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A generalization of the Keller–Segel model for chemotactic systems is studied. In this model

there are several populations interacting via several sensitivity agents in a two-dimensional

domain. The dynamics of the population is determined by a Fokker–Planck system of

equations, coupled with a system of diffusion equations for the chemical agents. Conditions

for global existence of solutions and equilibria are discussed, as well as the possible existence

of time-periodic attractors. The analysis is based on a variational functional associated with

the system.

1 Introduction

1.1 General description

We consider a model equation for the time-dependent distribution ρ(x, t) of organisms

(bacteria, cells, humans, etc.), sensitive to the gradient of a self-produced chemical agent

(sensitivity) whose distribution is given by S(x, t). Both the organisms and the sensitivity

agents are subjected to independent diffusive fluctuations. In addition, any individual

organism ‘smells’ the local sensitivity substance S , and tends to climb up its gradient if it

‘likes’ the smell or down the gradient if it ‘dislikes’ it.

The system (1.1, 1.2) below was suggested by Keller & Segel [10] as a model for

chemotactic aggregation:

ν
∂ρ

∂t
+ θ∇ · (ρ∇S) = ∆ρ, (1.1)

σ
∂S

∂t
= ∆S − αS + γρ+ f. (1.2)

Equations (1.1) and (1.2) are satisfied in a habitat domain Ω ⊂ IR2. The boundary

conditions for (1.1) are chosen to guarantee the conservation of the number of individuals

N =
∫
Ω
ρ(x, t)dx for all times:

[θρ∇S − ∇ρ] ·~n = 0, x ∈ ∂Ω, (1.3)

where ~n is the normal to the boundary of Ω. The mobility parameter θ determines the

tendency of the population to climb up the sensitivity gradient (θ > 0) or down (θ < 0).

Likewise, γ is the rate of production (if positive) or consumption (if negative) of the agent

S by the population. The population-independent source f(x) is a prescribed function,
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642 G. Wolansky

α > 0 is the disintegration rate of S . The positive parameters σ > 0 and ν > 0 stand

for the (possibly different) time scales of the substance concentration and population

dynamics, respectively.

In this paper, we consider a generalization of (1.1, 1.2) to a system of n populations

{ρ1, . . . ρn} and k sensitivity agents {s1, . . . sk} living together in a common habitat domain

Ω:

νi
∂ρi
∂t

+

k∑
j=1

θi,j∇ · (ρi∇sj) = ∆ρi, i ∈ [1, . . . n], (1.4)

σj
∂sj
∂t

= ∆sj − αsj +

n∑
i=1

γi,jρi + fj , j ∈ [1, . . . k]. (1.5)

Here γi,j , θi,j define a pair of n× k matrices for the production/consumption rate and the

mobilities, respectively.

We show that the tendency of a population i1 towards a population i2 due to the action

of all the agents can be quantified by the parameter λi1 ,i2 =
∑k

j=1 θi1 ,jγi2 ,j . The condition

λi1 ,i2 > 0 means that i1 is attracted to i2, while λi1 ,i2 < 0 means that i1 is repelled by

i2. In particular, λi,i > 0 (< 0) is the condition of self-attraction (self-repulsion) of the

population i.

The situation where λi1 ,i2 and λi2 ,i1 are opposite in sign is of a particular interest. We

denote this case as a ‘conflict of interests’ between the i1 and i2 populations. We shall,

however, concentrate on the conflict-free case in this paper, and defer the discussion on

conflicts to a separate publication.

The paper is organized as follows. In § 2.1–2.2 we set the foundation of our variational

approach: let Y be the state space of the populations density vectors ~ρ ≡ {ρ1, . . . ρn}
subjected to the integral constraint∫

Ω

ρidx = Ni, i ∈ [1, . . . n], (1.6)

where Ni > 0 is the prescribed population size (determined by the initial data). In addition,

denote the state space of vector-valued sensitivity agents~s ≡ {s1, . . . sk} by X.

It is shown that, under some additional assumptions, a variational functional Ψ =

Ψ (~ρ,~s) can be introduced on Y ⊗ X. The state space Y is composed of two disjoint

components Y+ and Y−, where Ψ is convex on Y+ and concave on Y−. The conflict-free

case is characterized by the condition Y− = ∅, i.e. Ψ is convex with respect to~ρ. Likewise,

the space X is composed into a direct sum X = X+ ⊕ X−, where Ψ is convex on X+ and

concave on X−. Any stationary solution of (1.4, 1.5) is determined by a critical point of

the functional Ψ on the combined space. In general, Ψ is not monotone along solutions

of (1.4, 1.5). § 2.3 and 2.4 deal with singular limits of the system, where the population

dynamics (1.4) is much faster (resp. slower) than the sensitivity dynamics (1.5).

In § 2.3 we consider the fast population dynamics, i.e. σj = 0, for all 1 6 j 6 k. In this

case, we extremize the free energy Ψ with respect to the sensitivities~s to obtain

F ≡F(~ρ) := inf
~s1∈X+

sup
~s2∈X−

Ψ (~ρ,~s1 +~s2) .

We show that F is a monotone functional for (1.4) in this singular limit, if and only if

the system is conflict-free.
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In § 2.4 we consider the analogous limit of slow population dynamics, i.e. νi = 0 for all

1 6 i 6 n. Define a functional

DN1 ,...Nn
≡ DN1 ,...Nn

(~s) := inf
~ρ1∈Y+

sup
~ρ2∈Y−

Ψ (~ρ1 +~ρ2,~s) ,

where the extrema on ~ρ ∈ Y is subject to (1.6). The condition for monotonicity of DN1 ,...Nn

for the system (1.5) in this singular limit is obtained as well. It follows that the relative

values of the diffusion rates σ1, . . . σk play an important rule in this limit.

In § 3 we study the existence and stability of local minimizers to the functionals Ψ , F
and D~N . The global solvability of (1.4, 1.5) is obtained by joining together two independent

results: the first concerns the global solvability of the single population system (1.1, 1.2)

[1], and the second concerns the properties of Liouville systems and its relation to the

functional F, studied in Chipot et al. [3].

In § 4 we study periodic solutions, using the Andronov–Hopf bifurcation theorem [6].

Before turning to the main parts of the paper, we introduce a short review of known

results for the single component system (1.1, 1.2) and an informal discussion on its multi-

component analog. This discussion provides motivation for the investigation of periodic

solutions in § 4.

1.2 Background and motivation

The system (1.1, 1.2) has been extensively investigated, in particular, for the singular limit

σ = 0. In this case with f = 0 and ν = 1, equations (1.1) and (1.2) take the form

∂ρ

∂t
+ θ∇ · (ρ∇S) = ∆ρ, S(x, t) = γ

∫
Ω

Gα(x, y)ρ(y, t)dy, (1.7)

where Gα is the Green’s function for the operator −∆ + α subject to the prescribed

boundary conditions associated with (1.2) (say, Dirichlet). Particular attention has been

given to the self-attractive (‘gravitational’) case θγ > 0. In this case, it is known that

time-dependent solutions of (1.7) may blow up in a finite time [5, 7, 8, 10, 12]. For two

dimensional, starlike domains Ω there exist blow-up solutions provided the conserved,

total population number N ≡ ∫ ρ exceeds a certain critical number

Nc :=
8π

θγ
. (1.8)

It is also known that stable equilibria of (1.7) do exist, and that it is globally solvable for

two-dimensional domains provided N < Nc if a Dirichlet boundary condition is assumed

for (1.2), and for N < 4π/θγ in the case of a Neumann boundary condition [1, 13].

This type of result is a manifestation of the critical role played by the spatial dimension

two [11] in the context of the system (1.1, 1.2). If the total population number N is above

a critical number, then the self-attraction dominates the smoothing effect of the diffusion

in (1.1), resulting in a finite time blow up of the solution. If, however, N < Nc, then the

smoothing effect of the diffusion dominates the self-attraction, preventing the blow-up

and implying the asymptotic convergence of solution toward an equilibrium.

An essential tool for the study of (1.7) is the ‘Free-Energy’ functional

F := F(ρ) =

∫
Ω

ρ ln ρdx− θγ

2

∫
Ω

∫
Ω

ρ(x)Gα(x, y)ρ(y)dxdy.
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We chose the name Free Energy after the classical definition

F = −T · Entropy + Energy

of Free energy in thermodynamics. Recall that − ∫ ρ ln ρ is the statistical-mechanics

definition for entropy, while the second component resembles the energy of self-interaction

via gravitational or electrostatic interaction. The ‘temperature’ T is normalized to one (in

accordance with our choice of the diffusion coefficient in (1.1)).

It is known that the Free Energy is monotone non-increasing (Lyapunov) functional

for the singular limit σ = 0 in (1.7) for both the self-attractive θγ > 0 and self-repelling

(‘electrostatic’) θγ < 0 cases (cf. Wolansky [14]). It yields useful a priori estimates for

the time-dependent solution ρ in this singular limit, as well as a variational formulation

for stable steady solutions via its local minimizers. It was investigated in other contexts

as well (in particular, statistical mechanics and fluid-dynamics: cf. Wolansky [14] and

Caglioti et al. [4]) and its properties are well understood.

A basic feature of this functional is the convexity of the first (negative entropy) term

and the positivity of the Green’s function (−∆ + α)−1. This implies, in particular, that

F is strictly convex and bounded from below in the self-repelling case, which yields the

existence and uniqueness of a minimizer.

Deeper mathematical questions arise for the self-attracting case. Here the second

(energy) term is concave and the boundedness of F is conditional on the total mass (or

population number) N =
∫
ρ. The fundamental inequality of Moser and Trudinger (e.g.

see McLeod & McLeod [11]) implies that F is bounded if and only if N 6 Nc (1.8).

Turning back to the application of F to the system (1.1, 1.2), we note that F is not a

Lyapunov functional unless the singular limit σ = 0 is assumed. However, for σ > 0 we

can still define an extension of F into a Lyapunov functional of (1.1, 1.2), namely

ψ (ρ, S) =

∫
Ω

ρ ln ρ+
θ

2γ

∫
Ω

[
|∇S |2 + αS2

]
− θ

∫
Ω

ρS

provided θγ > 0. F is related to ψ by

F(ρ) = inf
S
ψ(ρ, S). (1.9)

It is remarkable that this extension is not a Lyapunov functional in the repelling case (cf.

Wolansky [15]).

Obviously, the existence of a time-monotone (Lyapunov) functional excludes the pos-

sibility of time-periodic solutions. This is the case for self-attraction in general (σ > 0),

and self-repulsion in the singular limit (σ = 0). The natural question which we now pose

is: can time-periodic solutions to (1.1, 1.2) exist in the non-singular limit σ > 0 in the

self-repelling case?

We conjecture that the answer to this question is negative. In fact, we cannot point to

any mechanism which will drive a periodic solution for the self-repelling case for σ > 0,

but exclude it in the singular limit. Still, this conjecture is awaiting for a proof and

intuition can be a bad consultant, as we shall see below.

The limit σ = 0 is not the only one possible. The second singular limit ν = 0 is also of

interest. Note that, in that case, equation (1.1) takes the form

∇ · (∇ρ− θρ∇S) = 0
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which, together with the boundary condition (1.3) and the prescribed mass condition∫
ρ = N, yields

ρ = N
eθS∫
eθS

. (1.10)

When (1.10) is substituted in (1.2), we obtain the singular limit ν = 0 as the non-local

diffusion equation

∂S

∂t
= ∆S − αS + γN

eθS∫
eθS

. (1.11)

Unlike the singular limit σ = 0 (1.7), equation (1.11) has been studied very little. Global

(in time) existence of solutions is proved for N < Nc in the attractive case γθ > 0 [15].

We are not aware of any finite time blow-up result in the super-critical case N > Nc.

It is interesting to note that (1.11) has a variational formulation analogous to the Free

Energy F , namely

DN(S) = inf
ρ
ψ(ρ, S),

where the infimum is taken over the set ρ > 0 ;
∫
ρ = N. Explicitly,

DN(S) =
θ

2γ

∫
Ω

[
|∇S |2 + αS2

]
−N ln

[∫
eθS
]
.

The functional DN is, again, a Lyapunov functional for the singular limit (1.11). It is

monotone non-increasing in the self-attractive case, and monotone non-decreasing in the

self-repelling case. In particular, its critical points are equilibria (steady states) of (1.11).

The existence of monotone functionals in both singular limits excludes the possibility of

limit cycles for the single-component system (1.1, 1.2), at least in the singular limit σ = 0

or ν = 0. In the multi-component analogue (1.4, 1.5), on the other hand, we do expect

periodic solutions (and more general attracting sets) due to the possibility of conflicting

pairs. In this case there is a population i1 which is attracted to a population i2, while the

population i2 is repelled from i1. This dynamics points to a mechanism by which i1 is

chasing i2 like a dog chasing its tail, namely, a limit cycle.

The reason we concentrate on the conflicts free multi-component system (1.4, 1.5) is

that, in fact, periodic solutions do exist, under certain assumptions, also in the absence

of conflicts. This is shown in § 4, using Andronov–Hopf bifurcation. We find this result

quite surprising since, in the absence of conflicts, all populations have a mutual interest

to settle in a local minimizer of the Free Energy functional F, which is the generalization

of F in the multi-component case. This is indeed the case for the singular limit σj = 0,

but, as we prove in § 4, the diffusion rate σj play an essential rule in the dynamics.

The multi-component system introduces an additional challenge: what is the analogue

of the critical mass Nc obtained for the self-attracting, single component system? Recall

that the condition N < Nc is sufficient (and, in some cases, necessary) for the global

solvability of the single component system (1.1, 1.2) in the self-attractive case.

A version of the Free Energy functionalF for a multi-component system was introduced

in Chipot et al. [3]. The condition (1.8) is generalized (for n components) into 2n − 1

conditions: ∑
i,l∈I

aiλi,lNiNl − 8π

(∑
i∈I

Ni

)
< 0 ∀I ⊂ {1, . . . n}, I� ∅ (1.12)
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where Ni =
∫
ρi, ai and λi,j are certain constants defined in § 2. Note that in the case of a

single component (n = 1), a1 = 1, λ1,1 = θγ and (1.12) is reduced to (1.8).

In § 3 we prove that condition (1.12) is sufficient for the global solvability of (1.4, 1.5)

in the singular limit σj = 0, and for the asymptotic convergence of its solutions into

a regular steady state. This result is also generalized to the case of finite diffusion rate

σj > 0, provided some conditions on σj are assumed. It is also optimal in the case where

all pairs are mutually attracting (i.e. λi,l > 0 for all 1 6 i, l 6 n).

2 Preliminaries

2.1 Basic assumptions

We consider a boundary condition of zero flux for (1.4), that is

(∇ρi − ρi∇Si) · n̂(x) = 0; on ∂Ω × R+; 1 6 i 6 n

where Si =
∑k

j=1 θi,jsj and n̂(x) is the normal vector to the boundary at x ∈ ∂Ω. As for the

boundary condition for (1.5) we adopt either Dirichlet (sj = 0) or Neumann (∇sj · n̂ = 0)

for any x ∈ ∂Ω. In the first case, the boundary condition for (1.4, 1.5) is nonlinear, given

by

0 = sj = (∇ρi − ρi∇Si) · n̂ = 0 on ∂Ω × R+ 1 6 i 6 n, 1 6 j 6 k (2.1)

while in the second case, it is a linear set of boundary conditions:

∇ρi · n̂ = ∇sj · n̂ ≡ 0 on ∂Ω × IR+ 1 6 i 6 n, 1 6 j 6 k. (2.2)

Both (2.1, 2.2) lead to the conservation of the population’s size for each population

separately: ∫
Ω

ρi(x, t)dx =

∫
Ω

ρi(x, 0)dx ≡ Ni > 0, ∀t > 0, 1 6 i 6 n. (2.3)

Let ~θi ≡ {θi,1, . . . θi,k} ∈ IRk be the n- IRk valued mobility vectors. Likewise, let ~γi ≡
{γi,1, . . . γi,k} ∈ IRk be the n-IRk valued production/consumption vectors. Let us define the

n× n-matrix Λ ≡ {λi,l} as:

λi,l ≡
k∑
j=1

θi,jγl,j =~θi ·~γl. (2.4)

The following definition is self-explanatory.

Definition 1 (i) A population i1 is attracted (resp. rejected) to (resp. from) a population i2
if λi1 ,i2 > 0 (resp. λi1 ,i2 < 0). In particular, a population i is self-attracting (self-repelling)

if λi,i > 0 (resp. λi,i < 0).

(ii) A pair of populations i1, i2 ∈ {1, . . . n} is said to be in a conflict if λi1 ,i2 × λi2 ,i1 < 0.

In general, the matrix Λ is not a symmetric one. In this paper, however, we shall assume

that there exists n constants a1, . . . an, all different from zero, for which

aiλi,l = alλl,i, (2.5)

i.e. the matrix D~aΛ is a symmetric matrix, where D~a ≡ Diag{a1, . . . an}.
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If we assume that Λ is non-singular then there exists a k× k matrix B which transforms

~γi into ai~θi for all 1 6 i 6 n. Moreover, (2.5) implies that B can be chosen as a symmetric

matrix. This leads us to our fundamental hypothesis:

Hypothesis A There exists a vector ~a ≡ {a1, . . . an} whose components are all different from

zero, and a nonsingular, symmetric matrix B ≡ {bj,l} which satisfy

B~γi = ai~θi for all 1 6 i 6 n. (2.6)

Remark 1 Hypothesis A is equivalent to (2.5) if Λ is non-singular. We shall use the con-

vention by which there exists at least one population i for which ai > 0. Evidently, we may

always achieve this by switching form {B,~a} to {−B,−~a}, if necessary. In particular, the

conflict-free case is characterized, via Definition 1 and (2.5), by ai > 0 for all i ∈ {1, . . . n}.

A special case of Hypothesis A is n = 2 and k > 1 arbitrary. In this case, the matrix B

can always be found, provided λ1,2 × λ2,1� 0, where

a1

a2
=
λ2,1

λ1,2
. (2.7)

Another special case is obtained if k = 1 and n > 1 is arbitrary. Then we may choose the

scalar 1× 1 matrix B ≡ {1} and ai = γi/θi. In particular, it follows that ai are all positive

if all the populations are attracted to the sensitivity s (and hence attracted to each other).

In the opposite situation where θi < 0 for all populations, we may define ai = −γi/θi
and B = {−1}, using the convention defined below (2.6). In the third case we may have

mobility coefficients of different signs. This is interpreted as a ‘conflict of interests’, where

one of the populations is attracted to a second, while the second is rejected from the first

one. In particular, the coefficients ai are not all of the same sign.

Remark 2 In the remainder of the paper, we shall always assume Hypothesis A. The results

are valid for either boundary conditions (2.1) or (2.2), unless a specific reference is made to

one of the boundary conditions.

2.2 Variational formulation

Set

Fj =

k∑
l=1

flbl,j .

Define

Ψ (ρ1, . . . ρn, s1, . . . sk) ≡
n∑
i=1

ai

∫
Ω

ρi ln ρidx+
1

2

k∑
j=1

k∑
l=1

bl,j

∫
Ω

[∇sj · ∇sl + αsjsl
]
dx

−
n∑
i=1

k∑
j=1

aiθi,j

∫
Ω

ρisjdx−
k∑
j=1

∫
Ω

Fjsjdx. (2.8)
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Let ~ρ = {ρ1, . . . ρn},~s = {s1, . . . sk}. Set Dq ≡ Diag{q1, . . . ql} be the diagonal l × l matrix

where q = {q1, . . . ql}. A direct application of the definition of Ψ yields the following

lemma.

Lemma 1 The system (1.4, 1.5) can be written as

Dν

∂~ρ

∂t
= D−1

a ∇x ·
[
~ρ · ∇x δΨ

δ~ρ

]
,
∂~s

∂t
= D−1

σ B−1 δΨ

δ~s
. (2.9)

In particular, it follows that

d

dt
Ψ (~ρ(·, t),~s(·, t)) = −

n∑
i=1

(aiνi)
−1

∫
Ω

ρi

∣∣∣∣∇δΨδρi
∣∣∣∣2 dx− ∫

Ω

[
∂~s

∂t

]T
BDσ

∂~s

∂t
dx (2.10)

if {~ρ(·, t),~s(·, t)} is a classical solution of (1.4, 1.5).

Recall that the conflict-free case is characterized by ai > 0 for all i ∈ {1, . . . n}. From

this and Lemma 1, we obtain the following corollary.

Corollary 1 Ψ (~ρ,~s) is monotone along classical solutions of (1.4, 1.5) if

(a) There are no conflicts;

(b) BDσ + (BDσ)T is positive definite.

In general, the evolution system (1.4, 1.5) is not a gradient flow of Ψ and the right-

hand side of (2.10) is rarely definite. Still, we may characterize all stationary solutions by

Theorem 1.

Definition 2 If the boundary condition (2.1) is assumed, let

{s1, . . . sk} ∈ X := IH1
0(Ω, IRk).

If, on the other hand, (2.2) is assumed, set X = IH1(Ω, IRk). Also,

{ρ1, . . . ρn} ∈ Y~N :=

{
~ρ : Ω → IR+

∣∣∣∣∫
Ω

ρi = Ni;

∫
Ω

ρi log ρidx < ∞
}

(2.11)

where ~N = {N1, . . . Nn}.

Theorem 1
{
ρ

(0)
1 , . . . ρ

(0)
n ; s(0)

1 , . . . s
(0)
k

}
∈ Y~N ⊗X is a stationary solution to (1.4, 1.5) if and

only if it is a critical point of Ψ in the above domain. Moreover, ρ(0)
i are strictly positive

on Ω.

Proof of Theorem 1 The representation (2.9) immediately implies that a critical point of

Ψ is an equilibrium of (1.4, 1.5). Conversely, let Si =
∑k

j=1 θi,jsj . Then δρiΨ = ln
(
e−Siρ(0)

i

)
and (2.9) implies

∇ ·
[
ρ

(0)
i ∇

(
e−Siρ(0)

i

)]
= 0.
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The boundary condition (2.1) implies

∇
(
e−Siρ(0)

i

)
· n̂ = 0 ∀x ∈ ∂Ω.

The maximum principle now implies that e−Siρ(0)
i must be a constant throughout Ω,

hence δρiΨ = µi, where µi is a constant, corresponding to the Lagrange multiplier of the

constraint (2.11). In particular, we obtain that ρ(0)
i = µie

Si is strictly positive on Ω. q

2.3 The singular limit ~σ = 0

Define the subspaces X± of X to be the positive/negative decomposition

~φ ≡ {φ1, . . . φk} ∈ X+ ⇒
k∑
j=1

k∑
l=1

bj,l

∫
Ω

∇xφl · ∇xφjdx > 0

and

~φ ∈ X− ⇒
k∑
j=1

k∑
l=1

bj,l

∫
Ω

∇xφl · ∇xφjdx 6 0.

Since B is non-singular

X = X+ ⊕ X−. (2.12)

Define

F(ρ1, . . . ρn) ≡ inf
~s1∈X+

sup
~s2∈X−

Ψ (ρ,~s1 +~s2) ≡ sup
~s2∈X−

inf
~s1∈X+

Ψ (ρ,~s1 +~s2). (2.13)

It is easy to find an explicit expression for F as follows: let U = ul,j be the orthogonal

matrix diagonalizing B and set Sj =
∑k

m=1 um,jsm. Then

1

2

k∑
j=1

k∑
l=1

bl,j

∫
Ω

[∇sj · ∇sl + αsjsl
]
dx =

1

2

k∑
j=1

bj

∫
Ω

[
|∇Sj |2 + αS2

j

]
dx,

where bj is the jth eigenvalue of B (as in Definition 1). Similarly,

n∑
i=1

k∑
j=1

aiθi,j

∫
Ω

ρisjdx+

k∑
j=1

∫
Ω

Fjsjdx =

n∑
i=1

k∑
j=1

aiqi,j

∫
Ω

ρiSjdx+

k∑
j=1

∫
Ω

ΞjSjdx,

where

qi,j =

k∑
l=1

θi,lul,j; Ξj ≡
k∑
l=1

Flul,j .

If bj > 0, let Sj be the minimizer of

bj

2

∫
Ω

(
|∇S |2 + α |S |2 − 2

bj
ΞjS

)
dx−

n∑
i=1

ai

∫
Ω

qi,jSρidx (2.14)

over H1
0 (Ω) (resp. H1(Ω)). The minimum of (2.14) is obtained at S = Sj , which solves the

elliptic boundary value problem

−∆Sj + αSj − 1

bj

n∑
i=1

aiqi,jρi − Ξj

bj
= 0. (2.15)
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That is,

Sj(x) =
1

bj

n∑
i=1

aiqi,j

∫
Ω

Gα(x, y)ρi(y)dy + φj (2.16)

where

φj ≡ 1

bj

∫
Ω

Gα(x, y)Ξj(y)dy

and Gα(·, ·) is the Green kernel corresponding to the Dirichlet problem

(−∆x + α)Gα(x, y) = δ(|x−y|).

Multiply (2.15) by Sj and integrate by parts over Ω to obtain

bj

∫
Ω

(
|∇Sj |2 + α|Sj |2 − Ξj

bj
Sj

)
dx−

n∑
i=1

aiqi,j

∫
Ω

ρiSjdx = 0. (2.17)

Insert (2.17) in (2.14) to obtain the minimum of (2.14):

1

2

∫
Ω

ΞjSjdx− 1

2

n∑
l=1

aiql,j

∫
Ω

ρlSjdx (2.18)

where for Sj , we use (2.16). Apply the same argument for the analogous problem (2.14)

corresponding to bj < 0, where this time we maximize over S ∈ H1 (S ∈ H1
0 ) and sum

over all j and i to obtain

F(ρ1, . . . ρn) =

n∑
i=1

ai

∫
Ω

ρi ln ρidx

−1

2

n∑
i=1

n∑
l=1

aiλi,l

∫
Ω

∫
Ω

ρi(x)Gα(x, y)ρl(y)dxdy +

n∑
i=1

∫
Ω

ρiφidx, (2.19)

where we have used the definition of qi,l and (2.5, 2.6) to obtain

al

k∑
j=1

qi,jql,j

bj
= λi,l .

The singular limit ~σ = 0 for the system (1.4, 1.5) is now defined as

νi
∂ρi
∂t

= a−1
i ∇ ·

[
ρi∇ (δρiF)] . (2.20)

Equation (2.20) can be written explicitly as

νi
∂ρi
∂t

+ ∇ ·
(
ρi∇

[
n∑
l=1

λi,l∇Sl + φi

])
= ∆ρi, (2.21)

where Si are the ‘virtual’ agents determined by

Si(x) =

∫
Ω

Gα(x, y)ρi(y)dy.

The following is an immediate conclusion of Lemma 1.
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Lemma 2 Let ~ρ(·, t) be a classical solution of (2.20). Then

d

dt
F (~ρ(·, t)) = −

n∑
i=1

(νiai)
−1

∫
Ω

ρi

∣∣∣∣∇δFδρi
∣∣∣∣2 dx

≡ −
n∑
i=1

ai

νi

∫
Ω

ρi

∣∣∣∣∣∣∇
ln ρi −

k∑
j=1

θi,jsj

∣∣∣∣∣∣
2

dx. (2.22)

Analogously to Corollary 1, an immediate Corollary of Lemma 1 is:

Corollary 2 F is monotone non-increasing along classical solutions of (2.20) if and only if

there are no conflicts.

It is evident that the set of stationary solutions of (1.4, 1.5) are independent of νi and

σj . In the case ~σ = 0, one may eliminate s1, . . . , sk from the equations, using the definition

of F. The proof of Theorem 1 yields

Theorem 2 Let the conditions of Theorem 1 be satisfied. Then {~ρ(0),~s(0)} is a stationary

solution of (1.4, 1.5) subjected to (2.1) if and only if ~ρ(0) is a critical point of F, subject to

the constraint (2.11). If this is the case, then~s(0) is obtained from ~ρ(0) via (2.16).

2.4 The singular limit ~ν = 0

Define

I± = {i ∈ {1, . . . n} ; ±ai > 0} ,
~N± := {N1, . . .Nn} where Ni = Ni if i ∈ I±, Ni = 0 otherwise. (2.23)

Let Y±~N := Y~N± so

Y~N = Y+
~N
⊕ Y−~N (2.24)

and define

D~N ≡ sup
~ρ1∈Y−~N

inf
~ρ2∈Y+

~N

Ψ (~s,~ρ1 +~ρ2) ≡ inf
~ρ1∈Y+

~N

sup
~ρ2∈Y−~N

Ψ (~s,~ρ1 +~ρ2) . (2.25)

For an explicit expression for D~N , observe that the infimum (supremum) in (2.25) is

attained at

ρi = µie
∑k

j=1 θi,j sj where µi =
Ni∫

Ω
e
∑k

j=1 θi,j sj
(2.26)

provided the integral in (2.26) makes sense. Substitute ρi from (2.26) in the definition (2.8)

of Ψ to obtain

D~N (~s) = −
n∑
i=1

aiNi ln

[∫
Ω

e
∑k

j=1 θi,j sj dx

]

+
1

2

k∑
j=1

k∑
l=1

bl,j

∫
Ω

[∇sj · ∇sl + αsjsl
]
dx−

k∑
j=1

∫
Ω

Fjsjdx. (2.27)
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The singular limit~ν = 0 under the initial data ρ(·, 0) satisfying
∫
Ω
ρ(x, 0)dx = Ni, 1 6 i 6 n,

is now defined, analogously to (2.20), as

∂~s

∂τ
= D−1

σ B−1 δD~N

δ~s
. (2.28)

The explicit form of (2.28) is given by

σj
∂sj
∂t

= (∆− α)sj +

n∑
i=1

γi,j
Nie

∑k
l=1 θi,l sj∫

Ω
e
∑k

l=1 θi,l sj
+ fj . (2.29)

The analogue of Lemma 2, Corollary 2 and Theorem 2 evidently holds for the singular

limit (2.29). We summarize it in Theorem 3.

Theorem 3 Let~s(·, t) be a classical solution of (2.29). Then

d

dt
D~N(~s(·, t)) = −

∫
Ω

[
∂~s

∂t

]T
BDσ

∂~s

∂t
dx (2.30)

In particular, D~N(~s(·, t)) is monotone non-increasing along time-dependent solution of (2.28)

if BDσ+(BDσ)T is positive definite.
{
~ρ(0),~s(0)

}
is a stationary solution of (1.4, 1.5) subjected

to (2.11) iff
{
~s(0)
}

is a critical point of D~N and ~ρ(0) given by (2.26).

3 Equilibria in the conflict-free case

Our interest in this section is the case in which the functionals Ψ ,F are monotone for the

corresponding systems (1.4, 1.5) and (2.20), respectively. It is evident from Corollary 1 and

Corollary 2 that a conflict-free condition is necessary for Ψ to be monotone for (1.4, 1.5),

and sufficient for F to be monotone for (2.20). Hence, in this section we shall impose the

standing assumption of a conflict-free system. This is equivalent to ai > 0 for 1 6 i 6 n

which, in turn, is equivalent to Y~N ≡ Y+
~N

(cf. (2.24)). In addition, we shall concentrate

on two-dimensional domains Ω and Dirichlet b.c. (2.1). To elaborate, we summarize our

standing assumption below:

H0

(i) Ω ⊂ IR2 is a bounded domain with a C1 smooth boundary.

(ii) The source terms fj are in L2(Ω) for any 1 6 j 6 k.

(iii) The system is conflict-free.

(iv) The Dirichlet boundary conditions (2.1) hold for the sensitivity agents sj .

In addition to the standing assumption (H0), we shall refer to some of the following

assumptions:

H1 All populations are self-attracting, i.e. λi,i > 0 for all 1 6 i 6 n.

H1.1 All populations are mutually attractive, i.e. λi,l > 0 for all 1 6 i, l 6 n,

H1.2 The matrix B is positive definite, i.e. X+ = X.
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The fact that Assumption (H1.1) implies (H1) is trivial. In addition (H1.2), together

with the conflict-free assumption (ai > 0), implies assumption (H1), since

(~γi)
T B~γi = aiλi,i > 0.

In certain cases, we shall replace (H1.2) by the still stronger assumption:

H1.2.1 The matrix DσB + BDσ is positive definite.

Remark 3 Assumption (H1.2.1) is indeed stronger than (H1.2). In fact, the following is an

elementary exercise: If B and D are symmetric matrices, D and DB + BD are positive

definite, then B is positive definite as well.

The purpose of this section is to prove the stability of minimizers under either (1.4, 1.5)

or (2.20), respectively. For this, we need first to prove the global (in time) solvability of

the above systems, as well as the actual existence of such equilibria. To answer the last

question, we introduce the following theorem.

Theorem 4 Assume (H0) and either

(i) (H1) and Ω is the disk |x| < R ⊂ IR2, or

(ii) (H1.1).

Assume, in addition,

(iii) For any I ⊂ {1, 2 . . . n}, I� ∅, the inequality

8π

(∑
i∈I

aiNi

)
−∑

i∈I

∑
l∈I

aiλi,lNiNl > 0

holds. Then

(a) If alternative (ii) holds, then F is bounded from below on Y~N , and there exists a

minimizer {~ρ(0)} ∈ Y~N of F. If alternative (i) holds, then the same is true for the set

of all radial functions ~ρ =~ρ(|x|) in Y~N .

(b) If condition (H1.2) replaces (H1.1), then Ψ and D~N are bounded from below on X×Y~N

and X, respectively. Moreover, a minimizer {~ρ(0),~s(0)} (resp. {~s(0)}) exists for Ψ and

D~N on the underlying spaces.

Proof of Theorem 4 The first part of the theorem follows from Theorem 1.1 in Chipot

et al. [3]. To show the second part, we introduce:

Lemma 3 Under assumptions (H0) and (H1.2), the following are equivalent (Here ~ρ(0) and

~s(0) are related by (2.26) and (2.16), respectively):

(i) ~ρ(0) is a local (global) minimizer of F on Y~N .

(ii)~s(0) is a local (global) minimizer of D~N on X.

(iii)
{
~ρ(0) ; ~s(0)

}
is a local (global) minimizer of Ψ on Y~N ⊗ X.
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Before turning to the proof of Lemma 3, we need

Definition 3 Let ~S~ρ be the extremizer of Ψ (~ρ,~s) on X, where ~ρ is prescribed. Equivalently,
~S~ρ is the solution vector of (2.15), where ~ρ is the source term. Likewise, let ~ρ~s ∈ Y~N be the

extremizer of Ψ (~ρ,~s) on Y~N where~s is prescribed. Equivalently, ~ρ~s is given by (2.26).

Claim Under assumption (H0), ~S~ρ is a continuous mapping from Y~N to X, and ~ρ~s is a

continuous mapping from X to Y~N .

Proof of Lemma 3 Let ~ρ(0) be a local minimizer of F. To show (i) =⇒ (iii),

Ψ (~ρ,~s) > Ψ
(
~ρ,~S~ρ

)
≡ F (~ρ) >F (~ρ(0)

)
for any~ρ in a Y~N neighbourhood of~ρ(0), and for any~s ∈ X. The argument for (i) =⇒ (iii)

is analogous.

Assume now (iii). Then

Ψ (~ρ,~s) > Ψ
(
~ρ(0),~s(0)

)
(3.1)

for any {~ρ;~s} in a Y~N ⊕ X-neighbourhood of
{
~ρ(0);~s(0)

}
. By our claim, ~S~ρ is also in a

X-neighbourhood of~s(0), hence

F (~ρ) ≡ Ψ
(
~ρ,~S~ρ

)
> Ψ

(
~ρ(0),~s(0)

) ≡ F (~ρ(0)
)
.

for any ~ρ in a Y~N neighbourhood of ~ρ(0), hence (iii) =⇒ (i). Analogously, (iii) =⇒ (ii).

This implies the proof of Lemma 3 and Theorem 4. q

q

By Theorem 4 we obtain a non-trivial set of critical points of F in Y~N , hence a

non-trivial set of critical points of D~N on X and of Ψ on X× Y~N . To prove the stability

of such minimizers we need, in particular, the global solvability of the corresponding

systems:

Theorem 5 Assume the conditions of Theorem 4. Then, for any ~ρ(·, 0) ∈ Y~N (~ρ(·, 0) =

~ρ(|x|, 0) if alternative (i) holds) there exists a global (in time) classical solution of (2.20) with

~ρ(·, 0) as an initial data. If we replace conditions (H1) in (i) and (H1.2) in (ii) by (H1.2.1),

then the same holds for the systems (1.4, 1.5) and (2.29), where {~ρ(·, 0),~s(·, 0)} ∈ Y~N × X

and {~s(·, 0)}, respectively, are initial data. Moreover, the limit

lim
t→∞~ρ(·, t) =~ρ(0); lim

t→∞~s(·, t) =~s(0) (3.2)

holds in L∞, where ~ρ(0) ∈ Y~N and~s(0) ∈ X are critical points of F and D~N , respectively.

Corollary 3 Under the assumptions of Theorem 4, {~ρ(0)} is a stable equilibrium of (2.20)

iff it is a local minimizer of F on Y~N . If this is the case, then the corresponding ~s(0) is a

local minimizer of D~N on X, {~ρ(0),~s(0)} is a local minimizer of Ψ in Y~N ⊕ X and are stable

equilibria of (2.29) and (1.4, 1.5), respectively.
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Proof of Theorem 5 The global solvability and regularity of solutions to the system (2.20)

and (1.4, 1.5) is a slight generalization of known results for the case of single component

system [1]. The local solvability and regularity of (2.28) is evident by elementary arguments.

To obtain the global solvability of (2.28) (which is the easier part of the proof) we only

need to derive an a priori Lp(Ω) estimate on the right-hand side of (2.29) for some p > 1.

We know by Theorem 4 that D~N is bounded from below. Since D~N is non-increasing by

Theorem 3 and assumption (H1.2.1), it follows that D~N (~s(·, t)) is bounded from below for

any t > 0 for which the local solution exists. Denote Dε~N the functional D~N where B is

replaced by B− εI, where I is the unit k × k matrix and ε > 0. Evidently, we may choose

ε small enough for which the conditions of Theorem 4 are still satisfied for Dε~N . Then

ε ||~s(·, t)||X = D~N (~s(·, t))−Dε~N (~s(·, t)) 6 D~N (~s(·, 0)) + C

where Dε~N > −C on X. Hence ||~s(·, t)||X is a priori estimated for t > 0. In particular,

~θi ·~s(·, t) is uniformly bounded in H1
0 for any t > 0. Using the Trudinger inequality [11],

we obtain that exp(~θi ·~s(·, t)) is uniformly bounded in Lp(Ω) for any 1 6 p < ∞ and any

1 6 i 6 n. In addition, we observe that
∫

exp(~θi ·~s(·, t)) is uniformly bounded from below,

for otherwise D~N (~s(·, t)) will be unbounded from above (cf. (2.27)). This implies that the

source terms in (2.29) are uniformly bounded in Lp for some p > 1.

We turn now to the proof of global solvability in the case of the system (1.4, 1.5). The

corresponding problem for a single-component system and Neumann b.c. was proved in

Biler [1]. For this reason, we shall only sketch the proof, indicating the points of difference

between our case and Biler’s.

We shall use standard notation || · ||k,p for the Sobolev norm in Wk,p and shall abbreviate

|| · ||0,p ≡ | · |p.
We first show a uniform (in time) estimate on |ρi ln ρi|1 for 1 6 i 6 n. Set i = 1 and

aε1 = a1 − ε, aεi = ai for n > i > 1, θε1,j =
(
1 + ε(a1 − ε)−1

)
θ1,j and θεi,j = θi,j for n > i > 1,

1 6 j 6 k. Note that aiθi,j = aεi θ
ε
i,j for all 1 6 i 6 n, 1 6 j 6 k. Let us denote Ψε the

functional (2.8), where {ai} and {θi,j} are replaced by {aεi} and {θεi,j}. Again, we choose ε

sufficiently small for which the conditions of Theorem 4 still hold for Ψε. It then follows

that

ε |ρ1(·, t) ln ρ1(·, t)|1 = Ψ (~ρ(·, t),~s(·, t))−Ψε (~ρ(·, t),~s(·, t)) 6 C +Ψ (~ρ(·, 0),~s(·, 0)) ,

where Ψε > −C . By symmetry |ρi ln ρi|1 is uniformly bounded for all 1 6 i 6 n.

Next we show a priori estimate for ||~s||X (equivalent to ||s||1,2) independent of t. For

this, choose some ~ζ ∈ IRk and set Bε = B− ε~ζ ⊗~ζT . If we replace~γi by

~γεi :=

[
I +

(
B− ε~ζ ⊗~ζT

)−1
~ζ ⊗~ζT

]
~γi,

then B~γi = Bε~γεi := ai~θj . Set Ψε as before, where B replaced by Bε, then

ε
∣∣∣~ζ · ∇~s(·, t)∣∣∣2

2
= Ψ (~ρ(·, t),~s(·, t))−Ψε (~ρ(·, t),~s(·, t)) 6 C +Ψ (~ρ(·, 0),~s(·, 0)) .

Since ~ζ is arbitrary we obtain a priori estimate for ||~s||1,2.
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Next we multiply the ith equation of (1.4) by ρi and integrate by parts, using the

boundary condition (2.1), to obtain

1

2

∂

∂t
|ρi|22 + νi |∇ρi|22 =

k∑
j=1

θi,j

∫
Ω

ρi∇ρi · ∇sj 6 C|ρi|4|∇ρi|2 |∇~s|4 . (3.3)

To estimate the right-hand side of (3.3) we use the logarithmic inequality

|ρ|44 6 δ||ρ||31,2|ρ ln ρ|1 + Cδ |ρ|41
for arbitrary small δ > 0 (cf. [2, eq. (32)], and the Sobolev inequality

|∇s|4 6 C|∇3s|1/42 |∇s|3/42 .

In addition,

|ρ|22 6 C||ρ||1,2|ρ|1
implies that |ρi|2 can be controlled by ||ρi||1,2, using |ρi|1 ≡ Ni. Finally, the estimate∫ t

0

||sj(·, t)||23,2 6 C
(

max
16i6n

∫ t

0

||ρi(·, s)||21,2ds+ 1

)
(3.4)

follows from the diffusion equations (1.5). The same estimate was given in Biler [1] for

Neumann b.c., where integration by parts of the corresponding diffusion equation is

possible. In our case (2.1), such integration by parts is impossible, so we justify (3.4) in

the appendix.

Collecting all the above estimates, we end up with an a priori bound on |~ρ|2 which is

sufficient for extending the local solution into a global one and to (3.2) [2]. The case of

the system (2.20) requires only minor modifications. q

4 Limit cycles

From Lemma 2 we obtain that, in the case of a conflict-free system (ai > 0), the functional

F is monotone for the singular system (2.20), hence no limit cycles can exist. The same

result holds for the system (1.4, 1.5) under the additional condition that DσB + BDσ is

positive definite (see (2.10)). We shall now demonstrate, via an explicit example, that if

the condition DσB + BDσ > 0 is relaxed into the condition that B is positive definite

(cf. the remark below condition H1.2.1, § 3) then non-stationary attractors may exist even in

the case of a conflict-free system.

For our result we use the Neumann b.c. (2.2) and fj = 0. In this case there always

exists a constant steady state, determined only by the populations Ni, namely

ρ
(0)
i =

Ni

|Ω| ; i = 1, . . . n (4.1)

where |Ω| is the volume (area) of the domain Ω. The corresponding sensitivities are

(c.f (1.5))

s
(0)
j =

∑
i γi,jNi

α|Ω| ; j = 1, . . . k. (4.2)

We shall consider the singular limit (2.29). Our result is based on the Andronov–Hopf
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bifurcation theorem. To start with, let us compute the linearization of (2.29) at the steady

state. The second derivative δ2
~sD~N at a stationary~s(0) induces the operator L via〈
~ψ, δ2

~s(0)D~N
~φ
〉

=
〈
~ψ,L~φ

〉
,

where

L~φ = −B (∆− α)~φ−G~φ+~P(~φ).

Here G is a k × k matrix-valued function given by

Gj,l =

k∑
i=1

aiθi,jθi,lρ
(0)
i , (4.3)

while ~P is a projection-matrix operator given by

~P = {Pj,l} ; Pj,l(φ) ≡
k∑
i=1

aiθi,jθi,lPρ
(0)
i

(φ)

and

P
ρ

(0)
i

(φ) ≡ ρ
(0)
i

Ni

∫
Ω

ρ
(0)
i φdx.

Using (4.1) we set

Gj,l =

k∑
i=1

aiθi,jθi,l
Ni

|Ω| . (4.4)

We note that L is a self-adjoint operator. In addition, it is positive definite if and only if

the operator

B−1/2LB−1/2 = − (∆− α)− B−1/2GB−1/2 + B−1/2~PB−1/2

is positive definite.

Given a domain Ω ∈ IRm, let

0 = λ0 < λ1 6 . . . 6 λj →∞ (4.5)

be the eigenvalues of the negative Laplacian −∆ under Neumann b.c. in Ω.

Lemma 4 The eigenvalues and eigenfunctions of B−1/2LB−1/2 are given by

α; ψ
(j)
0 ; j = 1, 2 . . . k is a basis of IRk

λi + α− µj; ψ
(j)
i =~vjφi i = 1, 2 . . . , j = 1, 2 . . . k (4.6)

where λi are given by (4.5), φi the corresponding eigenfunctions of the Laplacian, while

µj and ~vj ∈ IRk are the eigenvalues of the eigenvectors of the matrix B−1/2GB−1/2. In

particular, B−1/2LB−1/2 and L are positive iff

λ1 + α− µ > 0 (4.7)

where µ = max µj .
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Proof The non-constant eigenstates are obtained by separation of variables. For the con-

stant states ψ0, note that
(
~P−G

)
ψ
j
(0) = 0 hence B−1/2LB−1/2ψ

j
(0) = αψ(0) as claimed. q

Corollary 4 Under condition (4.7), the constant steady state (4.2) is stable if σj = σl > 0

for all 1 6 l, j 6 k.

Proof By Theorem 4 we obtain that DN is monotone if DσB + BDσ is positive definite.

Since D is a multiple of the identity and B is positive definite by assumption, then we

have the monotonicity of DN in our case. By Lemma 1 we have that the constant state

~s(0) is a local minimizer of DN . This implies Lyapunov-stability. q

Let us now write the linearization of (2.28) at the steady solution~s(0):

∂~φ

∂t
= −D−1

~σ B−1L~φ. (4.8)

Let ~φ(0) ∈ Z := IH1(Ω, IRk). Then (4.8) induces a semigroup flow in Z. We may split Z

into a direct sum IRk ⊕ Z0 (i.e. Z0 is the orthogonal complement to the constants in Z).

Since (~P − G)~φ = 0 on constants and P~φ = 0 on the orthogonal complement, we may

reduce the linearized equation to the orthogonal complement of constants, and omit the

action of P from L. Thus

∂~φ

∂t
= D−1

~σ

{
(∆− α)I + B−1G

}
~φ; φ(0) ∈ Z0 (4.9)

defines a semigroup flow on Z0.

Let

G∗ = B−1/2GB−1/2.

With this definition we may rewrite (4.9) as

∂~φ

∂t
= D−1

~σ B−1/2 {(∆− α)I + G∗}B1/2~φ. (4.10)

Assume that λ1 is a simple (non-degenerate) eigenvalue of the Laplacian and let φ1 be

the corresponding eigenstate. Then the space Z1 = Sp{~vφ1 ; ~v ∈ IRk} is a k-dimensional

invariant space of Z0 for (4.10). With

Q∗ = G∗ − (λ1 + α)I; Q = B−1/2Q∗B1/2,

we may represent (4.10) on Z1 simply as

∂~v

∂t
= D−1

~σ Q~v. (4.11)

We shall now show that a set of mobility and production vectors can be found such

that there exists ~σ = {σ1, . . . σk} ∈ (IR+
)k

and positive population numbers {N1, . . . Nn}
for which the system (2.28) satisfies the condition of the Hopf bifurcation at the critical

solution (4.2). Let Q∗ be some symmetric, negative definite matrix, and B a positive

definite matrix so that Q = B−1/2Q∗B1/2 has a positive diagonal element. As an example,
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we take k = 2 and define

Q∗ =

(
q1 p

p q2

)
, B1/2 =

(
B b

b B

)
,

where q1q2 − p2 > 0, B2 − b2 > 0, and B > 0, q1 + q2 < 0. The diagonal elements of Q

are given by q1B
2− q2b

2 and q2B
2− q1b

2, respectively. If −q1 is sufficiently large then we

can choose a pair of positive {σ1, σ2} for which

Trace
[
D−1
σ Q

]
:=

q1B
2 − q2b

2

σ1
+
q2B

2 − q1b
2

σ2
= 0.

This implies that the spectrum of (4.11) is composed of a pair of purely imaginary

eigenvalues and that ~σ is a Hopf bifurcation point for the original system (2.28) at the

critical solution (4.2), as required.

We now show how the corresponding production and mobility vectors as well as the

population densities can be obtained, such that the resulting system is conflict-free. Let

us first reconstruct the matrix G from the matrices Q, Q∗ and B given above. Note that

G = B1/2G∗B1/2 = B [Q + (λ1 + α)I]

is a symmetric k × k matrix. Moreover, we can shrink the domain Ω so that the second

eigenvalue λ1 of the Laplacian in Ω is sufficiently large, to guarantee that G is positive

definite. Thus, if we chose n = k and the mobility vectors ~θj = {θ1,j , . . . θk,j} ∈ IRk to be

the eigenvectors of G, then

Gj,l =

n∑
1

βiθi,jθi,l (4.12)

where βi > 0 are the eigenvalues of G. Comparing (4.12) with (4.4) we may set ai and the

population densities Ni such that

aiNi = βi|Ω|.
The production vectors~γi ∈ IRn are now determined, via (2.6), by

~γi = aiB
−1~θi.

Since ai are all positive by the positivity of Ni and βi, the system we obtained is consistent

with the conflict-free assumption.

Conclusion 1

There exists a conflict-free system which admits a periodic solution in the singular limit

~ν = 0.

5 Conclusion

The Keller–Segel model of chemotaxis can be extended to a system of populations and

sensitivity agents. For such a system, there is a structure which exhibit the interaction

between different populations via the agents. In particular, the notion of ‘conflict’ can

be introduced. A conflict free system admits, under certain additional assumption, a

Lyapunov functional. Using this formulation, the steady states of the systems can be

investigated via variational methods. In addition, this structure is useful to investigate

time-periodic solutions in a parameter range where a Lyapunov functional does not exist.
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6 Appendix

Consider the equation

∂u

∂t
= ∆u+ ρ ; {x, t} ∈ Ω × IR+ ,

where Ω ∈ IR2 is a bounded domain and u ≡ 0 on ∂Ω × IR+ and on Ω × {0}.
We will show the estimate:∫ T

0

|∇3u(·, t)|2dt 6
∫ T

0

||ρ(·, t)||21,2dt
Let ui(t), ri(t) be the Fourier coefficients of u(·, t), ρ(·, t) with respect to the eigenstates of

the Dirichlet Laplacian. If λi are the eigenvalues of −∆, then ||ρ(·, t)||21,2 is equivalent to∑
(λi + 1)|ri(t)|2 while |∇3u(·, t)|22 is equivalent to

∑
λ3
i |ui(t)|2. In addition

ui(t) =

∫ t

0

eλi(s−t)ri(s)ds

Let ri =
√
λiri. Then∑

λ3
i |ui|2(t) =

∑
λ3
i

(∫ t

0

eλi(s−t)r̂i(s)ds
)2

6
∑

λi

∫ t

0

eλi(s−t)r2
i (s)ds

We now integrate over t from 0 to T to obtain∫ T

0

|∇3u(·, t)|22dt 6 C
∑

λi

∫ T

0

∫ t

0

eλi(s−t)r2
i (s)dsdt 6

∑∫ T

0

r2
i (t)dt 6

∫ T

0

||ρ(·, t)||21,2dt.
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