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It is well known that for a stochastically monotone Markov ch@lg} -1 a func-
tiony(n) = Cov[ f(J1),g(Jn)]is decreasing if andg are increasing/Ve prove this
property for a special subclass of nonmonotone double stochastic Markov.chains

1. INTRODUCTION

Since Daley'q 2] article it is well known that the stochastically monotone Mar-
kov chain{J,},=1 has the following propertyLet f:R — R, be monotone and
v(n) = Cov[ f(J), f(J,)]. Then a mapn — y(n) is decreasingRecall that a
real-valued homogeneous discrete-time Markov chdih-, is stochastically mono-
tone if its one-step transition probability functié¥®(J,., > x|J, = y) is nonde-
creasing inx for every fixedy. Daley’s result was extended in Bergmann and
Stoyan[1]. Hu and Jo€ 3] (see also Jo¢5, Thms 8.3, 8.4, and 87]) stated
conditions for the concordance ordering of bivariates of Markov chains under some
monotonicity assumptionghe most general result was given in Hu and P&n

If both the Markov chain and its time-reversed counterpart are stochastically mono-
tong theny(ny,...,ny,) = E[ f(J.,...,J, )] is decreasing irin,,..., ny,) coordi-
natewise for eacim = 2 and supermoduldr We refer to Miller and StoyafiL0]

for a review of a recent work in this areghe monotonicity of a Markov chain is
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also sufficient for association of {Lindqvist[7]). However monotonicity is not
necessarysee Lindqvist’s article for a counterexample

In our article we define a family of stationary and homogeneous Markov chains
which are not necessary monotoRer that family we derive the monotonicity of
bivariates wr.t. supermodular order andence monotonicity of covariance3 here-
fore, we show that an answer to a question which appeal8]irs negative

The article is organized as follows Section 2we collect some needed def-
initions and preliminary result$n Section 3we define the family of Markov chains
and prove the main resulsection 4 is devoted to examples and counterexamples
Some additional comparison results for our class are given in Section 5

2. PRELIMINARIES
Define for 1= i = mande > 0 a difference operatax? by
A?@(Ul,...,um) = QD(ul"--’ui—l,ui + &, ui+1"'~’um) - qo(ul"-"un)

for givenuy,...,u,. Afunctione : R™ — R is calledsupermodulaif forall 1 =i <
j = mands;, g > 0,

A5 AT @(u) =0

for all u = (u4,...,Un). For smooth functionghe above condition is equivalent to

2

du; duy;

p(u)=0

for all 1 =i < j = n. The standard examples of supermodular functions are
Uy X +++ X Up, —mMax(uy,...,Um), Mmin(uy,...,uy), andh(u, + --- + uy,), where
h:R — R is convex

This class of functions induces the so-called supermodular.dfdearbitrary
random vectorsYi,...,Y,) and(Yy,...,Y,), we write

(Yoo ev oy Yo) <em Vi, Yo (2.1)

if E[@(Yy,...,Ym)] =E[e(Yy,...,Yy] for all supermodulag such that the respec-
tive expectations are finit&imilarly, for stationary random sequendgs},-, and
(¥ ne1, we write{Y,} <¢miY,} if forall m=1,

(Yo Y) <sm (Vi oo, Vi)

Supermodular ordering is a dependence ordering in the sense ¢5]Jda
particular if (Yy,...,Ym) <sm(Yi,...,¥), then

Y <Yforali=1,...,m
 Cov[Y,Y;] = Cov[Y,Y]foralli,j=1,...,m
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Consider now two stationary homogeneous Markov chglgs—, and{J,} =1
with the state spacH,..., N}, the same stationary distributian = (74,...,7y),
and transition matriceB = (p; );_; andP = (p; ), _1, respectivelyWe will write

P<P

if (J1,3) <sm (31, 3). Here in the sequelwe will assume that all matrices have
dimensionN X N.

For the supermodular ordering 63;, J,) and(J;, J,), we have the following
characterizatioricf. Hu and Pan4]).

LemMmA 2.1: LetII be a diagonal matrixdiag(s,,..., 7). Then,
(‘le Jz) <sm (jla j2)

if and only if

> (P); = > > (Hr))ij (2.2)

.
=1j=1 i=1j=1

I
forallr,se {1,...,N}.
Condition(2.2) is equivalent to a&oncordance orderingf bivariates that is
Pl =rd=s=PJ=rJd=s

for everyr andsin the state spacélote that for the double stochastic matrides
andP, condition(2.2) is equivalent to

2P =22 0 (2.3)
i=1j=1 i=1j=1

Moreover supermodular ordering for the double stochastic matrices can be char-
acterized in the following wayLet

1 0 0O
11 00
T =
11 10
Note that

11 1 1. 1 0 0O
0O 1 1 1. -1 1 0 O

Tt: ,Tfl_
0 01 1. 0O -1 1 0
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The matrixT was used in Keilson and Kestgs] for obtaining stochastic mono-
tonicity. A matrix A is stochastic monotone if and onlyTf *AT = 0, whereOis a
matrix which consists of zeros

LeEmMA 2.2: Assume thaP andP are double stochastic. TheR, <., P if and only
if T(P—P)Tt=0.

ProoF: InequalityT(P — P)T' = 0is equivalent tax_, 371 p = Di_1 251 Py
for all r ands, which mean$ <., P by Eq (2.3). u
3. MAIN RESULT

We introduce a class of Markov chains which are not necessary monotone

DEerFINITION 3.1: We say that a matriA belongs to a clas®S if it is stochastic and
TAT ~* = 0. Equivalently, we say that a stationary homogeneous Markov chain
belongs toPS if its transition probability matrix does.

Let a andb be N-dimensional vectordVe say that precede® in the partial
sum ordering(a <ps b) if Ski,a =3K.b, k=1,...,N. Now, denote bya;,
i =1,...,N, the columns of a matriA. Then A € PS if and only if

a.n <psa-Nfl <ps <psa-1-

Denote now byDS a class of double stochastic matricésturns out that for the
Markov chains driven by € PS N DS, the following monotonicity property holds

THEOREM 3.1: Let{J,} =1 be a stationary homogeneous Markov chain with a tran-
sition probability matrixP € PS N DS. Then, for any r= 1,

(‘]1’ ‘]n+l) <Sm (Jl’ Jn)'

CoroLLARY 3.1: Under conditions of Theorem 3.1, we have for the functions f and
g both either nonincreasing or nondecreasing,

Cov[ f(Jo), 9(In+1)] = CoVv[ f(Jo), 9(In)].
The proof of Theorem .2 consists of the sequence of lemmas
LEmma 3.1:

1. If A,B € PS, thenAB € PS.
2. IfA() e PS,i=1,...,k, andw = (wy,...,w,) is a probability vector, then
S W A() € PS.

PRrROOF:
1. We haveTABT ~1 = TAT “!TBT ! = 0 from the assumptions ok andB.
2. Obvious [ ]

Lemma 3.2: Assume thaB,B € DS andA € PS. If B <, B, thenAB <, AB
andBA <., BA.
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Proor: We have
T(AB—-AB)T!=TA(B-B)T!
= [TAT '][T(B-B)T!].

The first term in brackets is greater thadue to assumptiong ok, the second one
has the same property because of Lemn2aTherefore T(AB — AB)T' = 0 and
using Lemma 2 once morgwe obtain the comparison result u

LemMa 3.3: Assume thaf € PS N DS. Then,A? <., A. Moreover, for every
n=1 A" <, A"

Proor: Note that for any double stochastic matAx we haveA <., |, wherel
is an identity matrix Moreover | € DS. From Lemma 2, we haveA? <., A.
Assume now thaA" <, A""*. Because of Lemma.B, A" andA""* belong toPS.
Moreover they are double stochastitherefore Lemma 32 applies and we have
AAN <, AANL [

ProoF oF THEOREM 3.1: Denote byP™® = (p{*)N,_;, k = 1, thek-step probability
matrix for{J,},=1. From Lemma 3B, we have that

r S r S
SEp =33 p"
i=1li=1 i=1li=1

forallr,s=1,...,N. Therefore (J;, Jo:1) <sm (J1,Jn)- |

Corollary 31 follows from stationarity of a Markov chain and the fact that for
the functionsf and g both either nonincreasing or nondecreasitite function
e(X,y) = f(x)g(y) is supermodular

4. EXAMPLES AND COUNTEREXAMPLES

Example 4.1:Let p ande > 0 be such thap = 2e andp + ¢ = 1. Then the fol-
lowing matrix belongs td®S N DS and is not monotone

pte pte p—2ec p-—2¢

b 1 p-—e p—e p p
S 4p-2¢| p P p-e p-e
p—2e p—2¢ pt+te pte

Example 4.2:Lemma 33 fails if one of the assumptions is removéet
18 0 18 O
116 12 6 12
A%l 7 11 7 1l
5 13 5 13
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Then A € DS, A &€ PS, and it is not true thaA? <., A. The above matrix was
used in Lindqvis{7] as a counterexample of a Markov chain which is associated
but not stochastically monotone

Now, let

NS
o O L K

1
1
1
1

N N R R
e T

This matrix belongs t@®S but is neither double stochastic nor monotolés not
true thatA? <, A.

5. ADDITIONAL COMPARISON RESULTS

Observe that foa = @’ and stochastic matrices andB with the same invariant
distributions we havea’A + (1 —a’)B <;,aA + (1—a)Bif A <, B. This can

be interpreted as followd et {J,},=;, and{J,} -1 be the stationary homogeneous
Markov chains with transition matrice’s andB, respectivelyDefineZ, = 0J, +
(1-0)J,andZ,= 0J,+ (1— 0)J,, where® and® are Bernoulli random variables
with P(® = 1) = a andP(6 = 1) = a’, independent of everything els€hen
(Z1,Z) <om (Z1,Z5), provided(Jy, ) <¢m (J1, Jo) anda = a'. If we have some
additional monotonicity propertiege can have a comparison of the whole sequences
{Z,}n=1 and{Z,},~.. However the above consideration cannot be rewritten for the
random variable® and® assuming their values ifi, ..., K}. This can be done if
the transition matrices belong faS N DS. We refer to Marshall and Olkif8] for

the concept of majorization

ProrosiTiON 5.1: Assume the following:
(b) P(l) <sm P(Z) <sm <sm P(K)-
(c) ais majorized byb (we writea < b), wherea and b are K-dimensional
probability vectors with coordinates arranged in the decreasing order.

Then,

K K
P:= > bP(k) <¢n > aP(k) =:P.
k=1 k=1
Proor: Define forl =1,...,Nandr =1,...,K the vectors

e (1) (1,r)
V(I’r) T (vl yee s UN )a
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where forj =1,...,N, v"" are defined as
|
Lr).__
Uj( "= 2 p; ().
i=1

According to assumptiofa), these vectors have decreasing coordindieseover
because of assumptigh), we have
viD <y2 <o <yl

for each fixed. Now, take

K
w' = > b v®o
r=1
and
K
W= avin,

[y

r=

From Marshall and OIkif8, p. 125], we havew' < W' for everyl = 1,...,N.
Becausav' and®' have decreasing coordinajesajorization order implies' <,
W'. Observe now that thgth coordinates ofv' and®' can be written as

|
wi(j) = 2 Pj
i=1
and
|
w'(j) =2 Bi »
i=1
respectivelySincew <, W, we have for each, |
| kpy |
>3 =330
i=1j=1 i=1j=1
which implies comparison of matrices 102.3). |
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