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Shallow-water analysis of gravity-current
flows past isolated obstacles
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The flow of a partial-depth lock-exchange gravity current past an isolated bottom-
mounted obstacle is studied by means of two-dimensional direct numerical simulations
and steady shallow-water theory. The simulations indicate that the flux of the
current downstream of the obstacle is approximately constant in space and time.
This information is employed to extend the shallow-water models of Rottman et al.
(J. Hazard. Mater., vol. 11, 1985, pp. 325–340) and Lane-Serff, Beal & Hadfield
(J. Fluid Mech., vol. 292, 1995, pp. 39–53), in order to predict the height and front
speed of the downstream current as functions of the upstream Froude number and
the ratio of obstacle to current height. The model predictions are found to agree
closely with the simulation results. In addition, the shallow-water model provides an
estimate for the maximum drag that lies within 10 % of the simulation results for
obstacles much larger than the boundary-layer thickness.

1. Introduction
Gravity currents form in natural environments and engineering applications when

a heavier fluid propagates into a lighter one in a predominantly horizontal direction
(Simpson 1997). The study of gravity-current flows around bottom-mounted obstacles
has been motivated by practical applications such as the design of barriers for the
containment of heavy hazardous gases (Rottman et al. 1985; Lane-Serff et al. 1995),
powder-snow avalanches (Hopfinger 1983) and dilute ash flows (Woods, Bursik &
Kurbatov 1998); the development of strategies for controlling sedimentation (Kneller,
Bennett & McCaffrey 1999; Oehy & Schleiss 2007); and the need to obtain estimates
of the dynamic loads on submarine structures from the impact of gravity and/or
turbidity currents (Ermanyuk & Gavrilov 2005a ,b; Gonzalez-Juez, Constantinescu &
Meiburg 2007; Gonzalez-Juez, Meiburg & Constantinescu 2008, 2009a).

When a gravity current encounters an isolated, impermeable bottom-mounted
obstacle, its head first is deflected upwards and later reattaches to the bottom wall.
The current eventually re-establishes itself downstream of the obstruction, and the
flow around the obstacle becomes quasi-steady (Ermanyuk & Gavrilov 2005a ,b;
Gonzalez-Juez et al. 2008). Such quasi-steady flow long after the impact stage can be
modelled based on the existing steady shallow-water theory for the flow of a denser
fluid under a lighter fluid past bottom topography (e.g. the monographs by Turner
1973 and Baines 1995). This well-studied problem is characterized by the ratio of
the obstacle height to the undisturbed dense fluid layer height D/dl , the ratio of the
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heights of the undisturbed dense fluid layer and the light fluid layer dl/du and the
Froude number of the undisturbed flow (Baines 1995, p. 111). For D/dl → 0 the
flow problem can be analysed with linear theory, while for D/dl = O(1) nonlinearities
appear in the form of hydraulic jumps and rarefactions. When dl/du → 0, the upper
layer of light fluid can be assumed to be stationary. Consequently, the equations of
motion for the lower layer resemble those for the problem of a single layer of fluid
with a free surface flowing past bottom topography but with Earth’s gravitational
acceleration g replaced with the reduced gravity g′ = g(ρl − ρu)/ρu. This model is
called a 11

2
-layer model. For dl/du = O(1) the equations of motion for both layers

must be considered, so that one obtains a 2-layer model (or a 21
2
-layer model if a

free surface above the upper layer is accounted for). The problem of a finite-volume
gravity current flowing past a bottom-mounted obstacle was first studied by Rottman
et al. (1985) with a 11

2
-layer model and later analysed in more depth by Lane-Serff

et al. (1995) with both 11
2
- and 2-layer models, as well as a series of laboratory

experiments. The authors focused on a configuration in which the two fluid layers are
counter-flowing, so that there is no net flow across a plane perpendicular to the flow
direction (Lane-Serff et al. 1995). Co-flowing layers (Baines 1995) or counter-flowing
layers with non-zero net flow (Armi & Farmer 1986; Farmer & Armi 1986) have
been addressed as well.

When a gravity current encounters an obstacle, a portion of the dense fluid flow
passes over the obstacle, while the rest of the dense fluid flow is reflected in the
upstream direction. Considerable attention has been devoted to quantifying the
influence of the obstacle height on the over-passing flux (for the classic dam-break
problem, see Greenspan & Young 1978; Rottman et al. 1985; Lane-Serff et al. 1995),
and predictions based on steady shallow-water theory have been found to agree
well with experimental measurements (Lane-Serff et al. 1995). By comparison, less
attention has focused on the influence of the obstacle height on the front speed of
the gravity current that forms downstream. Predicting this speed is important when
the objective of the barrier is to reduce the speed of the oncoming gravity current to
protect, for example, submarine installations. Hence, our first objective is to extend the
11

2
steady shallow-water model of Rottman et al. (1985) and Lane-Serff et al. (1995),

in order to predict the front speed and the height of the current downstream of the
obstacle. As a key difference between the present analysis and that of the well-studied
problem of a flow of denser fluid under lighter fluid past bottom topography (e.g.
Baines 1995), we will not match the flow conditions far downstream of the obstacle
to those far upstream (cf. § 4.3). Throughout the present work, the predictions of the
model are compared with results from two-dimensional Navier–Stokes simulations
that capture many of the important aspects of the interaction of compositional gravity
currents with bottom-mounted obstacles (Gonzalez-Juez et al. 2008). To achieve this
first objective, simulations of the front speed and height of constant-flux gravity
currents or starting plumes (cf. Simpson 1997, p. 176) will be performed.

Recently, the time-varying force on bottom-mounted rectangular obstacles from
the impact of gravity currents has been investigated both experimentally (Ermanyuk
& Gavrilov 2005b) and numerically (Gonzalez-Juez et al. 2008). These studies
demonstrate that the magnitude of the drag increases exponentially towards a first
maximum when the current impinges on the obstacle, then goes through a transient
phase and finally reaches a quasi-steady value. Both experiments and simulations
show the drag to reach its maximum during impact, when it can be more than twice
as large as during the quasi-steady stage. Hence, our second objective is to obtain
an estimate of this maximum drag. Since the impact stage cannot be captured with
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Figure 1. Schematic of the flow configuration. A channel of length L and height H contains
a lock of length l and height h. When the gate at x = 0 is opened, a current of the denser fluid
forms and propagates towards a square ridge of side length D, which is situated a distance lc
away from the gate.

a steady shallow-water model, we will have to base this estimate on insight gained
from the Navier–Stokes simulations.

Gravity-current flows around circular cylinders mounted some distance above a
wall have received particular attention. This is motivated by the need to obtain
estimates for the time-varying force on submarine pipelines (Ermanyuk & Gavrilov
2005a; Gonzalez-Juez et al. 2009a). Even though this complex flow problem is not
amenable to shallow-water analysis, the estimate of the maximum drag for a square
ridge provided in the present work can be used as an upper bound for this problem,
based on the observations that circular cylinders experience the largest drag when
they are in contact with the bottom wall (Gonzalez-Juez et al. 2009a) and that
cylinders with square cross-sections experience larger forces than those with circular
cross-sections (Gonzalez-Juez et al. 2007, 2009a).

The paper is organized as follows. Section 2 defines the geometrical set-up of the
problem and describes the numerical simulations and parameters considered in this
work. A basic description of the flow obtained from the simulations is given in § 3. The
shallow-water model is described in § 4 and compared with results from simulations
in § 5. The estimation of the maximum drag is described in § 6, and comparisons
between the predictions of the model and results from the simulations are provided.
Finally, § 7 summarizes the main findings and conclusions.

2. Problem description and computational approach
In order to address the objectives outlined above, we conduct two-dimensional

numerical simulations of lock-exchange gravity currents interacting with square ridges.
These currents are compositional in nature, with the density difference caused by
differential concentration fields. Figure 1 shows a sketch of the channel of length L

and height H , filled with ambient fluid of density ρu and concentration cu. Submerged
in it is a lock of length l and height h, which contains the denser fluid of density
ρl and concentration cl . When the vertical gate at x = 0 is opened, a current of the
denser fluid forms with an approximate thickness of d = h/2 (Huppert & Simpson
1980; Shin, Dalziel & Linden 2004) and propagates towards the right along the floor
of the channel. After travelling a distance lc, it encounters an obstacle with square
cross-section and side length D.

The simulations are based on the dimensionless form of the two-dimensional
Navier–Stokes equations in the Boussinesq approximation (see, among others, Härtel,
Meiburg & Necker 2000; Ooi, Constantinescu & Weber 2007c). Towards this end,
we take as the characteristic length the approximate thickness of the gravity current
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d =h/2 (Huppert & Simpson 1980; Shin et al. 2004) and as the characteristic velocity
the buoyancy velocity ub =

√
g′d . The relationship between density and concentration

c is assumed to be linear and is given by ρ = ρu + (ρl − ρu)(c − cu)/(cl − cu). By using
d as a length scale and ub as a velocity scale, the following dimensionless variables,
denoted with asterisks, are defined: t∗ = t/(d/ub), u∗ = u/ub, p∗ = (p − pref )/(ρuu

2
b)

and c∗ = (c − cu)/(cl − cu). Here, u denotes the velocity vector (u = (u, v)), p the
total pressure and pref a reference pressure. With this non-dimensionalization, the
conservation of mass, momentum and concentration takes the following form:

∇ · u∗ = 0, (2.1)

∂u∗

∂t∗ + ∇ · u∗u∗ = −∇p∗ +
1

Red

∇2u∗ + c∗eg, (2.2)

∂c∗

∂t∗ + ∇ · c∗u∗ =
1

Red Sc
∇2c∗, (2.3)

where eg indicates the unit vector pointing in the direction of gravity.
The dimensionless governing parameters are the Reynolds number Red = ubd/ν

and the Schmidt number Sc = ν/κ , where ν represents the kinematic viscosity and κ

the molecular diffusivity.
The bottom (y = 0) boundary is treated as either a no-slip or a slip wall, while the

top (y =H ) boundary is considered to be a slip wall. The left (x = − l) boundary
of the computational domain, and the surface of the obstacle, is treated as a no-slip
boundary. A convective boundary condition is employed along the right boundary
(x =L − l) of the domain (Pierce 2001). The flow field is initialized with the fluid
at rest everywhere and the dimensionless concentration c∗ being one (zero) within
(outside) the lock.

A well-validated finite-volume code is used in this work (Pierce 2001; Pierce &
Moin 2004; Ooi et al. 2007c; Gonzalez-Juez et al. 2008). The momentum and
concentration conservation equations are discretized on a non-uniform Cartesian
mesh, which is refined close to the bottom wall and close to the obstacle. Time
integration is accomplished via an iterative procedure similar to the Crank–Nicolson
scheme. To ensure that the continuity equation is satisfied, a Poisson equation for the
pressure correction is solved at each time step. The simulation of irregular domains
is accomplished by means of a grid blanking methodology. Results obtained with
this code closely reproduce the experiments by Ermanyuk & Gavrilov (2005a ,b) (cf.
Gonzalez-Juez et al. 2007, 2008). Validation information is provided in the Appendix.

The computational domain length is kept at L/d = 48 for all simulations. A lock
length of l/d = 18 ensures that reflections from the left wall do not influence the
interaction between the gravity current and the obstacle, during the time of the
simulation. The distance between the gate and the obstacle is chosen as lc/d =6, so
that the current is in the constant-front-speed phase when it encounters the square
ridge (Simpson 1997, p. 167). The ratio of the channel height and the lock height
is set to H/h = 5, so that H/d =10, which approximates closely the deep ambient
case of H/d → ∞ found in practice (Gonzalez-Juez et al. 2008). The value for Red

considered in this work is 707, which is representative of laboratory gravity currents,
allows us to resolve all the scales of motion with direct numerical simulations and
is sufficiently large for Red not to be a dominant parameter of the flow problem;
selected data for Red = 3535 are also discussed. The Schmidt number Sc is kept at
unity.
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The side of the square ridge is varied in the range D/d = 0.3–1.6, which ensures
that D/d is sufficiently small not to block the current completely while being large
enough for linear theory to be invalid (Baines 1995, p. 39). For comparison, typical
gravity-current heights O(1–100 m) and obstacle length scales O(1 m) yield a range
of D/d =0.01–1.0. A grid of 2 048 × 320 is employed, along with a time step of
�t/

√
d/g′ =0.003. The grid spacing near the obstacle is at most 0.02D.

In the present work, the key control parameters of the simulations hence are the
obstacle height or square side D/d and the use of either no-slip or slip bottom
boundary conditions. With slip bottom boundaries the retarding effect of the bottom
boundary layer is eliminated, producing currents with higher dimensionless front
speeds V/

√
g′d (e.g. Härtel et al. 2000). Practical examples of gravity currents

propagating along slip boundaries concern, for example, an oil spill in the ocean
contained by a floating barrier, an inflow of fresh water acting on a pontoon bridge
or a floating tunnel in a fjord and an intrusion propagating along a sharp pycnocline.
We remark that two-dimensional simulations will be sufficient for the purpose of
the present investigation, since our earlier comparison between two- and three-
dimensional simulations (Gonzalez-Juez et al. 2008) showed that both the force
magnitude during the impact stage and the front velocity during the quasi-steady
phase are well reproduced in two dimensions.

3. Basic flow description
Figures 2(a)–2(c) show the evolution of the flow field with time during the impact

and transient stages, for D/d =1 and a no-slip bottom boundary, at Re = 707.
Figures 2(d ) and 2(e) depict the flow during the quasi-steady state for both no-slip and
slip bottom boundaries, respectively. Upon encountering the obstacle (figure 2a), the
current head is deflected upwards (figure 2b) and eventually reattaches downstream
of the obstacle (figure 2c). Subsequently, the flow around the obstacle reaches a
quasi-steady state, and the current re-establishes itself downstream of the obstacle
(figure 2d ). For the present flow parameters, the quasi-steady state is maintained
roughly during the time interval 20 � t/

√
d/g′ � 30.

The temporal evolution of the gravity-current front position is shown in figure 3
for a no-slip bottom boundary and different values of D/d . Here the current front is
defined as the x-location at which the height of the dense fluid layer, defined as

dx,t

d
=

∫ ∞

0

(
c − cu

cl − cu

)
d

(y

d

)
, (3.1)

has a value dx,t /d = 10−3, consistent with the definition employed by Cantero et al.
(2007). The gravity-current speed (V/

√
g′d) is given by the slope of the curves in

figure 3. We observe that after a transient phase lasting until t/
√

d/g′ ≈ 20, the front
speed of the current downstream of the obstacle assumes a roughly constant value
that decreases with increasing obstacle size.

Figure 4 displays the streamwise variation of the current height dx,t /d for different
obstacle sizes D/d and both no-slip (a) and slip (b) bottom boundaries. Note that the
height of the current forming downstream of the obstacle decreases with increasing
obstacle size D/d . Similar findings were observed for other sets of parameters.

As explained above, one of our objectives is the development of a model for the
prediction of the speed and height of the current downstream of the obstacle. This
model, which extends the earlier work by Rottman et al. (1985) and Lane-Serff et al.
(1995), will be described in the following.
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Figure 2. Interaction of a gravity current and a square ridge with D/d = 1 and a no-slip (a–d )
or slip (e) bottom boundary condition. The corresponding times are t/

√
d/g′ = 7.4 (a), 9.6 (b),

17.5 (c), 36.2 (d ) and 27.7 (e). The current is visualized by means of the c∗ = 0.1, 0.3, 0.5, 0.7 and
0.9 concentration contours. The current head is deflected upwards by the obstacle, overshoots
it and subsequently re-establishes itself downstream of the obstacle. Note that only a fraction
of the computational domain is shown.

4. Shallow-water model
The gravity-current flow over the obstacle during the quasi-steady state (cf.

figures 2d and 2e) can be divided into a dense fluid layer at the bottom and a
light fluid layer on top. We assume inviscid Boussinesq flow with a rigid top wall,
along with negligible mixing between the layers. For the values of H/h considered in
this work, the simulations show that the horizontal velocities in the upper layer are
small compared to those in the lower layer, so that a 11

2
-layer model can be used.

The flow is divided into five distinct regions, as shown in figure 5: the inflow region
(0), the region between the reflected flow structure and the obstacle (1), the region at
the obstacle location (2), the region immediately downstream of the obstacle (3) and
the head of the gravity current downstream of the obstacle (4). We employ subscripts
to denote the horizontal velocity u, the layer height d , the flux q = ud and the Froude
number Fr = u/

√
g′d in each region.

For the shallow-water model, the current heights in the inflow region d0 and√
g′d0 are chosen as the length and velocity scales. This is in contrast to the non-

dimensionalization employed for the simulation work, where we employed the half-
height d of the lock and

√
g′d , since they are the only quantities known a priori.

Two governing dimensionless parameters exist in the form of the ratio of the obstacle
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Figure 3. Temporal evolution of the gravity-current front position (xf /d) for no-slip bottom
boundaries and different obstacle sizes D/d: 0.3 (solid lines), 0.8 (dashed lines) and 1.2
(dash-dotted lines). After a transient phase, the front speed of the current downstream of the
obstacle becomes approximately constant. It decreases with increasing obstacle height.
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Figure 4. Streamwise variation of the current height dx,t /d: (a) at t/
√

d/g′ = 33.9 for a no-slip
bottom wall; and (b) at t/

√
d/g′ = 31.1 for a slip bottom wall. The values of D/d are 0.3 (solid

lines), 0.8 (dashed lines) and 1.2 (dash-dotted lines). The obstacle location is denoted with a
thick vertical line. Note that the height of the current forming downstream of the obstacle
decreases with increasing obstacle height D/d . The streamwise variation of dx,t /d upstream of
the obstacle indicates the presence of a hydraulic jump.
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Figure 5. Schematic showing a gravity current flowing past an obstacle during the
quasi-steady state. The present analysis divides the flow into five distinct regions.
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height and the height of the dense fluid layer of the inflow region D/d0 and the inflow
Froude number Fr0 = u0/

√
g′d0. Following Lane-Serff et al. (1995), for the purpose

of comparing with simulation results we will later set u0 equal to the front speed of
the lock-exchange gravity current and d0 equal to the thickness of the undisturbed
tail of this current. As will be discussed in more detail in § 5, for the parameter range
typically considered here the inflow Froude number is subcritical (Fr0 < 1) in currents
with no-slip bottom boundaries, whereas it is supercritical (Fr0 > 1) in currents with
slip bottom boundaries.

4.1. Region upstream of the obstacle

Figure 4 indicates the presence of a hydraulic jump some distance upstream of the
obstacle, associated with the leftmost peak of dx,t /d . A detailed inspection of the
simulation results furthermore shows that this jump moves upstream. Figure 4 also
demonstrates that the variation of dx,t /d upstream of the obstacle is smoother for the
slower current with no-slip boundaries, suggesting the presence of a smooth or an
undular jump with subcritical inflow conditions. By comparison, dx,t /d varies more
abruptly for the faster current with slip boundaries, indicating the presence of a strong
jump. No rarefactions were detected in the reflected structure. Thus, for the purpose
of developing a model, we assume that upstream of the obstacle a reflected hydraulic
jump or internal bore exists that moves upstream with a constant speed U .

After changing to a reference frame moving with the jump speed U , conservation
of mass and momentum across the jump gives

(u0 − U )d0 = (u1 − U )d1, (4.1)

1

2
g′d2

0 + (u0 − U )2d0 =
1

2
g′d2

1 + (u1 − U )2d1. (4.2)

Furthermore, conservation of mass at the obstacle, between regions 1 and 2, yields

u1d1 = u2d2. (4.3)

By following the approach of Lane-Serff et al. (1995) and applying Bernoulli’s principle
between regions 1 and 2, we obtain

1

2
u2

1 + g′d1 =
1

2
u2

2 + g′(d2 + D). (4.4)

Note that Rottman et al. (1985) proceed differently at this juncture, by replacing (4.4)
with the assumption d2 = d1 − D.

4.2. The obstacle location

Figure 6 shows the streamwise variation of the Froude number Frx,t for different
values of D/d . Here, Frx,t is defined as

Frx,t =
qx,t√
g′d3

x,t

, (4.5)

with the flux of dense fluid per unit width across an x-plane given by

qx,t√
g′d3

=

∫ ∞

0

(
c − cu

cl − cu

)(
u√
g′d

)
d

(y

d

)
. (4.6)

We consistently find an abrupt streamwise variation of Frx,t at the obstacle location,
where the critical condition Frx,t = 1 is reached for D/d � 0.5. For D/d < 0.5, the
criticality can still be achieved some distance downstream of the obstacle (cf. figure 6).
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Figure 6. Streamwise variation of Frx,t downstream of the obstacle: (a) at t/
√

d/g′ = 33.9
for a no-slip bottom wall; and (b) at t/

√
d/g′ = 31.1 for a slip bottom wall. The different

obstacle sizes D/d are 0.3 (solid lines), 0.8 (dashed lines) and 1.2 (dash-dotted lines). The
upstream face of the obstacle is located at x/d = 6. The flow reaches a critical state near the
obstacle. Further downstream (near x/d = 11 for D/d = 0.8 and near x/d =13 for D/d = 1.2),
a supercritical-to-subcritical transition occurs for subcritical inflow conditions and a no-slip
bottom wall. For supercritical inflow conditions and a slip wall, the flow remains mostly
supercritical.

For the purpose of developing a simplified flow model, we assume criticality at the
obstacle location:

u2√
g′d2

= 1 . (4.7)

Note that assuming a hydraulically controlled obstruction is common in the modelling
of single- and two-layer flows past bottom topography (e.g. for gravity-current flows,
see Rottman et al. 1985; Lane-Serff et al. 1995; Woods et al. 1998; Oehy & Schleiss
2007; for exchange flows, see Armi & Farmer 1986; Farmer & Armi 1986; for
single-layer flows, see Baines 1995, pp. 38–40).

4.3. Regions downstream of the obstacle

In order to be able to relate the properties of the current downstream of the
obstacle to the upstream flow conditions, we will now extend the approach taken by
Rottman et al. (1985) and Lane-Serff et al. (1995) and consider regions 3 and 4 (cf.
figure 5). Figure 6 shows that for all but the smallest obstacles the flow reaches a
supercritical state (Frx,t > 1) downstream of the obstacle. Even further downstream,
a supercritical-to-subcritical transition occurs for the slower current with a no-slip
bottom wall, whereas the flow remains mostly supercritical for the faster current with
a slip wall. In the terminology of Baines (1995, figures 2.9 and 2.11), we observe a
partially blocked flow with a lee jump for a no-slip bottom wall and a flow without lee
jump for a slip wall. The simulations show that the lee jump, when present, is smooth,
of small amplitude and stationary. Note that, in contrast, figure 2.12 in Baines (1995)
predicts a strong lee jump with noticeable speed (of about 0.2

√
g′d0) for the values of

Fr0 and D/d0 considered here. This discrepancy stems from the fact that in Baines
(1995) the flow structures (jumps and/or rarefactions) downstream of the obstacle
are constructed such that V4 = V0 and d4 = d0, which does not apply to the present
case (cf. figures 3 and 4).

The fact that the lee jump, if present, is stationary has two implications. First, the
flux at the obstacle equals the flux supplied to the current downstream:

q2 = q4, i.e. u2d2 = u4d4. (4.8)
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Figure 7. Streamwise variation of qx,t /
√

g′d3 downstream of the obstacle: (a) at t/√
d/g′ = 33.9 for a no-slip bottom wall; and (b) at t/

√
d/g′ = 31.1 for a slip bottom wall. The

different obstacle sizes D/d are 0.3 (solid lines), 0.8 (dashed lines) and 1.2 (dash-dotted lines).
The upstream face of the obstacle is located at x/d =6. The flux is about constant from the
obstacle to the neighbourhood of the current head far downstream of the obstacle, i.e. q2 = q4

and u2d2 = u4d4.
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Figure 8. Temporal variation of qx,t /
√

g′d3 at the obstacle location (x/d = 6) for no-slip (a)
and slip (b) bottom boundaries and for different obstacle sizes: D/d =0.3 (solid lines), 0.8
(dashed lines) and 1.2 (dash-dotted lines). Note that beyond the impact stage, the flux remains
approximately constant with time during the quasi-steady stage.

This is confirmed by the simulations: figure 7 shows that for each value of D/d

the flux qx,t /(g
′d3)0.5 is approximately constant with x between the obstacle and

some distance upstream of the current head. Only in the immediate neighbourhood
of the head do we observe more substantial variations of the instantaneous flux,
as a result of unsteady dynamics. Moreover, figure 8 shows that this flux remains
approximately constant with time at the obstacle (x/d = 6) during the quasi-steady
period. Furthermore, the lee jump, if present, does not catch up with the front
of the downstream current, implying that the front conditions of the current are
independent of the events at the obstacle location. As a consequence of these two
observations, detailed information about the transition from region 3 to region 4 is
not required to determine the speed and the height of the front. Rather, it suffices
to know that q2 = q3 = q4. In fact, region 3 could be eliminated altogether for the
purpose of determining the front properties. Nevertheless, we do keep region 3 in our
consideration, in order to be consistent with previous work (Baines 1995).

At this point, with Fr0 and D/d0 given, the five equations (4.1)–(4.4) and (4.7) can
be solved iteratively for the five unknowns u1, d1, U , u2 and d2. Furthermore, we have
made the observation that the flux passing over the obstacle (q2 = u2d2) approximately
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ρ = ρu g
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Figure 9. Schematic of the flow configuration for constant-flux gravity-current simulations.
A denser fluid is injected through a slot of height d into a rectangular channel of length L
and height H containing a quiescent ambient fluid.

equals the flux near the head of the current (q4 = u4d4) (cf. (4.8)). However, (4.1)–(4.4),
(4.7) and (4.8) do not suffice for determining both the speed u4 and the height d4

of the gravity current downstream of the obstacle. In order to close the system of
equations, we require one additional relationship. In this regard, the observation of
an approximately constant flux with time in the Navier–Stokes simulations suggests
that we take a closer look at the relationship between front velocity and thickness for
constant-flux currents.

4.4. Constant-flux gravity currents

Consider a rectangular channel of length L and height H , in which a denser fluid
is being injected into a quiescent ambient fluid through a slot of height d 
 H (cf.
figure 9). Note that the slot height in this flow in a sense corresponds to half the
lock height in the problem described in § 2, as both represent approximate measures
of the gravity-current height. We assume the inlet velocity Vin to be constant across
the slot. The flow that forms some distance downstream from the inlet is referred to
as a constant-flux gravity current or starting plume. We neglect the entrainment of
ambient fluid, so that the volume flux per unit width q = dVin is preserved downstream.
The momentum flux, on the other hand, varies in the streamwise direction, as it is
affected by the horizontal gradient of the hydrostatic pressure. Didden & Maxworthy
(1982) analysed such flows and showed that when gravitational and inertial forces
are in balance (Simpson 1997), their front velocity Vcf and thickness dcf follow the
relationships

Vcf = C(g′q)1/3, (4.9)

dcf =
1

C

(
q2

g′

)1/3

. (4.10)

The inviscid theory of Benjamin (1968), based on Bernoulli’s principle, yields Fr =
Vcf /

√
g′dcf =

√
2 and C = 21/3.

4.5. Model predictions

We can now compute the front speed V4/
√

g′d0 and thickness d4/d0 of partially
obstructed currents as functions of D/d0 and Fr0. To do so, we close the system of
equations given by (4.1)–(4.4), (4.7) and (4.8) with (4.9) and (4.10). This approach
holds for partially obstructed currents whose front speed is constant with time, i.e.
governed by a balance of gravitational and inertial forces (Simpson 1997). Initially,
we will employ Benjamin’s value for C (Benjamin 1968). Further below, we will also
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Figure 10. Effect of D/d0 on the over-passing flux q4/

√
g′d3

0 of partially obstructed currents

for different values of Fr0: 0.7 (solid line), 0.9 (dashed line), 1.1 (dash-dotted line) and 1.3
(dotted line). Results using the shallow-water model with Benjamin’s value C = 21/3 are shown.
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Figure 11. Effect of D/d0 (a) on the front speed V4/
√

g′d0 and (b) on the thickness d4/d0 of
partially obstructed currents for different values of Fr0: 0.7 (solid line), 0.9 (dashed line), 1.1
(dash-dotted line) and 1.3 (dotted line). Results using the shallow-water model with Benjamin’s
value C =21/3 are shown. The isolated obstacle reduces the speed and height of the downstream
gravity current by reducing its flux.

explore the strategy of employing empirical values for C obtained from simulations,
in order to improve the accuracy of the model predictions.

For C =21/3, the model predictions for the flux q4/
√

g′d3
0 , front speed V4/

√
g′d0 and

thickness d4/d0 of the gravity current downstream of the obstacle are shown in figures
10 and 11. Figure 10 shows a noticeable decrease of the flux as the obstacle height
increases. This reduced flux renders the downstream current both slower and thinner,
as shown in figure 11, consistent with (4.9) and (4.10). Note that in figure 11(b) the
decrease of d4/d0 with D/d0 is approximately linear.

5. Comparison of model predictions and Navier–Stokes simulations
For the purpose of comparing predictions of the above model with Navier–Stokes

simulation results, we set u0 and d0 equal to the front speed V and thickness of
the oncoming current, respectively. These quantities are obtained from simulations of
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unobstructed gravity currents as follows. The current front speed V/
√

g′d is calculated
as described in § 3, while the thickness d0 is evaluated by spatially averaging dx,t from
x = 0 to the front location x = xf . For Re =707 and H/h =5, we find V/

√
g′d = 0.83

(1.00) for no-slip (slip) bottom boundaries. This result for the slip bottom is within
5 % of the relationship V/

√
g′d = (1−d/H )0.5 given by Shin et al. (2004). Furthermore,

we observe d0/d = 0.88 (0.82) for no-slip (slip) bottom walls. Hence, for the Froude
number Fr0 = u0/

√
g′d0 of the unobstructed current we obtain Fr0 = 0.88 (1.11) for

no-slip (slip) bottom walls. By comparison, past experiments show Fr0 = 0.86–1.08
for H/h ≈ 5, though d0 is defined in different ways (using the data of figures 13 and
14 for h/H = 0.17 of Shin et al. 2004, equation (2.1) of Huppert & Simpson 1980 and
equation (16a) of Lane-Serff et al. 1995). Note that for a no-slip bottom the inflow
conditions are subcritical (Fr0 < 1), while for a slip bottom they are supercritical
(Fr0 > 1).

The front speed V4 of the gravity current downstream of the obstacle is calculated
by tracking the front of the current in the interval 14 � xf /d � 20, where its speed
is seen to be approximately constant (cf. figure 3). The height d4 of the current is
found by spatially averaging dx,t in the interval 10 � x/d � xf /d , at a time when the
front is located at 20 � xf /d � 22. The flux q4 is calculated by time averaging qx,t in
the interval 21 � t/

√
d/g′ � 28, at the location x = lc + D/2. Some uncertainty in the

calculations of V4, d4 and q4 result from the choice of intervals over which spatial
and temporal averages are taken, since these quantities are not exactly constant along
the streamwise direction or with time. In the following, we present estimates for
these uncertainties. Consider a quantity f > 0 which depends on the variable s and
is averaged in the interval s0 � s � sf . We define the average f̄ and the deviation f ′

from the average as

f̄ =

∫ sf

s0

f ds, f ′ =

∫ sf

s0

|f − f̄ | ds. (5.1)

Here, f̄ represents V4, d4 or q4; s represents either x or t; and f ′ is taken, in the
present context, as the uncertainty in the calculation of f̄ . As indicated in figures 12
and 14 by means of error bars, the degree of uncertainty is very small for V4 and
somewhat larger for d4 and q4. We remark that the uncertainty of d4 could be reduced
somewhat by avoiding the head of the current when taking the average; however,
this would add the ambiguity of defining the head of the current for every set of
conditions.

Figure 12 compares model predictions (employing the value of C = 21/3 given by
Benjamin 1968) and Navier–Stokes simulation results for the influence of D/d0 on
V4/

√
g′d0 and d4/d0. While most of the simulation data are for Red = 707, a few data

for Red = 3,535 are included for no-slip boundaries. Overall, for no-slip boundaries
the current velocity is overpredicted by about 40 %, while the height is underpredicted
by about 30 %. The slightly larger values of V4/

√
g′d0 and smaller values of d4/d0, for

the larger Red , reflect the larger value of Fr0 = 0.93 at Red = 3535, as compared to 0.88
at Red = 707. In general, the model predictions do not improve notably by increasing
Red from 707 to 3535. On the other hand, for slip boundaries the model predictions
agree closely with the Navier–Stokes results over the entire range of obstacle heights.
In summary, the inviscid model predicts the speed and height of the downstream
current quite accurately for slip boundaries, whereas substantial discrepancies are
observed for the case of no-slip boundaries.
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Figure 12. Effect of D/d0 on the front speed V4/
√

g′d0 (a,b) and thickness d4/d0 (c,d ) of
partially obstructed currents with no-slip (a,c) or slip (b,d ) bottom boundaries. Results using
the shallow-water model with the value for C given by Benjamin (1968) are shown (solid
lines), along with results from the simulations at Red = 707 (circles) and Red =3535 (squares).
For slip walls, we observe good agreement between the model prediction and the simulation
results, whereas for no-slip walls the model overpredicts (underpredicts) the velocity (height)
of the current.

We now explore the idea of improving the model predictions for no-slip boundaries
by employing empirical values of C, in place of the value C = 21/3 given by Benjamin
(1968). Towards this end, we conducted a series of Navier–Stokes simulations of
constant-flux currents in order to determine C-values for a variety of different flow
conditions.

The computational approach is similar to that explained in § 2, with the following
differences. The flow configuration used is that shown in figure 9. The slot width
d is now used as the length scale and the buoyancy velocity

√
g′d as the velocity

scale. At the left boundary (x = 0), a uniform inflow is prescribed for 0 <y <d ,
while the region d < y < H is treated as a no-slip wall. The length and height of the
computational domain are L/d = 40 and H/d = 10, respectively. The following values
for the independent parameters Red and Vin/

√
g′d are considered: Red = 100, 707,

1000 and 10 000 and Vin/
√

g′d = 0.625, 1 and 1.2. Note that the inflow velocity is
varied to consider both sub- and supercritical inlet conditions. Furthermore, both no-
slip and slip bottom boundary conditions are considered. The front speed is calculated
by tracking the front of the current Vcf in the range 5 � xf /d � 25. The height dcf is
determined by spatially averaging dx,t in the interval 10 � x/d � xf /d when the front
is at xf /d ≈ 30. Uncertainties in the calculation of this speed and height are estimated
as described previously.

For the parameter range investigated, the effect of Vin/
√

g′d on C and Fr was
observed to be less than 2 %; so it could be neglected. For Vin/

√
g′d = 0.625, figure 13

shows the effect of Re on C and Fr , for both no-slip and slip bottom boundaries. For
Red � 707 and a slip bottom boundary, the values of C and Fr are within 10 % of
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Figure 13. Effect of Red on C (circles) and Fr (triangles) of constant-flux gravity currents
with no-slip (dashed lines) and slip (solid lines) bottom boundaries for Vin/

√
g′d = 0.625. The

theoretical values for C and Fr by Benjamin (1968) are also indicated. The values for C and
Fr found here are consistent with previous theoretical and experimental findings.

No-slip bottom Slip (frictionless) bottom

Constant flux Partially obstructed Constant flux Partially obstructed Benjamin (1968)

C 0.92 ± 0.01 0.92 ± 0.03 1.12 ± 0.01 1.24 ± 0.04 1.26
Fr 0.94 ± 0.06 0.84 ± 0.07 1.27 ± 0.10 1.28 ± 0.11 1.41

Table 1. Comparison of the values for C and Fr obtained from Navier–Stokes simulations of
constant-flux and partially obstructed currents, respectively, with either no-slip or slip bottom
boundary conditions at Red = 707. Partially obstructed and constant-flux gravity currents are
seen to give rise to approximately identical values of C and Fr , which confirms that the former
can be treated as constant-flux currents in the present analysis.

those given by the theory of Benjamin (1968). The difference between the theoretical
and simulation results can be attributed to the finite values of Red and H/d in the
simulations, while these parameters are infinite in the theory of Benjamin (1968). For
no-slip bottom boundaries, the values of C and Fr obtained from the simulations
are consistent with experimental observations for Red =O(103) and higher, where
Keulegan (1958) and Wood (1966) found C =1.06 and Fr = 1.07–1.09. They also
agree with experiments for Red = O(102) and less, for which Braucher (1950), Britter
& Linden (1980) and Hogg, Hallworth & Huppert (2005) measured C = 0.65–0.9 and
Fr = 0.8–0.9 (cf. the data given in Britter & Linden 1980 for a zero slope and in
Hogg et al. 2005 from their experiments 5, 7–9, 16 and 20 for vanishing ambient flow
and a source of saline fluid.)

As a next step, we calculate values of C and Fr4 for currents forming downstream
of obstacles, using simulation data for V4, d4 and q4. The effect of D/d0 on C and
Fr is observed to be small and does not follow any trend. This is notable, since at
large values of D/d0 the current can be considerably distorted (cf. figure 4). More
importantly, the mean values of C and Fr , as D/d0 is varied, are close to those given
by simulations of constant-flux currents at the same Red (Red = 707) (cf. table 1). This
observation further supports the approach of modelling the current downstream of
the obstacle as a constant-flux current. We note that the uncertainties in calculating
V4, d4, q4, Vcf and dcf , described earlier, enter into the final calculation of C and
Fr and are shown in table 1. The lower Fr seen in partially obstructed currents
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Figure 14. Effect of D/d0 on the front speed V4/
√

g′d0 (a) and thickness d4/d0 (b) of partially
obstructed currents with no-slip bottom boundaries. Model results using empirical values for
C are shown (solid lines), along with results from the simulations at Red = 707 (circles). The
value for C employed is 0.92 and corresponds to that found for constant-flux gravity currents
at Red = 707 (cf. table 1). By selecting a value of 0.92 instead of 21/3 for C (cf. table 1),
which reflects the effect of bottom friction, the model predictions for no-slip currents improve
notably.

with no-slip bottom boundaries may to some extent be due to the smaller thickness
d4/d0 seen in these currents, for which the retarding effect of friction becomes more
important.

By selecting a value of 0.92 instead of 21/3 for C (cf. table 1), which reflects the
effect of bottom friction, the model predictions for no-slip currents improve notably
(cf. figure 14). We note that employing Fr0 values from Shin et al. (2004), rather than
from simulations of unobstructed currents, generally leads to good agreement with
the simulation results as well, although the discrepancy is somewhat larger than that
in figures 12 and 14, especially for d4/d0.

To conclude, for slip bottom boundaries the theoretical C-value of Benjamin (1968)
results in accurate predictions of both the velocity and the height of the current
downstream of the obstacle. On the other hand, for no-slip boundaries and the values
for Red considered here, an empirical value for C leads to a substantially more
accurate prediction. Alternatively, in order to avoid the use of an empirical C-value,
a semi-empirical theory could be developed along the lines of Ermanyuk & Gavrilov
(2007), taking into account frictional losses. Such objective is, however, outside the
scope of the present work. Besides, at very large Red the values for C and Fr for
no-slip boundaries are expected to approach those for slip boundaries.

Figure 14 shows that both V4/
√

g′d0 and d4/d0 decrease with D/d0 and that, as
expected, currents flowing over a no-slip bottom wall are slower than those flowing
over a slip wall. The good agreement shown in figure 14 between the simulation results
and the predictions from the theory indicates that the isolated obstacle reduces the
speed and height of the current downstream of the obstacle by reducing its flux.

The effect of the obstacle on the mixing processes at the interface of the gravity
current can be recognized to some extent in figure 2. We note that the concentration
contours for the current downstream of the obstacle (figure 2d ) are generally spaced
farther apart than those for the incoming current upstream of the obstacle (figure 2a).
This wider spacing of the concentration contours indicates that the downstream
current is more diluted. In spite of the fact that our model neglects any mixing
between the fluids, its predictions for the front-speed height are fairly accurate. Hence
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Figure 15. Temporal evolution of the drag FD (thick solid lines) and the pressure force on
the obstacle upstream face Fw (thin solid lines) for D/d = 0.3 (a) and D/d =1.2 (b), with slip
bottom boundaries. The maximum drag approximately equals the maximum value of Fw and
hence is not affected by the wake drag. Furthermore, the value of Fw during the quasi-steady
state (t/

√
d/g′ � 20) approximately equals that at the time of the first maximum drag. This

observation allows us to use steady shallow-water theory to obtain, indirectly, an estimate for
the maximum drag.

we conclude that the effect of mixing on those quantities is small for the parameters
considered here.

6. Estimate of the maximum drag
For small viscous forces (Gonzalez-Juez et al. 2008), the overall flow force on the

obstacle can be obtained with good accuracy by integrating the pressure distribution
over the obstacle surface. The drag FD represents the streamwise component of this
flow force. Figure 15 shows the temporal evolution of the drag for two values of
D/d and for slip bottom boundaries. After increasing exponentially towards a first
maximum, the drag fluctuates for a while and eventually settles around a quasi-steady
value. Also shown in figure 15 is the temporal evolution of the pressure force Fw

on the upstream face. A number of similar simulations for both no-slip and slip
boundary conditions show that for D/d < 1.2 the drag reaches a maximum when
the current first meets the obstacle, while for D/d � 1.2 the drag maximum typically
occurs when the bore is being reflected upstream.

Figure 15 shows that the maximum drag approximately equals the maximum value
of Fw , which indicates that the maximum drag is determined by the level of hydrostatic
pressure upstream of the obstacle and by the deceleration of fluid as it encounters the
obstacle. At the same time, the contribution to the maximum drag from the formation
of a wake is small (cf. Gonzalez-Juez et al. 2008). The negligible influence of the wake
drag on the overall drag maximum suggests that hydraulic theory can be employed
for estimating the maximum drag. We furthermore note that no waves are observed
at the interface between the current and the ambient fluid; so the wave component
of the drag is negligible.

The impact of the current on the obstacle may be modelled with ‘unsteady’ hydraulic
theory, by combining the ideas in Greenspan & Young (1978) and Rottman & Simpson
(1983), for example, but this would require the numerical solution of the nonlinear
shallow-water equations, and the resulting numerical model would be considerably
less accurate than that described in § 2. For the purpose of obtaining an estimate
of the maximum drag, the use of unsteady hydraulic theory can be circumvented
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Figure 16. Effect of D/d0 on the first drag maximum (squares) and the overall drag maximum
(circles), from Navier–Stokes simulations. Corresponding shallow-water estimates of the drag
maximum are indicated by solid lines. Data are provided for both no-slip (a) and slip (b)
bottom boundaries. The theoretical estimate is seen to be close to the simulation data for
the maximum drag, as long as the obstacle height is much larger than the thickness of the
boundary layer at the bottom wall.

by noting that in figure 15 the quasi-steady value of Fw approximately equals the
drag maximum. This holds both for small obstacles with D/d < 1.2, when the drag
maximum is reached during the impact stage, and for larger obstacles with D/d � 1.2,
where the drag maximum is reached later but still lies within 15 % of the quasi-steady
value of Fw . These observations result from the rather constant value of d1 throughout
the interaction (also observed by Rottman et al. 1985), except during a transient period
after impact. They suggest that the pressure force on the upstream face of the obstacle
calculated with ‘steady’ hydraulic theory could be used to accurately estimate the first
drag maximum and, with some loss of accuracy, also the overall drag maximum
for obstacles with D/d � 1.2. We note that these observations hold for the entire
parameter range considered in this work.

To calculate the quasi-steady value of Fw , we supplement (4.1)–(4.4) and (4.7) by
the conservation of momentum between regions 1 and 2:

1

2
g′d2

1 + u2
1d1 =

1

2
g′d2

2 + u2
2d2 +

Fw

ρu

. (6.1)

The estimate of the maximum drag using the above relation for both no-slip and slip
bottom boundaries is shown in figure 16. The largest discrepancy between this estimate
and results from numerical simulations occurs for small obstacles and no-slip walls,
when the ratio of boundary-layer thickness to obstacle height is O(1). Larger obstacles
are increasingly exposed to the higher velocity outside the boundary layer (Gonzalez-
Juez et al. 2008), and the maximum drag estimate becomes increasingly more accurate.
For flows with slip boundaries the maximum drag estimate is reasonably accurate for
all obstacle sizes, with the largest discrepancy O(10 %). Note that the model provides
a better estimate for the first drag maximum than the overall drag maximum, as
the former is more closely approximated by Fw during the quasi-steady state (cf. the
above discussion).

7. Summary and conclusions
In summary, we consider the problem of a partial-depth lock-exchange gravity

current flowing past an isolated bottom-mounted obstacle. For such partially
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obstructed gravity currents we extend the steady shallow-water models of Rottman
et al. (1985) and Lane-Serff et al. (1995), in order to predict the height d4 and constant
front speed V4 of the current downstream of the obstacle, along with the maximum
drag. The model predictions for these quantities as functions of the Froude number
Fr0 of the oncoming current, and of the ratio D/d0 of obstacle to current height, are
compared with two-dimensional direct numerical simulations.

Based on observations from simulations of partially obstructed and constant-flux
gravity currents, we treat the current downstream of the obstacle as a constant-flux
current whose flux q4 equals the flux passing over the obstacle. We calculate this
flux from the shallow-water model and subsequently use both theoretical (Benjamin
1968) and empirical values for C = V4/(g

′q4)
1/3, in order to predict the front speed

and height of the downstream current. For the value of C given by Benjamin (1968)
the model predictions agree well with results from slip wall simulations. On the other
hand, for no-slip walls, empirical values of C substantially improve the agreement
between model and simulation data. As D/d0 increases, V4/

√
g′d0 and d4/d0 decrease.

Hence, the obstacle reduces the speed and height of the downstream current by
reducing its flux.

The simulations show that the maximum drag is approximately equal to the pressure
force on the upstream face of the obstacle during the quasi-steady state. Based on this
observation, we use the present steady shallow-water model to calculate this pressure
force, thereby obtaining an estimate for the maximum drag. This estimate agrees
well with the maximum drag calculated from the simulations for cases in which the
obstacle height is much larger than the thickness of the boundary layer at the bottom
wall.

Further work is required to analyse flows over obstacles involving larger, non-
Boussinesq density differences (Birman, Martin & Meiburg 2005; Lowe, Rottman &
Linden 2005), sloping bottom walls (Birman et al. 2007) or obstacles that are small
compared to the current height.

E. G.-J. was supported by National Science Foundation IGERT grant DGE02-
21715 and by a Cota-Robles fellowship. Computing time has been provided by the
California NanoSystems Institute at University of California at Santa Barbara and
Hewlett-Packard.

Appendix. Validation tests
The Navier–Stokes code has been extensively validated for the simulation of

intrusion currents (Ooi, Constantinescu & Weber 2007a), gravity currents over no-slip
walls (Ooi, Constantinescu & Weber 2005, 2007b; Ooi et al. 2007c), gravity-current
flows past bottom-mounted square cylinders (Gonzalez-Juez et al. 2007, 2008) and
flows past open cavities in which a passive or active scalar is present (Chang,
Constantinescu & Park 2006, 2007a ,b). In the following, we summarize the validation
information from these earlier studies, along with new, additional validation tests.

Ooi et al. (2007c) observed that their results from two-dimensional large eddy
simulations of lock-exchange full-depth (H/h = 1) gravity currents at Red = 1,118
and Sc = 1 are nearly identical to those from direct numerical simulations, such as
the ones used in the present work. We have independently confirmed this finding.
Ooi et al. (2007c) also showed that their results are in excellent agreement with
the two-dimensional direct numerical simulations by Härtel et al. (2000), in which a
highly accurate code was used. Table 2 shows selected results from the study by Ooi
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V/
√

g′d �yn/d �ys/d R (%)

Ooi et al. (2007c) 0.58 0.26 0.067 1.18
Härtel et al. (2000) 0.57 0.26 0.065 1.25

Table 2. Comparison of different quantities characterizing the front of lock-exchange
full-depth (H/h =1) gravity currents at Red = 1,118 and Sc = 1 between the two-dimensional
simulations by Ooi et al. (2007c), which employ the same simulation code as the present
investigation, and those by Härtel et al. (2000), in which a highly accurate spectral/spectral
element/compact finite-difference method is used. The quantities shown are the front speed of
the current V/

√
g′d , the height of the nose �yn/d , the height of the stagnation point �ys/d

and the ratio of light fluid flux underneath the front and the incoming flux of light fluid R.
All of these quantities are calculated during the constant-front-speed (slumping) phase.

et al. (2007c). To support further the validation by Ooi et al. (2007c), we conducted
a two-dimensional simulation of a lock-exchange full-depth H = h = two-dimensional
current with parameters similar to those of Cantero et al. (2008): L/d = 16; l/d = 2; a
grid of 1600 × 320; Red =5303; Sc =1; and boundary conditions like those described
in § 2, but with no-slip top and bottom walls, are used. Even though these boundary
conditions are not exactly the same as those in Cantero et al. (2008), results obtained
with our code for the constant-front-speed (slumping) phase, which is the one of
interest in the present work, are in good agreement with those from Cantero et al.
(2008). Specifically, the front speed V/

√
g′d is 0.62 (0.59) in our simulations (in

Cantero et al. 2008), and the friction velocity uτ/
√

g′d , which is defined as the square
root of the modulus of the wall shear stress divided by the fluid density, reaches a peak
at the head of the current of 0.084 (0.085) in our simulations (in Cantero et al. 2008),
at t/

√
g′d = 11.3. We remark that the front speed calculated from two-dimensional

simulations during the constant-front-speed phase is known to agree well with that
from three-dimensional simulations (Härtel et al. 2000; Cantero et al. 2008).

The ability of our code to properly capture bluff-body flows is tested by considering
the problem of a two-dimensional flow past a square cylinder with side D inside a
channel. The length of the channel is set to 24D and its width to 8D. The cylinder
is located midway between the top and bottom walls, with its upstream face at a
distance 8.5D from the inlet. A parabolic velocity profile with a maximum of U is
prescribed at the inlet; a convective boundary condition is prescribed at the outlet;
and the top and bottom boundaries are no-slip walls. The grid of 400 × 300 is refined
near the cylinder and the walls. The simulations are initialized with a zero velocity
everywhere and are run until convergence is achieved. The values for the cylinder
Reynolds number ReD =UD/ν considered are 100, 150, 200 and 250. Figure 17
shows that results from our simulations agree well with those from other numerical
investigations (Breuer et al. 2000; Turki, Abbassi & Nasrallah 2003). In addition,
Gonzalez-Juez, Meiburg & Constantinescu (2009b) have shown that our simulations
properly capture the classic flow past a circular cylinder at ReD =250 and 525, as
long as the grid spacing near the cylinder is O(0.01D).

Gonzalez-Juez et al. (2008) studied gravity-current flows past square and rectangular
cylinders. They conducted a three-dimensional large eddy simulation with parameters
that reproduce the experimental conditions of Ermanyuk & Gavrilov (2005b). A
configuration similar to that shown in figure 1 is used but with a rectangular cylinder
of height 0.50d and width 0.25d , positioned at a distance of 0.125d from the bottom
wall. Other parameter values are L/d =80, l/d = 40, H/h = 1.25, Red = 2,508 and
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Figure 17. Comparison of the mean drag FD,mean/(0.5ρDU 2) (a), peak-to-peak lift
FL,pp/(0.5ρDU 2) (b) and vortex-shedding frequency f/(U/D) (c) for the flow past a square
cylinder centred in a channel of width 8D between our two-dimensional simulations (circles)
and those by Breuer et al. (2000) (left and right triangles for two different codes used) and
Turki et al. (2003) (squares).
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Figure 18. Temporal evolution of the drag FD/(0.5ρuDV 2
0 ) (a) and lift FL/(0.5ρuDV 2

0 )
(b) in the experiments by Ermanyuk & Gavrilov (2005b) (solid line, squares) and the
three-dimensional simulations by Gonzalez-Juez et al. (2008) (dashed line).

Sc = 10. Figure 18 shows the temporal evolution of the spanwise-averaged drag and
lift obtained from the simulations and from the experiments by Ermanyuk & Gavrilov
(2005b). Notice the good overall agreement between the simulation results and those
from the experiments. The likely cause for the apparent discrepancy of the prediction
of the maximum lift value at impact (t/(h/V0) = 7.35) lies in the low data-sampling
rate of the experiments. This comparison demonstrates the ability of the simulation
technique to closely reproduce experimental gravity-current flows past submerged
cylinders.

To demonstrate convergence of the numerical results, simulation data for a
2048 × 320 grid and �t/

√
d/g′ = 0.003, which are the parameters used in the present
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Figure 19. Temporal evolution of the drag for the D/d = 1 case with no-slip (solid lines) and
slip (dashed lines) bottom boundaries between simulations with a 2048 × 320 grid (thick lines)
and those with a 3600 × 540 grid (thin lines).

work, are compared with those for a 3600 × 540 grid and �t/
√

d/g′ = 0.0015. For the
representative case of D/d = 1, figure 19 shows that the temporal evolution of the
drag is nearly identical when the grid is refined and that the maximum drag agrees
to within less than 1 %. The front speed of the current forming downstream of the
obstacle V4/

√
g′d is 0.57 (0.58) for the 2048 × 320 (3600 × 540) grid and a no-slip

bottom and 0.84 (0.81) with the 2048 × 320 (3600 × 540) grid and a slip bottom.
Similar results were observed for the D/d = 0.3 and D/d = 0.8 cases.

In summary, earlier validation results reported in the literature, along with
additional new validation and grid resolution tests, demonstrate that the
computational approach employed in the present work accurately reproduces gravity-
current flows past bluff bodies for the range of parameters considered in the present
investigation.
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