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SUMMARY
In this paper a motion planner for nonholonomic stratified systems was proposed. Those systems
may arise easily when reliable systems are designed to be robust against failures in difficult servicing
environments. For a special class of the systems, a strong controllability condition was introduced,
and a criterion to satisfy the condition was formulated and used to plan the motion of free-floating
space manipulators. Modules of the planner were enumerated and their roles were emphasized.
Some features of the planner were examined and discussed based on simulation results performed
on two models of space manipulators.
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1. Introduction
Motion planning is one of the classical tasks of robotics. It relies on planning the motion of a robot (an
agent) between two boundary configurations, satisfying some restrictions on available controls and the
robot’s surrounding (obstacle avoidance) and possibly optimizing a quality function. Many methods
have been developed to solve the task.1 They differ in models accepted (continuous, discrete), their
special features (nilpotent, in a chain form, flat) or in environmental description (obstacles in a form
of polygons, spheres, ellipsoids, or environments with special structures like labyrinths). Some time
ago, only objects described by a single model were considered. Recently, a lot of attention is paid to
hybrid systems that couple models from different domains (continuous–discrete to model production
processes) or to different models within a single domain (for example switched systems or a legged
locomotion). Stratified systems, being the main interest of this paper, are a special subclass of the
second type of aforementioned hybrid systems.2, 3 They are characterized by a global configuration
vector that is a union of configuration vectors of a few subsystems. For some reasons, the system
cannot be controlled within the global configuration space. However, while purposefully switching
on and off its subsystems (only one can be active at each time point) a desired state of the global
configuration is obtained. Switching between subsystems is triggered either at particular states (like
in walking robots, when one leg touches the ground, the other can move it up) or when a switch
can be performed at any time. The latter models will be considered in this paper and their practical
importance originates from reliability theory. It can be observed that at each time point only some
joints of the manipulator can be directly controlled and that a total configuration space has got
more dimensions than the number of controls. A stratified system perfectly models the situation
when a failure of one or more motors of a space manipulator can be compensated with a control
strategy using a gear box system designed to transmit momentum to all links from motors in working
order.

Methods to steer stratified systems should be based on classical methods of controlling single
model systems as the theory for such systems is well developed. A formal mathematical background
for stratified nonholonomic systems was laid by Goodwine.2 His ideas were extended and translated
into algorithms by Harmati.3, 4 However, none of the authors have considered phenomena arising
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while switching (for example how to preserve continuity of controls). To fill the gap, at least for
a special sub-class of stratified systems introduced in this paper and called strongly controllable
stratified systems, a motion planning algorithm was designed to plan the motion of stratified systems.

The presented approach belongs to a class of analytical and continuous methods of motion planning.
Usually the methods generate final results fast and with some desirable properties (like continuity)
but have got some problems with inadmissible areas in the state space. In this case, discrete methods
(RRT and other methods1) can support analytical methods to detect obstacle-free areas. On the other
hand, analytical methods can support discrete methods in smoothing paths (trajectories) generated
with the use of discrete methods or in the optimization of their shapes.

This paper is organized as follows. In Section 2, the basic terminology and definition of
(nonholonomic) stratified systems is presented and the task of stratified motion planning is defined.
In this section, strongly controllable stratified systems are introduced and a controllability condition
is defined to check the property. From a practical point of view, strongly controllable stratified
systems admit a nice decomposition of a global motion planning task into a sequence of subtasks for
subsystems. In Section 3, two models of nonholonomic stratified systems are presented.

Two general-purpose methods of nonholonomic motion planning will be recalled in Section 4. The
Newton method and the Lie-algebraic method will be used as a tool for solving sub-planning tasks.
The first method is well suited to plan long-range motions in obstacle-free environments while the
second one plans short-range motion in an obstacle cluttered space. With the basic components of a
motion planner explained, a solution of a sequence of tasks, with a proper concatenation of controls,
will be presented. Hybridization of planning methods will be possible, i.e. each of the sub-plannings
may be performed by a different algorithm, and the results could still be interpreted as a single control
scenario. In Section 5, a complete algorithm of nonholonomic motion planning of stratified systems
is given. Its main components are discussed and their roles in a motion planning task are highlighted.
Simulation results performed on two models of underactuated space robots are collected in Section 6.
Section 7 concludes the paper.

2. Stratified Systems
For stratified systems,2 a global (unconstrained) system S0 is composed of a few (constrained)
subsystems (strata), S1, . . . , Si . Each of them is continuous (nonlinear, and later nonholonomic) and
results from setting constraints on its parent subsystem. Physically, adding constraints corresponds to
switching between a parent and its offspring system. This way subsystems are connected with others
by a graph of possible subsystem switching. A configuration space of a descendant (more constrained
than its parent) subsystem inherits some part of the configuration space of its parent together with its
truncated (projected) equations. By definition, a motion within the global unconstrained system S0 is
not allowed. The formal definition of (nonholonomic) stratified systems follows:2

For a stratified configuration manifold M, consisting of strata {S0,S1,S2,S12 . . . ,Si}, where multi-
index k collects the numbers of all additional constraints imposed on stratum Sk , the nonholonomic
stratified system is defined by a set of equations:

S0 : q̇qq|TS0 = ggg0
1(qqq|S0 ) · u0

1 + · · · + ggg0
m0

(qqq|S0 ) · u0
m0

−→ �0

S1 : q̇qq|TS1 = ggg1
1(qqq|S1 ) · u1

1 + · · · + ggg1
m1

(qqq|S1 ) · u1
m1

−→ �1

...

Si : q̇qq|TSi
= gggi

1(qqq|Si
) · ui

1 + · · · + gggi
mi

(qqq|Si
) · ui

mi
−→ �i,

(1)

where operation (qqq|Sk
) projects (truncates) configuration qqq from manifold M into sub-manifold

(stratum) Sk .

The projection is defined not only for the configuration but also for the velocity space. To
distinguish one from another, notation TS was used for the velocity space. A dimensionality of
the global configuration vector qqq|S0 is equal to dim S0 = n0 and it is bigger than the dimensionality
of configuration vectors of subsystems �i(Si), n0 > ni = dim Si . Moreover, each subsystem is
nonholonomic, which implies that ni > mi . Each subsystem �k may also have different numbers
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of inputs. Some controls can be shared between subsystems, i.e. the lth input uk
l of subsystem �k

may represent the same physical input as the j th control uz
j of subsystem �z. Similarly, motions

within certain subsystems may modify the same coordinate(s). That is, qqq|Sl
may share one or more

coordinates with qqq|Sk
.

Now, a stratified motion planning can be defined:

For a given stratified system in Eq. (1) determine a sequence of strata SI , . . .Smid, . . . ,SD and
corresponding sequence of open-loop controls uuuI (·), . . . ,uuumid (·), . . . ,uuuD(·) ∈ L2

m[0, Ti], t ∈ [0, Ti],
steering the system from a given initial qqq0 ∈ S0 to the goal state qqqd ∈ S0,

where L2
m[0, Ti] is a space of m-copies of square integrable functions defined on interval [0, Ti]

and Ti denotes a time horizon (selected by a user) of the ith planning. It is assumed that the global
time-dependent characteristics (controls, trajectory) are retrieved based on pieces obtained from sub-
planning and, shifted on the time axis appropriately (for simplicity, each planning starts at zero on the
time axis). A time interval for each sub-task is selected by a user. In general, solving a basic stratified
motion planning task requires admissible controls that steer a system from its initial configuration to
the desired one to be found. Boundary configurations of the motion planning tasks are defined on the
highest (unconstrained) stratum S0, but motion on it is inadmissible.

Motion planning of stratified systems is difficult, because not only a method of solving a planning
task for a selected subsystem should be known, but also a switching scenario between permissible
subsystems is to be designed. Each subsystem is defined on a different manifold, thus initial and
final configurations for planning the sub-task may be defined in different manifolds (likely with
different dimensionality) as well. However, results of the planning among subsystems coupled
properly should form a control scenario that solves an imposed motion planning task. As some
coordinates can be shared between subsystems, a planning for a current subsystem should not
disturb desirable effects obtained from previous plannings. Additionally (un-)shared inputs are also
important in motion planning. If one needs to obtain smooth controls, the planning algorithm
should zero values of unused controls and those ones shared between strata should be, at least,
continuous.

A primary question in motion planning is whether the system is controllable, i.e. that for any
pair of boundary configurations whether there exist controls solving the task. For stratified systems
in Eq. (1), Goodwine2 adapted classical concepts known for smooth systems and formulated the
stratified controllability

Given a stratified configuration manifold and a collection of strata, {Si1,Si2, . . . ,Sim}, a system is
small time locally stratified controllable if reachable set RT (qqq0) at time T initialized at configuration
qqq0 contains a neighborhood of qqq0 in Si1 ∪ Si2 ∪ . . . ∪ Sim , for all qqq0 ∈ Si1 ∪ Si2 ∪ . . . ∪ Sim and
small enough T > 0.

The controllability criterion for stratified systems exploits the geometric properties of the system
to discover its motion capabilities. Below, one test for controllability is presented (this one and others
can be found in ref. [2]).

Theorem 1. Let Tqqq0M be the tangent space of M at qqq0 and let �̄Si
|qqq0 denote an involute closure

of a distribution spanned by the vector fields of stratum Si at qqq0. If there exists a nested sequence of
strata

qqq0 ∈ Sp ⊂ Sp−1 ⊂ . . . ⊂ S1 ⊂ S0,

such that the involute closures of distributions (of strata) fulfill the condition

p∑
i=0

�̄Si
|qqq0

= Tqqq0
M, (2)

then the system is locally stratified controllable at qqq0.
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One should notice that the criterion in Eq. (2) does not require full controllability on each stratum
(subsystem). Consider a biped walking robot described by equations (this model is equivalent to a
rowboat4 or hexapod robot2)

⎛
⎜⎜⎜⎝

ẋ

ẏ

θ̇

φ̇1

φ̇2

⎞
⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎣

α1 cos(θ) α2 cos(θ)
α1 sin(θ) α2 sin(θ)

α1 −α2

1 0
0 1

⎤
⎥⎥⎥⎦

(
u1

u2

)
, (3)

where components of the configuration vector are the following: x, y, and θ are the position and
orientation of the robot, while φ1, φ2 are (directly controlled) the angles of legs with respect to the
body. Functions α1, α2, assigned to each leg, take either the value of zero when the ith leg is in contact
with the ground or a value of one if not in contact with the ground. Four strata can be defined for the
robot, S0 (α1 = α2 = 1, inadmissible one), S1 (α1 = 1, α2 = 0, when the left leg is on the ground,
coordinate φ2 is changed freely, without disturbing other coordinates), S2 (α1 = 0, α2 = 1, when the
right leg is on the ground and φ1 free to move), S12 (α1 = α2 = 0, when both legs are on the ground,
modifications of any φi will influence coordinates (x, y, θ). It is obvious that system in Eq. (3) is not
controllable on each stratum S1,S2,S12 but, as everyday experience shows, is globally controllable
with condition in Eq. (2) satisfied.

For systems considered in this paper we require a stronger version of stratified controllability given
as

∀i ∈ {1, . . .} dim(�̄Si
) = dim(Si) = ni. (4)

Condition (4) describes a small time local controllability5 (STLC) on each stratum and implies
controllability in Eq. (2) (the reverse implication does not hold). Systems satisfying Eq. (4) will be
called strongly controllable stratified systems. STLC assures that not only controllability on each
stratum is preserved but also maneuvers to reach local (short-distance) goals can be performed with
only small modifications of a configuration vector. This feature is especially important to plan motion
in obstacle cluttered environments when long-range motion can be decomposed into a series of
sub-tasks with sub-goals (consecutive goals placed not too far from each other) selected to avoid
obstacles. STLC is commonly assumed by Lie-algebraic methods.

3. Models of Underactuated Space Manipulators
Free floating manipulators are nonholonomic systems. Their nonholonomic constraints result from
an angular momentum conservation law.6 Although it is possible to make a space manipulator
holonomic (supplying it with momentum wheels,7, 8 or even free-flying using thruster-jets9), it is
undesirable for energy reasons. In the low-orbit environment jet propulsion fuel is non-renewable
and electrical energy for momentum wheels is expensive. Moreover, the total mass of the spacecraft
directly translates into mission costs. Either to reduce the total mass or to act reliably in emergency
situations when one or more motors are damaged, a practical problem arises when a small number of
physical motors are to be multiplexed to steer a large number of joints. Those models are naturally
described as nonholonomic stratified systems. Two of them will be presented below.

The first model is a one-arm free-floating space manipulator, Fig. 1(a), composed of three-joints.
Instead of presenting its analytical (two-pages long) model, some numeric values were chosen to
simplify matters: m1 = m2 = m3 = 1, m0 = 10, l1 = l2 = l3 = 1, a = 1, b = 0.6. The numerical
values are rather unrealistic, as a base is usually much heavier than the links of the manipulator.
However, such data impacts the dynamics of the system heavily and makes simulations more vivid.
A driftless nonholonomic system derived from an angular conservation law is described by equations
defined on stratum S0

q̇qq =

⎛
⎜⎝

q̇1

q̇2

q̇3

θ̇

⎞
⎟⎠ =

⎡
⎢⎣

1 0 0
0 1 0
0 0 1

A1(qqq) A2(qqq) A3(qqq)

⎤
⎥⎦

⎛
⎝u1

u2

u3

⎞
⎠ =

3∑
i=1

gggi(qqq)ui = GGG(qqq)uuu, (5)
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Fig. 1. (a) One-arm, (b) two-arm space manipulators in their inertial frames I originated at the center of mass
(CM).

where

Ai(qqq) = fi(qqq)/fθ (qqq), i = 1, 2, 3

f1(qqq) = −(90 c1 + 378 c2 + 138 c3 + 54 c12 + 126 c23 + 18 c123 + 636)

f2(qqq) = −(189 c2 + 138 c3 + 54 c12 + 63 c23 + 18 c123 + 308)

f3(qqq) = −(69 c3 + 63 c23 + 18 c123 + 88)

fθ (qqq) = 180 c1 + 378 c2 + 138 c3 + 108 c12 + 126 c23 + 36 c123 + 845.2.

(6)

In Eqs. (6) and (11), a standard robotic convention to denote the sine/cosine function of angles was
utilized, i.e. c23 = cos(q2 + q3), s1 = sin(q1). A stratification of the model is based on the assumption
that two joints can be actuated at the same time while the remaining one is fixed. Therefore, motion
planning is to be performed using lower strata S1, S2, S3, corresponding to fixed joints q1, q2, q3,
respectively.

From system in Eq. (5) its subsystems (on each stratum) are easy to derive. Every sub-stratum
has got a dimension of one smaller than the configuration space of the fully actuated system and
the projection (·)|Si

, i = 1, 2, 3, will omit one, currently fixed, coordinate. Similarly, generators gggk

will be appropriately truncated to get generators gggi
k . Equations on the strata follow

S1 : q̇qq|TS1 =
⎛
⎝q̇2

q̇3

θ̇

⎞
⎠ =

⎡
⎣ 1 0

0 1
A2(qqq) A3(qqq)

⎤
⎦

(
u2

u3

)
= ggg1

2(qqq|S1 )u2 + ggg1
3(qqq|S1 )u3, (7)

S2 : q̇qq|TS2 =
⎛
⎝q̇1

q̇3

θ̇

⎞
⎠ =

⎡
⎣ 1 0

0 1
A1(qqq) A3(qqq)

⎤
⎦

(
u1

u3

)
= ggg2

1(qqq|S2 )u1 + ggg2
3(qqq|S2 )u3, (8)

S3 : q̇qq|TS3 =
⎛
⎝q̇1

q̇2

θ̇

⎞
⎠ =

⎡
⎣ 1 0

0 1
A1(qqq) A2(qqq)

⎤
⎦

(
u1

u2

)
= ggg3

1(qqq|S3 )u1 + ggg3
2(qqq|S3 )u2. (9)

Each subsystem shares some inputs and coordinates with the others.
Testing controllability in Eq. (4) of subsystems

∑
i requires a computation of Lie brackets of

generators ggg
j

i and their descendants for each subsystem separately. The check is slightly more
complicated as functions describing generators depend on a position of the fixed joint. Nevertheless,
it was checked10 that condition in Eq. (4) is satisfied at any configuration and the model is strongly
stratified controllable.

The second model described an underactuated (nonholonomic) satellite servicing robot equipped
with two arms placed symmetrically atop of a relatively massive base as depicted in Fig. 1(b). For this
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robot, the following values of parameters m1 = m2 = m3 = m4 = 1, m0 = 15, l1 = l2 = l3 = l4 = 1,
a = b = 1 lead to the equations on the highest stratum S0

⎛
⎜⎜⎜⎝

q̇1

q̇2

q̇3

q̇4

θ̇

⎞
⎟⎟⎟⎠ = q̇qq =

4∑
i=1

gggi(qqq)ui = GGG(qqq)uuu =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0

A1(qqq) A2(qqq) A3(qqq) A4(qqq)

⎤
⎥⎦

⎛
⎜⎝

u1

u2

u3

u4

⎞
⎟⎠ , (10)

where

Ai(qqq) = fi(qqq)/fθ (qqq), i = 1, . . . , 4

f1(qqq) = −(171 c1 + 210 c2 + 57 c12 + 27 c13 + 9 c123 + 9 c134 + 3 c1234 + 464)

f2(qqq) = −(105 c2 + 57 c12 + 9 c123 + 3 c1234 + 130)

f3(qqq) = (171 c3 + 27 c13 + 9 c123 + 210 c4 + 57 c34 + 9 c134 + 3 c1234 + 464)

f4(qqq) = (105 c4 + 57 c34 + 9 c134 + 3 c1234 + 130)

fθ (qqq) = (342 c1 + 210 c2 + 342 c3 + 210 c4 + 114 c12 + 54 c13 + 114 c34+

+ 18 c123 + 18 c134 + 6 c1234 + 1726).

(11)

It is assumed that simultaneous actuation of all joints is forbidden and only two or three ones
are actuated (unactuated joints remain fixed at their current positions). This assumption leads to
a stratification with two levels of strata Si , i = 1, 2, 3, 4 with a fixed ith joint and Sij , i, j = 1, . . . , 4,
i < j with fixed ith and j th joints. Subsystems defined on the first level are described by equations

Si : q̇qq|TSi
= gggi

j (qqq|Si
)uj + gggi

k(qqq|Si
)uk + gggi

l (qqq|Si
)ul, i = 1, . . . , 4, (12)

where i is the stratum index (and also the index of an unactuated joint) while j , k, and l denote
indices of actuated joints. Similarly, subsystems defined on the second level of stratification satisfy
the following equations:

Sij : q̇qq|TSij
= gggij

s (qqq|Sij
)us + ggg

ij

k (qqq|Sij
)uk, i, j, s, k = 1, . . . , 4, i < j, s < k, {s, k} �= {i, j}.

(13)
It can be checked10 that the presented stratified system is fully controllable at each stratum, thus the
two-arm manipulator is strongly stratified controllable.

4. Nonholonomic Motion Planning
While solving a stratified motion planning task, it is necessary to solve a sequence of sub-tasks, each
of them expressed as nonholonomic motion planning for a given subsystem. Many methods have been
designed for the latter task1, 11 and are mainly for obstacle-free environments and for systems with
extra features (flatness,12 nilpotency,13 chain form14). In obstacle cluttered environments additional
problems in planning are encountered due to inadmissible areas in the configuration space. The
constraints impact different methods of motion planning diversely. As a rule, local methods are not
very sensitive to obstacles as they plan a motion in a small range, so obstacles only decrease the cone
of admissible motion directions. Some global methods allow obstacles to be taken into account either
as constraints or include them into an auxiliary quality function that penalizes any approaching to
obstacles. Global methods also exist that work only in obstacle-free environments.

In this section, two general-purpose motion planning methods will be recalled. Global methods
are represented by the Newton algorithm15 while the Lie-algebraic method represents local ones.11
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Both methods will be utilized later on as components of a stratified motion planner. Both methods
are able to plan motion of a driftless nonholonomic system

q̇qq =
m∑

i=1

gggi(qqq)ui = GGG(qqq)uuu, qqq ∈ Q, uuu ∈ L2
m[0, T ], (14)

where qqq is a configuration, uuu is the input of the system and dim(qqq) = n > m = dim(uuu).

4.1. Newton algorithm
The Newton algorithm based on an endogenous space approach15 is founded on the concept of
instantaneous kinematics

kkkqqq0,T : L2
m[0, T ] −→ Rn, kkkqqq0,T (uuu(·)) = ϕϕϕqqq0,T (uuu(·)), (15)

where ϕϕϕqqq0,T is the end-configuration of the flow of a system in Eq. (15) initialized at qqq0 when
controls uuu(·) are applied on the time interval [0, T ]. Using kinematics in Eq. (15), a linear system that
approximates behavior of the original one in Eq. (14), can be defined

δq̇̇q̇q = d

dt
Dkkkqqq0,t (uuu(·))δuuu(·) = AAA(t)Dkkkqqq0,t (uuu(·))δuuu(t) + BBB(t)δuuu(t) = AAA(t)δqqq + BBB(t)δuuu, (16)

where

AAA(t) = ∂(GGG(qqq(t))uuu(t))

∂qqq
, BBB(t) = GGG(qqq(t)),

and δuuu(t) denotes a small variation of controls uuu(·) at time t . According to Eq. (16), a nonholonomic
Jacobian matrix Dkkkqqq0,t transforms the variation of controls δuuu into a variation of configuration δqqq.
Solution of Eq. (16) is in the form

δqqq(T ) =
∫ T

s=0



(T , s)BBB(s)δuuu(s) ds, (17)

where 


(T , s) is a fundamental matrix satisfying d(


(T , s))/dt = AAA(t)


(T , s) with an initial
condition 


(s, s) = Identity. Usually, controls are represented in the form of a finite series and
an orthogonal basis φφφ(·) is selected to describe controls as a linear combination of some of its items

uk(t) =
Nk∑
j=1

λk
jφ

k
j (t), k = 1, . . . , m, t ∈ [0, T ], (18)

where Nk is the number of items selected to express the kth control. Vector

λλλk = (λk
1, λ

k
2, . . . , λ

k
Nk

)T , k = 1, . . . , m,

collects coefficients of the kth control in Eq. (18) and

��� 	 λλλ = (λλλ1, . . . ,λλλm)T ,

gathers coefficients for all controls. The search of controls is performed within the space of their
coefficients ��� 	 λλλ as the time-dependent basis functions φφφ(·) are fixed.

After substituting Eqs. (18) into (17), we get

δqqq(T ) = JJJqqq0,T (λλλi)δλλλ, (19)
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and vector λλλ is changed according to an iterative formula introduced by the basic Newton algorithm
for nonholonomic systems15

λλλi+1 = λλλi + γ · JJJ #
qqq0,T

(λλλi)(qqqd − kkkqqq0,T (uuu(·,λλλi))), (20)

where γ is a given positive constant, kkkqqq0,T represents system kinematics, defined by Eq. (15), qqqd is
a goal configuration and JJJ #

qqq0,T
= JJJ T

qqq0,T
(JJJqqq0,T JJJ T

qqq0,T
)−1 is the pseudo matrix inversion.16

4.2. Lie-algebraic method
In Lie-algebraic terms,11 a local, around a given configuration qqq, evolution δqqq of the system state
under action of controls uuu(·) can be expressed as follows:

δqqq = z(t)(qqq) ∼ α1(uuu(·))B1(qqq) + α2(uuu(·))B2(qqq) + α3(uuu(t))B3(qqq) + · · · (21)

where α’s are integral, control dependent coefficients and B’s are elements of the Ph. Hall basis11

(i.e. an independent set of vector fields derived from generators gggi and their descendants using the Lie
bracket operation)is evaluated at qqq. Locality means that the formula of Eq. (21) is valid only locally,
around current configuration qqq, and the trajectory initialized at qqq does not move too far away from
the configuration. Consequently, only a very few first elements of the infinite sequence described by
rhs of Eq. (21) can be taken and neglected terms cannot significantly disturb the desired motion. At
least r ≥ n items have to be taken to preserve (small time local) controllability5 of the system around
qqq. The desired motion to the goal qqqd can be defined as δqqq = γ (qqqd − qqq) with a small positive constant
γ . An inverse kinematic problem to find controls uuu(·) resulting in a given state transfer δqqq is defined
by Eq. (21). Similar to the Newton algorithm considered previously, a parametrization of controls,
given by Eq. (18), is applied.

Now, with fixed basis functions φφφ(·), the local system state evolution in Eq. (21) can be expressed
as

γ (qqqd − qqq) = δqqq =
r∑

i=1

αi(λλλ)Bi(qqq), (22)

with known kinematics

(α1, . . . , αr )T = ααα = hhh(λλλ), (23)

and coefficients of controls λλλ to be determined. From Eq. (22), using matrix pseudo-inverse, the
desired values of αdαdαd = (α1, . . . , αr )T are derived. Inverse kinematics for kinematics in Eq. (23) is
solved, once again, with the Newton algorithm

λλλi+1 = λλλi + γ · JJJ #(λλλi)(αααd − hhh(λλλi)), (24)

where JJJ = ∂hhh/∂qqq and the initial value of λλλ0 is assumed.

4.3. Concatenation of controls and hybridization of algorithms
Stratified motion planning will require the solving of a sequence of sub-tasks, sometimes for different
models and using local or global methods. Moreover, some controls can be shared between consecutive
planning. Therefore, problems of hybridization of methods and concatenation of controls arise.
Hybridization of methods allows the advantages of local and global methods to be exploited. Both of
the tasks can be solved using redundancy in representation of controls in Eq. (18) and kinematics in
Eqs. (15) and (23), to determine a useful system behavior as a function of coefficients of controls λλλ.
Note that the representation of controls can vary from one sub-planning to the other and redundancy
in controls is also used for a single planning to simplify the preserving of controllability of the
system in Eq. (14). On shared and unshared controls between consecutive sub-plannings additional
constraints can be added to get their desired properties (Ck continuity of controls at boundaries or their
vanishing at boundaries). Each constraint on controls takes away one degree of freedom. Therefore,
a representation of controls in Eq. (18) has to be rich enough to solve a motion planning task.
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Fortunately, controls depend linearly on the parameters λλλ. Consequently, each constraint on a value
or a derivative of controls at a particular point of time shares this characteristic and all constraints
can be coupled into a matrix equation

CCC · λλλ = ccc, dimλλλ = r. (25)

If r1 denotes the number of independent constraints, the constant (r1 × r) non-singular matrix CCC

depends on the representation of controls while (r1 × 1) vector ccc fixes the boundary values of
controls.

The parametrization of controls should be selected carefully. An appropriate number and quality
of basic functions for each control have to be chosen to satisfy the requirements imposed. It is easy
to deduce that C2 continuity cannot be satisfied with controls in Eq. (18) composed of even functions
only, as discontinuity of the first derivative of controls appears in a typical case.

As the matrix CCC is non-singular, the vector λλλ, can be decomposed into two sets of
dependent/independent variablesλλλdep,λλλind (dimλλλdep = r1, dimλλλind = r2 = r − r1). Using the Gauss
elimination procedure applied to Eq. (25), all variables λλλdep can be expressed as a function of
variables λλλind

λλλdep = C̃CC · λλλind + c̃cc. (26)

It is worth noting that there exists some flexibility in selection of independent variables. Taking the
time derivative of Eq. (26), an equality in small variations is obtained

δλλλdep = C̃CC · δλλλind . (27)

Constraints in Eq. (27) can be easily injected into the Newton algorithm. Below, derivations will be
presented for the Newton algorithm based on the endogenous space approach (similarly, it also works
for the Lie-algebraic method). After substituting Eq. (19) into a general parametric Newton scheme,
the algorithm takes the form

δqqq(T ) = Jq0,TJq0,TJq0,T (uuu(·,λλλ)) · RRR ·
[
III r2

C̃CC

]
· δλλλind = J̃q0,TJ̃q0,TJ̃q0,T (uuu(·,λλλind )) · δλλλind, (28)

where III r2 is (r2 × r2) the identity matrix and (r × r) matrixRRR (mostly composed of zeroes) rearranges
coordinates to enumerate independent variables from the set λλλind in a natural order (1, 2 . . . , r2)

λλλ = RRR ·
(

λλλind

λλλdep

)
. (29)

With new independent variables λλλind , the algorithm in Eqs. (20) or (24) can be run to solve the current
planning task while boundary values result either from a previous planning or from demanded values
at the end of the current planning.

It should be pointed out that the number of components in λλλind has to be at least equal to
the dimensionality of the state space Q. However, a small redundancy in independent variables is
advised.

5. Stratified Motion Planning
Motion planning of stratified nonholonomic systems is an extension of the task for continuous
nonholonomic systems.11 Therefore, the task formulation and main ingredients are very similar for
both tasks. The main difference results from a stratification of the configuration manifold, thus the
initial and the final configurations are defined rather on a union of all strata available than within
a configuration space (considered as a single admissible stratum). Moreover, while planning a motion,
switching of strata is likely to occur. The continuous nonholonomic motion planning task is difficult
by itself, and stratification complicates the problem even further. In order to point out the main
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Fig. 2. Stratified motion planning.

difficulties related to the stratified task no additional constraints will be added and the stratified task
is stated in a collision-free configuration space without restrictions on controls.

In general, stratified motion planning requires planning of not only a motion of underactuated
subsystems but also dispatchment of sub-tasks for subsystems as the global task is defined within
the highest, unavailable stratum (S0) with dimensionality larger than for any of the subsystems.
Consequently, switching between subsystems is indispensable. The prescribed global task is to be
decomposed into sub-tasks defined for subsystems, and then solved subsequently. The particular
sequence of selected strata (SI , . . . ,Smid, . . . ,SD) uniquely determines the subsystems (possibly,
each of them can be selected many times) and naturally defines a list of sub-tasks to solve.

The idea of stratified motion planning is illustrated in Fig. 2. At first, the sequence of strata is
chosen as S1 → S2 → S1. Then, the initial given configuration is projected from S0 onto S1. Moving
within stratum S1, the first planning sets the desired values for only a few coordinates (because
∀ini < n0) and completes at configuration qqqm1 . After switching into stratum S2, a different set of
coordinates can obtain their desired values. Then, if needed, a stratum can be changed again to steer
coordinates that are not defined on stratum S2.

Each planning can be viewed as a separate task governed by its own model with initial and
final configurations appropriately defined for the current stratum. Although possible, separation of
sub-tasks should not be considered as the best solution. It simplifies the global task, but ignores
the internal relationships between the subsystems. This omission may result in controls with bad
properties (for example, non-continuous). Consequently, a proper concatenation of controls should
distinguish between exclusive and shared controls among neighboring strata, and properly set their
values either to zero or to required ones, respectively, while switching.

5.1. Stratified motion planner
The algorithm of stratified motion planning should take initial and final configurations defined on the
highest stratum, qqq0,qqqd ∈ S0, and compute controls steering the system between those configurations.
Moreover, some regularity conditions on resulting controls can be imposed.

The diagram of the proposed algorithm is presented in Fig. 3. Controls are chosen from available
inputs for subsystems, therefore the planning is performed as a sequence of sub-tasks stated for
subsystems. A proper sequencing of sub-tasks (thus strata and subsystems) is solved by a task
decomposer module described in details later on. The sequence of tasks is processed by a sequential
motion planner module: each task is taken from the task queue and solved by a nonholonomic motion
planner using one from the available motion planning algorithms, possibly, preserving Ck continuity
of controls (cf. Fig. 3). To satisfy the requirement, each sub-planning should take into account the
results of the previous sub-planning and also data for the next planning. Because a nonholonomic
motion planner performs planning on a single stratum, it requires not only the initial and final
configurations but also a model valid for the current planning. This model is uniquely defined by
those coordinates of global configuration qqq which are fixed during the current planning. When all
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Fig. 3. Stratified motion planner.

the tasks from the task queue are solved, their results are collected and the global motion planning is
completed. Below the modules will be described with details.

5.2. Nonholonomic motion planner
Although a nonholonomic motion planner module uses algorithms implemented for continuous
nonholonomic systems, the Ck concatenation of controls sets additional constraints. Available controls
for the current ith planning can be divided into the following two groups:

1. Those shared with (i − 1)st planning should get values (and derivatives) at the initial time of the
ith planning determined by controls from the previous planning. The remaining controls should
be initiated with zero values.

2. Those unshared with (i + 1)st planning should get zero values (and derivatives) at the final time
of the ith planning. The remaining controls are unrestricted.

A nonholonomic motion planner module implements the methods described in Section 4, allowing
for the concatenation and hybridization of methods. Practically valuable concatenation conditions are
collected below:

• Each planning is independent; no conditions are imposed on joining pieces of controls.
• Left-continuous, l-C0 controls are desirable, uuui(0) = uuui−1(Ti−1).
• Left-differentiable, l-C1 controls are guaranteed, uuui(0) = uuui−1(Ti−1) and u̇̇u̇ui(0) = u̇̇u̇ui−1(Ti−1).
• Left-right-continuous, lr-C0 controls are desirable, uuui(0) = uuui−1(Ti−1) and uuui(Ti) = uuui+1(0).
• Left-right-differentiable, lr-C1 controls are guaranteed, uuui(0) = uuui−1(Ti−1), u̇̇u̇ui(0) = u̇̇u̇ui−1(Ti−1)

and uuui(T ) = uuui+1(0), u̇̇u̇ui(T ) = u̇̇u̇ui+1(0).
• ‘Soft start’ and ‘full stop’ features, uuu(0) = 0, uuu(T ) = 0, u̇uu(0) = 0, u̇uu(T ) = 0.

5.3. Task decomposer
The purpose of the module is to translate the initial task defined on S0, for (inadmissible) system �0,
into a sequence of stratified sub-tasks. The algorithm for the module runs as follows:

Step 1. Compare initial configuration qqq0 with final configuration qqqd to determine coordinates that
differ and name the essential coordinated.

Step 2. Determine the strata on which the motion planning task is defined. The only condition the
strata should satisfy is that the union of their coordinates includes all essential coordinates.
Usually, the selection of strata is not unique and it can be optimized.

Step 3. Form some sequences from the selected strata. In each sequence any stratum can be used
more than once.
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Step 4. For each selected sequence determine the boundary configurations for the sub-tasks and solve
the motion planning sub-tasks sequentially.

Step 5. As a final solution output the sequence (trajectory, controls) which is the best among
sequences is considered.

In Step 4, a conservative approach prompts the desired values of essential coordinates to be obtained
as soon as possible. For example, if at stratum Sa one can act on essential coordinates q1, q2, their
goal values for the planning on Sa are set to the required from configuration qqqd and other ones
should remain unchanged. When a postponed approach is preferred and if there exists in the selected
sequence of strata a stratum Sb (placed somewhere after stratum Sa in the sequence) which acts on
the essential coordinate q2 , there is no necessity to set its goal value while planning on Sa and do the
task while planning on stratum Sb.

It is difficult to judge which strategy is the (sub-) optimal one. In practical situations there is not
too much strata and their sequences. Therefore, many (all) acceptable sequences of strata can be
checked and evaluated based on some criteria (energy expenditure, amplitude of maneuvers, etc.)

As an example, let us consider a one-arm space manipulator moving between qqq0 = (0, π/4, 0, 0)
and qqqd = (−π/3, π/3, π/4, −π/12). Values of identical coordinates in qqq0 and qqqd differ, so all
coordinates are essential. From the system stratification it is known that q1 can be changed via S2 or
S3. Similarly, changing q2 requires motion either within S1 or S3 and q3 can be impacted via S1 or S2.
Steering q4 is possible on any stratum. On the other hand each stratum blocks only one coordinate,
so within S1 only the coordinates q2, q3, q4 can be changed.

To steer all essential coordinates, a single stratum is not enough. A sequence of planning has to
be composed of at least two different strata. For instance (S1,S2), (S2,S1), (S2,S3), (S3,S2), . . . ,
(S1,S2,S2), . . ., (S1,S2, . . . ,S1), . . .. The task decomposer module should prefer short sequences,
although a redundant sequence could also improve the character of motion, as shown in Task 4 in the
simulation section.

For a given sequence of strata, a choice of boundary configurations for each subtask
is performed sequentially: each sub-task tries to set as many essential coordinates to their
desired values as possible leaving the already steered one unchanged. For example, for the
sequence (S1,S2) boundary configurations follow: qqq0 = (0, π/4, 0, 0) → (0, π/3, π/4, −π/12) →
(−π/3, π/3, π/4, −π/12) = qqqd .

6. Simulations
The stratified nonholonomic motion planner was tested on numerous tasks. In all simulations, the
Newton algorithm and the Lie-algebraic method used the same subset of the Fourier basis to represent
controls

uk(t) = λk
0 +

3∑
i=1

(
λk

i · sin(2iπ/T · t) + λk
i+3 cos(2iπ/T · t)

)
, k = 1, . . . , m, (30)

where the superscript k assigns λλλ’s to the kth control. The free-to-choose time horizon T of a single
planning is advised not to be a multiple of 2π (otherwise sine functions vanish at boundaries and
the number of variables in λλλ to satisfy additional requirements at boundaries of a single planning
decreases almost twice. Later on the value of T was set to 2.17. When the Newton algorithm is
invoked, each planning is performed on the time interval [0, 1] (finally, shifted accordingly if it is not
the first planning in a sequence). The length of time interval for the Newton algorithm can be modified
after solving a motion planning task using a time scaling technique. Post-planning time scaling is
especially useful to decrease/increase amplitudes of controls at the expense of increasing/decreasing
time T . For the Lie-algebraic method, the total interval of the whole sub-planning depends on the
number of required steps performed, each step lasts 0.51. Arguments for setting the time interval T

of a single planning for the Newton algorithm remains valid for the Lie-algebraic method also. For
both algorithms in Eqs. (20) and (24), the accepted accuracy to reach a sub-goal was set to 0.001[rd].
Energy of controls,

∫ T

0

∑m
i=1 u2

i (t) dt , and plots of trajectories and controls are provided.
At first, basic aspects of the stratified motion were illustrated. In each simulation the switching

points and sequence of strata are given. It means that a benchmark scenario is realized. In this
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(b)(a)

(d)(c)

Fig. 4. Trajectory and controls for (a), (b) l-C1 concatenation; (c), (d) lr-C1 concatenation.

part, the concatenation method is being tested and different concatenation criteria are compared.
Moreover, some scenarios test certain switching orders. All simulations in this group utilize the
Newton algorithm for single motion planning.

The second group of tests concentrates on the hybridization of planning methods where the Newton
algorithm and the Lie-algebraic method (representatives of global and local methods, respectively)
are coupled.

Finally, the stratified motion planner was tested for a variety of tasks. The switching sequences
of different lengths, and composed of the same strata but in a different order, were compared. All
simulations are conducted using models of a one/two arm space manipulator.

The structure of each simulation follows: a task statement (initial and desired configurations,
optionally, a given sequence of strata), a model of the stratified system, a description of the tested
property, and also different variants of the task. The task statement is followed by a discussion of
results, which includes some numeric results and plots of trajectory and controls.

Simulation 1: a long sequence of switching is tested on a one-arm space manipulator moving between
the strata and configurations given

qqq0
on S1−−→ qqqmid1

on S2−−→ qqqmid2

on S1−−→ qqqd,

(0, π/3, 0, 0) → (0, −π/3, 0, 0) → (−π/3, −π/3, −π/6, π/12) → (0, −π/3, 0, 0).

using l-C1 and lr-C1 controls. Energy on controls for the two variants were equal to 817.50 and
812.04, respectively. Plots of trajectory and controls are presented in Fig. 4. Although energy spent
on controls is almost the same, a difference can be spotted in Figs. 4(b) and (d). In the first case, the
algorithm ignores the fact that u1 will not be used in the third planning (on stratum S1) and allows it
to change freely and consequently control u1 is discontinuous. When lr-C1 controls were applied the
continuity of controls was retrieved.
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(b)(a)

(d)(b)

Fig. 5. Trajectory and controls for planning (a), (b) with and (c), (d) without soft start and full stop properties.

Simulation 2: on a two-arm manipulator, a multi-level stratified model was tested with and without
soft-start and full-stop properties. The task was to perform the following scenario:

qqq0
on S3−−→ qqqmid

on S24−−−→ qqqd,

(0, π/3, 0, π/3, 0) → (0, −π/3, 0, −π/3, 0) → (0, −π/3, 0, −π/3, 0).

The resulting trajectory and controls are presented in Fig. 5 (some parts of the controls in Fig. 5(d)
were truncated to preserve the readability of the rest.

With no soft start, the energy of controls was equal to 30.41 and increased to 113.34 when a soft
start was required. It can be observed that additional constraints are likely to increase the total energy
of controls. Nonetheless, from a practical point of view, the controls presented in Fig. 5(b) are of
limited use as the large-value controls should be suddenly switched on or off (see encircled points
at the beginning and the end of planning) disturbing real motion. This simulation also illustrates a
common feature of stratified concatenations: while switching strata the dimensionality of subsystems
and the number of their inputs may change. In this particular case, on stratum S3, dim(S3) = 4,
m3 = 3 while on stratum S24, dim(S24) = 3, m24 = 2. The planner dealt with this situation properly
and all controls had the desired properties.

Simulation 3: illustrates a hybridization which allows the mixing of different planning methods in
a single sequence. For the scenario of motion

qqq0
Newton on S1−−−−−−−→ qqqmid1

Newton on S2−−−−−−−→ qqqmid2

Lie on S1−−−−→ qqqd,

(0, π/3, 0, 0) → (0, −π/3, 0, 0) → (−π/3, −π/3, π/6, π/12) → (0, 0.2, 0.1, −0.1) + qqqmid2,

the Newton algorithm was used to plan a motion across two strata and (when the desired configuration
is reached) a slight configuration adjustment was made with the local Lie-algebraic method. The task
was solved using lr-C1 controls. The energy expenditure on the controls was 244.00. Figure 6
presents the resulting trajectory and controls while in Fig. 7 the stroboscopic view of global and local
motions at consecutive stages is visualized. As shown in Fig. 6, the hybridization works properly
and the concatenation criterion is met. Moreover, the periodic local motion limits the amplitude
of configuration change. The algorithm correctly recognizes the used controls and restraints of the
non-actuated joints. The important difference between the Newton and Lie-algebraic algorithms can
be seen in details in Fig. 7. Being local, the Lie-algebraic method plans a motion with only small
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(b)(a)

Fig. 6. Trajectory and controls.

(b)(a)

(d)(c)

Fig. 7. Stroboscopic view of a robot’s motion: (a), (b) two stages performed with the global Newton algorithm
on stratum S1 and S2; (c), (d) two steps carried on stratum S1 using the local, Lie-algebraic method.

replacements of the manipulator, cf. Figs. 7(c) and (d). On the other hand, the Newton method
generates extensive motion of links, cf. Figs. 7(a) and (b), sometimes even when the initial and goal
configuration of the sub-planning are not too far from each other.

Simulation 4: finally, after testing each feature of the stratified motion planner separately, its fully
automatic work is illustrated. Tests were conducted for a one-arm space manipulator with boundary
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Task A

Task B

Task C

Task D

Fig. 8. Trajectories (left column) and controls (right column) for Tasks A–D.
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configurations qqq0 = (0, π/4, 0, 0), qqqd = (−π/3, π/3, π/4, −π/12) and lr-C1 controls demanded.
The planning task was decomposed into sequences of strata and boundary configurations for
consecutive sub-tasks were automatically generated with the stratified motion planner. The planner
generated a few variants of possible solutions and some of them are presented below:

Task A: sequence (S1,S2) with boundary configurations qqq0 → qqqmid → qqqd with via-configuration
qqqmid = (0, π/3, π/4, −π/12).

Task B: sequence (S2,S1), this time with mid-configuration qqqmid = (−π/3, π/4, π/4, −π/12).
Task C: three-step sequence (S3,S2,S1) with boundary configuration qqq0 → qqqmid1 → qqqmid2 →

qqqd , where qqqmid1 = (−π/3, π/3, 0, −π/12), and qqqmid2 = (−π/3, π/3, π/4, −π/12).
Task D: an alternative two-item sequence (S3,S1) with mid-configuration qqqmid =

(−π/3, π/3, 0, −π/12).

The energy spent on controls for the four scenarios was equal to 542.36, 1212.92, 237.04, 124.59,
respectively. The plots of resulting trajectories and controls are presented in Fig. 8.

Comparing the results of Tasks A and B, the importance of switching order is highlighted. Both
sequences solved the planning task, however, the energy of controls for sequence (S2,S1), was more
than two times larger than for sequence (S2,S1). It is an expected result as previous plannings set
initial conditions for the current planning (boundary configurations as well as a model description for
a current planning strongly depend on fixed configurations actively changed by previous plannings).
A minimal number of strata in a sequence does not guarantee an energy efficient solution. The third
sequence, is energetically more efficient than the first one and two-item sequence. It is worth noting
that the third sequence is redundant as only two plannings are needed to solve the stated task. The
sequence was reduced to a two-item sequence (S3,S1) with another energy gain.

7. Conclusions
In this paper, a class of strongly controllable stratified nonholonomic systems was introduced. For such
systems STLC condition is satisfied on each stratum. A motion planner was proposed which exploits
the condition not only to reach a goal configuration but also to satisfy additional requirements. It
enables the coupling of local and global methods of motion planning on strata to use their advantages.
Moreover, it allows the preservation Ck continuity of the resulting controls only if the controls are
represented in a parametric form (possibly different on various strata). The planner was tested on
two models of a free-floating space manipulator to check its modules and to draw some remarks. It
appears that a short sequences of strata are not necessarily more energetically effective than more
numerous ones. It was observed that entry configurations to subsequent strata highly influence the
energetic efficiency of motion as the configurations impact the parameters of models for consecutive
plannings. Also, additional restrictions on the continuity of controls increase the energy consumption
as the controls have to start with the desired values of their derivatives.
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