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It is well known that for a stochastically monotone Markov chain$Jn%n$1 a func-
tion g~n! 5 Cov@ f ~J1!, g~Jn!# is decreasing iff andg are increasing+We prove this
property for a special subclass of nonmonotone double stochastic Markov chains+

1. INTRODUCTION

Since Daley’s@2# article, it is well known that the stochastically monotone Mar-
kov chain $Jn%n$1 has the following property+ Let f :R r R1 be monotone and
g~n! 5 Cov@ f ~J1!, f ~Jn!# + Then, a mapn r g~n! is decreasing+ Recall that a
real-valued homogeneous discrete-time Markov chain$Jn%n$1 is stochastically mono-
tone if its one-step transition probability functionP~Jn11 . x6Jn 5 y! is nonde-
creasing inx for every fixed y+ Daley’s result was extended in Bergmann and
Stoyan @1# + Hu and Joe@3# ~see also Joe@5, Thms+ 8+3, 8+4, and 8+7# ! stated
conditions for the concordance ordering of bivariates of Markov chains under some
monotonicity assumptions+ The most general result was given in Hu and Pan@4# +
If both the Markov chain and its time-reversed counterpart are stochastically mono-
tone, theng~n1, + + + , nm! 5 E @ f ~Jn1

, + + + , Jnm
!# is decreasing in~n1, + + + , nm! coordi-

natewise for eachm $ 2 and supermodularf+ We refer to Müller and Stoyan@10#
for a review of a recent work in this area+ The monotonicity of a Markov chain is
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also sufficient for association of it~Lindqvist @7# !+ However, monotonicity is not
necessary; see Lindqvist’s article for a counterexample+

In our article,we define a family of stationary and homogeneous Markov chains
which are not necessary monotone+ For that family, we derive the monotonicity of
bivariates w+r+t+ supermodular order and, hence,monotonicity of covariances+ There-
fore, we show that an answer to a question which appears in@9# is negative+

The article is organized as follows+ In Section 2, we collect some needed def-
initions and preliminary results+ In Section 3,we define the family of Markov chains
and prove the main result+ Section 4 is devoted to examples and counterexamples+
Some additional comparison results for our class are given in Section 5+

2. PRELIMINARIES

Define for 1# i # m and« . 0 a difference operatorDi
« by

Di
« w~u1, + + + ,um! 5 w~u1, + + + ,ui21,ui 1 «,ui11, + + + ,um! 2 w~u1, + + + ,un!

for givenu1, + + + ,um+A functionw :Rm r R is calledsupermodularif for all 1 # i ,
j # m and«i ,«j . 0,

Di
«i Dj

«j w~u! $ 0

for all u 5 ~u1, + + + ,um!+ For smooth functions, the above condition is equivalent to

d2

dui duj

w~u! $ 0

for all 1 # i , j # n+ The standard examples of supermodular functions are
u1 3 {{{ 3 um, 2max~u1, + + + ,um!, min~u1, + + + ,um!, andh~u1 1 {{{ 1 um!, where
h :R r R is convex+

This class of functions induces the so-called supermodular order+ For arbitrary
random vectors~Y1, + + + ,Ym! and~ EY1, + + + , EYm!, we write

~Y1, + + + ,Ym! ,sm ~ EY1, + + + , EYm! (2.1)

if E@w~Y1, + + + ,Ym!# # E@w~ EY1, + + + , EYm!# for all supermodularw such that the respec-
tive expectations are finite+ Similarly, for stationary random sequences$Yn%n$1 and
$ EYn%n$1, we write $Yn% ,sm $ EYn% if for all m $ 1,

~Y1, + + + ,Ym! ,sm ~ EY1, + + + , EYm!+

Supermodular ordering is a dependence ordering in the sense of Joe@5# + In
particular, if ~Y1, + + + ,Ym! ,sm ~ EY1, + + + , EYm!, then

• Yi 5
d EYi for all i 5 1, + + + ,m,

• Cov@Yi ,Yj # # Cov@ EYi , EYj # for all i, j 5 1, + + + ,m+
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Consider now two stationary homogeneous Markov chains$Jn%n$1 and$ DJn%n$1

with the state space$1, + + + ,N% , the same stationary distributionp 5 ~p1, + + + ,pN !,
and transition matricesP5 ~ pij !i, j51

N and EP5 ~ Ipij !i, j51
N , respectively+We will write

P ,sm EP

if ~J1, J2! ,sm ~ DJ1, DJ2!+ Here, in the sequel, we will assume that all matrices have
dimensionN 3 N+

For the supermodular ordering of~J1, J2! and ~ DJ1, DJ2!, we have the following
characterization~cf+ Hu and Pan@4# !+

Lemma 2.1: Let P be a diagonal matrixdiag~p1, + + + ,pN !. Then,

~J1, J2! ,sm ~ DJ1, DJ2!

if and only if

(
i51

r

(
j51

s

~PP!ij # (
i51

r

(
j51

s

~P EP!ij (2.2)

for all r ,s [ $1, + + + ,N%.

Condition~2+2! is equivalent to aconcordance orderingof bivariates; that is,

P~J1 # r, J2 # s! # P~ DJ1 # r, DJ2 # s!

for everyr ands in the state space+ Note that for the double stochastic matricesP
and EP, condition~2+2! is equivalent to

(
i51

r

(
j51

s

pij # (
i51

r

(
j51

s

Ipij + (2.3)

Moreover, supermodular ordering for the double stochastic matrices can be char-
acterized in the following way+ Let

T 5 3
1 0 0 0 J

1 1 0 0 J

1 1 1 0 J

I I I I L
4 +

Note that

T t 5 3
1 1 1 1 J

0 1 1 1 J

0 0 1 1 J

I I I I L
4 , T21 5 3

1 0 0 0 J

21 1 0 0 J

0 21 1 0 J

I I I I L
4 +
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The matrixT was used in Keilson and Kester@6# for obtaining stochastic mono-
tonicity+ A matrix A is stochastic monotone if and only ifT21AT $ 0, where0 is a
matrix which consists of zeros+

Lemma 2.2: Assume thatP and EP are double stochastic. Then,P ,sm EP if and only
if T ~ EP 2 P!T t $ 0.

Proof: InequalityT ~ EP 2 P!T t $ 0 is equivalent to(i51
r (j51

s Ipij $ (i51
r (j51

s pij

for all r ands, which meansP ,sm EP by Eq+ ~2+3!+ n

3. MAIN RESULT

We introduce a class of Markov chains which are not necessary monotone+

Definition 3.1: We say that a matrixA belongs to a classPS if it is stochastic and
TAT 21 $ 0. Equivalently, we say that a stationary homogeneous Markov chain
belongs toPS if its transition probability matrix does.

Let a andb beN-dimensional vectors+We say thata precedesb in the partial
sum ordering~a aps b! if (i51

k ai # (i51
k bi , k 5 1, + + + ,N+ Now, denote bya{i ,

i 5 1, + + + ,N, the columns of a matrixA+ Then, A [ PS if and only if

a{N aps a{N21 aps {{{ aps a{1+

Denote now byDS a class of double stochastic matrices+ It turns out that for the
Markov chains driven byP [ PS ù DS, the following monotonicity property holds+

Theorem 3.1: Let $Jn%n$1 be a stationary homogeneous Markov chain with a tran-
sition probability matrixP [ PS ù DS. Then, for any n$ 1,

~J1, Jn11! ,sm ~J1, Jn!+

Corollary 3.1: Under conditions of Theorem 3.1, we have for the functions f and
g both either nonincreasing or nondecreasing,

Cov@ f ~J0!, g~Jn11!# # Cov@ f ~J0!, g~Jn!# +

The proof of Theorem 3+1 consists of the sequence of lemmas+

Lemma 3.1:

1. If A,B [ PS, thenAB [ PS.
2. If A ~i ! [ PS, i 51, + + + , k, andw 5 ~w1, + + + ,wk! is a probability vector, then

(i51
k wi A ~i ! [ PS.

Proof:

1+ We haveTABT 21 5 TAT 21TBT 21 $ 0 from the assumptions onA andB+
2+ Obvious+ n

Lemma 3.2: Assume thatB, EB [ DS andA [ PS. If B ,sm EB, thenAB ,sm A EB
andBA ,sm EBA.
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Proof: We have

T ~A EB 2 AB!T t 5 TA ~ EB 2 B!T t

5 @TAT 21# @T ~ EB 2 B!T t # +

The first term in brackets is greater than0 due to assumptions onA; the second one
has the same property because of Lemma 2+2+ Therefore, T ~A EB 2 AB!T t $ 0 and
using Lemma 2+2 once more, we obtain the comparison result+ n

Lemma 3.3: Assume thatA [ PS ù DS. Then,A2 ,sm A. Moreover, for every
n $ 1, An11 ,sm An.

Proof: Note that for any double stochastic matrixA, we haveA ,sm I , whereI
is an identity matrix+ Moreover, I [ DS+ From Lemma 3+2, we haveA2 ,sm A+
Assume now thatAn ,smAn21+ Because of Lemma 3+1, An andAn21 belong toPS+
Moreover, they are double stochastic+ Therefore, Lemma 3+2 applies and we have
AAn ,sm AAn21+ n

Proof of Theorem 3.1: Denote byP~k! 5 ~ pij
~k! !i, j51

N , k $ 1, thek-step probability
matrix for $Jn%n$1+ From Lemma 3+3, we have that

(
i51

r

(
i51

s

pij
~n11!

# (
i51

r

(
i51

s

pij
~n!

for all r,s5 1, + + + ,N+ Therefore, ~J1, Jn11! ,sm ~J1, Jn!+ n

Corollary 3+1 follows from stationarity of a Markov chain and the fact that for
the functionsf and g both either nonincreasing or nondecreasing, the function
w~x, y! 5 f ~x!g~ y! is supermodular+

4. EXAMPLES AND COUNTEREXAMPLES

Example 4.1:Let p and« . 0 be such thatp $ 2« andp 1 « # 1+ Then, the fol-
lowing matrix belongs toPS ù DS and is not monotone:

P 5
1

4p 2 2« 3
p 1 « p 1 « p 2 2« p 2 2«

p 2 « p 2 « p p

p p p2 « p 2 «

p 2 2« p 2 2« p 1 « p 1 «
4 +

Example 4.2:Lemma 3+3 fails if one of the assumptions is removed+ Let

A 5
1

36 3
18 0 18 0

6 12 6 12

7 11 7 11

5 13 5 13
4 +
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Then, A [ DS, A Ó PS, and it is not true thatA2 ,sm A+ The above matrix was
used in Lindqvist@7# as a counterexample of a Markov chain which is associated
but not stochastically monotone+

Now, let

A 5
1

4 3
1 1 1 1

1 1 1 1

2 1 1 0

2 1 1 0
4 +

This matrix belongs toPS but is neither double stochastic nor monotone+ It is not
true thatA2 ,sm A+

5. ADDITIONAL COMPARISON RESULTS

Observe that fora # a' and stochastic matricesA andB with the same invariant
distributions, we havea'A 1 ~12 a'!B ,sm aA 1 ~12 a!B if A ,sm B+ This can
be interpreted as follows+ Let $Jn%n$1 and $ DJn%n$1 be the stationary homogeneous
Markov chains with transition matricesA andB, respectively+ DefineZn 5 QJn 1
~12 Q! DJn and EZn5 EQJn1 ~12 EQ! DJn,whereQ and EQ are Bernoulli random variables
with P~Q 5 1! 5 a and P~ EQ 5 1! 5 a' , independent of everything else+ Then,
~ EZ1, EZ2! ,sm ~Z1,Z2!, provided~J1, J2! ,sm ~ DJ1, DJ2! anda # a' + If we have some
additional monotonicity properties,we can have a comparison of the whole sequences
$Zn%n$1 and$ EZn%n$1+ However, the above consideration cannot be rewritten for the
random variablesQ and EQ assuming their values in$1, + + + ,K % + This can be done if
the transition matrices belong toPS ù DS+We refer to Marshall and Olkin@8# for
the concept of majorization+

Proposition 5.1: Assume the following:

(a) P~k! :5 ~ pij ~k!!i, j51
N [ PS ù DS, k 5 1, + + + ,K+

(b) P~1! ,sm P~2! ,sm {{{ ,sm P~K !.
(c) a is majorized byb (we writea a b), wherea and b are K-dimensional

probability vectors with coordinates arranged in the decreasing order.

Then,

P :5 (
k51

K

bkP~k! ,sm (
k51

K

akP~k! 5: EP+

Proof: Define for l 5 1, + + + ,N andr 5 1, + + + ,K the vectors

v~l, r ! :5 ~v1
~l, r ! , + + + , vN

~l, r !!,
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where forj 5 1, + + + ,N, vj
~l, r ! are defined as

vj
~l, r ! :5 (

i51

l

pij ~r !+

According to assumption~a!, these vectors have decreasing coordinates+Moreover,
because of assumption~b!, we have

v~l,1! a v~l,2! a {{{ a v~l,K !

for each fixedl+ Now, take

w l :5 (
r51

K

br v~l, r !

and

Kw l :5 (
r51

K

ar v~l, r !+

From Marshall and Olkin@8, p+ 125# , we havew l a Kw l for every l 5 1, + + + ,N+
Becausew l and Kw l have decreasing coordinates,majorization order impliesw l aps

Kw l + Observe now that thej th coordinates ofw l and Kw l can be written as

wl ~ j ! 5 (
i51

l

pij

and

Kwl ~ j ! 5 (
i51

l

Ipij ,

respectively+ Sincew aps Kw, we have for eachk, l

(
i51

l

(
j51

kpij

# (
i51

l

(
j51

k

Ipi

which implies comparison of matrices by~2+3!+ n
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