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Abstract

Recently there has been a growing interest in research in tabling in the logic programming

community because of its usefulness in a variety of application domains including program

analysis, parsing, deductive databases, theorem proving, model checking, and logic-based

probabilistic learning. The main idea of tabling is to memorize the answers to some subgoals

and use the answers to resolve subsequent variant subgoals. Early resolution mechanisms

proposed for tabling such as OLDT and SLG rely on suspension and resumption of subgoals

to compute fixpoints. Recently, the iterative approach named linear tabling has received

considerable attention because of its simplicity, ease of implementation, and good space

efficiency. Linear tabling is a framework from which different methods can be derived

on the basis of the strategies used in handling looping subgoals. One decision concerns

when answers are consumed and returned. This article describes two strategies, namely, lazy

and eager strategies, and compares them both qualitatively and quantitatively. The results

indicate that, while the lazy strategy has good locality and is well suited for finding all

solutions, the eager strategy is comparable in speed with the lazy strategy and is well suited

for programs with cuts. Linear tabling relies on depth-first iterative deepening rather than

suspension to compute fixpoints. Each cluster of interdependent subgoals as represented by a

topmost looping subgoal is iteratively evaluated until no subgoal in it can produce any new

answers. Naive re-evaluation of all looping subgoals, albeit simple, may be computationally

unacceptable. In this article, we also introduce semi-naive optimization, an effective technique

employed in bottom-up evaluation of logic programs to avoid redundant joins of answers,

into linear tabling. We give the conditions for the technique to be safe (i.e., sound and

complete) and propose an optimization technique called early answer promotion to enhance

its effectiveness. Benchmarking in B-Prolog demonstrates that with this optimization linear

tabling compares favorably well in speed with the state-of-the-art implementation of SLG.
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1 Introduction

The SLD resolution used in Prolog may not be complete or efficient for programs

in the presence of recursion. For example, for a recursive definition of the transitive

closure of a relation, a query may never terminate under SLD resolution if the

program contains left-recursion or the graph represented by the relation contains

cycles even if no rule is left-recursive. For a natural definition of the Fibonacci

function, the evaluation of a subgoal under SLD resolution spawns an exponential

number of subgoals, many of which are variants. The lack of completeness and

efficiency in evaluating recursive programs is problematic: novice programmers may

lose confidence in writing declarative programs that terminate and real programmers

have to reformulate a natural and declarative formulation to avoid these problems,

resulting in cluttered programs.

Tabling (Tamaki and Sato 1986; Warren 1992) is a technique that can get rid

of infinite loops for bounded-term-size programs and redundant computations in

the execution of recursive programs. The main idea of tabling is to memorize the

answers to subgoals, and then use the answers to resolve their variant descendents.

Tabling helps narrow the gap between declarative and procedural readings of logic

programs. It not only is useful in the problem domains that motivated its birth,

such as program analysis (Dawson et al. 1996), parsing (Johnson 1995; Warren

1999; Eisner et al. 2004), deductive databases (Sagonas et al. 1994; Ramakrishnan

and Ullman 1995; Liu 1999), and theorem proving (Pientka 2003; Nielson et al.

2004), but also has been found essential in several other problem domains such as

model checking (Ramakrishnan 2002) and logic-based probabilistic learning (Sato

and Kameya 2001; Zhou et al. 2003). This idea of caching previously calculated

solutions, called memoization, was first used to speed up the evaluation of functions

(Michie 1968). OLDT (Tamaki and Sato 1986) is the first resolution mechanism that

accommodates the idea of tabling in logic programming and XSB is the first Prolog

system that successfully supports tabling (Sagonas and Swift 1998). Tabling has

become a practical technique thanks to the availability of large amounts of memory

in computers. It has become an embedded feature in a number of other logic

programming systems such as B-Prolog (Zhou et al. 2000, 2004), Mercury (Somogyi

and Sagonas in press), TALS (Guo and Gupta 2001), and YAP (Rocha et al. 2005b).

OLDT, as well as SLG (Chen and Warren 1996) alike, is nonlinear in the sense

that the state of a consumer must be preserved before execution backtracks to its

producer. This non-linearity requires freezing stack segments (Sagonas and Swift

1998) or copying stack segments into a different area (Demoen and Sagonas 1999)

before backtracking takes place. Linear tabling is an alternative tabling scheme

(Zhou et al. 2000, 2004; Shen et al. 2001; Zhou and Sato 2003). The main idea

of linear tabling is to use iterative computation of looping subgoals rather than

suspension and resumption of them as is done in OLDT to compute fixpoints. This

basic idea dates back to the ET* algorithm (Dietrich 1987). The DRA method

proposed in Guo and Gupta (2001) is based on the same idea but employs different

strategies for handling looping subgoals and clauses. In linear tabling, a cluster of

interdependent subgoals as represented by a topmost looping subgoal is iteratively

evaluated until no subgoal in it can produce any new answers. Linear tabling is
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relatively easy to implement on top of a stack machine thanks to its linearity, and is

more space efficient than OLDT since the states of subgoals need not be preserved.

Linear tabling is a framework from which different methods can be derived on the

basis of the strategies used in handling looping subgoals. One decision concerns when

answers are consumed and returned. The lazy strategy postpones the consumption

of answers until no answers can be produced. It is in general space efficient because

of its locality and is well suited for all-solution search programs. The eager strategy,

in contrast, prefers answer consumption and return over production. It is well suited

for programs with cuts. These two strategies have been compared in SLG-WAM

as two scheduling strategies called local and single-stack (Freire et al. 1998). This

article gives a comprehensive analysis of these two strategies and compares their

performance experimentally.

Linear tabling relies on iterative evaluation of topmost looping subgoals to

compute fixpoints. Naive re-evaluation of all looping subgoals may be computation-

ally expensive. Semi-naive optimization is an effective technique used in bottom-up

evaluation of Datalog programs (Bancilhon and Ramakrishnan 1986; Ullman 1988).

It avoids redundant joins by ensuring that the join of the subgoals in the body of

each rule must involve at least one new answer produced in the previous round. The

impact of semi-naive optimization on top-down evaluation had been unknown before

(Zhou et al. 2004). In this article, we also propose to introduce semi-naive optimiza-

tion into linear tabling. We have made efforts to properly tailor semi-naive optimiza-

tion to linear tabling. In our semi-naive optimization, answers for each tabled subgoal

are divided into three regions as in bottom-up evaluation, but answers are consumed

sequentially until exhaustion, not incrementally as in bottom-up evaluation so that

answers produced in a round are consumed in the same round. We have found that

incremental consumption of answers does not fit in linear tabling since it may require

more iterations to reach fixpoints. Moreover, consuming answers incrementally may

cause redundant consumption of answers. We further propose a technique called

early promotion of answers to reduce redundant consumption of answers. Our

benchmarking shows that this technique gives significant speedups to some programs.

An efficient tabling system has been implemented in B-Prolog,1 in which the

lazy strategy is employed by default but the eager strategy can be used through

declarations for subgoals that are in the scopes of cuts or are not required to return

all the answers. Our tabling system not only consumes considerably less stack space

than XSB for some programs but also compares favorably well in speed with XSB.

The theoretical framework of linear tabling is given in Shen et al. (2001). The main

objective of this article is to propose evaluation strategies and their optimizations

for linear tabling. The remainder of the article is structured as follows: In the next

section, we define the terms used in this article. In Section 3, we give the linear

tabling framework and the two answer consumption strategies. In Section 4, we

introduce semi-naive optimization into linear tabling and prove its completeness. In

Section 5, we describe the implementation of our tabling system as well as show

how to implement semi-naive optimization. In Section 6, we compare the tabling

1 www.bprolog.com
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strategies experimentally, evaluate the effectiveness of semi-naive optimization, and

also compare the performance of B-Prolog with XSB. In Section 7, we survey the

related work, and in Section 8, we conclude.

2 Preliminaries

In this section, we give the definitions of the terms to make this article as much

self-contained as possible. The reader is referred to Lloyd (1988) for a description of

SLD resolution. In this article, we always assume the top-down strategy for selecting

clauses and the left-to-right computation rule.

Let P be a program. Tabled predicates in P are explicitly declared and all the

other predicates are assumed to be nontabled. A subgoal of a tabled predicate is

called a tabled subgoal. Tabled predicates are transformed into a form that facilitates

execution: each rule ends with a dummy subgoal named memo(H), where H is the

head, and each tabled predicate contains a dummy ending rule whose body contains

only one subgoal named check completion(H). For example, given the definition of

the transitive closure of a relation,

:-table p/2.

p(X,Y):-p(X,Z),e(Z,Y).

p(X,Y):-e(X,Y).

The transformed predicate is as follows:

p(X,Y):-p(X,Z),e(Z,Y),memo(p(X,Y)).

p(X,Y):-e(X,Y),memo(p(X,Y)).

p(X,Y):-check_completion(p(X,Y)).

A table is used to record subgoals and their answers. For each subgoal and its

variants, there is an entry in the table that stores the state of the subgoal (e.g.,

complete or not) and an answer table for holding the answers generated for the

subgoal. Initially, the answer table is empty.

Definition 1

Let t1 and t2 be two terms with no shared variables. The term t1 subsumes t2 if there

exists a substitution θ such that t1θ = t2. The two terms t1 and t2 are called variants

if they subsume each other.

Definition 2

Let G = (A1, A2, . . . , Ak) be a goal. The first subgoal A1 is called the selected subgoal

of the goal. G′ is derived from G by using a tabled answer F if there exists a unifier

θ such that A1θ = F and G′ = (A2, . . . , Ak)θ. G
′ is derived from G by using a rule

“H : −B1, . . . , Bm” if A1θ = Hθ and G′ = (B1, . . . , Bm, A2, . . . , Ak)θ. A1 is said to be

the parent of B1, . . . , and Bm. The relation ancestor is defined recursively from the

parent relation.

Definition 3

A tabled subgoal that occurs first in the construction of an SLD tree is called a

pioneer, and all subsequent variants are called followers of the pioneer. Let G0 be
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Fig. 1. A topmost looping subgoal.

a given goal and G0 ⇒ G1 ⇒ . . . ⇒ Gn be a derivation where each goal is derived

from the goal immediately preceding it. Let Gi ⇒ . . . ⇒ Gj be a subsequence of the

derivation, where Gi = (A . . .) and Gj = (A′ . . .). The subsequence forms a loop if A

and A′ are variants. The subgoals A and A′ are called looping subgoals. In particular,

A is called the pioneer looping subgoal and A′ is called the follower looping subgoal

of the loop.

Notice that the pioneer and follower looping subgoals are not required to have the

ancestor–descendent relationship, and thus a derivation that contains two variant

subgoals may not be a real loop. Consider, for example, the goal “p(X), p(Y )” where

p is defined by facts. The derivation “p(X), p(Y )” ⇒ p(Y ) is treated as a loop

although the selected subgoal p(Y ) in the second goal is not a descendant of p(X).

Definition 4

A subgoal A is said to be dependent on another subgoal A′ if A′ occurs in a derived

goal from A, that is, A ⇒ . . . ⇒ (A′ . . .). Two subgoals are said to be interdependent

if they are dependent on each other. Interdependent subgoals constitute a cluster,

which is called a strongly connected component elsewhere (Sagonas and Swift 1998).

A subgoal in a cluster is called the topmost subgoal of the cluster if none of its

ancestors is included in the cluster.

Unless a cluster contains only a single subgoal, its topmost subgoal must also be a

looping subgoal. For example, the subgoals at the nodes in the SLD tree in Figure 1

constitute a cluster and the subgoal p at node 1 is the topmost looping subgoal of

the cluster.

3 Linear tabling and answer consumption strategies

Linear tabling takes a transformed program and a goal and tries to find a path in the

SLD tree that leads to an empty goal. The primitive table start(A) is executed when

a tabled subgoal A is encountered. Just as in SLD resolution, linear tabling explores

the SLD tree in a depth-first fashion, taking special actions when table start(A),

memo(A), and check completion(A) are encountered. Backtracking is done in exactly

the same way as in SLD resolution. When the current path reaches a dead end,

meaning that no action can be taken on the selected subgoal, execution backtracks
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to the latest previous goal in the path and continues with an alternative branch.

When execution backtracks to the topmost looping subgoal of a cluster, however,

we cannot fail the subgoal even after all the alternative clauses have been tried.

In general, the evaluation of a topmost looping subgoal must be iterated until its

fixpoint is reached. We call each iteration of a topmost looping subgoal a round.

Various linear tabling methods can be devised on the basis of the framework. A lin-

ear tabling method comprises strategies used in the three primitives: table start(A),

memo(A), and check completion(A). In linear tabling, a pioneer subgoal has two

roles: one is to produce answers into the table and the other is to return answers

to its parent through its variables. Different strategies can be used to produce and

return answers. The lazy strategy gives priority to answer production and the eager

strategy prefers answer consumption over production. In the following, we define

the three primitives in both strategies.

3.1 The lazy strategy

The lazy strategy postpones the consumption of answers until no answers can be

produced. In concrete, for topmost looping subgoals, no answer is returned until

they are complete, whereas for other pioneer subgoals, answers are consumed only

after all the rules have been tried.

3.1.1 table start(A)

This primitive is executed when a tabled subgoal A is encountered. The subgoal A

is registered into the table if it is not registered yet. If A’s state is complete, meaning

that A has been completely evaluated before, then A is resolved by using the answers

in the table.

If A is a pioneer, meaning that it is encountered for the first time in the current

path, then different actions are taken depending on A’s state. If A’s state is evaluated,

meaning that A has occurred before in a different path during the current round,

then it is resolved by using answers. Otherwise, if A has never occurred before during

the current round, it is resolved by using rules. In this way, a pioneer subgoal needs

to be evaluated only once in each round.

If A is a follower of some ancestor A0, meaning that a loop has been encountered,2

then it is resolved by using the answers in the table. After the answers are exhausted,

A fails. Failing A is unsafe in general since it may have not returned all of its possible

answers. For this reason, the topmost looping subgoal of the cluster of A needs be

iterated until no new answer can be produced.

3.1.2 memo(A)

This primitive is executed when an answer is found for the tabled subgoal A. If the

answer A is already in the table, then it just fails; otherwise, it fails after the answer

2 As to be discussed later, A0 must be an ancestor of A under the lazy strategy.
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is added into the table. The failure of memo postpones the return of answers until

all rules have been tried.

3.1.3 check completion(A)

This primitive is executed when the subgoal A is being resolved by using rules and

the dummy ending rule is being tried. If A has never occurred in a loop, then A’s

state is set to complete and A is failed after all the answers are consumed.

If A is a topmost looping subgoal, we check if any new answers are produced

during the last iteration of the cluster under A. If so, A is re-evaluated by calling

table start(A) after all the dependent subgoals’s states are initialized. Otherwise, if

no new answer is produced, A is resolved by using answers after its state and all

its dependent subgoals’ states are set to complete. Notice that a topmost looping

subgoal does not return any answers until it is complete.

If A is a looping subgoal but not a topmost one, A will be resolved by using

answers after its state is set to evaluated. Notice that A’s state cannot be set to

complete since A is contained in a loop whose topmost subgoal has not been

completely evaluated. For example, in Figure 1, q reaches its fixpoint only after the

topmost looping subgoal p reaches its fixpoint.

As described in the definition of table start(A), an evaluated subgoal is never

evaluated using rules again in the same round. This optimization is called subgoal

optimization in Zhou and Sato (2003). If evaluating a subgoal produces some new

answers, then the topmost looping subgoal will be re-evaluated and so will the sub-

goal; and if evaluating a subgoal does not produce any new answer, then evaluating

it again in the same round would not produce any new answers either. Therefore,

the subgoal optimization is safe.

3.1.4 Example

Consider the following program, where p/2 is tabled, and the query p(a,Y0).

p(X,Y):-p(X,Z),e(Z,Y),memo(p(X,Y)). (p1)

p(X,Y):-e(X,Y),memo(p(X,Y)). (p2)

p(X,Y):-check_completion(p(X,Y)). (p3)

e(a,b).

e(b,c).

The following shows the steps that lead to the production of the first answer:

1: p(a,Y0)

⇓apply p1

2: p(a,Z1),e(Z1,Y0),memo(p(a,Y0))

loop found, backtrack to goal 1

1: p(a,Y0)

⇓ apply p2
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3: e(a,Y0),memo(p(a,Y0))

⇓ apply e(a,b)

4: memo(p(a,b))

⇓ add answer p(a,b)

After the answer p(a,b) is added into the table, memo(p(a,b)) fails. The failure

forces execution to backtrack to p(a,Y0).

1: p(a,Y0)

⇓ apply p3

5: check completion(p(a,Y0))

Since p(a,Y0) is a topmost looping subgoal that has not been completely evaluated

yet, check completion(p(a,Y0)) does not consume the answer in the table but

instead starts re-evaluation of the subgoal.

1: p(a,Y0)

⇓apply p1

6: p(a,Z1),e(Z1,Y0),memo(p(a,Y0))

⇓use answer p(a,b)

7: e(b,Y0),memo(p(a,Y0))

⇓apply e(b,c)

8: memo(p(a,c))

When the follower p(a,Z1) is encountered this time, it consumes the answer p(a,b).

The current path leads to the second answer p(a,c). On backtracking, the goal

numbered 6 becomes the current goal.

6: p(a,Z1),e(Z1,Y0),memo(p(a,Y0))

⇓use answer p(a,c)

9: e(c,Y0),memo(p(a,Y0))

Goal 9 fails. Execution backtracks to the top goal and tries the clause p3 on it.

1: p(a,Y0)

⇓ apply p3

10: check completion(p(a,Y0))

Since the new answer p(a,c) is produced in the last round, the topmost looping

subgoal p(a,Y0) needs to be evaluated again. The next round produces no new

answer, and thus the subgoal’s state is set to complete. After that the topmost subgoal

returns the answers p(a,b) and p(a,c).

3.1.5 Properties of the lazy strategy

Under the lazy strategy, answers are not returned immediately after they are

produced but are returned via the table after all clauses are tried. No answer is

returned for a topmost looping subgoal until the subgoal is complete.

All loops are guaranteed to be real: for any loop Gi = (A . . .) ⇒ . . . ⇒ Gj = (A′ . . .),

where A and A′ are variants, A must be an ancestor of A′. Because each cluster of
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interdependent subgoals is completely evaluated before any answers are returned

to outside of the cluster, the lazy strategy has good locality, and is thus suited for

finding all solutions. For example, when the subgoal p(Y ) is encountered in the goal

“p(X),p(Y)”, the subtree for p(X) must have been explored completely, and thus

needs not be saved for evaluating p(Y).

The cut operator cannot be handled efficiently under the lazy strategy. The goal

“p(X), !, q(X)” produces all the answers for p(X) even though only one is needed.

3.2 The eager strategy

The eager strategy prefers answer consumption and return over production. For a

pioneer, answers are used first and rules are used only after all available answers

are exhausted; moreover, a new answer is returned to its parent immediately after

it is added into the table. The following sections describes how the three primitives

behave under the eager strategy.

3.2.1 table start(A)

Just as in the lazy strategy, A is registered if it is not registered yet. A is resolved by

using the tabled answers if A is complete or is a follower of some former variant

subgoal. If A is a pioneer, being encountered for the first time in the current round,

it is resolved by using answers first, and then rules after all existing answers are

exhausted.

3.2.2 memo(A)

If the answer A is already in the table, then this primitive fails; otherwise, this

primitive succeeds after adding the answer A into the table. Notice that A is

returned immediately after it is added into the table. If A is not new, then it must

have been returned before.

3.2.3 check completion(A)

If A is a topmost looping subgoal, just as in the lazy strategy, we check whether any

new answers are produced during the last iteration of A. If so, A is evaluated again

by calling table start(A). Otherwise, if no new answer is produced, this primitive

fails after A’s and all its dependent subgoal states are set to complete. If A is a

looping subgoal but not a topmost one, this primitive fails after A’s state is set to

be evaluated. An evaluated subgoal is never evaluated using rules again in the same

round. Notice that unlike under the lazy strategy, the primitive check completion(A)

never returns any answers under the eager strategy. As described above, all the

available answers must have been returned by table start(A) and memo(A) by the

time check completion(A) is executed.

https://doi.org/10.1017/S147106840700316X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700316X


90 N. F. Zhou et al.

3.2.4 Example

Because of the need to re-evaluate a topmost looping subgoal, redundant solutions

may be observed for a query. Consider, for example, the following program and the

query “p(X),p(Y)”:

p(1):-memo(p(1)). (r1)

p(2):-memo(p(2)). (r2)

p(X):-check_completion(p(X)). (r3)

The following derivation steps lead to the return of the first solution (1,1) for

(X,Y):

1: p(X),p(Y)

⇓ use r1

2: memo(p(1)),p(Y)

⇓ add answer p(1)

3: p(Y)

⇓ loop found, use answer p(1)

When the subgoal p(Y) is encountered, it is treated as a follower and is resolved

using the tabled answer p(1). After that the first solution (1,1) is returned to the

top query. When execution backtracks to p(Y), it fails since it is a follower and no

more answer is available in the table. Execution backtracks to p(X), which produces

and adds the second answer p(2) into the table.

1: p(X),p(Y)

⇓ use r2

4: memo(p(2)),p(Y)

⇓ add answer p(2)

5: p(Y)

⇓ use answer p(1)

When p(Y) is encountered now, there are two answers p(1) and p(2) in the table.

So the next two solutions returned are (2,1) and (2,2). When execution backtracks

to goal 1, the dummy ending rule is applied.

1: p(X),p(Y)

⇓ use r3

6: check completion(p(X)),p(Y)

Since new answers are added into the table during this round, the subgoal p(X)

needs to be evaluated again, first using answers and then the rules. The second

round produces no answer but returns the four solutions (1,1), (1,2), (2,1), and

(2,2) among which only (1,2) has not been observed before.
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3.2.5 Properties of the eager strategy

Since answers are returned eagerly, a pioneer and a follower may not have an

ancestor–descendant relationship. Because of the existence of this kind of fake loops

and the necessity of iterating the evaluation of topmost looping subgoals, redundant

solutions may be observed. In the previous example, the solutions (1,1), (2,1),

and (2,2) are each observed twice. Provided that the topmost looping subgoal p(X)

did not return the answer p(1) again in the second round, the solution (1,2) would

have been lost.

The eager strategy is more suited than the lazy strategy for single-solution search.

For certain applications such as planning, it is unreasonable to find all answers,

either because the set is infinite or because only one answer is needed. For these

applications, the eager strategy is more effective than the lazy one. Cuts are handled

more efficiently under the eager strategy.

4 Semi-naive optimization

The basic linear tabling framework described in the previous section does not

distinguish between new and old answers. The problem with this naive method is

that it redundantly joins answers of subgoals that have been joined in early rounds.

Semi-naive optimization (Ullman 1988) reduces the redundancy by ensuring that

at least one new answer is involved in the join of the answers for each rule. In

this section, we introduce semi-naive optimization into linear tabling and identify

sufficient conditions for it to be complete. We also propose a technique called

early answer promotion to further avoid redundant consumption of answers. This

optimization works with both the lazy and eager strategies.

4.1 Preparation

To make semi-naive optimization possible, we divide the answer table for each tabled

subgoal into three regions:

old previous current

The names of the regions indicate the rounds during which the answers in the regions

are produced: old means that the answers were produced before the previous round;

previous the answers produced during the previous round; and current the answers

produced in the current round. The answers stored in previous and current are said

to be new. Before each round is started, answers are promoted accordingly: previous

answers become old and current answers become previous.

In our optimization, answers are consumed sequentially. For a subgoal, either all

the available answers or only new answers are consumed. This is unlike in bottom-

up evaluation where answers are consumed incrementally, that is, answers produced

in a round are not consumed until the next round. As discussed later, incremental

consumption of answers as is done in bottom-up evaluation does avoid certain

redundant joins but does not fit linear tabling since it may require more rounds to

reach fixpoints.
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A predicate p calls a predicate q if: (1) q occurs in the body of at least one rule

in the definition of p (p calls q directly); or (2) q does not occur in the body of any

rule in the definition of p but there exists a predicate in the body of a rule in the

definition of p that calls q (p calls q indirectly). The calling relationship constitutes

a graph called a call graph.

For a given program, we find a level mapping from the predicate symbols in the

program to the set of integers to represent the call graph of the program. Let m be

a level mapping. We extend the notation to assume that m(p(. . .)) = m(p/n) for any

subgoal p(. . .) of arity n.

Definition 5

For a given program, a level mapping m represents the call graph if: for each rule

“H:−A1, . . . , An” in the program, m(H) > m(Ai) iff the predicate of Ai does not call

(either directly or indirectly) the predicate of H and m(H) = m(Ai) iff the predicates

of H and Ai call each other.

The level mapping as defined divides predicates in a program into several strata.

The predicate at each stratum depends only on those that are present on the

lower strata. The level mapping is an abstract representation of the dependence

relationship of the subgoals that may occur in execution. If two subgoals A and A′

occur in a loop, then it is guaranteed that m(A) = m(A′).

Definition 6

Let “H:−A1, . . . , Ak, . . . , An” be a rule in a program and m be the level mapping that

represents the call graph of the program. Ak is called the last depending subgoal of

the rule if m(Ak) = m(H) and m(H) > m(Ai) for i > k.

The last depending subgoal Ak is the last subgoal in the body that may depend on

the head to become complete. Thus, when the rule is re-executed on a subgoal, all

the subgoals to the right of Ak that have occurred before must already be complete.

Definition 7

Let “H:−A1, . . . , An” be the rule in a program and m be the level mapping that

represents the call graph of the program. If there is no depending subgoal in the

body, that is, m(H) > m(Ai) for i = 1, . . . , n, then the rule is called a base rule.

4.2 Semi-naive optimization

Theorem 1

Let “H:−A1, . . . , Ak, . . . , An” be a rule where Ak is the last depending tabled subgoal

and C be a subgoal that is being resolved by using the rule in an iteration of a

topmost looping subgoal T . For a combination of answers of A1, . . . , and Ak−1, if

C has occurred in an early round and the combination does not contain any new

answers, then it is safe to let Ak consume only new answers.

Proof

Because Ak is the last depending subgoal, the subgoals Ak+1, . . . , and An must have

been completely evaluated when C is re-evaluated. Let Akold and Aknew be the old

https://doi.org/10.1017/S147106840700316X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700316X


Linear tabling strategies and optimizations 93

and new answers of the subgoal Ak , respectively. For a combination of answers of

A1, . . . , and Ak−1, if the combination does not contain new answers, then the join

of the combination and Akold must have been done and all possible answers for C

that can result from the join must have been produced during the previous round

because the subgoal C has been encountered before. Therefore, only new answers

in Aknew should be used. �

Corollary 1

Base rules need not be considered in the re-evaluation of any subgoals.

Semi-naive optimization would be unsafe if it were applied to new subgoals

that have never been encountered before. The following example illustrates this

possibility:

?- p(X,Y).

:-table p/2.

p(X,Y) :- p(X,Z),q(Z,Y). (C1)

p(b,c) :- p(X,Y). (C2)

p(a,b). (C3)

:-table q/2.

q(c,d) :- p(X,Y),t(X,Y). (C4)

t(a,b). (C5)

In the first round of p(X,Y), the answer p(a,b) is added to the table by C3, whereas

in the second round, the rule C2 produces the answer p(b,c) by using the answer

produced in the first round. In the third round, the rule C1 generates a new subgoal

q(c,Y) after p(X,Z) consumes p(b,c). If semi-naive optimization were applied to

q(c,Y), then the subgoal p(X,Y) in C4 could consume only the new answer p(b,c)

and the third answer p(b,d) would be lost.

4.3 Analysis

Semi-naive optimization can lower the complexity of evaluation for some programs.

Consider the following example created by David S. Warren3:

:-table p/2.

p(X,Y) :- p(X,Z),c(Z,a,Y).

p(X,Y) :- p(X,Z),c(Z,b,Y).

p(X,X).

which detects if a given string represented as facts c(I, S , J) (J = I+1,S =a or S =b)

is a sentence of the regular expression (a|b)∗. For a string (ab)n/2, the query p(0,n)

needs n/2 rounds to reach the fixpoint. With semi-naive optimization, the variants

3 Written communications, May 25, 2006.
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of p(X,Z) in the bodies consume only new answers, and therefore the program

takes linear time. Without semi-naive optimization, however, the program would

take O(n2) time since the variants of p(X,Z) would consume all existing answers.

In our semi-naive optimization, answers produced in the current round are

consumed immediately rather than postponed to the next round as in the bottom-up

version, and answers are promoted each time a new round is started. This way of

consuming and promoting answers may cause certain redundancy.

Consider the conjunction (P ,Q). Assume Qo, Qp, and Qc are the sets of answers in

the three regions (respectively, old, previous, and current) of the subgoal Q when Q is

encountered in round i. Assume also that P had been complete before round i and

Pa is the set of answers. The join Pa � (Qp

⋃
Qc) is computed for the conjunction in

round i. Assume Q′
o, Q

′
p, and Q′

c are the sets of answers in the three regions when

Q is encountered in round i + 1. Since answers are promoted before round i + 1 is

started, we have:

Q′
o = Qo

⋃
Qp

Q′
p = Qc

⋃
α

where α denotes the new answers produced for Q after the conjunction (P ,Q) in

round i. When the conjunction (P ,Q) is encountered in round i + 1, the following

join is computed:

Pa � (Q′
p

⋃
Q′

c) = Pa � (Qc

⋃
α
⋃

Qc′)

Notice that the join Pa � Qc is computed in both round i and i + 1.

We could allow last depending subgoals to consume answers incrementally as

is done in bottom-up evaluation, but doing so may require more rounds to reach

fixpoints. Consider the following example, which is the same as the one shown above

but has a different ordering of clauses:

?- p(X,Y).

:-table p/2.

p(a,b). (C1)

p(b,c) :- p(X,Y). (C2)

p(X,Y) :- p(X,Z),q(Z,Y). (C3)

:-table q/2.

q(c,d) :- p(X,Y),t(X,Y). (C4)

t(a,b). (C5)

In the first round, C1 produces the answer p(a,b). When C2 is executed, the subgoal

in the body cannot consume p(a,b) since it is produced in the current round.

Similarly, C3 produces no answer either. In the second round, p(a,b) is moved to

the previous region, and thus can be consumed. C2 produces a new answer p(b,c).

When C3 is executed, no answer is produced since p(b,c) cannot be consumed. In

the third round, p(a,b) is moved to the old region, whereas p(b,c) is moved to the

previous region. C3 produces the third answer p(b,d). The fourth round produces
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no new answer and confirms the completion of the computation. So in total four

rounds are needed to compute the fixpoint. If answers produced in the current round

are consumed in the same round, then only two rounds are needed to reach the

fixpoint.

4.4 Early promotion of answers

As discussed above, sequential consumption of answers may cause redundant joins.

In this subsection, we propose a technique called early promotion of answers to

reduce the redundancy.

Definition 8

Let Q be the first follower that exhausts its answers in the current round. Then all

the answers of Q in the current region are promoted to the previous region once

being consumed by Q.

Consider again the conjunction (P ,Q) where Q is the first follower that exhausts

its answers. The answers in the current region Qc are promoted to the previous

region after Q has consumed all its answers in round i. By doing so, the join Pa � Qc

will not be recomputed in round i+ 1 since Qc must have been promoted to the old

region in round i + 1.

Consider, for example, the following program:

?- p(X,Y).

:-table p/2.

p(a,b). (C1)

p(b,c) :- p(X,Y). (C2)

Before C2 is executed in the first round, p(a,b) is in the current region. Executing

C2 produces the second answer p(b,c). Since the subgoal p(X,Y) in C2 is the first

follower that exhausts its answers in the current round, it is qualified to promote

its answers. So the answers p(a,b) and p(b,c) are moved from the current region

to the previous region immediately after being consumed by p(X,Y). As a result,

the potential redundant consumption of these answers by p(X,Y) is avoided in the

second round since they will all be transferred to the old region before the second

round starts.

Theorem 2

Early promotion does not lose any answers.

Proof

First note that although answers are tabled in three disjoint regions, all tabled

answers will be consumed except for some last depending subgoals that would

skip the answers in their old regions (see Theorem 1). Assume, on the contrary,

that applying early promotion loses answers. Then there must be a last depending

subgoal Ak in a rule “H:−A1, . . . , Ak, . . . , An” and a tabled answer A for Ak such that

A has been moved to the old region before being consumed by Ak so that A will
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never be consumed by Ak . Assume A is produced in round i by a variant of Ak . We

distinguish between the following two cases:

(1) The last depending subgoal Ak is not selected in round i. In round j(j > i), Ak

is selected either because H is new or some As(s < k) consumes a new answer.

By Theorem 1, Ak will consume all answers in the three regions, including the

answer A.

(2) Otherwise, A must be produced by Ak itself or a variant subgoal of Ak that is

selected either before or after Ak in round i. If A is produced by Ak itself or

before Ak is selected, then the answer will be consumed by Ak since promoted

answers will remain new by the end of the round. If A is produced by a variant

after Ak is selected, then the answer cannot be promoted because Ak exhausts

its answers before the variant. In this case, the answer A will remain new in the

next round and will thus be consumed by Ak .

Both of the above two cases contradict our assumption. The proof then con-

cludes. �

5 Implementation

Changes to the Prolog machine ATOAM (Zhou 1996) are needed to implement

linear tabling. In this section, we describe the changes to the data structures and the

instruction set. To make the article self-contained, we first give an overview of the

ATOAM architecture.

5.1 An overview of ATOAM

The ATOAM uses all the data areas used by the WAM. The heap stores terms that are

created during execution. The register H points to the top of the heap. The trail stack

stores updates that must be undone upon backtracking. The register T points to the

top of the trail stack. The control stack stores frames associated with predicate calls.

Unlike in the WAM where arguments are passed through argument registers,

arguments in the ATOAM are passed through stack frames and only one frame is

used for each predicate call. Each time a predicate is invoked by a call, a frame is

placed on top of the local stack unless the frame currently at the top can be reused.

Frames for different types of predicates have different structures. For standard

Prolog, a frame is either determinate or nondeterminate. A nondeterminate frame is

also called a choice point. The register AR points to the current frame, whereas the

register B points to the latest choice point.

A determinate frame has the following structure:

A1..An Arguments

AR Pointer to the parent frame

CP Continuation program pointer

BTM Bottom of the frame

TOP Top of the frame

Y1..Ym Local variables
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where BTM points to the bottom of the frame, that is, the slot for the first argument,

and TOP points to the top of the frame, that is, the slot just next to that for the

last local variable.4 The TOP register points to the next available slot on the stack.

The BTM slot is not in the original version (Zhou 1996). This slot is introduced for

supporting garbage collection and co-routining. The AR register points to the AR

slot of the current frame. Arguments, whereas local variables are accessed through

offsets with respect to the AR slot. An argument or a local variable is denoted as y(I)

where I is the offset. Arguments have positive offsets, whereas local variables have

negative offsets. It is the caller’s job to place the arguments and fill in the AR and

CP slots. The callee fills in the BTM and TOP slots and initializes the local variables.

A choice point frame contains, in addition to the slots in a determinate frame,

four slots located between the TOP slot and local variables:

CPF Backtracking program pointer

H Top of the heap

T Top of the trail

B Parent choice point

The CPF slot stores the program pointer to continue with when the current branch

fails. The slot H points to the top of the heap when the frame is allocated. As in

the WAM, a new register, called HB, is used as an alias for B->H. When a variable is

bound, it must be trailed if it is older than B or HB.

5.2 The extension of ATOAM for tabling

A new data area, called table area, is introduced for memorizing tabled subgoals and

their answers. The subgoal table is a hash table that stores all the tabled subgoals

encountered in execution. For each tabled subgoal and its variants, there is an entry

in the table, which is a record containing the following information:

SubgoalCopy

PioneerAR

State

TopMostLoopingSubgoal

DependentSubgoals

AnswerTable

The field SubgoalCopy points to the copy of the subgoal in the table area. In the

copy, all variables are numbered. Therefore, all variants of the subgoal are identical.

The field PioneerAR points to the frame of the pioneer, which is needed for

implementing cuts. When the choice point of a tabled subgoal is cut off before the

subgoal reaches completion, the field PioneerAR will be set to NULL. When a variant

of the subgoal is encountered again after, the subgoal will be treated as a pioneer.

The field State indicates whether the subgoal is a looping subgoal, whether the

answer table has been revised, and whether the subgoal is complete or evaluated.

4 It is a convention in the literature that the stack is assumed to grow downwards.
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When execution backtracks to a topmost looping subgoal, if the revised bit is set,

then another round will be started for the subgoal. A topmost looping subgoal

becomes complete if this revised bit is unset after a round. Then, the subgoal and

all of its dependent subgoals will be set to complete. As described in section 3.1.3,

an evaluated subgoal is never evaluated again using rules in each round.

The TopMostLoopingSubgoal field points to the entry for the topmost looping

subgoal, and the field DependentSubgoals stores the list of subgoals on which this

subgoal depends. When a topmost looping subgoal becomes complete, all of its

dependent subgoals turn to complete too.

The field AnswerTable points to the answer table for this subgoal, which is

also a hash table. Hash tables expand dynamically. Let g be the pointer to

the record for a subgoal in the table. The first answer in the answer table is

referenced as g->AnswerTable->FirstAnswer and the last answer is referenced as

g->AnswerTable->LastAnswer. In the beginning, the answer table is empty and

both FirstAnswer and LastAnswer references comprise a dummy answer.

The frame for a tabled predicate contains the following two slots in addition to

those slots stored in a choice point frame:

SubgoalTable

CurrentAnswer

The SubgoalTable points to the subgoal table entry, whereas the CurrentAnswer

points to the last answer that has been consumed. The next answer can be

reached from this reference on backtracking. When a frame is created, the slot

CurrentAnswer is initialized to be g->AnswerTable->FirstAnswer, where g is the

pointer to the record for the tabled subgoal.

Three new instructions, namely, table start, memo, and check completion, are

introduced into the ATOAM for encoding the three table primitives. Figure 2 shows

the compiled code of an example program.

The table start instruction takes two operands: the arity (2) and the number

of local variables (1). The fork instruction sets the CPF slot to hold the address

to backtrack on to failure. The parameter passing instructions (para value and

para var in this example) pass arguments to the callee’s frame. The memo instruction

is executed after an answer has been found. The check completion instruction takes

the entrance (p/2) as an operand so that the predicate can be re-entered when it

needs re-evaluation.

5.3 Implementing semi-naive optimization

To implement semi-naive optimization, we add the following two pointers into the

record for each tabled subgoal:

LastOldAnswer

LastPrevAnswer

where the pointer LastOldAnswer points to the last answer in the old region and

the pointer LastPrevAnswer points to the last answer in the previous region. The
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% :-tabled p/2.

% p(X,Y):-p(X,Z),e(Z,Y).

% p(X,Y):-e(X,Y).

p/2: table_start 2,1

fork r2

para_value y(2)

para_var y(-13)

call p/2 % p(X,Z)

para_value y(-13)

para_value y(1)

call e/2 % e(Z,Y)

memo

r2: fork r3

para_value y(2)

para_value y(1)

call e/2 % e(X,Y)

memo

r3: check_completion p/2

Fig. 2. Compiled code of an example program.

check completion instruction resets the pointers for all the tabled subgoals in the

current cluster before it starts the next round:

for each subgoal g in the current cluster {

g->LastOldAnswer = g->LastPrevAnswer;

g->LastPrevAnswer = g->AnswerTable->LastAnswer;

}

The memo instruction is changed so that early promotion of answers is performed

if the condition for promotion is met. Let g be the pointer to the tabled subgoal. If

the subgoal has exhausted all its answers in the table and early promotion has never

been done before on the subgoal in the same round, then answers in the current

region are promoted to the previous region:

g->LastPrevAnswer = g->AnswerTable->LastAnswer

The promoted answers will be moved to the old region before the start of the next

round.

A bit vector is added into the frame for each tabled predicate to indicate whether

any new answer has been consumed by any tabled subgoal. Semi-naive optimization

can be applied only if no tabled subgoal in the predicate has consumed any new

answer.

A new instruction, called last depending tabled call, is introduced to encode

last depending tabled subgoals. In the example shown in Figure 2, the call p/2

instruction is changed to last depending tabled call p/2 to enable semi-naive

optimization. The last depending tabled call instruction has the same behavior

as the call instruction, but the callee can check the type of the instruction to see

whether it is invoked by a last depending tabled subgoal.

Let g be the pointer to the current tabled subgoal. The table start instruction

sets the CurrentAnswer slot of the frame to g->LastOldAnswer so that the
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tcl: tcl(X,Y):-edge(X,Y).

tcl(X,Y):-tcl(X,Z),edge(Z,Y).

tcr: tcr(X,Y):-edge(X,Y).

tcr(X,Y):-edge(X,Z),tcr(Z,Y).

tcn: tcn(X,Y):-edge(X,Y).

tcn(X,Y):-tcn(X,Z),tcn(Z,Y).

sg: sg(X,X).

sg(X,Y):-edge(X,XX),sg(XX,YY),edge(Y,YY).

Fig. 3. Datalog programs.

subgoal consumes only new answers if: (1) the parent frame is a tabled frame;

(2) no bit in the bit vector in the parent frame is set, which means that no

tabled subgoal has consumed any new answer; and (3) the predicate is invoked

by a last depending tabled call instruction. If any of these condition is not

satisfied, the CurrentAnswer slot is set to g->AnswerTable->FirstAnswer and all

the answers will be consumed by the subgoal.

6 Performance evaluation

We empirically compared the two answer-consumption strategies and evaluated the

effectiveness of semi-naive optimization. We also compared the performance of B-

Prolog (Version 6.9) with XSB (Version 3.0). A Linux machine with 750 MHz Intel

processor and 512 GB RAM was used in the experiment. Benchmarks from three

different sources were used5: Datalog programs are shown in Figure 3 with randomly

generated graphs; the CHAT benchmark suite (Demoen and Sagonas 1999); and a

parser, called atr, for the Japanese language defined by a grammar of more than

860 rules (Uratani et al. 1994). This section presents the experimental results and

reports the statistics to support them. This section also gives experimental results

on the Warren’s example for which SLG as implemented in XSB has lower time

complexity than linear tabling when semi-naive optimization ceases to be effective.

6.1 Comparison of the two answer-consumption strategies

Table 1 compares the two answer-consumption strategies in terms of speed and

stack space6 efficiencies. The difference of these two strategies in terms of CPU time

is small on average. This result implies that for programs with cuts declaring the

use of the eager strategy would not cause significant slow down. The difference in

the usage of stack space is more significant than in CPU time. This is because, as

discussed before, the lazy strategy has better locality than the eager strategy.

5 The benchmarks are available from probp.com/bench.tar.gz.
6 The total usage of the local, global, and trail stacks.
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Table 1. Comparison of the lazy and eager strategies

CPU time Stack space

Program Lazy Eager Lazy Eager

tcl 1 1.02 1 1.00

tcr 1 0.96 1 1.00

tcn 1 0.90 1 1.00

sg 1 0.89 1 1.02

cs o 1 1.17 1 1.36

cs r 1 1.09 1 1.36

disj 1 1.06 1 1.41

gabriel 1 1.08 1 1.18

kalah 1 1.17 1 2.03

pg 1 2.28 1 3.59

peep 1 0.99 1 2.88

read 1 0.85 1 2.22

atr 1 1.03 1 1.06

Average 1 1.12 1 1.62

Table 2. Effectiveness of semi-naive optimization

CPU time ( nosemi
semi

)

Program Lazy Eager

tcl 2.00 1.89

tcr 1.22 1.19

tcn 1.68 1.74

sg 1.22 1.51

cs o 1.10 1.10

cs r 1.09 1.10

disj 1.52 1.46

gabriel 1.32 1.15

kalah 1.52 1.41

pg 1.21 1.05

peep 1.09 1.11

read 1.98 1.27

atr 1.00 1.00

Average 1.38 1.31

6.2 Effectiveness of semi-naive optimization

Table 2 shows the effectiveness of semi-naive optimization in gaining speedups under

both strategies. Without this optimization, the system would consume more than

30% CPU time on average under either strategy. Our experiment also indicates

that on average more than 95% of the gains in speed are attributed to the early

promotion technique.

https://doi.org/10.1017/S147106840700316X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840700316X


102 N. F. Zhou et al.

Table 3. Comparison of B-Prolog and XSB

XSB

Program BP (Lazy) CPU time Stack space

tcl 1 1.85 0.81

tcr 1 1.46 33.41

tcn 1 1.31 32.84

sg 1 1.47 109.12

cs o 1 0.37 0.57

cs r 1 0.35 0.73

disj 1 0.68 0.82

gabriel 1 0.61 2.05

kalah 1 1.00 0.58

pg 1 0.76 1.85

peep 1 0.37 2.97

read 1 0.69 11.12

atr 1 2.26 21.24

6.3 Comparison with XSB

Table 3 compares BP with XSB on time and stack space efficiencies. For XSB, the

stack space is the total of the maximum amounts of global, local, trail, choice point,

and SLG completion stack spaces. The default setting, namely, the SLG-WAM

and the local scheduling strategy, is used. BP is faster than XSB on the Datalog

programs and the parser but slower than XSB on the CHAT benchmark suite; and

BP consumes considerably less stack space in comparison with XSB on some of the

programs (tcr, tcn, sg, and atr).

The results must be interpreted with two differences of the two compared systems

taken into account: On the one hand, BP is on average more than twice as fast as

XSB for standard Prolog programs and, on the other hand, the trie data structure

used in XSB (Ramakrishnan et al. 1998) is far more advanced than hash tables used

in BP for managing the table area. It is unclear up to what extent each difference

contributes to the overall efficiency.

The YAP implementation of SLG-WAM is up to twice as fast as XSB (Somogyi

and Sagonas in press) on the transitive closure and same-generation benchmarks

with both chain and cyclic graphs. This entails that the BP implementation of

linear tabling is comparable in speed with the most sophisticated implementation of

SLG-WAM for the Datalog benchmarks.

The empirical data on the usage of table space are not reported. BP constantly

consumes less table space in comparison with XSB for the benchmarks. In BP,

both subgoal and answer tables are maintained as dynamic hashtables. In XSB, in

contrast, tables are maintained as tries (Ramakrishnan et al. 1998). The usage of

table space is independent of the strategies and optimizations. Both BP and XSB

would consume the same amount of table space if the same data structure were

employed.
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Table 4. Statistics on iterations

Program #Subgoals max its. ave. its.

tcl 1 2 2.00

tcr 51 2 1.96

tcn 51 2 1.98

sg 153 2 1.32

cs o 76 2 1.14

cs r 76 2 1.16

disj 74 2 1.20

gabriel 59 2 1.20

kalah 102 3 1.24

pg 48 2 1.13

peep 49 3 1.29

read 131 5 1.34

atr 7,139 6 1.81

6.4 Statistics on iterations

Table 4 reports the statistics on the maximum (max its.) and average (ave. its.)

numbers of iterations for tabled subgoals to reach their fixpoints.7 The column

#Subgoals shows the number of tabled subgoals. Although for some programs, the

maximum number of iterations performed is high (e.g., the maximum number for

atr is 6), the average numbers are quite low.

The necessity of re-evaluating looping subgoals has been blamed for the low speed

of iteration-based tabling systems (Zhou et al. 2000; Guo and Gupta 2001). Our new

findings indicate that re-evaluation is not a dominant factor for the benchmarks.

This statistics well explains, why an implementation of linear tabling could achieve

comparable speed performance with SLG-WAM for the benchmarks.

6.5 The complexity issue

The following is a slightly changed version of the Warren’s example that disenables

semi-naive optimization:

:-table p/2.

p(X,Y) :- q(X,Z),c(Z,a,Y).

p(X,Y) :- q(X,Z),c(Z,b,Y).

p(X,X).

q(X,Y) :- p(X,Y).

Since the last depending subgoals q(X,Z) in p/2 are not tabled, semi-naive

optimization cannot be applied to p/2. For a string (ab)n/2, the query p(0,n)

7 Each subgoal has a counter that is initialized when the subgoal is tabled and is incremented each time
the subgoal is resolved using rules. Note that semi-naive optimization may reduce the work of each
iteration but has no effect on the number of iterations needed to reach the fixpoint.
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needs n/2 iterations to reach the fixpoint. Since in each iteration the subgoal q(X,Z)

is rewritten into p(X,Z) that returns all existing answers, the total time taken is

O(n2). In contrast, the program takes only O(n) time under SLG. For the size

n = 5, 000, it took BP 3.5 s to run the program, while XSB only 15 ms. For the

original version of the program to which semi-naive optimization is applicable, it

took BP only 7 ms.

7 Related work

There are three different tabling schemes, namely, OLDT and SLG (Tamaki and

Sato 1986; Sagonas and Swift 1998), CAT (Demoen and Sagonas 1998; Somogyi

and Sagonas in press), and iteration-based tabling including linear tabling (Shen

et al. 1999, 2001; Zhou et al. 2000, 2004; Zhou and Sato 2003) and DRA (Guo

and Gupta 2001). SLG (Chen and Warren 1996) is a formalization based on OLDT

for computing well-founded semantics for general programs with negation. The

basic idea of using iterative deepening to compute fixpoints dates back to the ET*

algorithm (Dietrich 1987).

In SLG-WAM, a consumer fails after it exhausts all the existing answers and

its state is preserved by freezing the stack so that it can be reactivated after new

answers are generated. The CAT approach does not freeze the stack but instead

copies the stack segments between the consumer and its producer into a separate

area so that backtracking can be done normally. The saved state is reinstalled after a

new answer is generated. CHAT (Demoen and Sagonas 1999) is a hybrid approach

that combines SLG-WAM and CAT.

Linear tabling relies on iterative computation of looping subgoals to compute

fixpoints. Linear tabling is probably the easiest scheme to implement since no effort

is needed to preserve states of consumers and the garbage collector can be kept

untouched for tabling. Linear tabling is also the most space-efficient scheme since

no extra space is needed to save states of consumers. Nevertheless, linear tabling

without optimization could be computationally more expensive than the other two

schemes.

The DRA method (Guo and Gupta 2001) is also iteration based, but it identifies

looping clauses dynamically and iterates the execution of looping clauses to compute

fixpoints. While in linear tabling iteration is performed on only topmost looping

subgoals, in DRA iteration is performed on every looping subgoal. In ET* (Dietrich

1987), every tabled subgoal is iterated even if it does not occur in a loop. Besides

the difference in answer consumption strategies and optimizations, the linear tabling

scheme described in this article differs from the original version (Zhou et al. 2000;

Shen et al. 2001) in that followers fail after they exhaust their answers rather than

steal their pioneers’ choice points. This strategy is originally adopted in the DRA

method.

The two consumption strategies have been compared in XSB (Freire et al. 1998)

as two scheduling strategies. The lazy strategy is called local scheduling and the eager

strategy is called single-stack scheduling. Another strategy, called batched scheduling,

is similar to local scheduling but topmost looping subgoals do not have to wait until
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their clusters become complete to return answers. Their experimental results indicate

that local scheduling constantly outperforms the other two strategies on stack space

and can perform asymptotically better than the other two strategies on speed. The

superior performance of local scheduling is attributed to the saving of freezing stack

segments. Although our experiment confirms the good space performance of the

lazy strategy, it gives a counterintuitive result that the eager strategy is as fast as the

lazy strategy. This result implies that the cost of iterative evaluation is considerably

smaller than that of freezing stack segments, and for predicates with cuts the eager

strategy can be used without significant slow down. In our tabling system, different

answer consumption strategies can be used for different predicates. The tabling

system described in Rocha et al. (2005a) also supports mixed strategies.

Semi-naive optimization is a fundamental idea for reducing redundancy in bottom-

up evaluation of logic database queries (Bancilhon and Ramakrishnan 1986; Ullman

1988). As far as we know, its impact on top-down evaluation had not been known

before (Zhou et al. 2004). OLDT (Tamaki and Sato 1986) and SLG (Sagonas and

Swift 1998) do not need this technique since it is not iterative and the underlying

delaying mechanism successfully avoids the repetition of any derivation step. An

attempt has been made by Guo and Gupta (2001) to make incremental consumption

of tabled answers possible in DRA. In their scheme, answers are also divided into

three regions but answers are consumed incrementally as in bottom-up evaluation.

Since no condition is given for the completeness and no experimental result is

reported on the impact of the technique, we are unable to give a detailed comparison.

Our semi-naive optimization differs from the bottom-up version in two major as-

pects: First, no differentiated rules are used. In the bottom-up version, differentiated

rules are used to ensure that at least one new answer is involved in the join of

answers for each rule. Consider, for example, the clause:

H : −P ,Q.

The following two differentiated rules are used in the evaluation instead of the

original one:

H : −∆P ,Q.

H : −P ,∆Q.

where ∆P denotes the new answers produced in the previous round for P. Using

differentiated rules in top-down evaluation can cause considerable redundancy,

especially when the body of a clause contains nontabled subgoals.

The second major difference between our semi-naive optimization and the bottom-

up version is that answers in our method are consumed sequentially until exhaustion,

not incrementally as in bottom-up evaluation. A tabled subgoal consumes either

all available answers or only new answers including answers produced in the

current round. Neither incremental consumption nor sequential consumption seems

satisfactory. Incremental consumption avoids redundant joins but may require more

rounds to reach fixpoints. In contrast, sequential consumption never need more

rounds to reach fixpoints but may cause redundant joins of answers. The early

promotion technique alleviates the problem of sequential consumption. By promoting
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answers early from the current region to the previous region, we can considerably

reduce the redundancy in joins.

Semi-naive optimization may lower time complexities in bottom-up evaluation

(Bancilhon and Ramakrishnan 1986). The same result holds to the top-down version

as demonstrated by Warren’s example. Our experimental results show that semi-

naive optimization gives an average speedup of more than 30% to linear tabling if

answers are promoted early, and almost no speed gain if no answer is promoted

early. In linear tabling, only looping subgoals need to be iteratively evaluated. For

nonlooping subgoals, no re-evaluation is necessary, and thus semi-naive optimization

has no effect at all on the performance. Most of the looping subgoals in our chosen

benchmarks reach their fixpoints after two to three iterations. In general, more

iterations are needed to reach fixpoints in bottom-up evaluation. In addition, in

bottom-up evaluation, the order of the joins can be optimized and no further joins

are necessary once a participating set is known to be empty. In contrast, in linear

tabling joins are done in strictly chronological order. For a conjunction (P ,Q, R),

the join P � Q is computed even if no answer is available for R. Because of all these

factors, semi-naive optimization is not as effective in linear tabling as in bottom-up

evaluation.

Our semi-naive optimization requires the identification of last depending subgoals.

For this purpose, a level mapping is used to represent the call graph of a given

program. The use of a level mapping to identify optimizable subgoals is analogous to

the idea used in the stratification-based methods for evaluating logic programs (Apt

et al. 1988; Przymusinski 1989; Chen and Warren 1996). In our level mapping, only

predicate symbols are considered. It is expected that more accurate approximations

can be achieved if arguments are considered as well.

Semi-naive optimization does not solve all the problems of recomputation in

linear tabling. Recall the Warren’s example:

:-table p/2.

p(X,Y) :- p(X,Z),c(Z,a,Y).

p(X,Y) :- p(X,Z),c(Z,b,Y).

p(X,X).

Assume there is a very costly nontabled subgoal preceding p(X,Z), then the sub-goal

has to be executed in each iteration even with semi-naive optimization. This example

demonstrates the acuteness of the problem of recomputation because the number of

iterations needed to reach the fixpoint is not constant. One treatment would be to

table the subgoal to avoid recomputation, as suggested in Guo and Gupta (2001),

but tabling extra predicates can cause other problems such as overconsumption of

table space.

8 Conclusion

In this article, we have described two answer consumption strategies (namely, lazy

and eager strategies) and semi-naive optimization for linear tabling. We have com-

pared the two strategies both qualitatively and quantitatively. Our results indicate
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that while the lazy strategy has better space efficiency than the eager strategy, the

eager strategy is comparable in speed with the lazy strategy. This result implies

that for all-solution search programs the lazy strategy should be adopted and for

partial-solution search programs including programs with cuts the eager strategy

should be used.

We have tailored semi-naive optimization to linear tabling and have given sufficient

conditions for it to be complete. Moreover, we have proposed a technique called early

answer promotion to reduce redundant consumption of answers. Our experimental

result indicates that semi-naive optimization gives significant speedups to some

programs.

Linear tabling has several attractive advantages including its simplicity, ease of

implementation, and good space efficiency. Early implementations of linear tabling

were several times slower than XSB. This article has demonstrated for the first time

that linear tabling with optimization is as competitive as SLG on time efficiency as

well for the benchmarks.

Semi-naive optimization does not solve all the problems of recomputation in

linear tabling. There are programs for which recomputation can be costly, even

leading to higher complexities. The future work is to identify the patterns of such

programs and find methods to deal with them.
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