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ABSTRACT

In this paper, we present closed-type formulas for some multivariate compound
distributions with multivariate Sarmanov counting distribution and indepen-
dent Erlang distributed claim sizes. Further on, we also consider a type-II Pareto
dependency between the claim sizes of a certain type. The resulting densities
rely on the special hypergeometric function, which has the advantage of being
implemented in the usual software. We numerically illustrate the applicability
and efficiency of such formulas by evaluating a bivariate cumulative distribu-
tion function, which is also compared with the similar function obtained by the
classical recursion-discretization approach.
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1. INTRODUCTION

Used to model the aggregate claims of a portfolio, the univariate collective
model is represented as

S=
N∑
l=0

Xl , (1)

where N is the random variable (r.v.) number of claims and (Xl)l≥1 are the cor-
responding nonnegative r.v.s claim sizes with X0 = 0. The classical hypothe-
ses that provide the tractability of this model are independent, identically dis-
tributed (i.i.d.) discrete claim sizes, also independent of N. There is a large
amount of literature related to the evaluation of the compound distribution of S
under these assumptions, see, e.g., Klugman et al. (1998) for different methods,
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and Sundt and Vernic (2009) for a survey of the recursive methods. However,
in practice, the claim sizes (severity) distribution is rather of continuous type,
hence the usual approach consists in two steps: in the first step, the severity
distribution is discretized, while in the second step, a specific method is applied
to the resulting discrete compound distribution. In this case, a special attention
must be paid to the choice of the discretization span: a large span can generate
important errors, while a very small span can lead to a very long running time,
especially in the multivariate case. In this respect, it is unfortunate that closed-
type formulas for compound distributions with continuous type claim sizes are
so scarce; in the univariate case, apart the Gamma severity distribution (which
also includes the well-known exponential case) leading to the so-called Tweedie
compound distribution (see, e.g., Dunn and Smyth, 2005), we mention the re-
cent work of Sarabia et al. (2016), who went even further on by considering a
Pareto-type dependency between the aggregated claim sizes.

In this paper, we propose closed-type formulas for some multivariate com-
pound distributions with Sarmanov counting distribution and Erlang severity
distributions; furthermore, inspired by Sarabia et al. (2016), we also include
some dependency between the claim sizes. Our formulas are expressed mainly in
terms of the special hypergeometric function already implemented in the exist-
ing mathematical software, hence making the related calculations numerically
feasible without involving other techniques.

More precisely, we deal with a multivariate extension of model (1), i.e., for
m ≥ 2, we consider

(S1, . . . , Sm) =
(

N1∑
l=0

X1l , . . . ,

Nm∑
l=0

Xml

)
, (2)

where Nj denotes the number of claims of type j and
(
Xjl
)
l≥1 the corresponding

claim sizes, where by convention, Xj0 = 0, 0 ≤ j ≤ m. This model corresponds
to the situation where we have m different types of claims generated by some
related events, hence the claim numbers

(
Nj
)m
j=1 are dependent. The model has

been studiedmostly under the assumptions that the claims of type j are i.i.d., in-
dependent of the claim numbers and independent of the claims of type k, ∀ j �= k
(see, e.g., Sundt andVernic, 2009, Jin andRen, 2014 orRobe-Voinea andVernic,
2016). We shall call by “inside-type independency” the independency assump-
tion between the claims of same type, while by “between-types independency”
we designate the independency assumptions between claims of different types.
Then, similarly with Sarabia et al. (2016), we shall relax the inside-type inde-
pendency condition by considering a certain type of dependency in each set of
claims

(
Xjl
)
l≥1 . Note that in the univariate case, dependency between the indi-

vidual risks has already been considered especially in the individual model, see,
e.g., Goovaerts and Dhaene (1996), Genest et al. (2003), Denuit et al. (2005)
and the references therein.
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Regarding the claim sizes distributions, we choose the Erlang distribution in
the inside-type independency case and, when relaxing this condition, the same
multivariate type-II Pareto distribution as in Sarabia et al. (2016). This choice
has been driven by the interest in obtaining closed formulas numerically com-
putable with the existing software, but also by the fact that both distributions
have been intensively studied in the actuarial literature lately; for the Erlang dis-
tribution, see, e.g., Willmot and Lin (2011) or Willmot and Woo (2015), while
for the multivariate type-II Pareto distribution, see Asimit et al. (2013) or the
generalizations in Asimit et al. (2010) and Guillén et al. (2013).

Therefore, this paper is structured as follows: in Section 2, we introduce
some notation and recall several special functions and distributions that will
be used in the sequel. In Section 3, we present closed-type formulas for uni-
variate compound distributions with Erlang severity distribution, while in Sec-
tion 4 we extend these formulas to multivariate compound distributions with
Sarmanov counting distribution; moreover, Section 4 is divided into two sub-
sections corresponding to the cases with and without inside-type independency.
In the bivariate case, a special attention is paid to the correlation coefficient of
the resulting compound distribution, which is expressed in terms of the corre-
lation coefficient of the original counting distribution, and results smaller than
the last one.

To illustrate the applicability, efficiency and importance of the derived for-
mulas, in Section 5, we present a numerical example in which we compare
the cumulative distribution functions (cdfs) obtained for a particular bivari-
ate compound distribution by using the closed-type formulas and the usual
recursion-discretization approach. The paper ends with some conclusions and
future work, followed by an Appendix containing the proofs.

2. PRELIMINARIES

2.1. Notation, definitions and useful formulas

In connection with the univariate collective model (1), we denote the probability
mass function (pmf) of the discrete r.v. N by p, while h denotes the probability
density function (pdf) of the claim sizes, which are assumed to be positive, con-
tinuous and identically distributed (i.d.), not necessarily independent. There-
fore, the distribution of S is called compound with counting distribution p and
severity distribution h; we denote it by p ∨ h. Then, letting h(n) denote the pdf

of the sum
∑n

i=0 Xi , where h
(0) (x) =

{
1, x = 0
0, otherwise , it holds that (see Sarabia

et al., 2016)

(p ∨ h) (x) =
∞∑
n=0

p (n) h(n) (x) , x ≥ 0, (3)
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hence (p ∨ h) (0) = p (0) . Under the classical assumption that the claim
amounts are also independent, this formula reduces to the well-known one

(p ∨ h) (x) =
∞∑
n=0

p (n) h∗n (x) , (4)

where h∗n denotes the n-fold convolution of h.
To simplify the writing in the multivariate case, we denoteX = (X1, . . . , Xm)

or x = (x1, . . . , xm) , 1,m = {1, 2, . . . ,m} ; moreover, 0 denotes the 0-vector,
while x − y and x ≥ y are considered componentwise. In what concerns the
model (2), the pmf of the random vector consisting of the (dependent) claim
numbers (N1, . . . , Nm) is still denoted by p, while h j denotes the pmf of the
i.d. continuous positive claim amounts of type j, and h = (h1, . . . , hm). With
this notation, assuming that both inside-type and between-types independency
conditions hold, the compound pdf (p ∨ h) of S = (S1, . . . , Sm) can be written
as

(p ∨ h) (x) =
∞∑

n1=0

. . .

∞∑
nm=0

p (n)
m∏
j=1

h∗n j
j

(
xj
)
, x ≥ 0. (5)

However, relaxing the inside-type independency assumption while keeping the
between-types independency condition, the distribution of S becomes (we omit
the proof being similar with the one in Sarabia et al., 2016)

(p ∨ h) (x) =
∞∑

n1=0

. . .

∞∑
nm=0

p (n)
m∏
j=1

h(
n j)
j

(
xj
)
, x ≥ 0. (6)

It follows that (p ∨ h) (0) = p (0) , and, marginally, e.g.,

(p ∨ h) (x1, 0, . . . , 0) =
∞∑

n1=1

p (n1, 0, . . . , 0) h
(n1)
1 (x1) , x1 > 0,

(p ∨ h) (0, x2, . . . , xm) =
∞∑

n2=1

. . .

∞∑
nm=1

p (0, n2, . . . , nm)

×
m∏
j=2

h(
n j)
j

(
xj
)
, x2, . . . , xm > 0.

Note that in both univariate and multivariate cases, the formulas (3) and (6)
can be used as definitions for a more general compounding operation involving
a discrete function p : Nm → R,m ≥ 1, which is not necessarily a pmf (see also,
Vernic, 2017); however, we keep the assumption that the functions h and h j s are
pdfs.

We shall now recall several special functions. The Laplace transform of a r.v.
X is defined by LX (t) = E

[
e−tX] .
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Spence’s function or dilogarithm, which is a particular case of the polyloga-
rithm function, is defined for |t| < 1 by the power series Li2 (t) = ∑∞

k=1 t
k/k2.

We let

I0 (x) =
∞∑
n=0

(x/2)2n
1

(n!)2
, I1 (x) =

∞∑
n=0

(x/2)2n+1 1
n! (n + 1)!

denote the modified Bessel functions of first and, respectively, second kind.
Based on the Pochhammer symbol (a)(n) = a (a + 1)×· · ·×(a + n − 1) , n ≥

1, (a)(0) = 1, the generalized hypergeometric function r Fq is defined by

r Fq
({a1, . . . , ar } , {b1, . . . , bq}; z

) = 1 +
∞∑
n=1

(a1)(n) × · · · × (ar )(n)
(b1)(n) × · · · × (

bq
)
(n)

zn

n!
. (7)

We shall need the following result (its proof is given in the Appendix). By con-
vention, an empty product equals 1.

Lemma 2.1. For n ∈ N and k ∈ N∗, it holds that

i)
1

((n + 1) k− 1)! (n + 1)

= 1

(k− 1)!knk
( k+1

k

)
(n)

( k+2
k

)
(n)

× · · · ×
(
k+(k−1)

k

)
(n)

(2)(n)
, (8)

i i)
1

(nk)!
= 1

n!knk
( 1
k

)
(n)

( 2
k

)
(n)

× · · · × ( k−1
k

)
(n)

. (9)

Note that due to the convention, when k = 1 formula (8) becomes 1
n!(n+1) = 1

(2)(n)
,

while formula (9) yields the identity 1
n! = 1

n! .

2.2. Some distributions

We shall now recall some distributions needed in the sequel.

2.2.1. Univariate distributions. In the discrete case, we shall use the well-
known Poisson distribution Po (μ) , μ > 0, the negative binomial distribution
NB (r, q) , r > 0, q ∈ (0, 1) , with pmf �(r+n)

n!�(r) q
r (1 − q)n , n ∈ N, expected value

r(1−q)

q and variance r(1−q)

q2 , and the logarithmic distribution Log (θ) , θ ∈ (0, 1) ,

with pmf −1
ln(1−θ)

θn

n , n ≥ 1, expected value −θ
(1−θ) ln(1−θ)

and variance −θ(θ+ln(1−θ))

(1−θ)2 ln2(1−θ)
.

In the continuous case, we recall the Gamma distribution Ga (α, β) , α, β >

0, whose pdf is given by f (x) = βα

�(α)
xα−1e−βx, x > 0, expected value α

β
and

variance α
β2 , where � (·) denotes the Gamma function; it is well known that the
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n-fold convolution of Ga (α, β) is still Gamma distributed, i.e., Ga (nα, β) . In
particular, when α = k ∈ N∗, the Gamma distribution is called Erlang that
we shall denote by Erlang (k, β) . Also, Ga (1, β) is the exponential distribution
denoted by Exp (β).

Another distribution that we shall encounter in the following is the beta dis-
tribution of the second kind, also called beta prime, inverted beta or Pearson
type VI distribution (for details on this distribution, see, e.g., Kleiber and Kotz,
2003). The pdf of this distribution is given by f (x) = xβ−1

B(α,β)(1+x)α+β , x > 0,

where α, β > 0 and B (α, β) = �(α)�(β)

�(α+β)
denotes the beta function. Introducing

also a scale parameter σ > 0, the pdf becomes

f (x) = xβ−1

σβB (α, β) (1 + x/σ)α+β
, x > 0.

We denote this distribution by BI I (β, α, σ ) and note that it can be obtained as
the distribution of the ratio of two independent r.v.s, i.e., as σ Y

Z, where Y ∼
Ga (β, 1) and Z∼ Ga (α, 1) .

Moreover, the ratio σ Y
Z of two independent r.v.s, where σ > 0, Z ∼

Ga (α, 1) and Y ∼ Exp (1) , follows a Pareto distribution Pa (α, σ ) with pdf
α
σ

(
1 + x

σ

)−α−1
, x > 0, expected value σ

α−1 , α > 1, and variance ασ 2

(α−1)2(α−2) ,

α > 2.

2.2.2. Multivariate type-II Pareto distribution. Starting from m i.i.d. r.v.s
Y1, . . . ,Ym exponentially Exp (1) distributed and independent of the r.v. Z ∼
Ga (α, 1) , α > 0, the random vector defined by X = (

σ Y1
Z , . . . , σ Ym

Z

)
, σ > 0,

follows an m-variate Pareto of type-II distribution with pdf

f (x) = � (α +m)

� (α) σm

(
1 + 1

σ

m∑
i=1

xi

)−α−m
, x1, . . . , xm > 0.

We denote this distribution by PaI Im (α, σ ) and note that its marginals
are all i.d. Pa (α, σ ), the covariance between components is cov(Xi , Xj ) =

σ 2

(α−1)2(α−2) , α > 2, i �= j, and the correlation ρ = 1
α
. Sarabia et al. (2016) also

showed that the sum of the components
∑m

i=1 Xi follows the beta distribution
of the second kind, BI I (m, α, σ ) . For more details on the Pareto distribution,
see Arnold (2015).

2.2.3. Sarmanov’s multivariate distribution. We recall that the random vector
N = (N1, . . . , Nm) follows an m-variate discrete Sarmanov distribution with
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joint pmf given for n ∈ Nm by (see, e.g., Kotz et al., 2000)

p (n) =
(

m∏
l=1

pl (nl)

)⎛⎝1 +
m∑
k=2

∑
1≤ j1<...< jk≤m

ω j1... jk φ j1

(
n j1
)× · · · × φ jk

(
n jk
)⎞⎠ ,

(10)

where (pl)ml=1 are the marginal pmf-s,
(
φ j
)m
j=1 are bounded non-constant kernel

functions, and the constants ω j1... jk ∈ R are such that the following conditions
hold:

∑
n∈N

φ j (n) p j (n) = 0, ∀ j ∈ 1,m, and (11)

1 +
m∑
k=2

∑
1≤ j1<...< jk≤m

ω j1... jkφ j1

(
n j1
)× · · · × φ jk

(
n jk
) ≥ 0, ∀n ∈ N

m. (12)

The joint distribution of any subset of marginals of N is of the same type. The
particular forms discussed in the literature for the functions φ j can be unified
into a general one satisfying condition (11), i.e.,

φ j (x) = f j (x) − E
[
f j
(
Nj
)]

, (13)

with the functions f j properly chosen such that E
[
f j
(
Nj
)]

< ∞. For simplic-
ity, we denote Ej := E

[
f j
(
Nj
)]
. In our study, we shall consider the following

particular cases:

1. f (x) = e−δx ⇒ φ (x) = e−δx − LN (δ) ; a frequent choice is δ = 1.
2. f = p ⇒ φ (x) = p (x) −∑

n∈N
p2 (n) .

Remark 2.1. In the bivariate case where p (n) = ∏2
i=1 pi (ni ) ×(

1 + ω
∏2

i=1 φi (ni )
)

, n ∈ N2, condition (12) yields the following range of
ω:

max
{
− 1
m1m2

, − 1
M1M2

}
≤ ω ≤ min

{
− 1
m1M2

, − 1
m2M1

}
,

where mi = minn∈N φi (n) ,Mi = maxn∈N φi (n) . From these limits, we can also
obtain the correlation range, where the correlation coefficient is given by

ρ = ω
E [N1φ1 (N1)]E [N2φ2 (N2)]√

Var [N1]Var [N2]
. (14)
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3. SOME UNIVARIATE COMPOUND DISTRIBUTIONS WITH ERLANG
SEVERITY DISTRIBUTION

Let us consider the univariate compound model (1) with independent claim
sizes Erlang (k, β) distributed, k ∈ N∗, β > 0. Then, according to (4),
(p ∨ h) (0) = p (0) and, for x > 0,

(p ∨ h) (x) =
∞∑
n=1

p (n)
βnk

(nk− 1)!
xnk−1e−βx. (15)

Regarding the choice of p, we consider the following three cases for which we
express the resulting pdf in terms of the generalized hypergeometric function.

Proposition 3.1. i. Poisson case: let N ∼ Po (μ) . Then (p ∨ h) (0) = e−μ and
for x > 0,

(p ∨ h) (x) = e−μ−βx μ (βx)k

x (k− 1)!

×0Fk

(
{} ,

{
k+ 1
k

,
k+ 2
k

, . . . ,
2k− 1
k

, 2
}

; μ

(
βx
k

)k)
.

ii. Negative binomial case: assuming that N ∼ NB (r, q) , r > 0, q ∈ (0, 1) , we
have (p ∨ h) (0) = qr , while for x > 0,

(p ∨ h) (x) = rqr (1 − q) (βx)k e−βx

x (k− 1)!

×1Fk

(
{r + 1} ,

{
k+ 1
k

,
k+ 2
k

, . . . ,
2k− 1
k

, 2
}

; (1 − q)

(
βx
k

)k)
.

iii. Logarithmic case: assume that N ∼ Log (θ) , θ ∈ (0, 1). Then (p ∨ h) (0) =
0, while for x > 0,

(p ∨ h) (x)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− e−βx

x ln (1 − θ)

(
eθβx − 1

)
, k = 1

− ke−βx

x ln (1 − θ)

[
0Fk

(
{} ,

{
1
k
,
2
k
, . . . ,

k− 1
k

}
; θ

(
βx
k

)k)
− 1

]
, k ≥ 2

.

Remark 3.1. The above proposition can be easily extended to the case where the
counting distribution is a mixture with the corresponding components being distri-
butions considered in the proposition. For example, if N follows a mixture of two
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Poisson distributions, i.e.,

p (n) = qe−μ1
μn
1

n!
+ (1 − q) e−μ2

μn
2

n!
, n ∈ N, q ∈ (0, 1) , μi > 0, i = 1, 2,

then we easily obtain that for x > 0,

(p ∨ h) (x) = e−βx (βx)k

x (k− 1)!

×
[
qμ1e−μ1

0Fk

(
{} ,

{
k+ 1
k

,
k+ 2
k

, . . . ,
2k− 1
k

, 2
}

; μ1

(
βx
k

)k)

+ (1 − q) μ2e−μ2
0Fk

(
{} ,

{
k+ 1
k

,
k+ 2
k

, . . . ,
2k− 1
k

, 2
}

; μ2

(
βx
k

)k)]
.

Remark 3.2. The distribution obtained in the first case (i) of Proposition 3.1 be-
longs to the class of Tweedie distributions, which in some cases can be modeled as
compound distributions with Poisson counting distribution and Gamma severity
distribution, see, e.g., Jorgensen (1997).

Sarabia et al. (2016) presented closed-type formulas for the univariate collec-
tive model (1) under the assumption that the claim sizes are dependent accord-
ing to the multivariate type-II Pareto distribution described in Section 2.2.2. In
the following lemma, we recall their results for the same counting distributions
considered above.

Lemma 3.1. If the claim sizes are multivariate type-II Pareto distributed with pa-
rameters (α, σ ), then

i. Poisson case: let N ∼ Po (μ) . Then, (p ∨ h) (0) = e−μ and for x > 0,

(p ∨ h) (x) = αμe−μ

σ(1 + x/σ)1+α 1F1

(
{1 + α} , {2} ; μx

σ + x

)
.

ii. Negative binomial case: assuming that N ∼ NB (r, q) , r > 0, q ∈ (0, 1) , we
have (p ∨ h) (0) = qr , while for x > 0,

(p ∨ h) (x) = rα(1 − q)qr

σ(1 + x/σ)1+α 2F1

(
{1 + r, 1 + α} , {2} ; (1 − q)x

σ + x

)
.

iii. Logarithmic case: assume that N ∼ Log (θ) , θ ∈ (0, 1). Then, (p ∨ h) (0) =
0, while for x > 0,

(p ∨ h) (x) = − 1
x ln(1 − θ)

[
1

(1 + (1 − θ)x/σ)α
− 1

(1 + x/σ)α

]
.
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4. MULTIVARIATE COMPOUND DISTRIBUTIONS WITH SARMANOV’S
COUNTING DISTRIBUTION

In this section, we extend the above results to the multivariate case correspond-
ing to model (2). We assume that the vector number of claims follows Sar-
manov’s multivariate distribution. Regarding the claim sizes, we first assume
the existence of both inside-type and between-types independencies, then we
relax the inside-type independency condition similarly to Sarabia et al. (2016).
In both situations, the following result holds.

Proposition 4.1. Consider the multivariate compound distribution (6) under the
assumption that themultivariate counting distribution p is of Sarmanov type (10).
Then the resulting compound distribution also belongs to Sarmanov’s class, satis-
fying for s ≥ 0,

(p ∨ h) (s) =
m∏
l=1

(pl ∨ hl) (sl) +
m∑
k=2

∑
1≤ j1<...< jk≤m

ω j1... jk

×
k∏
l=1

((
f jl p jl

) ∨ h jl − Ejl

(
p jl ∨ h jl

)) (
s jl
) m∏
l=k+1

(
p jl ∨ h jl

) (
s jl
)

(16)

=
m∏
l=1

(pl ∨ hl) (sl)

⎛
⎝1 +

m∑
k=2

∑
1≤ j1<...< jk≤m

ω j1... jk φ̃ j1

(
s j1
)× · · · × φ̃ jk

(
s jk
)⎞⎠ ,

(17)

where the indexes { jk+1, . . . , jm} = {1, . . . ,m} \ { j1, . . . , jk} and φ̃ j = ( f j p j)∨h j
p j∨h j −

Ej , j = 1,m.

Remark 4.1. From the above definition of φ̃ j , it results that φ̃ j (0) = ( f j p j)(0)
p j (0)

−
Ej = f j (0) − Ej = φ j (0) , from where formula (17) yields (p ∨ h) (0) = p (0)
as expected, and, e.g.,

(p ∨ h) (s, 0, . . . , 0) = (p1 ∨ h1) (s)

(
m∏
l=2

pl (0)

)

×
⎡
⎣1 +

m−1∑
k=1

∑
2≤ j1<...< jk≤m

ω1 j1... jk φ̃1 (s)
k∏
l=1

φ jl (0)

+
m−1∑
k=2

∑
2≤ j1<...< jk≤m

ω j1... jk

k∏
l=1

φ jl (0)

⎤
⎦ , s > 0.
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As a consequence, the compound distribution p∨h has now continuous and discrete
parts (with pmf in 0).

In what concerns the correlation, the following proposition deals with the
bivariate case.

Proposition 4.2. The correlation coefficient of the bivariate compound distribu-
tion defined by (2) with pdf (17) is given by

ρ (S1, S2) = ρ (N1, N2)

2∏
j=1

E
[
Xj
]√Var

[
Nj
]

Var
[
Sj
] , (18)

where ρ (N1, N2) is the correlation coefficient of the bivariate counting distribution
of type (10). If, moreover, the claim sizes

(
Xjl
)
l≥1 are

1. i.i.d., then

E
[
Xj
]√Var

[
Nj
]

Var
[
Sj
] =

(
E
[
Nj
]

Var
[
Nj
] Var

[
Xj
]

(
E
[
Xj
])2 + 1

)−1/2

;

2. dependent, i.d., with equal covariances c j := cov
(
Xji , Xjl

)
for any i �= l, j =

1, 2, then

E
[
Xj
]√Var

[
Nj
]

Var
[
Sj
]

=
(

E
[
Nj
]

Var
[
Nj
] Var

[
Xj
]

(
E
[
Xj
])2 + c jE

[
Nj
(
Nj − 1

)]
(
E
[
Xj
])2

Var
[
Nj
] + 1

)−1/2

.

The following corollary states the fact that the correlation of the compound
distribution cannot exceed the one of the counting distribution (its proof is ob-
vious, hence we omit it). Note that when the claims of some type are assumed
to be correlated, it is natural to assume that their correlation is positive.

Corollary 4.1. Under the assumptions of Proposition 4.2, in both cases (i) and
(ii) with c j > 0, j = 1, 2, it holds that ρ (S1, S2) < ρ (N1, N2) .

In consequence, we need the form of ρ (N1, N2). The following result
presents some particular formulas useful to the evaluation of ρ (N1, N2) in cases
that will be considered later on.

Lemma 4.1. i. Let N be a discrete r.v. and φ (x) = e−δx −LN (δ) . It holds that
• if N ∼ Po (μ) , then LN (δ) = eμ(e−δ−1) and E[Nφ(N)]√

Var [N]
=(

e−δ − 1
)√

μe(e
−δ−1)μ;
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• if N ∼ NB (r, q), then LN (δ) =
(

q
1−(1−q)e−δ

)r
and E[Nφ(N)]√

Var [N]
=

(e−δ−1)qr
√
r(1−q)

(1−(1−q)e−δ)
r+1 ;

• if N ∼ Log (θ), then LN (δ) = ln(1−e−δθ)
ln(1−θ)

and E[Nφ(N)]√
Var [N]

=√
−θ

θ+ln(1−θ)

(
e−δ(1−θ)

1−θe−δ − ln(1−θe−δ)
ln(1−θ)

)
.

ii. Assuming now that p denotes the pmf of N and φ (x) = p (x) −∑
n p

2 (n) ,

hence E = ∑
n∈N

p2 (n) , we have
• if N ∼ Po (μ), then E = e−2μ I0 (2μ) and E[Nφ(N)]√

Var [N]
=

√
μe−2μ (I1 (2μ) − I0 (2μ)) ;

• if N ∼ NB (r, q), then E = q2r 2F1
(
{r, r}, {1}; (1 − q)2

)
and

E[Nφ(N)]√
Var [N]

= √
r(1 − q)q2r

[
rq(1 − q) 2F1

(
{r + 1, r + 1}, {2}; (1 − q)2

)
− 2F1

(
{r, r}, {1}; (1 − q)2

) ]
;

• if N ∼ Log (θ), then E = Li2(θ2)
ln2(1−θ)

and E[Nφ(N)]√
Var [N]

=
(1−θ) ln(1−θ) ln(1−θ2)−θLi2(θ2)

ln2(1−θ)
√

−θ(θ+ln(1−θ))
.

We shall now have a look at some particular choices for the counting and
severity distributions.

4.1. Inside-type independency case

In this section, we assume that the claim sizes of type j, i.e.,
(
Xjl
)
l≥1 , are inde-

pendent for any fixed j , and also independent of all the claim sizes of other types,
i.e., of (Xkl)l≥1 , ∀k �= j. Under these assumptions, Vernic (2017) presented
recursive formulas for the evaluation of multivariate compound distributions
when the claim sizes distributions are of discrete type. We shall now see how the
components of the compound pdf look like in the particular continuous case of
independent Erlang distributed claim sizes, i.e., when Xjl ∼ Erlang

(
kj , β j

)
, l ≥

1, j = 1,m. We also assume that each marginal counting distribution, p j , is of
Poisson, negative binomial or logarithmic type. Then, from Proposition 3.1, we
know the form of the p j∨h j pdfs, hence, in view of (17), wemust find the expres-
sions of the φ̃ j s. The following results examine the later for the two particular
forms of the kernel functions presented in Section 2.2.3.

Proposition 4.3. Let h be the Erlang (k, β) pdf and let φ (x) = e−δx − LN (δ) ,

hence f (x) = e−δx. It holds the following:
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i. If N ∼ Po (μ), then (( f p) ∨ h) (0) = e−μ, while for x > 0,

(( f p) ∨ h) (x) = e−δ−μ−βx μ (βx)k

x (k− 1)!

×0Fk

(
{} ,

{
k+ 1
k

,
k+ 2
k

, . . . ,
2k− 1
k

, 2
}

; μ

eδ

(
βx
k

)k)
.

ii. If N ∼ NB (r, q), then (( f p) ∨ h) (0) = qr , while for x > 0,

(( f p) ∨ h) (x) = rqr (1 − q) e−δ−βx (βx)k

x (k− 1)!

× 1Fk

(
{r + 1} ,

{
k+ 1
k

,
k+ 2
k

, . . . ,
2k− 1
k

, 2
}

; 1 − q
eδ

(
βx
k

)k)
.

iii. If N ∼ Log (θ), then (( f p) ∨ h) (0) = 0, while for x > 0,

(( f p) ∨ h) (x)

=

⎧⎪⎨
⎪⎩

− e−βx

x ln(1−θ)

(
eθβxe−δ − 1

)
, k = 1

− ke−βx

x ln(1−θ)

[
0Fk

(
{} ,
{ 1
k,

2
k, . . . ,

k−1
k

} ; θ
eδ

(
βx
k

)k)
− 1

]
, k ≥ 2

.

The proof of Proposition 4.3 is omitted, being very similar with the proof of
Proposition 3.1.

Proposition 4.4. Let h be the Erlang (k, β) pdf and let φ (x) = p (x) −∑
n∈N

p2 (n). Then

i. when N ∼ Po (μ), we have (( f p) ∨ h) (0) = e−2μ, while for x > 0,

(( f p) ∨ h) (x) = e−2μ−βx μ2 (βx)k

x (k− 1)!

×0Fk+1

(
{} ,

{
k+ 1
k

,
k+ 2
k

, . . . ,
2k− 1
k

, 2, 2
}

; μ2
(

βx
k

)k)
;

ii. when N ∼ NB (r, q), we have (( f p) ∨ h) (0) = q2r , while for x > 0,

(( f p) ∨ h) (x) = r2q2r (1 − q)2 e−βx (βx)k

x (k− 1)!

×2Fk+1

(
{r+1, r+1} ,

{
k+1
k

,
k+2
k

, . . . ,
2k−1
k

, 2, 2
}

; (1−q)2
(

βx
k

)k)
;

https://doi.org/10.1017/asb.2017.46 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.46


854 M. TAMRAZ AND R. VERNIC

iii. when N ∼ Log (θ), we have (( f p) ∨ h) (0) = 0, while for x > 0,

(( f p) ∨ h) (x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ2e−βxβx

x ln2 (1 − θ)
2F2

({1, 1} , {2, 2} ; θ2βx
)
, k = 1

θ2e−βx (βx)k

x (k− 1)! ln2 (1 − θ)

×2Fk+1

(
{1, 1} ,

{
k+1
k

,
k+2
k

, . . . ,
2k−1
k

, 2, 2
}

; θ2

(
βx
k

)k)
, k≥2

.

Example 4.1. In this example, for illustration purposes, we consider the bivariate
case. Hence, for, e.g., two insurance portfolios, we define the compound model (2)

as follows: (S1, S2) =
(∑N1

l=0 X1l ,
∑N2

l=0 X2l

)
with X1l ∼ Erlang(k1 = 2, β1 =

0.9), X2l ∼ Erlang(k2 = 3, β2 = 0.95), l ≥ 1, X10 = X20 = 0, while the
r.v.s N1 ∼ Po(μ = 2), N2 ∼ NB(r = 4, q = 0.65) are joined by the Sar-
manov distribution with kernels of type φ (n) = e−n − LN (1) and dependence
parameter ω = 3. Since in this case we have E1 = LPo(2) (1) = 0.2825, E2 =
LNB(4,0.65) (1) = 0.3098, the pmf of (N1, N2) is

p (n1, n2) = p1 (n1) p2 (n2)
[
1 + ω

(
e−n1 − E1

) (
e−n2 − E2

)]
= 0.00403

2n10.35n2� (4 + n2)
n1!n2!

× [
1 + 3

(
e−n1 − 0.2825

) (
e−n2 − 0.3098

)]
, n1, n2 ∈ N.

Note that this Sarmanov distribution joins different types of marginals, i.e., one
Poisson and one negative binomial. Also, its correlation coefficient results using
Lemma 4.1 as

ρ (N1, N2) = ω
(
e−1 − 1

)2 qr√μr (1 − q)e(e
−1−1)μ(

1 − (1 − q) e−1
)r+1 � 0.2015.

Note that the possible ranges of ω and ρ are in this case ω ∈ (−2.0192, 4.4983),
ρ (N1, N2) ∈ (−0.1356, 0.3021).

Thus, according to (17), the joint pdf of (S1, S2) can be written as

(p ∨ h) (s) =
2∏
l=1

(pl ∨ hl) (sl)
(
1 + ωφ̃1 (s1) φ̃2 (s2)

)
, s ≥ 0,
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where φ̃ j = ( f j p j)∨h j
p j∨h j − Ej with f j (x) = e−x, j = 1, 2. From Proposition 3.1, we

obtain the marginal pdfs of S1 and S2 as, respectively,

(p1 ∨ h1) (s) =
{

0.1353, s = 0
0.2192se−0.9s

0F2
({} ,

{ 3
2 , 2

} ; 0.405s2) , s > 0
,

(p2 ∨ h2) (s) =
{

0.1785, s = 0
0.1071s2e−0.95s

1F3
({5} ,

{ 4
3 ,

5
3 , 2

} ; 0.0111s3) , s > 0
.

Also, from Proposition 4.3, the kernel functions φ̃1 and φ̃2 are expressed, respec-
tively, by

φ̃1(0) = 1 − E1 = 0.7175,

φ̃1(s) = 0F2
({} ,

{ 3
2 , 2

} ; 0.405e−1s2
)

0F2
({} ,

{ 3
2 , 2

} ; 0.405s2) e − 0.2825, s > 0,

φ̃2(0) = 1 − E2 = 0.6902,

φ̃2(s) = 1F3
({5} ,

{ 4
3 ,

5
3 , 2

} ; 0.0111e−1s3
)

1F3
({5} ,

{ 4
3 ,

5
3 , 2

} ; 0.0111s3) e − 0.3098, s > 0.

Then, (p ∨ h) (0) = p (0) = 0.06005, while for s > 0,

(p ∨ h) (s, 0) = (p1 ∨ h1) (s) p2 (0)
(
1 + ωφ̃1 (s) φ̃2 (0)

)
= 0.0391se−0.9s

0F2

(
{} ,

{
3
2
, 2
}

; 0.405s2
)

×
[
1 + 2.0706

(
0F2

({} ,
{ 3
2 , 2

} ; 0.405e−1s2
)

0F2
({} ,

{ 3
2 , 2

} ; 0.405s2) e − 0.2825

)]
, (19)

(p ∨ h) (0, s) = p1 (0) (p2 ∨ h2) (s)
(
1 + ωφ̃1 (0) φ̃2 (s)

)
= 0.0145s2e−0.95s

1F3

(
{5} ,

{
4
3
,
5
3
, 2
}

; 0.0111s3
)

×
[
1 + 2.1526

(
1F3

({5} ,
{ 4
3 ,

5
3 , 2

} ; 0.0111e−1s3
)

1F3
({5} ,

{ 4
3 ,

5
3 , 2

} ; 0.0111s3) e − 0.3098

)]
. (20)
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Finally, for s1 > 0, s2 > 0,

(p ∨ h) (s) = 0.0235s1s22e
−0.9s1−0.95s2

× 0F2

(
{} ,

{
3
2
, 2
}

; 0.405s21
)

1F3

(
{5} ,

{
4
3
,
5
3
, 2
}

; 0.0111s32
)

×
[
1 + 3

(
0F2

({} ,
{ 3
2 , 2

} ; 0.405e−1s21
)

0F2
({} ,

{ 3
2 , 2

} ; 0.405s21
)
e

− 0.2825

)

×
(

1F3
({5} ,

{ 4
3 ,

5
3 , 2

} ; 0.0111e−1s32
)

1F3
({5} ,

{ 4
3 ,

5
3 , 2

} ; 0.0111s32
)
e

− 0.3098

)]
. (21)

In what concerns the correlation of this compound distribution, from Proposition
4.2 item (i), we obtain

ρ (S1, S2) = ρ (N1, N2)

((
1
k1

+ 1
)(

q
k2

+ 1
))−1/2

� 0.1492.

Moreover, for the actual values of the parameters, the possible range of this corre-
lation coefficient when ω varies in its interval is ρ (S1, S2) ∈ (−0.1004, 0.2236).

4.2. Inside-type dependency case

We shall now relax the inside-type independency condition while keeping the
between-types independency one, i.e., the different types of claims are indepen-
dent of each other. Hence, we assume that the claim sizes of each type are depen-
dent and follow the multivariate Pareto distribution as defined in Section 2.2.2.
As before, we rely on formula (17) to find the compound distribution p ∨ h;
therefore, we must evaluate all the marginal compound distributions p j ∨h j , as
well as the quantities

(
f j p j

) ∨ h j involved in the φ̃ j s. Considering the previous
three particular counting distributions, we already know the formof each p j∨h j
from Lemma 3.1, while the expressions of

(
f j p j

)∨h j are given in the following
two properties for two particular kernels cases.

Proposition 4.5. Let the claim sizes bemultivariate type-II Pareto distributed with
parameters (α, σ ) , and let φ (x) = e−δx − LN (δ) , hence f (x) = e−δx. Then,

i. if N ∼ Po (μ), then (( f p) ∨ h) (0) = e−μ, while for x > 0,

(( f p) ∨ h) (x) = αμe−(μ+δ)

σ (1 + x/σ)1+α 1F1

(
{1 + α} , {2} ; μxe−δ

σ + x

)
;

ii. if N ∼ NB (r, q), then (( f p) ∨ h) (0) = qr , while for x > 0,

(( f p) ∨ h) (x) = αrqr (1 − q)e−δ

σ (1 + x/σ)1+α 2F1

(
{1 + α, 1 + r} , {2} ; (1 − q)xe−δ

σ + x

)
;
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iii. if N ∼ Log (θ), then (( f p) ∨ h) (0) = 0, while for x > 0,

(( f p) ∨ h) (x) = − 1
x ln(1 − θ)

[
1(

1 + (1 − θe−δ)x/σ
)α − 1

(1 + x/σ)α

]
.

The proof of Proposition 4.5 is similar to the proof of Lemma 3.1 given in
Sarabia et al. (2016), and therefore is omitted.

Proposition 4.6. Let the claim sizes bemultivariate type-II Pareto distributed with
parameters (α, σ ) , and let φ (x) = p (x) −∑

n∈N
p2 (n) , hence f = p and E =∑

n∈N
p2 (n) . Then

i. when N ∼ Po (μ), we have (( f p) ∨ h) (0) = e−2μ, while for x > 0,

(( f p) ∨ h) (x) = αe−2μμ2

σ(1 + x/σ)α+1 1F2

(
{1 + α} , {2, 2} ; μ2x

σ + x

)
;

ii. when N ∼ NB (r, q), we have (( f p) ∨ h) (0) = q2r , while for x > 0,

(( f p) ∨ h) (x)

= αr2q2r (1 − q)2

σ(1 + x/σ)α+1 3F2

(
{1 + α, 1 + r, 1 + r} , {2, 2} ; (1 − q)2x

σ + x

)
;

iii. when N ∼ Log (θ), we have (( f p) ∨ h) (0) = 0, while for x > 0,

(( f p) ∨ h) (x)

= αθ2

σ(1 + x/σ)α+1 ln2(1 − θ)
3F2

(
{1, 1, 1 + α} , {2, 2} ; θ2x

σ + x

)
.

Example 4.2. Similarly to Example 4.1, we consider the compound model (2) in
the bivariate case, i.e., (S1, S2) =

(∑N1
l=0 X1l ,

∑N2
l=0 X2l

)
with N1 ∼ Po(μ = 2),

N2 ∼ Log(θ = 0.6), while, for Ni = ni , i = 1, 2, we let (X11, . . . , X1n1) ∼
PaI In1(α1 = 4, σ1 = 3) and (X21, . . . , X2n2) ∼ PaI In2(α2 = 3, σ2 = 4). We
assume that the r.v.s N1 and N2 are dependent and joined by the Sarmanov dis-
tribution with kernels of type φ(n) = e−n − LN(1) and dependence parameter
ω = 4.5 (in this case, the limiting interval is ω ∈ (−1.9148, 4.8644)). Hence, with
E1 = LPo(2)(1) = 0.2825 and E2 = LLog(0.6)(1) = 0.2722, the pmf of (N1, N2) is
given by

p(n1, n2) = 0.1477
2n10.6n2

n1!n2

× [
1 + 4.5

(
e−n1 − 0.2825

) (
e−n2 − 0.2722

)]
, n1, n2 ∈ N, n2 > 0.
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Based on Lemma 4.1, its correlation coefficient is

ρ (N1, N2) = ω
(
e−1 − 1

)
e(e

−1−1)μ

×
√

−μθ

θ + ln (1 − θ)

(
1 − θ

e − θ
− ln

(
1 − θe−1

)
ln (1 − θ)

)
� 0.1304.

In fact, depending on ω, the possible range of this correlation is ρ (N1, N2) ∈
(−0.0555, 0.1410).

The joint pdf of (S1, S2) is given by

(p ∨ h) (s) =
2∏
l=1

(pl ∨ hl) (sl)
(
1 + ωφ̃1 (s1) φ̃2 (s2)

)
, s ≥ 0,

with φ̃ j = ( f j p j)∨h j
p j∨h j − Ej and f j (x) = e−x, j = 1, 2. From Lemma 3.1, we obtain

the marginal pdfs of S1 and S2, respectively, as

(p1 ∨ h1) (s) =
{

0.1353, s = 0
0.3609(1 + s/3)−5

1F1 ({5} , {2} ; 2s/(s + 3)) , s > 0 ,

(p2 ∨ h2) (s) =
{

0, s = 0
1.0913s−1

[
(1 + 0.1s)−3 − (1 + 0.25s)−3

]
, s > 0 .

Also, from Proposition 4.5, the kernel functions φ̃1 and φ̃2 are expressed, respec-
tively, by

φ̃1(0) = 1 − E1 = 0.7175, φ̃1(s) =
1F1

(
{5} , {2} ; 2e−1s

3+s
)

1F1
({5} , {2} ; 2s

3+s
)
e

− 0.2825, s > 0,

φ̃2(0) = 1 − E2 = 0.7278,

φ̃2(s) = (1 + 0.1948s)−3 − (1 + 0.25s)−3

(1 + 0.1s)−3 − (1 + 0.25s)−3
− 0.2722, s > 0.

Then, (p ∨ h) (0) = p (0) = 0, while for s > 0,

(p ∨ h) (s, 0) = (p1 ∨ h1) (s) p2 (0)
(
1 + ωφ̃1 (s) φ̃2 (0)

)
= 0 as (p2 ∨ h2) (0) = 0,

(p ∨ h) (0, s) = p1 (0) (p2 ∨ h2) (s)
(
1 + ωφ̃1 (0) φ̃2 (s)

)
= 0.1477s−1 [(1 + 0.1s)−3 − (1 + 0.25s)−3]

×
[
1 + 3.2289

(
(1 + 0.1948s)−3 − (1 + 0.25s)−3

(1 + 0.1s)−3 − (1 + 0.25s)−3
− 0.2722

)]
.
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Finally, for s1 > 0, s2 > 0,

(p ∨ h) (s) = 0.3939
(1 + s1/3)5s2

1F1

(
{5} , {2} ; 2s1

s1 + 3

)

×
[

1
(1 + 0.1s2)3

− 1
(1 + 0.25s2)3

]

×
⎡
⎣1 + 4.5

⎛
⎝ 1F1

(
{5} , {2} ; 2e−1s1

3+s1

)
1F1

(
{5} , {2} ; 2s1

3+s1

)
e

− 0.2825

⎞
⎠

×
(

(1 + 0.1948s2)−3 − (1 + 0.25s2)−3

(1 + 0.1s2)−3 − (1 + 0.25s2)−3
− 0.2722

)⎤⎦ .

From Proposition 4.2 item (ii), using that E[N(N − 1)] = Var [N] + E2[N] −
E[N], we also find the correlation of the compound distribution as

ρ (S1, S2) = ρ (N1, N2)

((
α1 + μ

α1 − 2
+ 1

)(
ln(1 − θ)(θ + (1 − θ)α2)

(α2 − 2)(θ + ln(1 − θ))
+ 1

))− 1
2

� 0.0262.

Considering the actual values of the parameters, when ω varies in its limiting inter-
val, the possible correlation range is ρ (S1, S2) ∈ (−0.0111, 0.0283). Moreover, we
numerically maximized (in Mathematica software) the corresponding formula of
ρ (N1, N2) with respect to the parameters μ, θ, δ1, δ2 and obtained that the max-
imum possible of the correlation is ρmax (N1, N2) = 0.4702 for μ = 0.2297, θ =
0.9929, δ1 = 1.8367, δ2 = 0.0099, while ω resulted as 6.9073 (note that this time
we let the δs vary); hence, when α1 = 4 and α2 = 3, ρmax (S1, S2) = 0.1753.

5. NUMERICAL EXAMPLE

As mentioned in the Introduction, when dealing with claim size distributions of
continuous type, the usual approach consists in discretizing these distributions,
and then in evaluating the corresponding discrete compound distribution by ap-
plying a specific technique such as, e.g., the recursive method, the Fast Fourier
Transform (FFT) algorithm or simulation. Such an approach generates errors
starting with the discretization step (by span choice), errors that are usually
magnified by applying the specific technique (for some details, see e.g., Robe-
Voinea and Vernic, 2016 and the references therein). Therefore, in this example,
we compare the cdfs obtained for the bivariate compound distribution presented
in Example 4.1 by using the just described approach based on recursions, and
by direct calculation.
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TABLE 1

COMPARISON OF EXACT AND RECURSIVE CDF VALUES (DIFFERENT SPANS).

(s1, s2)
CDF (0, 0) (0, 5) (0, 10) (0, 15) (0, 20)

Exact 0.006005 0.099282 0.121663 0.13011 0.133381
Rec. h = 0.001 0.006005 0.099286 0.121665 0.13011 0.133382
Rec. h = 0.01 0.006005 0.099317 0.121676 0.13011 0.133383
Rec. h = 0.1 0.006005 0.099634 0.121792 0.13016 0.133399

(5, 0) (10, 0) (15, 0) (20, 0) (5, 5)

Exact 0.141177 0.170763 0.177207 0.178323 0.326836
Rec. h = 0.001 0.141183 0.170764 0.177207 0.178323 0.326876
Rec. h = 0.01 0.141229 0.170774 0.177207 0.178321 0.327223
Rec. h = 0.1 0.141554 0.170684 0.177013 0.178106 0.330215

(10, 10) (10, 15) (15, 10) (15, 15) (20, 20)

Exact 0.683211 0.812865 0.735079 0.877797 0.955568
Rec. h = 0.001 0.683239 0.812886 0.735102 0.877809 0.955573
Rec. h = 0.01 0.683479 0.813060 0.735285 0.877902 0.955595
Rec. h = 0.1 0.684718 0.813377 0.735876 0.877289 0.954133

In what concerns direct calculation, because the formulas involve the hy-
pergeometric function, we used the facilities provided by the software R and
Mathematica to numerically integrate the pdfs (19)–(21). We note that the re-
sults were obtained immediately, taking less than a second for each integral.

Regarding the discretization approach, due to the nature of this example, we
were able to apply to the resulting discrete compound distribution the recursive
method presented in Vernic (2017). The main problem here was the choice of a
proper discretization span h; we proceeded by trials (i.e., by successively reduc-
ing its value) and, finally, we stopped at h = 0.001 (we took the same span for
both Erlang marginal distributions).

For comparison, we evaluated the cdf F (s1, s2) of (S1, S2) by both meth-
ods, for s1, s2 ∈ {0, 1, 2, . . . , 20} . Some values are presented in Table 1, while
in Table 2 we display the maximum absolute error between the exact cdf values
and the recursive ones; note how important are the differences between different
spans.

On the other hand, the smaller the span is, the longer is the running time
and the needed memory space (we wrote both R and Matlab programs). For
example, it took more than 1 hour to evaluate the entire discretized cdf for
0 ≤ s1, s2 ≤ 20 when h = 0.001, and we had to optimize the code in order
to avoid “out of memory” messages. As another example, to find only the value
F (20, 20) , the Matlab recursion-discretization code with the span h = 0.001
took about 25.14 seconds , while the exact integral value was obtained in about
1 second.
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TABLE 2

MAXIMUM ABSOLUTE ERROR BETWEEN THE EXACT AND RECURSIVE CDF VALUES FOR DIFFERENT SPANS.

h = 1 h = 0.1 h = 0.01 h = 0.001

max
s1,s2∈{0,1,...,20}

|F − Fdisc.| (s1, s2) 0.143 0.005 0.00056 0.000045

Therefore, we can see from this example that even if it involves some
numerical integrals, direct calculation is more efficient than the classical
recursion-discretizationmethod in what concerns the accuracy of the values and
the computing time.

6. CONCLUSIONS AND FUTURE WORK

To conclude, in this paper, we obtained some closed-type formulas for the mul-
tivariate pdf of some compound distributions with Sarmanov counting distri-
bution and Erlang severities distributions; we also included some dependency
between the claim sizes of a certain type bymeans of amultivariate Pareto distri-
bution. Based on the hypergeometric function which is already implemented in
existing software, these formulas seem to be numerically more efficient than the
classical recursion-discretization approach, avoiding thus the typical discretiza-
tion errors generated by the span choice, and the long running time character-
istic to the multivariate case.

Therefore, we think that it would be interesting to continue the search for
such formulas in the case of compound distributions with continuous severity
distributions, formulas expressed by means of special functions already imple-
mented in mathematical software. Moreover, we also plan to pay special atten-
tion to the statistical inference of this type of compound distributions.
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APPENDIX

Proof of Lemma 2.1. We write

((n + 1) k− 1)! (n + 1) = knk [1 × 2 × . . . . × (k− 1)]

× k−n [k (2k) (3k) × . . . . × (nk)] (n + 1)

× k−n [(k+ 1) (2k+ 1) × . . . . × (nk+ 1)]

× k−n [(k+ 2) (2k+ 2) × . . . . × (nk+ 2)] × . . . . ×
× k−n [(k+ (k− 1)) (2k+ (k− 1)) × . . . . × (nk+ (k− 1))]

= (k− 1)!knk (2 × (2 + 1) × . . . . × (2 + n − 1))

×
[
k+ 1
k

(
k+ 1
k

+ 1
)

× . . . . ×
(
k+ 1
k

+ n − 1
)]

× . . . ×
[
k+ (k− 1)

k

(
k+ (k− 1)

k
+ 1

)
× . . . . ×

(
k+ (k− 1)

k
+ n − 1

)]
,

from where formula (8) is immediate. To obtain formula (9), we similarly write

(nk)! = [(k+ 1) (2k+ 1) × . . . . × ((n − 1) k+ 1)]

× [2 (k+ 2) (2k+ 2) × . . . . × ((n − 1) k+ 2)] × . . . . ×
× [(k− 1) (k+ (k− 1)) (2k+ (k− 1)) × . . . . × ((n − 1) k+ (k− 1))]

× [k (2k) (3k) × . . . . × (nk)]

= knk
[
1
k

(
1
k

+ 1
)

× . . . . ×
(
1
k

+ n − 1
)]

×
[
2
k

(
2
k

+ 1
)

× . . . . ×
(
2
k

+ n − 1
)]

× . . . . ×

×
[
k− 1
k

(
k− 1
k

+ 1
)

× . . . . ×
(
k− 1
k

+ n − 1
)]

n!,

hence the result.

Proof of Proposition 3.1. (i) In the Poisson case, based on (15) and (8), we have for x > 0,

(p ∨ h) (x) =
∞∑
n=1

e−μ μn

n!
βnk

(nk− 1)!
xnk−1e−βx = e−μ−βx

∞∑
n=1

(
μ (βx)k

)n
n! (nk− 1)!

x−1

= e−μ−βxμ (βx)k

x

∞∑
n=0

(
μ (βx)k

)n
(n + 1)! ((n + 1) k− 1)!

= e−μ−βx μ (βx)k

x (k− 1)!

∞∑
n=0

(
μ
(

βx
k

)k)n
n!

1(
k+1
k

)
(n)

(
k+2
k

)
(n)

× . . . × ( k+(k−1)
k

)
(n)

(2)(n)

,
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and using the definition (7), the formula is immediate. In the negative binomial case (ii), (15)
and (8) yields

(p ∨ h) (x) = qr e−βx

� (r)

∞∑
n=1

� (r + n)
n!

(1 − q)
n βnk

(nk− 1)!
xnk−1

= qr e−βx

x� (r)

∞∑
n=1

(
(1 − q) (βx)k

)n
n!

� (r + n)
(nk− 1)!

= qr e−βx

x

∞∑
n=0

(
(1 − q) (βx)k

)n+1

n!
� (r + n + 1)

(n + 1) ((n + 1) k− 1)!� (r)

= qr (1 − q) (βx)k e−βx

x

∞∑
n=0

(
(1 − q) (βx)k

)n
n! (k− 1)!knk

× r (r + 1) × . . . × (r + 1 + n − 1)(
k+1
k

)
(n)

(
k+2
k

)
(n)

× . . . × ( k+(k−1)
k

)
(n)

(2)(n)

,

hence the result. Finally, for the logarithmic distribution, (15) gives

(p ∨ h) (x) = − e−βx

ln (1 − θ)

∞∑
n=1

θ n

n
βnkxnk−1

(nk− 1)!
= − e−βxk

x ln (1 − θ)

∞∑
n=1

(
θ (βx)k

)n
(nk)!

= − ke−βx

x ln (1 − θ)

∞∑
n=0

[(
θ (βx)k

)n
(nk)!

− 1

]
.

When k = 1 (i.e., exponentially distributed claims), we obtain

(p ∨ h) (x) = − e−βx

x ln (1 − θ)

(
eθβx − 1

)
,

otherwise, using (9), we have

(p ∨ h) (x) = − ke−βx

x ln (1 − θ)

∞∑
n=0

[(
θ (βx)k

)n
n!knk

1(
1
k

)
(n)

(
2
k

)
(n)

. . .
(
k−1
k

)
(n)

− 1

]
,

i.e., the second formula of (iii), which completes the proof.

Proof of Proposition 4.1. This result was proved by Vernic (2017) in the case when both
inside-type and between-types independency assumptions hold and the claim sizes are of
discrete type. Considering now the case with only between-types independence and no inside-
type independence, along with continuous claim sizes, the proof is similar: inserting formula
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(10) and φl (x) = fl (x) − El into (6), we have

(p ∨ h) (s) =
∞∑

n1=0

. . .

∞∑
nm=0

(
m∏
l=1

pl (nl) h
(nl )
l (sl)

)

×
⎛
⎝1 +

m∑
k=2

∑
1≤ j1<...< jk≤m

ω j1... jk φ j1

(
n j1
)× . . . × φ jk

(
n jk
)⎞⎠

=
m∏
l=1

⎛
⎝ ∞∑
nl=0

pl (nl) h
(nl )
l (sl)

⎞
⎠+

m∑
k=2

∑
1≤ j1<...< jk≤m

ω j1... jk

×
k∏
l=1

⎛
⎝ ∞∑
n jl =0

(
f jl
(
n jl
)− Ejl

)
p jl
(
n jl
)
h
(n jl )
jl

(
s jl
)⎞⎠

×
m∏

l=k+1

⎛
⎝ ∞∑
n jl =0

p jl
(
n jl
)
h
(n jl )
jl

(
s jl
)⎞⎠ ,

from where, using (3), we obtain formula (16). This formula easily yields the Sarmanov form
(17); to verify that φ̃ j is indeed in the form (13), we proceed as follows: we denote by Sj the
marginal r.v. having the compound distribution p j ∨ h j , hence

E

[((
f j p j

) ∨ h j

p j ∨ h j

) (
Sj
)] =

∫ ∞

0

((
f j p j

) ∨ h j

p j ∨ h j

)
(s)
(
p j ∨ h j

)
(s) ds

=
∫ ∞

0

((
f j p j

) ∨ h j
)
(s) ds

=
∫ ∞

0

∞∑
k=0

(
f j p j

)
(k) h(k)

j (s) ds =
∞∑
k=0

(
f j p j

)
(k)
∫ ∞

0
h(k)
j (s) ds

=
∞∑
k=0

(
f j p j

)
(k) = E

[
f j
(
Nj
)] = Ej ,

which completes the proof.

Proof of Proposition 4.2. To find ρ (S1, S2), according to formula (14), we must evaluate

E
[
Sj φ̃ j

(
Sj
)] =

∫ ∞

0
x

((
f j p j

) ∨ h j

p j ∨ h j

)
(x)

(
p j ∨ h j

)
(x) dx− EjE

[
Sj
]

=
∞∑
n=0

(
f j p j

)
(n)
∫ ∞

0
xh(n)

j (x) dx− EjE
[
Sj
]
.

In both cases with independent and dependent claim sizes, it holds that E
[
Sj
] =

E
[
Nj
]
E
[
Xj
]
(for the dependent case, see Sarabia et al., 2016); also, since h(n)

j is the pdf
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of Xj1 + · · · + Xjn , we have
∫∞
0 xh(n)

j (x) dx = nE
[
Xj
]
, hence

E
[
Sj φ̃ j

(
Sj
)] = E

[
Xj
] ∞∑
n=0

n
(
f j p j

)
(n) − EjE

[
Nj
]
E
[
Xj
]

= E
[
Xj
] (

E
[
Nj f j

(
Nj
)]− EjE

[
Nj
]) = E

[
Xj
]
E
[
Njφ j

(
Nj
)]

.

Therefore,

ρ (S1, S2) = ω

2∏
j=1

E
[
Sj φ̃ j

(
Sj
)]

√
Var

[
Sj
] = ρ (N1, N2)

2∏
j=1

E
[
Xj
]√Var

[
Nj
]

Var
[
Sj
] .

i. Under the independence assumption, we have Var
[
Sj
] = E

[
Nj
]
Var

[
Xj
] +

E
2
[
Xj
]
Var

[
Nj
]
, which inserted into (18) easily yields the corresponding formula.

ii. Under this dependence assumption, Sarabia et al. (2016) proved that

Var
[
Sj
] = E

[
Nj
]
Var

[
Xj
]+ E

2
[
Xj
]
Var

[
Nj
]+ c jE

[
Nj
(
Nj − 1

)]
,

and inserting it into (18) we obtain the last formula. This completes the proof.

Proof of Lemma 4.1. i. When φ (x) = e−δx − LN (δ), we have

E [Nφ (N)] = E
[
Ne−δN

]− LN (δ) E [N] .

For N ∼ Po (μ) ,LN (δ) = eμ(e−δ−1), while

E [Nφ (N)] =
∞∑
n=1

ne−δne−μ μn

n!
− μeμ(e−δ−1) = μe−μ−δ

∞∑
n=0

(
μe−δ

)n
n!

− μeμ(e−δ−1)

= μ
(
eμ(e−δ−1)−δ − eμ(e−δ−1)

)
,

from where we immediately obtain the stated formula. For N ∼ NB (r, q) ,LN (δ) =
qr

(1−(1−q)e−δ)
r and

E
[
Ne−δN

] =
∞∑
n=0

ne−δn � (r + n)
n!� (r)

qr (1 − q)
n = qr

∞∑
n=0

n
� (r + n)
n!� (r)

(
(1 − q) e−δ

)n

= qr(
1 − (1 − q) e−δ

)r r (1 − q) e−δ

1 − (1 − q) e−δ
= r (1 − q) qr e−δ(

1 − (1 − q) e−δ
)r+1 ,

hence,

E [Nφ (N)] = r (1 − q) qr e−δ(
1 − (1 − q) e−δ

)r+1 − qr−1r (1 − q)(
1 − (1 − q) e−δ

)r
= r (1 − q) qr−1(

1 − (1 − q) e−δ
)r
(

qe−δ

1 − (1 − q) e−δ
− 1

)
=
(
e−δ − 1

)
r (1 − q) qr−1(

1 − (1 − q) e−δ
)r+1 ,
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which easily yields the stated formula.When N ∼ Log (θ) ,LN (δ) = ln(1−θe−δ)
ln(1−θ)

and using

E
[
Ne−δN

] = − 1
ln(1 − θ)

∞∑
n=1

ne−δn θ n

n
= − θe−δ

ln(1 − θ)

∞∑
n=0

(
e−δθ

)n

= − θe−δ

ln(1 − θ)

1
1 − e−δθ

,

we have

E [Nφ (N)]√
Var [N]

=
(

−θe−δ(
1 − θe−δ

)
ln (1 − θ)

+ θ ln
(
1 − θe−δ

)
(1 − θ) ln2

(1 − θ)

)√
(1 − θ)

2 ln2
(1 − θ)

−θ (θ + ln (1 − θ))

= − (1 − θ)
√

θ√− (θ + ln (1 − θ))

(
−e−δ

1 − θe−δ
+ ln

(
1 − θe−δ

)
(1 − θ) ln (1 − θ)

)
,

from where results the last formula of case (i).

ii. Let now φ (x) = p (x) −∑
n p

2 (n). If N ∼ Po (μ), we have

E =
∑
n∈N

p2 (n) =
∑
n∈N

e−2μ μ2n

(n!)2
= e−2μ I0 (2μ) ,

while

E [Nφ(N)] =
∞∑
n=1

n
(
e−μ μn

n!

)2

− μE = μe−2μ
∞∑
n=0

μ2n+1

n! (n + 1)!
− μe−2μ I0 (2μ)

= μe−2μ (I1 (2μ) − I0 (2μ)) ,

which immediately yields the corresponding result. When N ∼ NB (r, q) , we calculate

E =
∑
n∈N

[
� (r + n)

� (r)

]2 q2r (1 − q)
2n

(n!)2
= q2r

∞∑
n=0

(1 − q)
2n

n!
[r (r + 1) × . . . × (r + n − 1)]2

1 × 2 × . . . × (1 + n − 1)

= q2r
2F1

({r, r}, {1}; (1 − q)
2) ,

and

E [Np(N)] = q2r
∞∑
n=1

n(1 − q)2n
(

�(r + n)
�(r)n!

)2

= q2r (1 − q)2
∞∑
n=0

(1 − q)2n

n!(n + 1)!

(
�(r + n + 1)

�(r)

)2

= r 2q2r (1 − q)2
∞∑
n=0

(1 − q)2n

n!
[(r + 1) × . . . × (r + 1 + n − 1)]2

2 × . . . × (n + 2 − 1)

= r 2q2r (1 − q)2 2F1
({r + 1, r + 1} , {2} ; (1 − q)2

)
.
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Thus, based on the above, a straightforward calculation yields the stated formula. For
N ∼ Log(θ), we have

E =
∞∑
n=1

p2 (n) = 1

ln2
(1 − θ)

∞∑
n=1

θ 2n

n2
= 1

ln2
(1 − θ)

Li2
(
θ 2
)
,

and

E [Np(N)] =
∞∑
n=1

n

ln2
(1 − θ)

θ 2n

n2
= 1

ln2
(1 − θ)

∞∑
n=1

θ 2n

n
= − ln(1 − θ2)

ln2
(1 − θ)

.

It follows that

E [Nφ (N)]√
Var [N]

=
(

θLi2
(
θ 2
)

(1 − θ) ln3
(1 − θ)

− ln(1 − θ2)

ln2
(1 − θ)

)√
(1 − θ)

2 ln2
(1 − θ)

−θ (θ + ln (1 − θ))
,

which easily completes the proof.

Proof of Proposition 4.4. (i) For N ∼ Po (μ) , we have(( f p) ∨ h) (0) = ( f p) (0) =
p2 (0) = e−2μ, while for x > 0, using (8) and (n + 1)! = (2)(n),

(( f p) ∨ h) (x) =
∞∑
n=1

e−2μ μ2n

(n!)2
βnk

(nk− 1)!
xnk−1e−βx

= e−2μ−βxμ2 (βx)k

x

∞∑
n=0

(
μ2 (βx)k

)n
[(n + 1)!]2 ((n + 1) k− 1)!

= e−2μ−βx μ2 (βx)k

x (k− 1)!

∞∑
n=0

(
μ2 (βx/k)k

)n
n!

× 1(
k+1
k

)
(n)

(
k+2
k

)
(n)

× . . . × ( k+(k−1)
k

)
(n)

(2)(n) (2)(n)

,

hence the stated formula. In the case (ii) when N ∼ NB (r, q) , we obtain (( f p) ∨ h) (0) =
p2 (0) = q2r , and for x > 0, using (8),

(( f p) ∨ h) (x) = q2r e−βx
∞∑
n=1

[
� (r + n)

� (r)

]2
(1 − q)

2n

(n!)2
βnkxnk−1

(nk− 1)!

= q2r e−βx (1 − q)
2
(βx)k

x

∞∑
n=0

(
(1 − q)

2
(βx)k

)n
n!

× [r (r + 1) × . . . × (r + 1 + n − 1)]2

(n + 1) (n + 1)! ((n + 1) k− 1)!

= r 2q2r e−βx (1 − q)
2
(βx)k

x (k− 1)!

∞∑
n=0

(
(1 − q)

2
(βx)k

)n
n!knk

× (r + 1)(n) (r + 1)(n)(
k+1
k

)
(n)

(
k+2
k

)
(n)

× . . . × ( k+(k−1)
k

)
(n)

(2)(n) (2)(n)

,
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which immediately yields the result. To prove the formulas in case (iii) when N ∼ Log (θ)

and clearly (( f p) ∨ h) (0) = 0, for x > 0, we use

(( f p) ∨ h) (x) = e−βx

ln2
(1 − θ)

∞∑
n=1

θ 2n

n2
βnkxnk−1

(nk− 1)!
= e−βxθ 2 (βx)k

x ln2
(1 − θ)

∞∑
n=0

(
θ 2 (βx)k

)n
(n + 1)2 ((n + 1) k− 1)!

= e−βxθ 2 (βx)k

x ln2
(1 − θ)

∞∑
n=0

(
θ 2 (βx)k

)n
n!

n!
(n + 1) ((n + 1) k− 1)!

n!
(n + 1)!

.

When k = 1, this gives

(( f p) ∨ h) (x) = e−βxθ 2βx

x ln2
(1 − θ)

∞∑
n=0

(
θ 2βx

)n
n!

n!
(n + 1)!

n!
(n + 1)!

= θ2e−βxβx

x ln2
(1 − θ)

2F2
({1, 1} , {2, 2} ; θ2βx

)
,

while for k ≥ 2, we apply formula (8) and obtain the result.

Proof of Proposition 4.6. i. For N ∼ Po(μ), we get

(( f p) ∨ h) (x) =
∞∑
n=1

e−2μ μ2n

(n!)2
� (α + n)
�(α)�(n)

xn−1

σ n(1 + x/σ)n+α

= e−2μ

x (1 + x/σ)
α

∞∑
n=0

�(α + 1 + n)
�(α)�(n + 1)

μ2(n+1)

[(n + 1)!]2

(
x

σ(1 + x/σ)

)n+1

= αμ2e−2μ

σ (1 + x/σ)
1+α

∞∑
n=0

(
μ2x

σ + x

)n 1
n!

(1 + α)(n)

(2)(n)(2)n
,

hence the result.
ii. For N ∼ NB(r, q), we have

(( f p) ∨ h) (x)

=
∞∑
n=1

[
�(n + r)
�(r)n!

qr (1 − q)n
]2

�(α + n)
�(α)�(n)

xn−1

σ n(1 + x/σ)n+α

= q2r

x
(
1 + x

σ

)α ∞∑
n=0

(1 − q)2n+2

n!

(
x

σ
(
1 + x

σ

)
)n+1 [

�(r + 1 + n)
�(r)(n + 1)!

]2
�(α + 1 + n)

�(α)

= αr 2q2r (1 − q)2

σ(1 + x/σ)α+1

∞∑
n=0

(
(1 − q)

2 x
σ + x

)n
1
n!

(1 + α)(n)(1 + r)(n)(1 + r)(n)

(2)(n)(2)(n)
,
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yielding the result. In the case (iii) where N ∼ Log(θ), we write

(( f p) ∨ h) (x) =
[

1
ln(1 − θ)

]2 ∞∑
n=1

(
θ n

n

)2
�(α + n)
�(α)�(n)

xn−1

σ n(1 + x/σ)n+α

= 1

ln2
(1 − θ)

1
x(1 + x/σ)α

∞∑
n=0

θ 2n+2

(n + 1)2
�(α + n + 1)
�(α)�(n + 1)

(
x

σ(1 + x/σ)

)n+1

= 1

ln2
(1 − θ)

αθ2

σ(1 + x/σ)α+1

∞∑
n=0

(
θ 2x

σ + x

)n 1
n!

(α + 1)(n)

(n + 1)2
,

which, using 1
n+1 = n!

(n+1)! , leads to the stated formula.
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