditions tend to be weak or

difficult to use [6, 11, 5, 12]. A similar difficulty has been encountered with the method

of blocking conductance [9], a geometric approach to sharpening conductance bounds

by including a notion of vertex congestion but which has only been successfully applied

to a few problems. In this paper we develop an extension of conductance to the general

(non-lazy non-reversible) setting, and sharpen it with a simpler notion of vertex congestion

than those proposed before. This makes it easier to use and allows for the proof of a new

canonical path theorem which applies to general finite ergodic Markov chains.

Recall that if a finite Markov kernel P with sample space V is irreducible and aperiodic

(∃N ∈ N, ∀x, y ∈ V : PN(x, y) > 0), then it has a unique stationary distribution π satisfying

πP = π and is ergodic (∀x ∈ V : Pn(x, ·) n→∞−−−→ π). The walk is lazy if the holding probability

α = minv∈V P(v, v) is at least 1/2 and reversible if the time-reversal (adjoint)

P∗(x, y) =
π(y)P(y, x)

π(x)
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satisfies P∗ = P. The L2 mixing time τ(ε) = maxx∈V min{n : ‖kxn − 1‖2,π � ε} is the time it

takes standard deviation of the density

kxn (y) =
Pn(x, y)

π(y)

to drop to ε.

Jerrum and Sinclair [8] and Lawler and Sokal [10] showed that mixing time of a lazy

reversible walk can be bounded in terms of the conductance Φ, also known as the Cheeger

constant.

Definition 1.1. Let Q(A,B) =
∑

x∈A, y∈B π(x)P(x, y) denote the ergodic flow from A ⊂ V
to B ⊂ V . The conductance is given by

Φ = min
∅�A�V

Φ(A) where Φ(A) =
Q(A,Ac)

π(A)π(Ac)
.

Theorem 1.2. The mixing time of a lazy reversible finite ergodic Markov chain satisfies

τ(ε) � 8

Φ2
log

1

ε
√
π0
,

where π0 = minv∈V π(v).

Our extension to the non-lazy non-reversible case uses a modified form of conductance,

denoted by Φ̂(A), which agrees with the usual conductance, Φ(A), in the lazy case. If a

walk is lazy and v ∈ A, then Q(A, v) � Q(Ac, v), whereas if v ∈ Ac then Q(Ac, v) � Q(A, v),

and so ∑
v∈V

min{Q(A, v), Q(Ac, v)} = Q(A,Ac) + Q(Ac, A) = 2Q(A,Ac).

In other words, the overlap, or intersection, of the flow from A to V and the flow from Ac

to V is the same as the flow A↔ Ac between A and Ac. The following is then equivalent

to the usual conductance when a walk is lazy.

Definition 1.3. The intersection conductance Φ̂(A) of A ⊂ V (and Ac) is given by

Φ̂(A) = Φ̂(A,Ac) =

∑
v∈V min{Q(A, v), Q(Ac, v)}

2π(A)π(Ac)
.

The intersection conductance is Φ̂ = min
∅�A�V

Φ̂(A).

Intuitively, when flows from A and Ac overlap significantly, then a walk starting in A

will quickly mix with the ‘unoccupied’ space starting in Ac, and so good mixing may be

expected. As our first result, in Section 3 we make this rigorous by showing that mixing

time for general (non-lazy non-reversible) finite Markov chains can be bounded using the

intersection conductance.
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Theorem 1.4. The mixing time of a finite ergodic Markov chain satisfies

τ(ε) � 12

Φ̂2
log

1

ε
√
π0
.

As a further extension, suppose that a threshold t is fixed and ergodic flow is counted up

to at most a t fraction of vertex capacity, i.e., we work with threshold limited ergodic flow

Qt(A, v) = min{Q(A, v), tπ(v)} instead of Q(A, v). When the ergodic flow is well distributed

among vertices then it may be possible to make t quite small without decreasing the

ergodic flow significantly, and so the optimal choice of t will measure some form of vertex

congestion. More formally, and in the greater generality of conductance profiles, we define

the following.

Definition 1.5. Given t > 0, the intersection threshold conductance of A ⊂ V is

Φ̂t(A) =

∑
v∈V min{Qt(A, v), Qt(A

c, v)}
2π(A)π(Ac)

.

The intersection threshold conductance profile Φ̂t(r) is a function of set size, and given by

Φ̂t(r) =

{
min0<π(A)�r Φ̂t(A) if r � 1/2,

Φ̂t(1/2) if r > 1/2.

The intersection threshold conductance is Φ̂t = min
∅�A�V

Φ̂t(A).

Note that, trivially, Φ̂t(A) = Φ̂t(A
c), and so Φ̂t(1/2) = Φ̂t. Also, if A /∈ {∅, V } then

Φ̂t(A) = Φ̂(A) � 1 for t � 1/2, and so for a lazy walk we have Φ̂1/2(A) = Φ(A).

When Φ̂t(A) ≈ Φ̂(A) then Theorem 1.4 can be sharpened by showing a mixing time

bound that is typically t−1 times smaller.

Theorem 1.6. Given threshold t > 0, the mixing time of a finite ergodic Markov chain

satisfies

τ(ε) � 12max{t, Φ̂t}
Φ̂2
t

log
1

ε
√
π0
.

More generally,

τ(ε) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ 4/ε2

4π0

12 max{t, Φ̂t(r)}
rΦ̂t(r)2

dr in general,

∫ 1/ε2

π0

6 max{t, Φ̂t(r)}
rΦ̂t(r)2

dr if r
Φ̂2
t

(
1

1+r2

)
max{t, Φ̂t

(
1

1+r2

)
}

is convex in r.

Many methods have been developed to lower-bound conductance. The most prominent

of these is the method of canonical paths, introduced by Jerrum and Sinclair in their

seminal paper on conductance [8].
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Definition 1.7. A canonical path γxy is a path from x to y using only transitions a→ b of

P with non-zero probability P(a, b) > 0:

x = x0 → x1 → x2 → x3 → · · · → xn−1 → xn = y.

Let Γ = {γxy : x, y ∈ V } include a canonical path for each pair of distinct vertices

x, y ∈ V . The edge congestion is given by

ρe = ρe(Γ) = max
u,v∈V :P(u,v)>0

1

π(u)P(u, v)

∑
(u,v)∈γxy∈Γ

π(x)π(y).

Theorem 1.8 (Jerrum and Sinclair). The mixing time of a lazy reversible finite ergodic

Markov chain satisfies

τ(ε) � 8ρ2
e log

1

ε
√
π0
.

Sinclair later showed a Poincaré-type bound with ρ2
e replaced by ρe�, where � = max |γxy|

is the length of the longest path, usually an improvement on the ρ2
e result [14]. Diaconis

and Stroock obtained an analogous bound for non-lazy reversible walks by including in

Γ odd-length paths γxx from each vertex to itself [4]. Various authors have observed that

these bounds apply to lazy non-reversible walks as well, and to non-lazy walks at the cost

of a factor of α−1 = 1/minv∈V P(v, v) [6, 11, 12].

As our second main result, in Section 4 we find that a generalization of the canonical

path method can be used to lower-bound the intersection threshold conductance, giving a

canonical path method for general finite Markov chains. In particular we define canonical

alternating paths to be even-length paths which alternate between forward and reversed

edges of P:

x = x0 → x1 ← x2 → x3 ← · · · → x2n−1 ← x2n = y.

This is equivalent to a path from x to y alternating between edges of P and its time-

reversal P∗. The canonical paths used in each of the methods discussed in the previous

paragraph can be used to construct canonical alternating paths – for instance by adding

self-loops at x1, x2, . . . , xn in the lazy case – so this new type of path generalizes each of

those settings. For an appropriately defined notion of vertex congestion ρv we show that

Φ̂ρv/ρe � 1/2ρe.

A mixing time result then follows from Theorem 1.6. With some extra work a bound is

also possible if standard canonical paths are used.

Theorem 1.9. Consider a finite ergodic Markov chain. Given a set of canonical alternating

paths Γ, the mixing time is

τ(ε) � 48ρe max

{
ρv,

1

2

}
log

1

ε
√
π0
.
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If ordinary canonical paths are used and α = minv∈V P(v, v) is the minimal holding probab-

ility, then

τ(ε) � 4ρv max

{
ρv

α
, ρe

}
log

1

ε
√
π0
.

The congestions satisfy ρv � ρe, so this generalizes Jerrum and Sinclair’s result, up to a

constant factor. Our results also hold for multicommodity flows.

We finish in Section 5 with a few examples of how our new tools can be used. First,

we show that known complexity results for the lazy max-degree random walk on an

undirected graph apply just as well to the max-degree walk on an Eulerian directed

graph, i.e., a strongly connected graph with in-degree equal to out-degree at each vertex.

This is true if each vertex has a self-loop, and often true even when there are no self-loops.

A more interesting problem is to study random walks on Cayley graphs, i.e., walks on

groups, for which we show that known bounds [1, 3] for a lazy walk or a walk with a

symmetric set of generators can be extended to the non-lazy non-symmetric case.

2. Evolving sets

The evolving set methodology [12, 13] will be required for the proof of Theorem 1.6, from

which most results of the paper follow. We give here a very brief introduction to those

elements required in our proof. The reader interested only in the canonical path results

may skip to Section 4.

One approach to relating a property of sets (e.g., conductance) to a property of the

original walk (e.g., mixing time) is to construct a dual process: a walk PD on Ω = {S ⊂ V }
and a link, or transition matrix, Λ from Ω to V such that

PΛ = ΛPD.

In particular, PnΛ = ΛPnD and so the evolution of Pn and PnD will be closely related. A

natural candidate to link a walk on sets to a walk on states is the projection

Λ(S, y) =
π(y)

π(S)
1S (y).

Diaconis and Fill [2] have shown that for certain classes of Markov chains a walk based

on the evolving set process discussed below is the unique dual process with link Λ, so this

is the most natural walk on sets to consider. Our discussion of evolving sets will be based

on work of Morris and Peres [13] in a slightly improved form by Montenegro and Tetali

[12].

To understand the method we require some new terminology.

Definition 2.1. Given a set A ⊂ V , a step of the evolving set process is given by choosing

u ∈ [0, 1] uniformly at random, and transitioning to the set

Au = {y ∈ V | Q(A, y) � uπ(y)} = {y ∈ V | P∗(y, A) � u}.
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The root profile ψ : (0,∞)→ [0, 1] is given by

ψ(r) = min
0<π(A)�r

ψ(A), where ψ(A) = 1−
∫ 1

0

√
π(Au)(1− π(Au)) du√
π(A)(1− π(A))

,

when r ∈ (0, 1), and ψ(r) = minA�∈{∅,V } ψ(A) when r � 1.

Note that

for all r � 1/2, ψ(r) = ψ(1/2) = min
A�∈{∅,V }

ψ(A).

This follows from the relation ψ(A) = ψ(Ac), a consequence of (Au)
c = (Ac)1−u for every

u with �v : Q(A, v) = uπ(v), i.e., u-a.e. since V is finite.

Since Q(V , v) = π(v), then Au consists of those vertices receiving at least a u-fraction of

their steady-state probability from A. If u is chosen uniformly from [0, 1], then

Eπ(Au) =

∫ 1

0

π(Au) du =
∑
y∈V

π(y)
Q(A, y)

π(y)
= π(A),

and so by Jensen’s inequality

E
√
π(Au)(1− π(Au)) �

√
π(A)(1− π(A)),

with equality if and only if π(Au) = π(A) u-a.e. It follows that a large root profile ψ(A)

indicates that π(Au) differs significantly from π(A), and in particular the flow from A is

spread over a large space and so the walk expands quickly from A. Morris and Peres [13]

first made this intuition rigorous, although we use a sharper result of Montenegro and

Tetali [12].

Theorem 2.2. A finite ergodic Markov chain with root profile lower-bounded by ψ(r) satis-

fies

τ(ε) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ 4/ε2

4π0

dr

r ψ(r)
in general,

∫ 1/ε2

π0

dr

2rψ(r)
if rψ

(
1

1 + r2

)
is convex.

The root profile is typically lower-bounded by writing constraints of interest in terms

of the evolving set process. For instance, when conductance is being considered then a

lazy walk has A ⊂ Au when u � 1/2 and Au ⊂ A when u > 1/2, and so

Q(A,Ac) =
∑
v∈Ac

Q(A, v)

π(v)
π(v)

=
∑
v∈Ac

∫ 1/2

0

1{u: Q(A,v)/π(v)�u} π(v) du

=

∫ 1/2

0

π(Au \ A) du.
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The identities
∫ 1

0
π(Au) du = π(A) and Q(A,Ac) = Q(Ac, A) can be used to write this in

terms of area between Au and A as

Q(A,Ac) =

∫ 1/2

0

(π(Au)− π(A)) du =

∫ 1

1/2

(π(A)− π(Au)) du = Q(Ac, A). (2.1)

Breaking the definition of ψ(A) into an integral of u ∈ [0, 1/2] and one of u ∈ [1/2, 1],

applying Jensen’s inequality, and then making a few simplifications leads to the relation

ψ(A) � Φ(A)2/2 [12]. Theorem 2.2 then shows a stronger version of Theorem 1.2.

Theorem 2.3. A lazy finite ergodic Markov chain has ψ(A) � Φ2(A)/2 and mixing time

τ(ε) � 2

Φ2
log

1

ε
√
π0
.

To prove the result of this paper we will use Theorem 2.2 and a similar, but much more

elaborate, approach to lower-bounding the root profile.

3. Mixing bounds with threshold conductances

In this section we prove a lower bound on the root profile ψ(A) in terms of the (intersection)

threshold conductance of Definition 1.5. By Theorem 2.2 this induces upper bounds on

mixing time, including the main result of this paper, Theorem 1.6, a bound on mixing time

in terms of the intersection threshold conductance. To further indicate the improvement

provided by use of thresholds we also give a bound in terms of a quantity which more

strongly resembles the usual conductance.

Definition 3.1. If A, B ⊂ V and t ∈ [0, 1], then define the threshold flow Qt(A,B) by

Qt(A,B) =
∑
v∈B

Qt(A, v)

and the threshold conductance Φt(A) by

Φt(A) =
min{Qt(A,A

c), Qt(A
c, A)}

π(A)π(Ac)
.

The threshold conductance profile is given by Φt(r) = minπ(A)�r Φt(A) while the threshold

conductance is Φt = min∅�=A�=V Φt(A).

When a walk is lazy then Q1/2(A,A
c) = Q(A,Ac) and Φ1/2(A) = Φ(A) agree with standard

notions of ergodic flow and conductance. Intuitively, if ergodic flow from A to Ac and

from Ac to A are not overly concentrated on a few vertices then Φt(A) ≈ Φ(A), even for

fairly small t. The extra information provided by t will be used here to substantially

improve on the conductance lower bound for ψ(A).

https://doi.org/10.1017/S096354831400025X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831400025X


592 R. Montenegro

Theorem 3.2. Given A ⊂ V , t ∈ [0, 1], and α = minv∈V P(v, v) a lower bound on holding

probability, then

ψ(A) �

⎧⎪⎪⎨
⎪⎪⎩

1

12t
min{Φ̂t(A)2, tΦ̂t(A)},

min{α, t}
4t2

Φt(A)2.

When the flow from A↔ Ac is not concentrated at any vertices, then Φt(r) = Θ(Φ(r)),

and this typically leads to a mixing bound t−1 times that of Theorem 1.2, a significant

improvement when the threshold is small. In the extreme case when ergodic flow is spread

uniformly over the complement, a threshold of

t = min
Q(A,Ac)

min{π(A), π(Ac)} ∼ Φ

can be used and still have Φt(r) = Φ(r), leading to a mixing time upper bound matching

the best-case lower bound of τ(ε) = Ω
(
1/Φ

)
.

Proof. The proof will require us to break the definition of ψ(A) into an integral

over u ∈ [0, t] and one over u ∈ [t, 1], apply Jensen’s inequality, and then make a few

simplifications to complete the proof. The simplifications relate evolving sets to the

numerator of Φ̂t(A), with (2.1) replaced by a similar term that also depends on the

threshold t.

We start by showing the first bound of the theorem, that is,

ψ(A) � 1

12t
min{Φ̂t(A)2, tΦ̂t(A)}.

As discussed after Definition 1.5, when t � 1/2 then Φ̂t(A) = Φ̂1/2(A). The theorem is

then stronger at t = 1/2 than at t > 1/2, so without loss assume that t � 1/2.

If u � 1/2,

π(Au \ A1−u) = π
(
{v ∈ V : Q(A, v) � uπ(v), Q(Ac, v) > uπ(v)}

)
= π

(
{v ∈ V : min{Q(A, v), Q(Ac, v)} � uπ(v)}

)
− π

(
{v ∈ V : Q(A, v) � uπ(v), Q(Ac, v) = uπ(v)}

)
.

The set {u ∈ [0, 1] : ∃v ∈ V , Q(Ac, v) = uπ(v)} is finite, and so it has Lebesgue measure

zero. Since u � 1/2 then A1−u ⊂ Au, and so

∑
v∈V

min{Qt(A, v), Qt(A
c, v)} =

∑
v∈V

∫ t

0

π(v) 1{u: min{Qt(A,v),Qt(Ac,v)}�uπ(v)} du

=

∫ t

0

[
π(Au \ A1−u) + π

(
{v ∈ V : Q(A, v) � uπ(v), Q(Ac, v) = uπ(v)}

)]
du

=

∫ t

0

(
π(Au)− π(A1−u)

)
du+ 0
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=

∫ t

0

(π(Au)− π(A)) du+

∫ 1

1−t
(π(A)− π(Au)) du (3.1)

=

∫ t

0

(π(Au)− π(A)) du+

∫ t

0

(π((Ac)u)− π(Ac)) du.

The final equality uses the relation (Au)
c = (Ac)1−u for a.e. u ∈ [0, 1]. It follows that

max

{∫ t

0

(π(Au)− π(A)) du,

∫ t

0

(π((Ac)u)− π(Ac)) du

}
� Φ̂t(A)π(A)π(Ac).

Since ψ(A) = ψ(Ac) and Φ̂t(A) = Φ̂t(A
c), then the roles of A and Ac can be swapped and

this inequality will still hold. So without loss assume∫ t

0

(π(Au)− π(A)) du �
∫ t

0

(π((Ac)u)− π(Ac)) du.

By Jensen’s inequality, the martingale identity
∫ 1

0 π(Au) du = π(A), and concavity of f(x) =√
x(1− x), we have∫ 1

0

f(π(Au)) du � t f

(∫ t

0

π(Au)
du

t

)
+ (1− t) f

(∫ 1

t

π(Au)
du

1− t

)

= t f

(
π(A) +

∫ t
0 (π(Au)− π(A)) du

t

)
+ (1− t) f

(
π(A)−

∫ t
0 (π(Au)− π(A)) du

1− t

)
.

By concavity of f this is decreasing in∫ t

0

(π(Au)− π(A)) du � Φ̂t(A)π(A)π(Ac),

and so it is maximized at the lower bound. The root profile is then bounded by

1− ψ(A) � t

√(
1 +

Φ̂t(A)(1− π(A))

t

)(
1− Φ̂t(A)π(A)

t

)
(3.2)

+ (1− t)

√(
1− Φ̂t(A)(1− π(A))

1− t

)(
1 +

Φ̂t(A)π(A)

1− t

)
.

Suppose Φ̂t(A) � 1− 2t. Equation (3.2) can be simplified by using the relation
√
XY +

√
(1−X)(1− Y ) �

√
1− (X − Y )2

with X = t+ Φ̂t(A)(1− π(A)) and Y = t− Φ̂t(A)π(A); see Lemma A.1 in the Appendix

for a proof. Then

ψ(A) � 1−
√

1− Φ̂t(A)2 � 1

2
Φ̂t(A)2.

Since Φ̂t(A) � 1− 2t, then Φ̂t(A) � 1/3t min{Φ̂t(A), t}, which gives the first inequality of

the theorem.

Now suppose Φ̂t(A) < 1− 2t. To simplify (3.2) observe that

d2

dx2

√
(1 + c(1− x))(1− cx) =

−c4

4
[
(1 + c(1− x))(1− cx)

]3/2
� 0,
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and so the upper bound on 1− ψ(A) is concave in π(A). Also,

d

dx

∣∣∣∣
x=0

√
(1 + c(1− x))(1− cx) =

−c(2 + c)

2
√

1 + c
,

and so the derivative at π(A) = 0 of the upper bound in (3.2) is

d

dπ(A)

∣∣∣∣
π(A)=0

= t
− Φ̂t(A)

t

(
2 + Φ̂t(A)

t

)
2

√
1 + Φ̂t(A)/t

+ (1− t)
Φ̂t(A)
1−t

(
2− Φ̂t(A)

1−t
)

2

√
1− Φ̂t(A)/(1− t)

=
Φ̂t(A)

2

(√
1 +

Φ̂t(A)

t
−

√
1− Φ̂t(A)

1− t

)([(
1 +

Φ̂t(A)

t

)(
1− Φ̂t(A)

1− t

)]−1/2

− 1

)
.

Observe that since Φ̂t(A) � 1− 2t, then

Φ̂t(A)

2
� 0 and

√
1 +

Φ̂t(A)

t
−

√
1− Φ̂t(A)

1− t � 0,

while (
1 +

Φ̂t(A)

t

)(
1− Φ̂t(A)

1− t

)
= 1 +

Φ̂t(A)(1− 2t)− Φ̂t(A)2

t(1− t) � 1 .

It follows that

d

dπ(A)
|π(A)=0 < 0,

and so (3.2) is maximized at π(A) = 0 with

1− ψ(A) � t

√
1 +

Φ̂t(A)

t
+ (1− t)

√
1− Φ̂t(A)

1− t

� t

(
1 +

Φ̂t(A)

2t
− 1

12
min

{
Φ̂t(A)2

t2
,
Φ̂t(A)

t

})
+ (1− t)

(
1− Φ̂t(A)

2(1− t)

)

= 1− t

12
min

{
Φ̂t(A)2

t2
,
Φ̂t(A)

t

}
,

using the inequalities

√
1 + x � 1 +

x

2
− 1{x�0}

min{x2, x}
12

and
√

1− x � 1− x

2
.

This completes the proof of the first bound of the theorem. Now consider the second

bound of the theorem,

ψ(A) � min{α, t}
4t2

Φt(A)2.

Suppose t � 1/2. If α � 1/2 then Φt(A) = Φ1/2(A), and so the bound follows from the

case of t = 1/2. If α < 1/2 then

Φ1/2(A) � 1

2t
Φt(A),
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and again the bound follows from the case of t = 1/2. The result at t = 1/2 is then

stronger than that at t > 1/2, so without loss assume that t � 1/2.

Let T = min{α, t} � 1/2. Observe that QT (A, v) =
∫ T

0
π(Au ∩ {v}) du, and so

QT (A,V ) =
∑
v∈V

∫ T

0

π(Au ∩ {v}) du =

∫ T

0

π(Au) du,

QT (A,V ) = QT (A,A) + QT (A,Ac) = π(A)T + QT (A,Ac).

Then ∫ T

0

π(Au) du = QT (A,V ) = π(A)T + QT (A,Ac).

Swapping the roles of A and Ac in this identity, and recalling that u-a.e. (Au)
c = (Ac)1−u,

it follows that ∫ 1

1−T
π(Au) du =

∫ T

0

(1− π((Ac)u)) du = π(A)T − QT (Ac, A).

By Jensen’s inequality and the identity
∫ 1

0
π(Au) du = π(A):∫ 1

0

√
π(Au)(1− π(Au)) du =

∫ T

0

+

∫ 1−T

T

+

∫ 1

1−T
f(π(Au)) du

� T f

(∫ T

0

π(Au)
du

T

)
+ (1− 2T ) f

(∫ 1−T

T

π(Au)
du

1− 2T

)
+ T f

(∫ 1

1−T
π(Au)

du

T

)

= T f

(
π(A) +

QT (A,Ac)

T

)
+ (1− 2T ) f

(
π(A)− QT (A,Ac)− QT (Ac, A)

1− 2T

)

+ T f

(
π(A)− QT (Ac, A)

T

)
.

This is decreasing in QT (A,Ac) when QT (A,Ac) � QT (Ac, A), and decreasing in QT (Ac, A)

when QT (Ac, A) � QT (A,Ac), and so it is maximized when

QT (A,Ac) = QT (Ac, A) = Φt(A)π(A)π(Ac).

It follows that

1− ψ(A)

�
T f

(
π(A) + Φt(A)π(A)π(Ac)

T

)
+ (1− 2T ) f(π(A)) + T f

(
π(A)− Φt(A)π(A)π(Ac)

T

)
f(π(A))

= 2T

√(
1

2
+

ΦT (A)

2T
π(Ac)

)(
1

2
− ΦT (A)

2T
π(A)

)
+ (1− 2T )

+ 2T

√(
1

2
− ΦT (A)

2T
π(Ac)

)(
1

2
+

ΦT (A)

2T
π(A)

)

� 2T
√

1− (ΦT (A)/2T )2 + 1− 2T � 1− ΦT (A)2/4T .
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The final line was by the relation
√
XY +

√
(1−X)(1− Y ) �

√
1− (X − Y )2.

For a proof see Lemma A.1 in the Appendix. If T = min{α, t} = t then the theorem is

immediate. If T = min{α, t} = α then use the relation

ΦT (A) � α

t
Φt(A).

4. New canonical path bounds

The threshold conductance bounds can improve substantially over conductance bounds

when ergodic flow between A and Ac is not heavily concentrated at a few vertices of A or

Ac. In this section we explore such a situation: when canonical paths are well distributed

among the vertices then the ergodic flow appearing on edges of canonical paths is not

heavily concentrated at any vertex.

The most novel aspect of our new result is that it applies to general finite Markov

chains, i.e., non-reversible and non-lazy. This is made possible by using the paths to

bound intersection threshold conductance Φ̂t(A) rather than the usual conductance Φ(A)

or Φt(A). This will require a new type of canonical path.

Definition 4.1. A canonical alternating path γxy is an even-length path from x to y which

alternates between valid transitions of P and P∗:

x = x0
P−→ x1

P∗−→ x2
P−→ x3

P∗−→ · · · P∗−→ x2n = y.

Equivalently, the path alternates between forward and reversed edges of P:

x = x0 → x1 ← x2 → x3 ← · · · → x2n−1 ← x2n = y.

Let Γ = {γxy : x, y ∈ V , x �= y} be a set including a canonical alternating path for each

ordered pair of distinct vertices x, y ∈ V .

Define v ∈ γxy if v = x2i+1 for some i, i.e., v is the terminal point of an edge in γxy .

Define (u, v) ∈ γxy if u→ v or v ← u appears in path γxy , i.e., (u, v) is an edge of P or

(v, u) an edge of P∗ in the path.

Some simplification is possible in the definitions of v ∈ γxy and (u, v) ∈ γxy by ignoring

orientation of edges, although this increases congestion and leads to weaker results.

However, it is not possible to replace our use of alternating canonical paths by either

ordinary paths or by ordinary paths supplemented by odd-length cycles, as is possible for

reversible non-lazy walks and lazy non-reversible walks. For instance, for an odd-length

cycle Zn the clockwise walk P(i, i+ 1 mod n) = 1 does not converge. It has an obvious

set of ordinary canonical paths and odd-length cycles for each vertex, but not if paths are

required to alternate between P and P∗. The parity requirement is needed because on an

even-length cycle Zn the simple random walk P(i, i− 1 mod n) = P(i, i+ 1 mod n) = 1/2

does not converge, but there is an obvious set of (ordinary or alternating) canonical paths.
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As discussed in the Introduction, there are several types of canonical path methods.

However, each of these types of paths induce natural canonical alternating paths, so our

new definition provides a unifying framework.

• Consider a finite reversible walk with holding probability α > 0. Diaconis and Stroock

[4] and Sinclair [14] study mixing times using ordinary canonical paths:

x = x0 → x1 → x2 → x3 → · · · → xn = y.

An alternating path can be constructed by inserting a self-loop at each vertex, except

the initial one, and treating the loop as a transition of P∗ (since P∗(v, v) = P(v, v)):

x = x0 →

�

x1 →

�

x2 → · · · →

�

xn = y.

• Consider a finite reversible walk with no condition on α. Diaconis and Stroock [4]

study mixing times using ordinary canonical paths supplemented by by cycles γxx of

odd length. If |γxy| is even then γxy is an alternating path since P∗ = P for reversible

walks, while if |γxy| is odd then γxy followed by γyy will be an even-length alternating

path.

• Consider a general finite walk. Mihail [11] and Fill [6] show that it suffices to study

conductance of PP∗, and so canonical paths with edges in PP∗ can be used. To construct

an alternating path note that an edge (x, y) with PP∗(x, y) > 0 can be replaced by a

pair of edges x
P−→ z

P∗−→ y such that P(x, z) > 0 and P∗(z, y) > 0.

• In an earlier version of this paper we required odd-length paths alternating between

P and P∗, both when y �= x and when y = x. To construct an even-length alternating

path between x and y �= x first follow the path γxy , and then do γyy in reverse.

Our generalization of canonical path bounds will require notions of both edge and

vertex congestion.

Definition 4.2. Given (ordinary or alternating) canonical paths Γ between every pair of

distinct vertices x, y ∈ V , the vertex congestion is

ρv = ρv(Γ) = max
v∈V

1

2π(v)

∑
γxy∪γyx�v

π(x)π(y),

and the edge congestion is

ρe = ρe(Γ) = max
(u,v)∈E

1

2π(u)P(u, v)

∑
γxy∪γyx�(u,v)

π(x)π(y).

Our redefinition of edge congestion is equivalent to the standard definition (see

Definition 1.7) when, as is typically the case, the path γxy does not use any of the

same (directed) edges as γyx, e.g., in the reversible case γxy can be assumed to traverse the

edges of γyx in reverse. More generally, it is no larger than the standard definition, and

since the conductance and mixing time bounds to be shown in this section are weaker for

larger ρe, then using the earlier definition will give a weaker but still valid result.
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This brings us to the main result of the section, a lower bound on the intersection

threshold conductance Φ̂t in terms of canonical alternating paths.

Lemma 4.3. When Γ = ∪x �=yγxy consists of canonical alternating paths, then

Φ̂ρv/ρe � 1/2ρe.

If, instead, Γ consists of ordinary canonical paths then

Φρv/ρe � 1/ρe.

The proof is given later. Combining this with our results on threshold conductances

leads to new upper bounds on mixing time.

Theorem 4.4. Consider a finite ergodic Markov kernel P with canonical ordinary or altern-

ating paths. Assume ε � 1. Let

P∗0(Γ) = min{P∗(b, a) : ∃γxy � (a, b)}

be the smallest transition in the reversal

P∗(b, a) =
π(a)P(a, b)

π(b)

of the edges in the paths.

If Γ consists of canonical alternating paths, then P has mixing time

τ(ε) � 48ρe max

{
ρv,

1

2

}(
log

1

ε
√
π0
− 1

4

(
log(4ρvρeP

∗
0(Γ))− 1

)+
)
,

where x+ = max{x, 0}.
If, instead, Γ consists of ordinary canonical paths, then

τ(ε) � 4ρv max

{
ρv

α
, ρe

} (
log

1

ε
√
π0
− 1

4

(
log(ρvρeP

∗
0(Γ))− 1

)+
)
.

The key equations of the proof, (4.2) and (4.3) below, are both monotone in ρv and ρe,

and so any upper bounds on ρv and ρe can be substituted. Some simplifications can be

made by using the relations

ρv � ρe � ρv

P∗0(Γ)
<

1

2π0P
∗
0(Γ)

. (4.1)

The lower bound ρv � 1−min π(v) for ordinary paths and ρv � 1
2
(1−max π(v)) for

alternating canonical paths can be useful for simplifying the maxima. For instance, with

canonical alternating paths, if max π(v) � 1/2 then max{ρv, 1/2} � 2ρv .

The terms max{ρv/α, ρe} and log(ρvρeP
∗
0(Γ)) are not simply artifacts of the proof. A

simple illustration of this is the walk on a cycle Zn with P(i, i) = α ∈ (0, 1) and P(i, i+ 1) =

1− α. With the obvious choice of paths this has

ρv =
n− 1

2
, ρe =

n− 1

2(1− α) , P∗0(Γ) = 1− α, π0 = 1/n
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and mixing time

τ(ε) = Θ

(
n2

min{α, 1− α} log
1

ε

)
,

matching the prediction of our theorem. The π0 term cannot always be dropped, however,

as the lazy walk on the complete graph Kn has mixing time τ(1/4) = Ω(log n).

Proof of Theorem 4.4. First consider ordinary canonical paths. The theorem is trivial

if |V | = 1, so assume that |V | � 2 and 0 < min π(v) � 1/2. Lemma 4.3 and Theorem 3.2

bound the root profile as

ψ(A) � min{α, ρv/ρe}
4(ρv/ρe)2

1

ρ2
e

=
1

4ρv max{ρv/α, ρe}
. (4.2)

Evaluating the integral in the convex case of Theorem 2.2 gives the result when

ρvρeP
∗
0(Γ) � e, so assume that ρvρeP

∗
0(Γ) > e. Since the walk is ergodic then the state

space is strongly connected, and so Q(A,Ac) > 0 for every set A �∈ {∅, V }. In particular,

QP∗0(Γ)(A,A
c) � π0P

∗
0(Γ), and similarly QP∗0(Γ)(A

c, A) � π0P
∗
0(Γ), and so

ΦP∗0(Γ)(A) � π0P
∗
0(Γ)

π(A)π(Ac)
.

By Theorem 3.2,

ψ(A) � max

{
1

4ρv max{ρv/α, ρe}
,
π2

0 min{α,P∗0(Γ)}
4π(A)2

}
. (4.3)

The convexity condition of Theorem 2.2 is easily verified for this lower bound, and so

τ(ε) �
∫ c

0

2r dr

π2
0 min{α,P∗0(Γ)}

+ 2ρv max

{
ρv

α
, ρe

} ∫ 1/ε2

c

dr

r

if

c = π0

√
min{α,P∗0(Γ)}ρv max{ρv/α, ρe} � 1/ε2.

The theorem follows by integrating and using equations (4.1), ρvρeP
∗
0(Γ) � 1 and 1/2 �

ρv < 1/2π0.

For alternating canonical paths, ψ(A) �
(
48max{ρv, 1/2}ρe

)−1
by Lemma 4.3 and

Theorem 3.2. Theorem 2.2 shows the mixing bound when 4ρvρeP
∗
0(Γ) � e. To improve

ψ(A), use

Φ̂P∗0(Γ) � π0P
∗
0(Γ)

π(A)
,

because there is at least one alternating path between some x ∈ A and y ∈ Ac, and this

path will contain some vertex v ∈ γxy with incoming edges from both A and Ac. Again

use Theorem 3.2 to lower-bound ψ(A), and this time split the mixing time integral of

Theorem 2.2 at c = 2π0

√
ρvρeP

∗
0(Γ).

We now return to the proof of our main result.
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Proof of Lemma 4.3. Consider either the ordinary canonical path or alternating path

case. The stationary distribution and edge capacity can be lower-bounded using paths:

for all v ∈ V , π(v) � 1

2ρv

∑
γxy∪γyx�v

π(x)π(y)

� 1

2ρv

∑
(x,y): ∃u∈A,
(u,v)∈γxy∪γyx

π(x)π(y),

for all u ∈ A, v ∈ V , π(u)P(u, v) � 1

2ρe

∑
γxy∪γyx�(u,v)

π(x)π(y)

Hence, for any v ∈ V ,

Qρv/ρe (A, v) = min

{∑
u∈A

π(u)P(u, v),
ρv

ρe
π(v)

}

� 1

2ρe
min

{∑
u∈A

∑
γxy∪γyx�(u,v)

π(x)π(y),
∑

(x,y): ∃u∈A,
(u,v)∈γxy∪γyx

π(x)π(y)

}

=
1

2ρe

∑
(x,y): ∃u∈A,
(u,v)∈γxy∪γyx

π(x)π(y). (4.4)

In the ordinary canonical path case it follows from (4.4) that

Qρv/ρe (A,A
c) =

∑
v∈Ac

Qρv/ρe (A, v)

�
∑
v∈Ac

1

2ρe

∑
(x,y): ∃u∈A,
(u,v)∈γxy∪γyx

π(x)π(y)

� 1

2ρe

∑
(x,y)∈A×Ac

2π(x)π(y) =
π(A)π(Ac)

ρe
.

The second inequality is because a path from some x0 ∈ A to xn ∈ Ac must have some

xi ∈ A and xi+1 ∈ Ac. Replacing A with Ac shows that

Qρv/ρe(A
c, A) � π(A)π(Ac)

ρe

as well. It follows that Φρv/ρe (A) � 1/ρe.

If the paths are alternating then (4.4) shows that∑
v∈V

min{Qρv/ρe (A, v), Qρv/ρe (A
c, v)} �

∑
v∈V

1

2ρe

∑
(x,y):∃u∈A,w∈Ac:

(u,v)∈γxy∪γyx,
(w,v)∈γxy∪γyx

π(x)π(y)

� 1

2ρe

∑
(x,y)∈A×Ac

2π(x)π(y) � π(A)π(Ac)

ρe
.
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The second inequality is because an (even-length) alternating path from x0 ∈ A to x2n ∈ Ac
must have some x2i ∈ A and x2(i+1) ∈ Ac, and so it is counted when v = x2i+1. It follows

that Φ̂ρv/ρe (A) � 1/2ρe.

Remark 4.5. Ordinary canonical paths can be used to bound the mixing time of a lazy

walk in three main ways: Jerrum and Sinclair’s bound with lead term ρ2
e , the Poincaré

bound with ρe�, and our bound with ρeρv . Since ρv � ρe, our bound improves on Jerrum

and Sinclair’s. To compare to the Poincaré bound, define the average vertex congestion

and average path length by

ρ̄v =
∑
v∈V

π(v)

[
1

2π(v)

∑
γxy∪γyx�v

π(x) π(y)

]
and �̄ =

∑
x �=y π(x) π(y) |γxy|∑

x �=y π(x)π(y)

respectively. Then

ρ̄v =
1

2

∑
x �=y

∑
v∈γxy∪γyx

π(x) π(y) �
∑
x �=y

π(x) π(y) |γxy|

= �̄
∑
x �=y

π(x) π(y) = �̄(1− ‖π‖22).

Likewise

ρ̄v � �̄+ 1

2
(1− ‖π‖22),

and so

ρ̄v = Θ
(
�̄(1− ‖π‖22

)
.

Our bound is best when there are a few very long paths or the distribution is concentrated

near a single vertex, as it is then likely that ρv � �. However, it is more often the case

that path length varies little and a bottleneck causes a few states to have high vertex

congestion, in which case �� ρv . In contrast, when the holding probability is small then

our result can be significantly better, even when �� ρv; see the next section for examples.

5. Examples

To demonstrate our method we give two examples where the new canonical path theorems

extend previously known bounds into the general non-reversible non-lazy setting: first, the

classical problem of the max-degree walk on a graph; then a more interesting example,

walks on Cayley graphs, i.e., random walks on groups.

Example 5.1. An Eulerian multigraph is a strongly connected graph with equal in-degree

and out-degree at each vertex. This is a natural generalization of the undirected multigraph

into the directed graph setting. Suppose an Eulerian multigraph has n vertices and

maximum out-degree d. Let d(x, y) denote the number of directed edges from x to y, so that

d(x) =
∑

y d(x, y) is the out-degree of x. The max-degree walk has P(x, y) = (d(x, y))/d if
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y �= x and P(x, x) = 1− (d(x)− d(x, x))/d. The stationary distribution π = 1/n is uniform

and the walk is lazy if d(x)− d(x, x) � d/2 at each vertex.

Suppose that P(x, x) > 0 at every vertex, so that the holding probability is α � 1/d. For

instance, it suffices that each max-degree vertex has a self-loop. For every x �= y, let γxy
be an ordinary path from x to y. Then

ρv �
∑

x �=y π(x)π(y)

2π0
� n

2
and ρe �

∑
x �=y π(x)π(y)

2π0P0(Γ)
� dn

2
.

By Theorem 4.4,

τ(ε) � dn2 log
2

ε
.

Suppose the self-loop requirement that every P(x, x) > 0 is dropped. Ergodicity is

not guaranteed, even if the Eulerian multigraph is strongly connected, e.g., the cycle

walk P(i, i+ 1 mod n) = 1 on Zn. However, if the graph is connected under canonical

alternating paths then it is still true that ρv � n/2 and ρe � nd/2, and so by Theorem 4.4

τ(ε) � 12 dn2 log
2

ε
.

This improves on previous general bounds. For instance, Sinclair’s Poincaré bound

introduces an extra factor of α−1, and so it can match the self-looping case only for a

walk with constant (in n and d) holding probability. Diaconis and Stroock’s extension

to non-lazy walks works only for the reversible case (i.e., d(x, y) = d(y, x) for every x, y).

Mihail and Fill’s extension with PP∗ replaces the (minP(x,y)>0 P(x, y))−1 term in ρe with

(minPP∗(x,y)>0 PP∗(x, y))−1, which typically replaces the order d term with order d2.

Example 5.2. Given a finite group G, a (non-symmetric) generating set S ⊂ G− {id} is

any subset with the property that
⋃∞
n=0 S

n = G. The Cayley graph of G has edge set (g, gs)

for all g ∈ G, s ∈ S . If p : G→ [0, 1] is a probability distribution supported on S ∪ {id},
then P(g, gs) = p(s) defines a Markov chain on the Cayley graph with uniform stationary

distribution π = 1/|G|. Represent each g ∈ G as a product of generators g = s1 s2 · · · sk ,
define Δ = max |g| to be the length of the longest such representation, and let N(g, s) � Δ

denote the number of times generator s appears in the representation of g.

Babai [1] showed

τ(ε) = O

(
Δ2

mins∈S p(s)
log
|G|
ε

)

for the lazy walk with symmetric generating set, i.e., p(id) � 1/2 with S = S−1 and

p(s) = p(s−1) for all s ∈ S . Diaconis and Saloff-Coste [3] use (ordinary) canonical paths to

bound the spectral gap by the Poincaré approach. This can be plugged into spectral gap

bounds on mixing time (e.g., Corollary 2.15 of [12]), leading to the following generalizations
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of Babai’s result to the symmetric and non-symmetric cases respectively:

τ(ε) � max

{
1

2 p(id)
, Δ max

g∈G, s∈S

N(g, s)

p(s)

}(
1

2
log |G|+ log

1

ε

)
,

τ(ε) � Δ

p(id)
max

g∈G, s∈S

N(g, s)

p(s)

(
1

2
log |G|+ log

1

ε

)
. (5.1)

Now consider our new method of canonical alternating paths. Let Δalt be the diameter

measured using canonical alternating paths, i.e.,

Δalt = min

{
2N : G =

N⋃
n=0

(SS−1)n
}
,

and let Nalt(g, s) be the count frequency of generators when group elements are written in

terms of canonical alternating paths, e.g., g = s1 s
−1
2 s3 s

−1
4 · · · s2n−1 s

−1
2n . Then

ρv <
Δalt

4
, ρe <

1

2
max

g∈G, s∈S

Nalt(g, s)

p(s)
.

The proof is left to the Appendix because it uses essentially the same approach that

Diaconis and Saloff-Coste used for ordinary canonical paths in [3]. Substituting these into

Theorem 1.9 shows that

τ(ε) � 6Δalt max
g∈G, s∈S

Nalt(g, s)

p(s)

(
1

2
log |G|+ log

1

ε

)
(5.2)

To see that this generalizes Diaconis and Saloff-Coste’s non-symmetric result (up to a

constant), first construct alternating paths from the ordinary canonical paths by adding a

self-loop at each vertex except the starting point. Such a set of alternating paths will have

Δalt = 2Δ, while the self-loops cause

max
g∈G, s∈S

Nalt(g, s)

p(s)
= max

{
Δ

p(id)
, max
g∈G, s∈S

N(g, s)

p(s)

}
� 1

p(id)
max

g∈G, s∈S

N(g, s)

p(s)
.

The inequality holds because

Δ = max
g∈G

∑
s∈S

p(s)
N(g, s)

p(s)
� max

g∈G
max
s∈S

N(g, s)

p(s)
.

Substituting this into (5.2) shows that (5.2) generalizes (5.1) to the setting of walks on

Cayley graphs with no holding probability.

Appendix

The following inequality was used in the proof of Theorem 3.2.

Lemma A.1. If X, Y ∈ [0, 1] then
√
X Y +

√
(1−X)(1− Y ) �

√
1− (X − Y )2.
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Proof. Observe that with g(X,Y ) =
√
X Y +

√
(1−X)(1− Y ) then

g(X,Y )2 = 1− (X + Y ) + 2X Y

+
√

[1− (X + Y ) + 2X Y ]2 − [1− 2(X + Y ) + (X + Y )2].

Now,
√
A2 − B � A− B if A2 � B, A � (1 + B)/2 and A � B � 0 (to show this, square

both sides). These conditions are easily verified with

A = 1− (X + Y ) + 2X Y and B = 1− 2(X + Y ) + (X + Y )2,

and so

g(X,Y )2 � 2
[
1− (X + Y ) + 2X Y

]
−

[
1− 2(X + Y ) + (X + Y )2

]
= 1 + 2X Y −X2 − Y 2 = 1− (X − Y )2.

In order to study walks on Cayley graphs it was claimed that the congestion bounds

of Diaconis and Saloff-Coste [3] generalize easily. We show this here.

Lemma A.2. Consider group G with (non-symmetric) generating set S . Use the notation of

Example 5.2 to describe a walk on the Cayley graph of G = 〈S〉.
There are ordinary canonical paths with

ρv < Δ, ρe < max
g∈G, s∈S

N(g, s)

p(s)
.

If p is symmetric, i.e., p(s) = p(s−1) for all s ∈ S , then

ρv <
Δ + 1

2
.

There are canonical alternating paths with

ρv <
Δalt

4
, ρe <

1

2
max

g∈G, s∈S

Nalt(g, s)

p(s)

and

Nalt(g, s) � 1

2
Δalt < |G| for every g ∈ G, s ∈ S.

Proof. First consider ordinary canonical paths. Given x, y ∈ G let g = x−1y = s1 s2 · · · sk
and define path γx,y by x→ xs1 → · · · → xg = y. Recall that π = 1/|G| is uniform.

To bound vertex congestion observe that the same number of paths pass through each

vertex, because if γx,y includes vertex v then γwv−1x, wv−1y includes vertex w, and vice versa.
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Then

ρv = ρ̄v � 1

|G|
∑
g∈G

1

2π(g)

∑
(x,y): g∈γxy∪γyx

π(x)π(y)

� 1

2

∑
x �=y

π(x)π(y) (|γxy|+ |γyx|) (A.1)

� Δ

(
1−

∑
g∈G

π(g)2
)

= Δ

(
1− 1

|G|

)
.

When p is symmetric then assume the representation for g−1 to be the inverse of that

for g, i.e., if g = s1 s2 · · · sk then g−1 = s−1
k s−1

k−1 · · · s−1
1 . This does not increase Δ so it can

only improve the bound on ρv . If g ∈ γxy then g ∈ γyx, and vice versa, so (A.1) improves

to

1

2

∑
x �=y

π(x)π(y) (|γxy|+ 1) and ρv � Δ + 1

2

(
1− 1

|G|

)
.

Now consider edge congestion. Without loss assume that id does not appear in any

paths. If γx,y includes edge (v, vs) then γwv−1x,wv−1y includes edge (w,ws), and vice versa, and

so for fixed s ∈ S the number of paths through edge (g, gs) is independent of the choice

of g ∈ G. Hence,

ρe � max
s∈S

1

|G|
∑
g∈G

1

2π(g)P(g, gs)

∑
(x,y): (g,gs)∈γxy∪γyx

π(x)π(y)

� max
s∈S

1

2p(s)
2
∑
x �=y

N(x−1y, s)π(x)π(y)

� max
s∈S

1

p(s)
max
g∈G

N(g, s)

(
1− 1

|G|

)
.

Finally, when alternating canonical paths are used, then again assume the representation

of each g−1 to be the inverse of that for g, so that g ∈ γxy ⇔ g ∈ γyx and (g, h) ∈ γxy ⇔
(g, h) ∈ γyx. Then, arguing as before,

ρv = ρ̄v =
1

|G|
∑
g∈G

1

2π(g)

∑
(x,y): g∈γxy∪γyx

π(x)π(y)

=
1

2

∑
x �=y

π(x)π(y)
|γxy|
2

� Δalt

4

(
1−

∑
g∈G

π(g)2
)

=
Δalt

4

(
1− 1

|G|

)
.

Similarly, minor changes show that

ρe <
1

2
max
s∈S

1

p(s)
max
g∈G

Nalt(g, s).

For the final statement, in the representation g = s1 s
−1
2 · · · s2k−1 s

−1
2k remove all even-

length subcycles, reducing the problem to the case where there are no even-length
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subcycles. In particular, if i, j � k then s1 s
−1
2 · · · s2i−1 s

−1
2i = s1 s

−1
2 · · · s2j−1 s

−1
2j ⇒ i = j.

This guarantees that {id, s1 s−1
2 , . . . , s1 s

−1
2 · · · s2k−1 s2k} is a set of k + 1 distinct elements,

and so k + 1 � |G|, while it also guarantees that s s−1 never appears and so also

Nalt(g, s) � |g|/2 � |G| − 1.
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