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ABSTRACT

In this paper, a new methodology based on the use of the inverse of the circular
tangent function that allows us to add a scale parameter (say α) to an initial sur-
vival function is presented. The latter survival function is determined as limiting
case when α tends to zero. By choosing as parent the classical Pareto survival
function, the Pareto ArcTan (PAT) distribution is obtained. After providing a
comprehensive analysis of its statistical properties, theoretical results with refer-
ence to insurance are illustrated. Its performance is compared, by means of the
well-knownNorwegian fire insurance data, with other existing heavy-tailed dis-
tributions in the literature such as Pareto, Stoppa, Shifted Lognormal, Inverse
Gamma and Fréchet distributions.
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1. INTRODUCTION

Different methods for generalizing discrete or continuous probability density
functions have been proposed in the statistical literature. Most of these pro-
cedures are based on the idea of incorporating a new parameter to a classical
distribution, as occurs with the class of max-stable distributions (see Sarabia
and Castillo (2005) for a revision of this class of distributions) and the Mar-
shall and Olkin family of distributions proposed in Marshall and Olkin (1997).
The probabilistic models derived from these and other methodologies generally
exhibit flexibility and a collection of different shapes and hazard functions for
modelling data sets of diverse nature. Additionally, they encompass classical
distributions for particular values of the new parameter attached to the initial
family.
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In this work, a new method to add a parameter to a family of distribu-
tions is proposed after making a change of variable in the truncated Cauchy
distribution. As a consequence of this, a class of probabilistic models that in-
cludes an additional scale parameter α �= 0 and also the inverse of the circular
tangent function (tan−1(·)) in its analytical expression is obtained. To the best
of our knowledge, the methodology introduced in this work is a novelty and it
seems suitable for being applied to different probabilistic families. In this work,
the Pareto distribution is considered.

In general insurance, only a few large claims arising in the portfolio represent
the largest part of the payments made by the insurance company. Appropriate
estimation of these extreme events is crucial for the practitioner to correctly as-
sess insurance and reinsurance premiums. On this subject, the single parameter
Pareto distribution (Arnold (1983), Brazauskas and Serfling (2003), Rytgaard
(1990), among others) has been traditionally considered as a suitable claim size
distribution in relation to rating problems. Concerning this, the single parameter
Pareto distribution, apart from its nice properties, provides a good depiction of
the randombehavior of large losses (e.g. the right tail of the distribution). Partic-
ularly, when calculating deductibles and excess-of-loss levels for reinsurance, the
simple Pareto distribution has been demonstrated convenient, see for instance
Boyd (1988), Mata (2000) and Klugman et al. (2008), among others.

In this work, an extension of the Pareto distribution, by using the method-
ology described above, is derived. This new model provides a more accurate
description of large losses in terms of high quantiles, in the context of the Nor-
wegian fire insurance data set, than other distributions traditionally proposed
in the actuarial literature such as the classical Pareto, shifted Lognormal, Burr,
Inverse Gamma or Fréchet among others. Firstly, a comprehensive treatment
of its mathematical properties is provided. In this sense, expressions for the
moments, variance, cumulative distribution function, asymptotic ruin function,
VaR, TVaR and limited expected values, among other properties are derived.
Estimation of the parameter of this distribution can be easily calculated by the
maximum likelihood method by using numerical search of the maximum. Al-
though the moments method is also possible by means of numerical techniques,
this is not shown in this work.

Finally, the performance of the model introduced in this manuscript is tested
by means of the well-known Norwegian fire insurance portfolio data. The new
distribution proposed in this work will be compared to other heavy-tailed distri-
butions existing in the literature: Pareto, shifted Lognormal, Burr, Loggamma,
Fréchet, InverseGamma and Stoppa (a well-known generalization of the Pareto
distribution that belongs to the max-stable distribution (see Kleiber and Kotz,
2003)) distributions. As will be seen later, the new distribution introduced in
this manuscript, denoted as Pareto ArcTan (PAT), outperforms all these prob-
abilistic families in terms of different measures of model validation and it also
provides a closer estimation of high quantiles.

The plan for the paper is as follows. In the next section, the new methodol-
ogy to incorporate a scale parameter to a family of distributions is described in
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detail. Next, in Section 3, this approach is applied to the classical Pareto distri-
bution to derive the Pareto ArcTan model. Then, some statistical properties of
themodel are given. In Section 4, several theoretical results relevant to insurance
are presented. Afterward, in Section 5, numerical applications are illustrated
based upon the Norwegian fire insurance set of data. Here, the new general-
ization of Pareto distribution is compared with the models mentioned above
under different measures of goodness-of-fit. Also estimation of high quantiles
is provided for some of the models considered. Besides, score equations of PAT
distribution are shown. The final section contains discussion and conclusion.

2. MAIN RESULT

The half-Cauchy distribution (Jacob and Jayakumar (2012)) truncated at α > 0
has probability density function given by

f (y) = 1
tan−1 α

1
1 + y2

, 0 < y < α. (1)

In the latter expression, tan−1 is the inverse of the circular tangent function.
Let us consider now the transformation y = α F̄(x), where F̄(x) is the survival
function of a random variable X with support in [a, b] and where a and b can
be finite or non-finite. Then, the corresponding probability density function of
the random variable X obtained from (1) results

f (x; α) = 1
tan−1 α

α f (x)

1 + [α F̄(x)]2
, (2)

for a ≤ x ≤ b and α > 0. The survival function of X, which is obtained from
(2) by integrating, is given by

F̄(x; α) = tan−1(α F̄(x))

tan−1 α
. (3)

Furthermore, it is simple to see that (2) and (3) are the proper probability
density function and survival function, respectively, when the support of the
parameter α is extended to (−∞, ∞) except for zero. In this case, we get that
F̄(x; α) = F̄(x; −α). Additionally, by taking in (3) limit when the parameter α

tends to zero and applying L’Hospital’s rule, it is straightforward to derive that
the parent survival function, F̄(x), is obtained as a special case, i.e. F̄(x; α) →
F̄(x) when α → 0. Thus, the methodology proposed here can be considered as
a mechanism for adding a scale parameter to a parent survival function and,
therefore, a means of obtaining a more flexible survival function. In particular,
the case where F̄(x) is replaced by the survival function of the classical Pareto
distribution will be considered in this manuscript.
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Alternatively, the expression F̄(x; α) provided in (3) can be obtained by us-
ing the following representation of the tan−1 function (see Castellanos (1988)):

tan−1 z = z
1 + z2 2F1

(
1, 1; 3

2
,

z2

1 + z2

)
=

∞∑
n=0

22n(n!)2

(2n + 1)!
z2n+1

(1 + z2)n+1
.

Here 2F1(a, b; c, z) represents the hypergeometric function which has the
integral representation

2F1(a, b; c, z) = �(c)
�(b)�(c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − tz)−a dt,

and where �(·) is the Euler gamma function.
The hazard rate function defined by h(x) = f (x)/F̄(x) is an important

quantity to characterize life phenomena. Derivation of this function is straight-
forward from (2) and (3) and is given by

h(x; α) = 1

tan−1[α F̄(x)]

α f (x)

1 + [α F̄(x)]2
. (4)

Although in this paper it has only been considered the transformation of a
survival function by using the tan−1 function, it is also possible to obtain a fam-
ily of distributions by replacing this function by the tan function. Nevertheless,
the new family of distributions obtained seems not very flexible. In fact, under
this alternative transformation, the new Pareto distribution attains its modal
value close to the lower bound of its support. Additionally, the parameter α has
a more restrictive domain if we wish to ensure that the transformation provides
a genuine survival function.

3. THE PARETO CASE

3.1. Genesis and properties

In this section, a new generalization of the Pareto distribution is obtained by
using the methodology proposed above. In this regard, observe that when (3) is
applied to the classical Pareto distribution with survival function F̄(x) = ( σ

x )θ ,
x ≥ σ , σ > 0, the new survival function is attained and it is provided by

F̄(x; α) = tan−1(α(σ/x)θ )

tan−1 α
, x ≥ σ. (5)

Then, the corresponding probability density function is

f (x; α) = 1
tan−1 α

αθσ θxθ−1

(ασ θ )2 + x2θ
, x ≥ σ. (6)
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FIGURE 1: Graphs of tan−1(z) and φ(z) functions (left) and error function (right).

Undoubtedly, the single parameter Pareto distribution is one of the most at-
tractive distributions in statistics; a power law probability distribution found in
a large number of real-world situations inside and outside the field of economics.
Furthermore, it is usually used as a basis for excess of loss quotations as it gives
a pretty good description of the random behavior of large losses. The probabil-
ity density function (6) includes the Pareto distribution as a limiting case when
α → 0. A tentative interpretation of the parameters of this distribution can be
given in the context of insurance setting and, in particular in reinsurance con-
text. In this field, there are many probability distributions which can be used
for modelling single loss amounts. Then, if the loss is assumed to follow the
probability density function (6), we have that σ determines the minimum loss
amount and θ defines the tail behavior of the distribution.

Also note that approximation of the tan−1 function can be obtained by using
second- and third-order polynomials and simple rational functions (see Rajan
et al. (2006) for details). In this sense, it is verified that

tan−1
(
1 + x
1 − x

)
≈ π

4
(x+ 1), −1 ≤ x ≤ 1

and after appropriate change of variable we have that

tan−1 z ≈ zπ
2(1 + z)

, z ≥ 0. (7)

Figure 1 shows both functions, tan−1(z) and φ(z) = zπ/(2(1+z)), for values
z > 0 together with the error function calculated for their difference. As can be
observed, the approximation is reasonably good reaching a maximum at z =
3.1904 and a minimum at z = 0.3134 with | tan−1 z− φ(z)| ≤ 0.0711.

Applying (7) to (3), for α > 0, we get after some algebra that

F̄(x; β) ≈ (1 + α)F̄(x)

1 + α F̄(x)
, α > 0, (8)

which is related to the family of distributions proposed by Marshall and Olkin
(1997). Then, the mechanism introduced here is more general than the one
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FIGURE 2: Probability density function of PAT distribution for selected values of parameters α and θ

assuming σ = 1.

proposed by these authors. Furthermore, for this particular case, the family of
distributions presented in (3) is geometric-minimum stable (see Marshall and
Olkin (1997)). In this sense, a simple interpretation of the new model is given as
follows. Let us suppose that {Xi }ni=1 are independent and identically distributed
random variables with cumulative distribution function F(x), where n is ran-
dom and it follows the probability mass function

Pr(N = n) = 1
1 + α

(
α

1 + α

)n−1

, n = 1, 2, . . . (9)

(i.e. the geometric distribution); then it is simple to show that the marginal sur-
vival function of X = min {X1, X2, . . . , Xn} is given by (8). For example, we
might think of a random sequence of losses where the time between claims has
a mean of α−1. Likewise the new model can be considered a way to describe the
time between claims occurrence.

Henceforward, when a random variable X follows the probability density
function given in (6) we will write X ∼ PAT(α, θ, σ ). The shape of density (6) is
shown in Figure 2 for a few values of the parameters, with α fixed and θ varying
in the plot on the left and θ fixed and α changing in the graph on the right
side. Note that only positive values of α have been considered since for negative
values the density is the same.
The r th moment about zero is given in the next result.

Proposition 1. The rth moment about the origin of the PAT distribution is given
by

E(Xr ) = αθσ r

(θ − r) tan−1 α
2F1

(
1,

θ − r
2θ

; 3θ − r
2θ

; −α2
)

, θ > r, (10)

Proof. We have that

E(Xr ) = αθσ θ

tan−1 α

∫ ∞

σ

xr+θ−1

(ασ θ )2 + x2θ
dx.
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FIGURE 3: Failure rate function of PAT distribution for selected values of parameters α and θ assuming
σ = 1.

Now, by making the change of variable x = σ/z1/(2θ) we get the result after
some algebra.

The fact that the moments in (10) can be expressed in terms of the hypergeo-
metric function guarantees convergence and existence. Furthermore, the use of
software, such as Matlab or Mathematica, that incorporates this special func-
tion facilitates its practical implementation.

In particular, the mean takes the form

μ = E(X) = αθσ

(θ − 1) tan−1 α
2F1

(
1,

θ − 1
2θ

,
3θ − 1
2θ

, −α2
)

, θ > 1. (11)

From (5), the quantile function xγ is simply derived

xγ = σ

[
1
α
tan(γ tan−1 α)

]−1/θ

,

from which the median can be easily obtained.
Besides, the mode, which can be obtained by differentiating (6) with respect

to the variable x, is given by

xMo =
[
(θ − 1)(σ θ α)2

1 + θ

]1/2 θ

.

Finally, the hazard rate function for the PAT distribution, which is obtained
from (2), (3) and (4), has been plotted for the same values of parameters as
considered in the previous figure. This is shown in Figure 3.

As can be seen the hazard rate function is either monotonically decreasing
or increasing and decreasing.
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3.2. Stochastic ordering

The quantity given in (5) represents the proportion of claims larger than a given
x value; hence, examination of the statistical ordering with respect to the param-
eter α could be convenient to better explain the claim size distribution. The PAT
distribution can be ordered by some stochastic orders according to the value of
the parameter α (assumed positive) in terms of the likelihood ratio order, which
is defined as follows.

Definition 1. Let X1 and X2 be continuous random variables with densities f1 and
f2, respectively, such that

f2 (x)
f1 (x)

is non-decreasing over the union of the supports of X1 and X2.

Then X1 is said to be smaller than X2 in the likelihood ratio order (denoted by
X1 ≤LR X2).

Theorem 1. Let X1 and X2 be two PAT random variables with density functions
f (x |α1, θ, σ ) and f (x |α2, θ, σ ) , respectively. If 0 < α1 ≤ α2 then X1 ≤LR X2.

Proof. Note that the ratio

h(x) = f (x |α2, θ, σ )

f (x |α1, θ, σ )
= α2 tan−1 α1

(
α2
1σ

2θ + x2θ
)

α1 tan−1 α2
(
α2
2σ

2θ + x2θ
)

is non-decreasing if and only if h′ (x) ≥ 0 for x ∈ (σ, ∞). Some calculations
show that

h′ (x) = 2α2 θ tan−1 α1(α2 − α1)(α1 + α2)σ
2θx2θ−1

α1 tan−1 α2
(
α2
2 σ 2θ + x2θ

)2 .

Now, taking into account that if 0 < α1 ≤ α2 then it is easy to see that for
all θ ∈ IR+ and x ≥ σ imply h′ (x) ≥ 0 and the result holds.

4. THEORETICAL RESULTS IN INSURANCE

In the following, several theoretical results related to insurance for the PAT dis-
tribution are derived.

4.1. Heavy-tailed distributions

The use of heavy right-tailed distributions is of vital importance in general insur-
ance. In this regard, Pareto and Lognormal distributions have been employed
to model losses in motor third-party liability insurance, fire insurance or catas-
trophe insurance. It is already known that any probability distribution, that is
specified through its cumulative distribution function F(x) on the real line, is
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heavy right-tailed (see Rolski et al. (1999)) if lim supx→∞ − log F̄(x)/x = 0.
This is simply verified when F̄(x) is replaced by (5). Therefore, we have that
limx→∞ esx F̄(x; α) = ∞ for x > 0.

Therefore, as a long-tailed distribution is also heavy right-tailed, the distri-
bution introduced in this manuscript is also heavy right-tailed.

Another important issue in extreme value theory is the regular variation (see
Bingham et al. (1987)). This concept is formalized in the following definition.

Definition 2. Adistribution function is called regular varying at infinity with index
−β if

lim
x→∞

F̄(tx)

F̄(x)
= t−β,

where the parameter β ≥ 0 is called the tail index.

Next theorem establishes that the survival function given in (5) is a regular
variation Lebesgue measure.

Theorem 2. The survival function given in (5) is a survival function with regularly
varying tails.

Proof. Let us firstly consider the survival function given in (5). Then, after
simple computations it is obtained that

lim
x→∞

F̄(tx; α)

F̄(x; α)
= t−θ ,

and taking into account that θ ≥ 0 the statement of the theorem follows.

As a consequence of this result, we have that if X, X1, . . . , Xn are iid ran-
dom variables with the common survival function given by (5) and Sn =∑n

i=1 Xi , n ≥ 1, then

Pr(Sn > x) ∼ Pr(X > x) as x → ∞.

Therefore, if Pn = maxi=1,...,n Xi , n ≥ 1, we have that

Pr(Sn > x) ∼ n Pr(X > x) ∼ Pr(Pn > x).

This means that for large x the event {Sn > x} is due to the event {Pn > x}.
Therefore, exceedances of high thresholds by the sum Sn are due to the ex-
ceedance of this threshold by the largest value in the sample.

On the other hand, let the random variable X represent either a policy limit
or reinsurance deductible (from an insurer’s perspective); then the limited ex-
pected value function L of X with cdf F(x) is defined by

L(x) = E[min(X, x)] =
∫ x

0
y dF(y) + xF̄(x),
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which is the expectation of the cdf F(x) truncated at this point. In other words,
it represents the expected amount per claim retained by the insured on a policy
with a fixed amount deductible of x.

For the PAT distribution proposed here this amount is given by

L(x) = θ(x/σ)θ

xα(θ + 1) tan−1 α
2F1

(
1,

θ + 1
2θ

; 3θ + 1
2θ

; − (x/σ)2θ

α2

)
+ x

tan−1 α
tan−1

(
α

(σ

x

)θ
)

− σ θ+1

α(θ + 1) tan−1(α)
2F1

(
1,

θ + 1
2θ

; 3θ + 1
2θ

; − 1
α2

)
.

The value at risk (VaR) is defined as the amount of capital required to ensure
that the insurer does not become insolvent with a high degree of certainty. The
VaR of a random variable Xwhich follows the PAT distribution is the q quantile
and it is given by

VaR(X; q) = σ

(
α

tan((1 − q) tan−1 α))

)1/θ

.

The use of the VaR is questionable due to the lack of subadditivity, for that
reason the expected loss given that the loss exceeds the q quantile of the distri-
bution of X, the tail value at risk (TVaR), is considered. Then, if X follows a
PAT distribution, for any quantile q the tail value at risk is given by

TVaR(X; q) = 1
1 − q

∫ 1

q
VaR(x; q) dq

= −σθα1/θ tan
θ−1
θ

(
tan−1 α − q tan−1 α

)
(θ − 1)(q − 1) tan−1(α)

× 2F1

(
1,

θ − 1
2θ

; 3θ − 1
2θ

; − tan2
(
tan−1 α − q tan−1 α

))
.

The probability density function given in (6) can also be applied in rating
excess-of-loss reinsurance as it can be seen in the next result.

Proposition 2. Let X be a random variable denoting the individual claim size tak-
ing values only for individual claims greater than d. Let us also assume that X
follows the probability density function (6), and then the expected cost per claim
to the reinsurance layer when the loss in excess of m subject to a maximum of l is
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given by

E[min(l,max(0, X−m))] = σ−θ (α(θ + 1) tan−1 α)−1

×
[
θ(L+m)θ+1

2F1

(
1,

θ + 1
2θ

; 3θ + 1
2θ

; −σ−2θ (L+m)2θ

α2

)
− θmθ+1

2F1

(
1,

θ + 1
2θ

; 3θ + 1
2θ

; −σ−2θm2θ

α2

)
+ α(θ + 1)σ θ

(−m cot−1 (
ασ θ(L+m)−θ

) +m cot−1 (
ασ θm−θ

)
+ L tan−1

(
α

(
σ

L+m

)θ
))]

.

Proof. The result follows by taking into account that

E[min(l,max(0, X−m))] =
∫ m+l

m
(x−m) f (x) dx+ l F̄(m+ l),

from which we get the result after some algebra.

4.2. Approximating the ruin function

The integrated tail distribution (also known as equilibrium distribution) is an
important distribution that often appears in insurance and many other applied
probability models. Let F̄(x) be the survival function given in (5), and then
the integrated tail distribution of F(x) (see for example Yang (2004)) is given
by FI(x) = 1

E(X)

∫ x
0 F̄(y) dy. For the distribution proposed in this work, as is

proven in the following result, the integrated tail distribution can be written as
a closed-form expression.

Proposition 3. The integrated tail distribution of the cumulative distribution func-
tion F(x) = 1 − F̄(x), where F̄(x) is given in (5) results

FI(x) = 1 + 1 − θ

μασθ

[
σ tan−1 α − x tan−1

(
α

(σ

x

)θ
)]

− 1
μ

(σ

x

)θ−1

(σ, θ, α), (12)

where


(σ, θ, α) = 2F1

(
1,

θ − 1
2θ

; 3θ − 1
2θ

; −α2
(σ

x

)2θ
)

,

and μ is the mean value of the distribution, given in (11).

Proof. The result follows after some algebra.
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Under the classical model (see Yang (2004)) and assuming a positive security
loading, ρ, for the claim size distributions with regularly varying tails we have
that, by using (12), it is possible to obtain an approximation of the probability
of ruin, 
(u), when u → ∞. In this case, the asymptotic approximations of the
ruin function are given by


(u) ∼ 1
ρ
F̄I(u), u → ∞,

where F̄I(u) = 1 − FI(u).

4.3. Mean excess function

The failure rate of the integrated tail distribution, which is given by γI(x) =
F̄(x)/

∫ ∞
x F̄(y) dy, is also obtained in closed-form. Furthermore, the reciprocal

of γI(x) is the mean residual life that can be easily derived.
For a claim amount random variable X, the mean excess function or mean

residual life function is the expected payment per claim on a policy with a fixed
amount deductible of x, where claims with amounts less than or equal to x are
completely ignored:

e(x) = E(X− x|X > x) = 1

F̄(x)

∫ ∞

x
F̄(u) du.

For the PAT distribution proposed here, the mean excess function results

e(x) = x

⎛⎝ αθ
(

σ
x

)θ

(σ, θ, α)

(θ − 1) tan−1
(
α

(
σ
x

)θ
) − 1

⎞⎠ .

5. APPLICATION TO A REAL DATA SET

In this section, the versatility of (6), as compared with different heavy tail distri-
butions is proven by analyzing real actuarial loss data. This set of data describes
aNorwegian fire insurance portfolio from 1989 to 1992 (see Beirlant et al. 1996).
The Norwegian fire claims data have been recently used by Brazauskas and
Kleefeld (2011) where log-folded-normal and log-folded-t families were used
to describe total damage caused by 827 fires in Norway for the year 1988 (see
also Scollnik (2014) and Brazauskas and Kleefeld (2014)). This data set in-
cludes the claim value on 2,585 fire insurance losses inNorwegianKrone (×1000
NOK). A priority of 500 units was in force, thus no claims below this limit were
recorded. For that reason, several probability lawswith heavy tail defined in IR+,
such as the classical Pareto, Shifted Lognormal, Burr, Loggamma, Fréchet, In-
verse Gamma and Stoppa distributions, have been selected to explain the claim
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amount distribution. Firstly, score equations and second derivatives of the log-
likelihood function of the PAT distribution are given; next, it is shown that the
distribution introduced in this manuscript outperforms the models mentioned
above in terms of differentmeasures ofmodel validation. Finally, some actuarial
applications of (6) are given.

5.1. Estimation and model assessment

We have fitted the PAT distribution and all the models described above to the
Norwegian fire claim data. Parameters have been estimated by the method of
maximum likelihood. In the following, it will be assumed that {x1, x2, . . . , xn}
is a random sample selected from the distribution (6). Then, the log-likelihood
function is given by

� ≡ �(α, θ | x1, . . . , xn) = −n log(tan−1 α) + n(logα + θ log σ + log θ)

+ (θ − 1)
n∑
i=1

log xi −
n∑
i=1

log
[
x2θi + (ασ θ )2

]
.

The first derivative of this function with respect to the parameters α and θ ,
assuming that σ is known, are given by,

∂�

∂α
= n

[
1
α

− 1
(1 + α2) tan−1 α

]
− 2ασ 2θ

n∑
i=1

1

x2θi + (ασ θ )2
= 0,

∂�

∂θ
= n

(
log σ + 1

θ

)
+

n∑
i=1

log xi − 2
n∑
i=1

x2θi log xi + (ασ θ )2 log σ

x2θi + (ασ θ )2
= 0.

The second partial derivatives, which are used to approximate Fisher’s infor-
mation matrix, are as follows:

∂2�

∂α2
= n

[
2α tan−1 α + 1

(1 + α2)2(tan−1 α)2
− 1

α2

]
+ 2σ 2θ

n∑
i=1

(ασ θ )2 − x2θi[
x2θi + (ασ θ )2

]2 ,

∂2�

∂θ2
= − n

θ2
− 4

n∑
i=1

x2θi (ασ θ )2(log xi − log σ)2[
x2θi + (ασ θ )2

]2 ,

∂2�

∂α∂θ
= 4ασ 2θ

[
n∑
i=1

x2θi log xi + (ασ θ )2 log σ[
x2θi + (ασ θ )2

]2 − log σ

n∑
i=1

1

x2θi + (ασ θ )2

]
.

Table 1 provides parameter estimates together with standard errors (in
brackets) computed by inverting the approximations of the observed infor-
mation matrices. Different measures of goodness-of-fit based on information-
criterion approach are also given in this table. In this sense, in the third column
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TABLE 1

ESTIMATED VALUES OF DIFFERENT HEAVY-TAILED MODELS FOR NORWEGIAN FIRE INSURANCE LOSS DATA.

Parameter
Distribution Estimates (S.E.) NLL AIC BIC CAIC

Pareto θ = 1.0350 (0.0204) 21058.50 42119.00 42124.85 42125.85
σ = 500

Shifted μ = 6.4307 (0.0286) 20993.60 41993.19 42010.76 42013.76
Lognormal b = 478.2640 (3.2020)

σ = 1.3122 (0.0244)

Stoppa α = 1.3536 (0.0370) 20984.56 41975.13 41992.70 41995.70
β = 1.6434 (0.0831)
b = 486.4459 (4.0103)

Frećhet α = 1.2452 (0.0414) 21024.36 42054.71 42072.29 42075.29
s = 559.317 (22.5823)
b = 325.743 (15.6615)

Inverse α = 1.3419 (0.0521) 21018.43 42042.86 42060.43 42063.43
Gamma b = 351.739 (10.1163)

β = 746.932 (51.0971)

Loggamma α = 1.6607 (0.0124) 22527.22 45060.45 45078.02 45081.02
b = 499.369 (0.1409)
β = 3.8067 (0.0647)

PAT α = 2.0815 (0.1371) 20935.66 41875.31 41887.03 41889.03
σ = 500
θ = 1.4890 (0.0390)

the negative of the maximum of the log-likelihood (NLL) is provided. Next
in the fourth column Akaike’s Information Criteria (AIC, which is calculated
by twice NLL plus twice the number of parameters), evaluated at the maxi-
mum likelihood estimates, the Bayesian information criterion (BIC, which is
obtained as twice the NLL at the estimates plus k ln(n), where k is the number
of free parameters and n is the sample size) and a corrected version of the AIC,
Consistent Akaike’s Information Criteria (CAIC) were proposed by Bozdogan
(1987) to overcome the tendency of the AIC to overestimate the complexity of
the underlying model since it lacks certain properties of asymptotic consistency
as it does not directly depend on the sample size. Then, in order to calculate
the CAIC, a correction factor based on the sample size is used to compensate
for the overestimating nature of AIC. The CAIC is defined as twice NLL plus
k (1+ ln(n)), again k is the number of free parameters and n refers to the sample
size.

A lower value of these measures is desirable. These results show that the
PAT distribution provides a better fit than do the classical Pareto, shifted Log-
normal, Stoppa, Fréchet, Inverse Gamma and Loggamma distributions, even
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FIGURE 4: Fitted density curves and histogram for Norwegian fire insurance loss data for Pareto (solid thin),
Shifted Lognormal (SL, dashed), Stoppa (dotted), Fréchet (dot-dashed), Inverse Gamma (IG, solid) and PAT

(solid thick).

when some of these distributions use a larger number of parameters. The Burr
distribution has also been fitted to this set of data; however, due to its poor
performance (a value of 23670.39 was obtained for NLL), this model has not
been included in Table 1. Note that the threshold for the PAT and the classical
Pareto is set equal to 500.

As a result of the high values obtained for the different measures of model
validation, the Loggamma distribution will be no longer considered in the re-
mainder of this section. The main portion of the density curves for some of the
models considered in Table 1 is shown in Figure 4 with an empirical histogram
of the data overlaid on top. It can be observed that the PAT distribution best
describes the losses.

Now, we analyze model validation from a practical perspective. In this re-
gard, the Pareto distribution can be seen as a limiting case of PAT distribution
when α tends to zero. We are interested, by means of the likelihood ratio test,
in determining whether the Pareto distribution (null hypothesis) is preferable
to the PAT model (alternative hypothesis) to describe this set of data. The test
statistic is T = 2 (�PAT − �Pareto) where �PAT and �Pareto represent the maximum
of the log-likelihood function for the PAT and Pareto distributions, respectively.
Asymptotically, it follows a chi-square distribution with one degree of freedom.
Here, it is verified that T = 2 (−20935.66 + 21058.50) = 245.687. Then, at the
5% significance level, as 245.687 > 3.841 the null hypothesis is clearly rejected
and consequently, the smaller model (Pareto) is rejected in favor of the model
based on the PAT distribution.

https://doi.org/10.1017/asb.2015.9 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2015.9
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Next, the likelihood ratio test proposed by Vuong (see Vuong (1989)) will be
considered as a tool for model diagnostic. The test statistic is

T = 1
ω

√
n

(
� f (θ̂1) − �g(θ̂2) − log n

( p
2

− q
2

))
,

where

ω2 = 1
n

n∑
i=1

[
log

(
f (θ̂1)

g(θ̂2)

)]2

−
[
1
n

n∑
i=1

log
(
f (θ̂1)

g(θ̂2)

)]2

is the estimated variance calculated in the usual manner and f and g represent
the probability density function (pdf) of two different non-nested models, θ̂1
and θ̂2 are the maximum likelihood estimators of θ1 and θ2 and p and q are the
number of estimated coefficients in the model with pdf f and g, respectively.
Note that the Vuong statistic is sensitive to the number of estimated parameters
in eachmodel and therefore the test must be corrected for dimensionality. Under
the null hypotheses, H0 : E[� f (θ̂1) − �g(θ̂2)] = 0, T is asymptotically normally
distributed. It is generally accepted that rejection region for this test in favor of
the alternative hypothesis occurs, at the 5% significance level, when T > 1.96.

Now we compare the Shifted Lognormal and PAT distribution in terms of
the Vuong test. Under the null hypothesis, the two models are equally close to
the true but unknown specification. In this case, as T = 51.204, H0 is rejected;
therefore, differences between these twomodels exist. Similarly, Stoppa andPAT
distribution can also be studied. Here, as T = 56.952, the null hypothesis is
again rejected and PAT distribution is preferred. Finally, the PAT distribution
is preferred to the Fréchet distribution (T = 50.580) and Inverse Gamma dis-
tribution (T = 58.779) at the 5% significance level.

In the following, twomoremeasures of model assessment for individual data
based on the empirical distribution function such as the Kolmogorov–Smirnov
(KS) test and Crámer vonMises (CvM) test (see Brazauskas and Serfling (2003)
and Rizzo (2009) for details) have been applied to these six models. For these
tests, smaller values indicate a better fit of the distribution to the data. The re-
sults are shown in Table 2. As can be observed for the KS test the PAT model
when σ = 500 outperforms widely the other five distributions. As this test is
relatively insensitive to deviations in the tail, the CvM has also been considered
to reflect the effect of the tail on the different models. Here, the PAT distribu-
tion exceeds Pareto, Shifted Lognormal, Stoppa, Fréchet and Inverse Gamma
distributions. These tests also allow us to perform hypothesis testing for model
validation purposes. The p-value of the test statistics, computed using viaMonte
Carlo methods using a simulation size of 10,000 repetitions are also displayed
in Table 2. An extremely small p-value may lead to a confident rejection of the
null hypothesis that the data comes from the proposed model. As can be seen,
the PAT distribution has relatively high p-values across thesemeasures of model
assessment and is not rejected and the model is statistically significant.
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TABLE 2

GOODNESS-OF-FIT TESTS AND THEIR CORRESPONDING p-VALUES FOR FITTED PARETO, SHIFTED
LOGNORMAL, STOPPA, FRÉCHET, INVERSE GAMMA AND PAT FOR NORWEGIAN

FIRE INSURANCE LOSS DATA.

Shifted Inverse
Pareto Lognormal Stoppa Fréchet Gamma PAT

KS 0.1066 0.0331 0.0403 0.0321 0.0308 0.0124
p-value 0.0000 0.0086 0.0006 0.0096 0.0146 0.8202
CvM 9.9848 0.6532 0.9759 0.7869 0.7144 0.0889
p-value 0.0000 0.0162 0.0018 0.0082 0.0134 0.6340

5.2. Point estimation of high quantiles

High quantiles of the distribution of the claim amounts have been tradition-
ally considered as a measure that provides useful information for practition-
ers. These quantiles can be estimated by their empirical counterparts. Simi-
larly, let q0 = Pr(X ≤ x0) = F(x0), 0 ≤ q ≤ 1, be the values of q0
given the corresponding x0. For the PAT distribution, the values of x0, given
by x0 = F−1(q0), can be easily computed by taking into account that x0 =
σ

[ 1
α
tan((1 − q0) tan−1 α)

]−1/θ
. For the sake of comparison, the Log–Log plots

for the sixmodels considered above are presented in Figure 5. This chart consists
of plots of the logarithm of observed quantiles against the logarithm of theoreti-
cal quantiles for each one of the fitted models. As usual, estimated log-quantiles
are plotted on the horizontal axis and the logarithm of ordered observations on
the vertical axis, where F−1(q) is the estimated q-th quantile and q = j

n+1 with
j = 1, . . . , n. According to these charts, for high quantiles, Pareto, Stoppa,
Fréchet and Inverse Gamma distributions tend to overestimate the observed
data whereas the Shifted Lognormal underestimates the empirical data. It can
also be observed that the PAT distribution seems to be a reasonable choice for
the given data.

Furthermore, empirical and fitted models quantiles for the six models con-
sidered in the extreme portion of the tail are exhibited in Table 3. It is of interest
to study how close theoretical tail quantiles for each fitted model are from the
empirical quantiles. Again, the PAT distribution provides the best fit to data.
The Pareto, Stoppa, Fréchet and Inverse Gamma distributions tend to overesti-
mate the extreme tail quantiles whereas the Shifted Lognormal model underes-
timates them. At this point, it is important to mention that we must be prudent
in the conclusions obtained from this table since the sample size is 2,585, and for
example, the value of 99.99% empirical quantile represents an event that occurs
1 in 10,000 times.

In Table 4, the tail value at risk (TVaR) for different security levels has
been calculated for the models considered. This risk measure describes the ex-
pected loss given that the loss exceeds the security level (quantile). These values
have been calculated directly from the data. Empirical values have also been

https://doi.org/10.1017/asb.2015.9 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2015.9


656
E
M
IL

IO
G
Ó
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FIGURE 5: Log–Log plots of some of the models considered for Norwegian fire insurance loss data.
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TABLE 3

EMPIRICAL AND FITTED QUANTILES.

Fitted Model

Shifted Inverse
Quantiles Empirical Pareto Lognormal Stoppa Fréchet Gamma PAT

0.50 1121 976.84 1098.86 1069.81 1076.49 1078.91 1116.93
0.90 3465 4625.61 3813.55 3790.38 3734.1 3655.30 3542.90
0.95 5452 9036.99 5850.68 6373.89 6401.82 6116.85 5655.32
0.99 17150 42792.49 13616.46 21055.39 22823.00 20238.67 16679.65
0.999 85786 395882.52 36275.88 115536.02 143814.53 112422.96 78308.51
0.9995 102438 773430.21 47036.53 192817.18 250743.93 188424.02 124733.70
0.9999 145156 3662394.25 82170.77 633228.53 912518.28 625123.19 367636.86

TABLE 4

TAIL VALUE AT RISK (TVAR) FOR THE DIFFERENT MODELS CONSIDERED.

Fitted Model

Security Shifted Inverse
Level Empirical Pareto Lognormal Stoppa Fréchet Gamma PAT

0.90 9936.60 136861.19 7997.18 14796.88 18381.26 14286.18 10814.99
0.95 15635.29 267267.40 11331.77 24728.08 31935.62 23931.78 17231.80
0.99 42475.20 1266000.34 23267.94 81290.92 115755.98 79343.15 50793.41
0.999 166690.00 11712184.71 55815.59 445604.80 734310.50 441154.50 238461.96

obtained. Again, note that the same comment made at the end of the previous
paragraph applies here.

5.3. Limited expected value

Finally, in order to choose a model that provides an acceptable description of
the loss process, we should verify that L(x) and the empirical limited expected
value function which is given by En(x) = 1

n

∑n
i=1 min(xi , x) are essentially in

agreement. Obviously when x tends to infinity, L(x) and En(x) approach E(X)

and the sample mean, respectively.
In Table 5, empirical and fitted limited expected value functions for the six

models are considered. As can be observed, the PAT distribution stays closer to
the empirical limited expected value than does the other three models for all the
values considered.
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TABLE 5

LIMITED EXPECTED VALUE FOR THE DISTRIBUTIONS CONSIDERED AND DIFFERENT VALUES OF THE POLICY
LIMIT x.

Limited expected value function

Policy limit x Shifted Inverse
(×1, 000 NOK) Empirical Pareto Lognormal Stoppa Fréchet Gamma PAT

1,000 882.61 842.41 876.06 875.44 882.42 882.75 883.12
2,000 1247.97 1176.61 1248.11 1224.73 1226.53 1227.03 1244.48
5,000 1574.90 1606.14 1622.60 1593.49 1579.53 1570.21 1589.04
10,000 1752.60 1922.05 1796.85 1807.14 1791.83 1770.96 1765.67
20,000 1892.30 2230.39 1877.75 1975.28 1968.22 1926.94 1891.59
50,000 2023.13 2626.68 1918.46 2143.22 2157.97 2083.78 2004.32
100,000 2086.70 2918.13 1928.36 2238.71 2279.91 2178.72 2061.65
120,000 2095.38 2993.63 1929.43 2260.18 2305.79 2197.34 2073.77
∞ 2105.11 14792.36 1946.09 2582.65 2936.43 2536.40 2203.75

6. CONCLUSIONS

In this paper, a new mechanism to derive probability distributions by adding,
from the truncated half-Cauchy distribution, a parameter to a parent distribu-
tion function has been presented. Although the method has only been applied
to the classical Pareto distribution, certainly this procedure can be extended by
allowing the choice of other probabilistic families as parent distribution. Surely,
more flexible distributions will be obtained. Furthermore, analysis and applica-
tions of these models remain as a topic for further study.

Themodel proposed here, called ParetoArcTan (PAT), is a very versatile dis-
tribution allowing closed-form expressions for a lot of interesting results in the
insurance context. Furthermore, the model seems suitable for modelling pay-
ments that include a positive priority, with no claims below that threshold, and
losses combine data with high frequencies near the lower limit together with
large upper tail derived from massive losses with low frequencies.

The performance of this new family has been illustrated using the well-
known Norwegian insurance fire claim data. Numerical results show that the
PAT distribution outperforms, in the context of this set of data, other existing
long-tail distributions under the different measures of model assessment con-
sidered and analysis of high quantiles.

Finally, derivation of composite and folded models based on the PAT distri-
bution might be a line of further research following the work of Nadarajah and
Bakar (2014), Scollnik and Sun (2012) and Scollnik (2014), among others. In
this sense, it might be interesting to explore the development of spliced models
based on Lognormal or Weibull and PAT distributions applying continuity and
differentiability conditions at a threshold value.
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