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Dynamics of stratified turbulence decaying from
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We present direct numerical simulations (DNS) of unforced stratified turbulence with
the objective of testing the strongly stratified turbulence theory. According to this
theory the characteristic vertical scale of the turbulence is given by `v ∼ uh/N, where
uh is the horizontal velocity scale and N the Brunt–Väisälä frequency. Combined with
the hypothesis of the energy dissipation rate scaling as ε ∼ u3

h/`h, this theory predicts
inertial range scalings for the horizontal spectrum of horizontal kinetic energy and of
potential energy, according to E(kh)∝ k−5/3

h . We begin by presenting a scaling analysis
of the horizontal vorticity equation from which we recover the result regarding the
vertical scale, `v ∼ uh/N, highlighting in the process the important dynamical role
of large-scale vertical shear of horizontal velocity. We then present the results from
decaying DNS, which show a good agreement with aspects of the theory. In particular,
the vertical Froude number is found to reach a constant plateau in time, of the form
Frv = uh/(N`v) = C with C = O(1) in all the runs. The derivation of the dissipation
scaling ε ∼ u3

h/`h at low Reynolds number in the context of decaying stratified
turbulence highlights that the same scaling holds at high R = ReFr2

h � 1 as well
as at low R � 1, which is known (see Brethouwer et al., J. Fluid Mech., vol. 585,
2007, pp. 343–368) but not sufficiently emphasized in recent literature. We find
evidence in our DNS of the dissipation scaling holding at R = O(1), which we
interpret as being in the viscous regime. We also find εk∼ u3

h/`h and εp∼ u3
h/`h (with

ε = εk + εp), in our high-resolution run at earlier times corresponding to R = O(10),
which is in the transition between the strongly stratified and the viscous regimes. The
horizontal spectrum of horizontal kinetic energy collapses in time using the scaling
Eh(kh)=C1ε

2/3
k k−5/3

h and the horizontal potential energy spectrum is well described by
Ep(kh)= C2εpε

−1/3
k k−5/3

h . The presence of an inertial range in the horizontal direction
is confirmed by the constancy of the energy flux spectrum over narrow ranges
of kh. However, the vertical energy spectrum is found to differ significantly from
the expected Eh(kv) ∼ N2k−3

v scaling, showing that Frv is not of order unity on a
scale-by-scale basis, thus providing motivation for further investigation of the vertical
structure of stratified turbulence.
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1. Introduction
The atmosphere and oceans present strong stable density stratification over

significant portions of their height and depth. These systems are also affected by
the Earth’s rotation, although it has a much smaller influence than the stratification.
In terms of the flow dynamics, as highlighted by Riley & Lelong (2000), ‘when
turbulence is generated in the presence of stable density stratification, it often
occurs locally and without a continuous source of energy’ as a result of local
Kelvin–Helmholtz (KH) instability or breaking of internal gravity waves (IGWs). The
study of decaying stratified turbulence is therefore of most interest. Comparatively few
previous studies of decaying stratified turbulence exist, in terms of both experiments
(Fincham, Maxworthy & Spedding 1996; Praud, Fincham & Sommeria 2005) and
numerical simulations (Riley & de Bruyn Kops 2003; Bartello & Tobias 2013). On the
other hand, forced stratified turbulence has received considerable attention, particularly
in the case of numerical studies where the achievement of statistical stationarity is
desirable (see e.g. Smith & Waleffe 2002; Laval, McWilliams & Dubrulle 2003; Waite
& Bartello 2004; Lindborg 2006; Brethouwer et al. 2007; Waite 2011; Almalkie &
de Bruyn Kops 2012; Augier, Billant & Chomaz 2015). Most of the recent numerical
studies of forced stratified turbulence have employed purely horizontal forcing to
avoid direct excitation of IGWs, and force modes with kz = 0 to avoid selecting a
vertical scale, two conditions that are hardly met in nature (neither KH instability nor
IGW breaking leads to this kind of forcing). Moreover, the forcing directly excites a
certain horizontal scale, which will therefore not be dynamically selected.

The strongly stratified turbulence theory was developed by a number of researchers
in the first decade of this century. The first step was the work of Billant & Chomaz
(2001), who postulated that the vertical length scale of the turbulence should be
`v = uh/N and found a new set of reduced order equations. In this paper, the
vertical spectrum of horizontal kinetic energy is predicted to be Eh(kv) ∼ N2k−3

v ;
this form of the vertical spectrum had classically been found by Dewan & Good
(1986), who interpreted it as being due to saturation of internal gravity waves. In the
following years, Lindborg (2006) made the hypothesis that horizontal kinetic energy
and potential energy are approximately equipartitioned and used εk ∼ εp∼ u3

h/`h (εk is
the viscous dissipation while εp is the dissipation due to diffusion of buoyancy)
in his analysis to find that the horizontal spectrum of horizontal kinetic energy
should scale as Eh(kh) ∼ ε2/3

k k−5/3
h and the horizontal spectrum of potential energy

as Ep(kh) ∼ (εp/ε
1/3
k )k−5/3

h . Atmospheric spectra were explained using the strongly
stratified turbulence theory by Riley & Lindborg (2008). The strongly stratified
turbulence regime is subject to the conditions Frh= uh/(N`h)� 1 and R=Re Fr2

h� 1
(Re= uh`h/ν is the Reynolds number based on horizontal scales). The latter condition
is equivalent to the buoyancy Reynolds number condition, Reb = εk/(νN2) � 1, as
discussed by Brethouwer et al. (2007).

At this point it is necessary to consider the recent literature behind the condition
R = Re Fr2

h � 1 and the difference between R and the buoyancy Reynolds number
Reb = εk/(νN2). The importance of the buoyancy Reynolds number in geophysical
turbulence and in stratified mixing layers was emphasized by Smyth & Moum
(2000). Taking a more theoretical standpoint, Billant & Chomaz (2001) considered
the importance of diffusive effects on strongly stratified turbulence and identified the
vertical diffusion component as a major contributor to viscous effects, but only if
the condition R� 1 is not met. Following this paper, an important contribution was
made by Riley & de Bruyn Kops (2003), who identified the local gradient Richardson
number Rig as an important non-dimensional parameter in stratified turbulence. In
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212 A. Maffioli and P. A. Davidson

particular they found that the local Richardson number has to be small in some
areas of the flow in order for turbulence to develop, with the formation of KH
instabilities. In their article Riley & de Bruyn Kops (2003) also suggested that
Rig ∼ 1/R describes well their simulations and a wider range of stratified turbulence
problems. The route to the development of strongly stratified turbulence starting from
Taylor–Green vortices was further pursued by Hebert & de Bruyn Kops (2006), who
confirmed that, in the horizontal plane of maximum vertical shear, Rig ≈ 1/R. They
also found that, in this horizontal plane, R ∼Reb, leading to Rig∼ νN2/εk. Moreover,
the buoyancy Reynolds number Reb has more recently emerged (see Brethouwer et al.
2007; Almalkie & de Bruyn Kops 2012; Bartello & Tobias 2013) as another measure
of the relative importance of viscous effects in strongly stratified turbulence. Again
the condition Reb� 1 is necessary for strongly stratified turbulence without viscous
effects. However, the two non-dimensional parameters R and Reb are only equivalent
when the dissipation scaling εk ∼ u3

h/`h holds.
This brings us back to the main focus of the paper, the conditions εk ∼ u3

h/`h and
εp ∼ u3

h/`h on which much of the strongly stratified turbulence theory resides (see
Lindborg 2006). These conditions stem from the evolution equation of total energy
in purely decaying stratified turbulence, dEtot/dt = −ε where ε = εk + εp and Etot =
Ek + Ep, Ek is the kinetic energy and Ep the potential energy, and all quantities are
volume averages. If, by virtue of the strong anisotropy in the velocity components
and length scales of stratified turbulence, we set Ek ∼ u2

h and choose a typical time
scale for energy cascade to be τ ∼ `h/uh, the dissipation scaling is recovered after
invoking equipartition, Ek ∼ Ep, and using the convective time scale τ also for the
dissipation of buoyancy and potential energy. This dissipation scaling has been used
by many authors (see Lindborg 2006; Brethouwer et al. 2007; Riley & Lindborg 2008)
to estimate the horizontal length scale as `h∼ u3

h/ε. The only evidence of this scaling
holding in decaying stratified turbulence comes from Hebert & de Bruyn Kops (2006),
but this study is limited to a horizontal plane where very large vertical shear is present
and does not consider the entire simulation domain. The equivalent form ε ∼ u3/`
is well established in homogeneous, isotropic turbulence, with extensive experimental
and numerical evidence (Yeung & Zhou 1997; Davidson 2004). The dissipation scaling
ε∼u3

h/`h was predicted to be valid also at low R by Godoy-Diana, Chomaz & Billant
(2004) and Brethouwer et al. (2007), a fact that is sometimes overshadowed in the
literature on strongly stratified turbulence.

Concerning spectra in the horizontal direction, Bartello & Tobias (2013) found
that the spectra are independent of stratification and of buoyancy Reynolds number
only if Reb > 10. They then found a k−5/3

h -scaling of the horizontal spectra for their
most stratified case satisfying this condition on Reb. It is important to note that their
definition of buoyancy Reynolds number is Re (`v/`h)

2, which is different to the
above definition based on εk.

The aim of this paper is to understand the applicability of the four predictions of the
strongly stratified turbulence theory: Frv ∼ 1, ε ∼ u3

h/`h, horizontal spectra scaling as
Eh(kh)∼ ε2/3

k k−5/3
h and Ep(kh)∼ (εp/ε

1/3
k )k−5/3

h and vertical spectra scaling as Eh(kv)∼
N2k−3

v . Our first step is to consider the full vorticity equation and provide a scaling
analysis in the limit of high R, as presented in § 2. We then continue with presenting
direct numerical simulations (DNS) of stratified turbulence, starting with the numerical
methodology and description of runs in § 3. The main results are presented in § 4,
where we consider the validity of Frv∼1 in our runs, the dissipation scaling for εk and
εp and the horizontal spectra of horizontal kinetic energy and potential energy. This
section ends with a look at the vertical spectra of the stratified turbulent flows that
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Decaying stratified turbulence 213

have been simulated. A discussion section follows in § 5 in which the anisotropy of
the r.m.s. velocity components is considered at high R, and finally concluding remarks
are given in § 6.

2. Scaling analysis of the vorticity equation in the limit of high R

We start by presenting a scaling analysis of the vorticity equation. This has the
advantage of not requiring any assumption regarding the scaling of the pressure term,
as this term is eliminated when we take the curl of the momentum equation. In this
analysis we assume from the outset that `v� `h so that layers are present in the flow,
whereas Billant & Chomaz (2001) took the aspect ratio α= `v/`h as a free parameter
and took Frh� 1 (a condition we do not require a priori).

As mentioned above, our starting point is the vorticity equation that is obtained
by taking the curl of the Boussinesq momentum equation. We divide the vorticity
equation into two equations, one valid for the horizontal component of vorticity ωh=
ωxex +ωyey, and the other valid for the vertical component of vorticity ωz:

∂ωh

∂t
+ u · ∇ωh =ω · ∇uh − ez ×∇b+ ν∇2ωh (2.1)

∂ωz

∂t
+ u · ∇ωz =ω · ∇uz + ν∇2ωz (2.2)

∇h · uh + ∂uz

∂z
= 0 (2.3)

∂b
∂t
+ u · ∇b=−N2uz (2.4)

where u is the velocity, ω = ∇ × u the vorticity, b = −ρ ′g/ρ0 the buoyancy (with
g = −gez being the gravitational acceleration), ν the kinematic viscosity and N =√−(g/ρ0) dρ̄/dz the Brunt–Väisälä frequency that quantifies the density stratification.
The total density is thus ρ = ρ0+ ρ̄ + ρ ′, the first term being a reference density, the
second being the linear background density profile and the third being the perturbation
density from the linear profile. We have added mass conservation and the buoyancy
equation without diffusive effects to this set as they are necessary for the analysis.

We note in passing that the vertical vorticity equation simplifies to the advection
equation Dωz/Dt = 0 if we neglect viscous effects and take the vortex stretching to
be small compared to horizontal advection of ωz. This in turn is the form of the
potential vorticity (PV) conservation equation for the linear PV component if we
neglect viscous and diffusive effects (Riley & Lelong 2000).

We now focus on the integral scale contributions to (2.1)–(2.4), and make the main
assumption of the scaling and set `v� `h; this assumption is based on the observation
in laboratory experiments, numerical simulations and indeed in the atmosphere that
turbulence in a stratified fluid brings about the formation of pancake eddies or layers
with vertical scales much smaller than their horizontal scales. Now, from the continuity
equation we see that uv ∼ uh`v/`h. Therefore the scaling for the horizontal vorticity is
ωh∼ uh/`v + uv/`h∼ uh/`v[1+ (`v/`h)

2] ≈ uh/`v. The scaling for the vertical vorticity
is ωz ∼ uh/`h. We take time to scale as a horizontal advective time scale, t ∼ `h/uh,
which amounts to filtering out any internal gravity waves (unless their time scale is
very low and of the order of `h/uh). Finally, the scaling for the buoyancy b is taken
as b∼N2`v; this follows directly from (2.4) using continuity, uv/`v ∼ uh/`h.
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214 A. Maffioli and P. A. Davidson

We now focus on the horizontal vorticity equation and provide scalings for every
term in the equation:

Advection: u · ∇ωh ∼ uh
uh

`h`v
+ uv

uh

`2
v

= u2
h

`h`v
(2.5)

Vortex stretching: ω · ∇uh ∼ uh

`v

uh

`h
+ uh

`h

uh

`v
= u2

h

`h`v
(2.6)

Buoyancy term: ∇b× ez ∼ N2`v

`h
(2.7)

Viscous diffusion: ν∇2ωh ∼ ν
(

uh

`2
h`v
+ uh

`3
v

)
= νuh

`3
v

[
1+

(
`v

`h

)2
]
≈ νuh

`3
v

. (2.8)

It is clear that the first two terms – advection and vortex stretching – have the same
order of magnitude under the assumptions made. We are interested in the form the
equations assume at high Reynolds number in the inviscid limit. Therefore we form
a stratified Reynolds number by calculating the ratio of the advective term and the
viscous term and set this term to be much greater than unity, so that the viscous term
can be neglected:

advection
viscous diffusion

∼ u2
h/`h`v

νuh/`3
v

= uh`
2
v

ν`h
� 1. (2.9)

Finally, because we are interested in the dynamics strongly influenced by stratification,
we equate the buoyancy term with the advection term. This leads to

N2`v

`h
∼ u2

h

`h`v
(2.10)

from which
Frv = uh

N`v
∼ 1. (2.11)

We have thus recovered the Frv =O(1) scaling proposed by many authors (Billant &
Chomaz 2001; Lindborg 2006; Brethouwer et al. 2007). It follows from this result
that Frh = uh/N`h ∼ `v/`h � 1 using our assumption of layered flow. So indeed
the horizontal Froude number has to be low for the scalings to hold. If we further
substitute the vertical scale obtained in this way, `v ∼ uh/N, into the expression of
(2.9) we have

advection
viscous diffusion

∼ uh(uh/N)2

ν`h
= uh`h

ν

(
uh

N`h

)2

= Re Fr2
h =R. (2.12)

Evidently we require R = Re Fr2
h � 1 to ensure that the viscous terms may be

neglected.

3. Numerical methodology
We now discuss DNS of decaying stratified turbulence. The numerical methodology

we employ consists in solving the Boussinesq set of equations directly for a linearly
stratified fluid. The Boussinesq set of equations can be written as

∇ · u= 0, (3.1)
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∂u
∂t
+ u · ∇u=− 1

ρ0
∇p+ b ez + ν∇2u, (3.2)

∂b
∂t
+ u · ∇b=−N2uz +D∇2b, (3.3)

where p is the perturbation pressure from the hydrostatic pressure distribution, D
is the buoyancy diffusivity and the remaining symbols have already been defined.
Equations (3.1)–(3.3) are solved using a pseudo-spectral method based on Rogallo’s
algorithm (Rogallo 1981). Time advancement is carried out using a second-order
Runge–Kutta predictor–corrector integration scheme, while the viscous and diffusive
terms are integrated exactly by using suitable integrating factors. De-aliasing of the
nonlinear terms is performed using a combination of truncation and phase shifting.
The simulations are performed in rectangular domains with Lx= Ly > Lz, with vertical
to horizontal length ratios of 1/6, with the exception of one run at higher resolution
where the box aspect ratio is 1/4. The resolution of the simulations is chosen so that
the grid spacing is isotropic, i.e. 1x=1y=1z.

We would like to capture dynamics associated with both potential vorticity and
internal gravity waves. Previous decaying simulations with Taylor–Green vortices
(see Riley & de Bruyn Kops 2003) were skewed towards vortical motions. However,
internal gravity waves have been found to be important in creating organized structures
as shown recently by Maffioli et al. (2014) for localized patches of turbulence. The
runs are therefore initialized with isotropic random-phase velocity fields satisfying

E(k)=U2 k4 exp(−k2/k2
p), (3.4)

where E(k) = 〈û∗ · û〉/2 is the 3D energy spectrum and the 〈· · ·〉 averaging is over
spherical shells at radius k. For all runs we take U2 = 0.22 and kp = 5, giving a
narrow spectrum peaking at

√
2kp ≈ 7. We choose the viscosity, and hence the initial

Reynolds number, in order to ensure that our fields are well resolved. We use the
condition kmaxη> 1 (kmax is the maximum resolved wavenumber after truncation of the
highest modes and η= (ν3/εk)

1/4 is the Kolmogorov length scale) as the criterion for
good resolution of the dissipation scales (as delineated by Eswaran & Pope (1988) and
de Bruyn Kops & Riley (1998)), and this condition is met at all times throughout the
evolution of the turbulent field. This is a severe requirement considering that η, after
an initial drop as more small-scale turbulence is generated, grows steadily throughout
a decaying run. Some trial-and-error was required to obtain the desired value for ν
as the minimum in η was not known a priori. A typical plot of kmaxη throughout run
R80F0.2 (see table 1) is given in figure 1; by the end of the run kmaxη= 2.9.

The various runs are listed in table 1 together with non-dimensional parameters
at the peak in kinetic energy dissipation when small scales have formed. From this
moment onwards the simulation approaches ‘real’ decaying stratified turbulence and
hence values for the important parameters are given here and not at the start of
the simulation. The horizontal Froude number for all cases is Frh,ss = O(1) so that
initially stratification is not dominant but it will become so as the turbulence decays
further. This is the situation that is thought to occur in the atmosphere and oceans
with vigorous turbulent outbursts that then decay until Frh � 1, and stratification
dominates as discussed by Riley & Lelong (2000). In order to obtain Frh,ss = O(1)
the initial Froude number was also of order one, which justifies the use of isotropic
initial conditions. We use a single grid resolution for the initial four runs – denoted
R1.8kF1.8, R330F0.6, R80F0.2 and R26F0.1 following their ‘stratified Reynolds
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FIGURE 1. (Colour online) Evolution of kmaxη in time for run R80F0.2.

Run Nx =Ny Nz Ress Frh,ss Rss Reb,ss Rend tend/τ0

R1.8kF1.8 1536 256 570 1.76 1770 790 1.0 117.3
R330F0.6 1536 256 860 0.62 330 170 1.5 65.8
R80F0.2 1536 256 1410 0.24 80 30 1.7 40.3
R26F0.1 1536 256 1820 0.12 26 4.2 0.7 36.5
R49F0.1 2048 512 2220 0.15 49 13 6.3 15.7

TABLE 1. DNS runs including horizontal and vertical resolutions and parameters at the
peak in kinetic energy dissipation (denoted by the subscript ss, standing for ‘small scales’).
The runs are denoted by their values of Rss and Frh,ss. The initial eddy turnover time is
τ0 = `0/u0.

number’ and horizontal Froude number when small scales have formed. A higher
resolution run is also performed, R49F0.1. All runs have Rss � 1 and, importantly,
R > 10; this is the condition to have strongly stratified turbulence, together of
course with Frh� 1, which will be attained as turbulence decays. Also the buoyancy
Reynolds number is high when small scales have formed, and all runs have Reb,ss� 1
except run R26F0.1, where Reb,ss = 4.2. All cases are run up to when R is of order
one. Hence we cover the entire evolution of strongly stratified turbulence. The only
exception is the high-resolution run R49F0.1, which was run for a smaller amount of
physical time, reaching a final Rend = 6.3.

The buoyancy field is initialized with b = 0 everywhere. This results in high-
frequency internal gravity waves with $ =N being generated at t= 0 that affect the
uz and b fields as the buoyancy field reacts to having large vertical velocities initially.
The horizontal length scale `h presented in what follows is an integral length scale
obtained from the transverse velocity correlations:

`x = 1
〈u2

y〉
∫ r0

0
〈uy(x)uy(x+ rex)〉 dr, (3.5)

`y = 1
〈u2

x〉
∫ r0

0
〈ux(x)ux(x+ rey)〉 dr, (3.6)

`h = 1
2(`x + `y), (3.7)
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where r0 is the horizontal separation at which the velocity correlation first becomes
equal to zero and 〈· · ·〉 now represents a volume average throughout the computational
domain. The vertical length scale `v is obtained in a similar fashion using the
transverse correlations of horizontal velocity:

`(x)z =
1
〈u2

x〉
∫ r0

0
〈ux(x)ux(x+ rez)〉 dr, (3.8)

`(y)z =
1
〈u2

y〉
∫ r0

0
〈uy(x)uy(x+ rez)〉 dr, (3.9)

`v = 1
2(`

(x)
z + `(y)z ). (3.10)

The spectra presented throughout the paper are one-dimensional spectra found by
summation over ‘planar shells’:

E(x)h (kh)=
∑
|kx|=kh

ky
kz

1
2
(ûxû∗x + ûyû∗y), (3.11)

E(y)h (kh)=
∑

kx|ky|=kh
kz

1
2
(ûxû∗x + ûyû∗y), (3.12)

Eh(kh)= 1
2(E

(x)
h (kh)+ E(y)h (kh)), (3.13)

Eh(kv)=
∑

kx
ky

|kz|=kv

1
2
(ûxû∗x + ûyû∗y), (3.14)

where ∗ denotes complex conjugation. In these definitions we use only horizontal
velocity components because most of the strongly stratified theory has been developed
considering only horizontal velocities and taking Ek ∼ u2

h as done by Lindborg (2006).
The potential energy spectra are computed in an analogous fashion by summation of
b̂∗b̂/(2N2).

4. Results
4.1. Visualization of flow field and emergence of strongly stratified turbulence

The turbulence simulations were initialized with isotropic velocity fields and zero
density perturbations. When the stratification is abruptly switched on at t = 0 the
turbulence takes some time to adjust to the vertical restoring force caused by the
linear background density profile. The global effect is that 〈u2

z 〉 slowly drops while
buoyancy 〈b2〉 is generated. As is evident from figure 2, this process takes the form
both of high-frequency exchanges of kinetic and potential energy (the oscillations on
Ep and 〈u2

z 〉/2 correspond to $ = N internal gravity waves as observed by Maffioli
et al. (2014) in their simulations of a turbulent cloud with stratification) and of a
slower nonlinear process on a time scale similar to the initial turnover time τ0.

The effect of the stratification on the turbulence structure is apparent if we turn
to visualizations of vertical and horizontal slices through the parallelepiped-shaped
domains (see figures 3 and 4). At the peak in dissipation the buoyancy field is highly
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FIGURE 2. (Colour online) Evolution of box-integrated kinetic energy components and

potential energy for case R26F0.1. The horizontal velocity uh=
√
〈(u2

x + u2
y)〉/2 so that u2

h

is the total horizontal kinetic energy and 〈u2
z 〉/2 is the vertical kinetic energy. The potential

energy in our runs is given by Ep = 〈b2〉/2N2.

(a)

(b)

(c)

FIGURE 3. (Colour online) Visualizations of the buoyancy field in vertical slices
corresponding to the central x–z plane for run R26F0.1 at three different times: (a) t =
4.4τ0 (close to the peak in dissipation), (b) t= 10τ0, (c) t= 23τ0. Negative buoyancy goes
from dark blue to light blue with a transition in the greys to positive buoyancy going
from orange to yellow.

turbulent and approximately isotropic (see figure 3a), but as time progresses and the
turbulence dies down, Frh drops and we see the emergence of flattened structures from
t=10τ0 onward, while the flow visualized in the horizontal slice in figure 4(b) remains
approximately isotropic. At a late time, t= 23τ0, we have reached R =O(1), and in
addition to the continued layering of the turbulence we have clearly a transition to a
more viscously dominated flow, with diffuse structures and reduced b-gradients (see
figures 3c and 4c).
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(a) (b) (c)

FIGURE 4. (Colour online) Horizontal slices of the buoyancy field (central x–y plane) for
run R26F0.1 at three different times: (a) t= 4.4τ0, (b) t= 10τ0, (c) t= 23τ0.

(a)

(b)

(c)

(d)

FIGURE 5. (Colour online) Visualizations of b in a vertical slice (central x–z plane)
at t = 23τ0 for four DNS runs considered: (a) R1.8kF1.8, (b) R330F0.6, (c) R80F0.2,
(d) R26F0.1.

Moving on to a comparison of the four low-resolution runs initialized with different
Froude numbers at the same non-dimensional time, we see from figure 5 that the
layering is more apparent as Frh,ss is lowered (the instantaneous Frh in the four images
is decreasing from figure 5(a) to (d)). In addition, we have the interesting feature that
the high-Frh,ss runs (R1.8kF1.8 and R330F0.6) still appear vigorously turbulent at this
stage, while the low-Frh,ss cases (R80F0.2 and R26F0.1) appear to be in a viscous
regime. This observation can be explained if we consider the value of R at this
time for the different runs: R = 8.9 for case R1.8kF1.8, R = 6.3 for case R330F0.6,
R = 3.1 for case R80F0.2 and R = 1.6 for case R26F0.1. Hence runs R1.8kF1.8
and R330F0.6 still marginally satisfy R� 1 at this time and still constitute strongly
stratified turbulence, while runs R80F0.2 and R26F0.1 have R ∼ 1 and they are in
a transition phase between the highly turbulent and the viscous regimes of stratified
turbulence.
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FIGURE 6. (Colour online) Evolution of vertical Froude number at times for which R> 7
for DNS runs. Full Frv evolution is given in the inset.

Having obtained a visual appreciation of the stratified turbulence under investigation,
we now characterize it quantitatively, looking in particular at the energy dissipation
rate, at correlation length scales and at energy spectra.

4.2. Vertical Froude number
One of the main results of our scaling analysis in § 2 is the recovery of the vertical
scale relation `v ∼ uh/N as found in the original scaling analysis of the momentum
equation by Billant & Chomaz (2001). Of course, this result holds only for high
buoyancy Reynolds numbers, or for high values of the parameter R=ReFr2

h. However,
our runs were intentionally stopped when R falls to order unity, allowing us to check
whether `v scales as the buoyancy scale. When R = O(1) we expect there to be a
transition from the scaling `v ∼ uh/N to a viscous scaling. This means that, if we
plot Frv as a function of time, we expect it to reach a constant value while R� 1.
Considering our visualizations in figure 5, the stratified turbulence in our DNS runs
appears to change character and be less vigorous at values of R < 6.3. We therefore
substitute the condition R > 7 for the more stringent (but not quantifiable) condition
R� 1, and plot the vertical Froude number as a function of time only for times at
which this condition is met. This is done in figure 6 and it is clear that Frv= const for
all runs and the asymptotic value is similar in all cases, at Frv = 0.34–0.37. We also
show the full evolution of Frv (inset panel in figure 6); this shows a slow variation of
Frv at late times (especially true for the low-Fr0 case F0.16) as the stratified turbulence
is more affected by vertical viscous diffusion. This is accordance with a transition at
R =O(1) between strongly stratified turbulence and a viscously dominated regime.

All in all, the simulations provide convincing evidence that, after an initial transition
from random-phase velocity fields to fully developed stratified turbulence, the vertical
Froude number is of order one. This is one of the central claims of the strongly
stratified turbulence theory and, to our knowledge, it had not been verified in the
context of freely decaying simulations.
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FIGURE 7. (Colour online) (a) Total energy dissipation ε= εk+ εp normalized by u3
h/`h as

a function of time for four runs at different initial Fr. The vertical black segment indicates,
for each run, the bound between times at which R > 7 and later times at which R < 7.
(b) The viscous dissipation and diffusive dissipation normalized analogously for run
R49F0.1 with the same bound indicated on the plot.

4.3. Dissipation scaling
It has been suggested by numerous authors that in stratified turbulence both the
viscous dissipation εk and the diffusive dissipation εp= (D/N2)(∂b/∂xi)(∂b/∂xi) scale
with horizontal length and velocity scales:

εk = Ak
u3

h

`h
, Ak = const; εp = Ap

u3
h

`h
, Ap = const. (4.1a,b)

Both constants Ak and Ap are expected to be finite and of order one.
In figure 7(a) we show the total energy dissipation rate ε = εk + εp averaged

throughout the simulation domain and normalized by u3
h/`h as a function of time for

the four runs at the lower resolution. According to the relations (4.1) the quantity
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ε`h/u3
h should reach a constant value of order one. We see that this is indeed the case

at late times; however, both R and the buoyancy Reynolds number are close to 1 at
these times and therefore we expect viscosity to be playing a role here. To clarify
further that our four lower resolution simulations are not in the strongly stratified
turbulence regime when the curves flatten out, we apply the same bound used in
the previous section to test Frv ∼ 1. The portions of the four curves presenting a
close-to-constant non-dimensional dissipation are all clearly beyond the bound R = 7
(which corresponds to a buoyancy Reynolds number Reb ≈ 2).

To understand this apparently contradictory result, we consider the opposite limit to
the one treated in the above scaling analysis in § 2, namely the limit of strong viscous
dissipation R� 1. In this limit, experiments on stratified turbulence (Fincham et al.
1996) show that vertical diffusion dominates the viscous dissipation and that the flow
is still highly anisotropic and composed of pancake structures with `v� `h. Given that
this flow regime is dominated by the action of viscosity in the vertical direction, we
take the vertical length scale to obey a viscous diffusion process `v ∼

√
νt, similarly

to Godoy-Diana et al. (2004). We also make the assumption that the total dissipation
is well described by ε ∼ u3

h/`h, which is what has to be later verified in the scalings.
Hence the sum of kinetic and potential energy obeys the evolution equation dEtot/dt=
−Au3

h/`h. Now, invoking equipartition, Ek∼Ep, with Ek∼u2
h and Ep∼b2/N2, we arrive

at the evolution equation for the horizontal kinetic energy

du2
h

dt
=−Ak

u3
h

`h
, u2

h ∼ t−n, (4.2)

where the power-law behaviour is expected as the flow is still turbulent, despite being
in the viscous regime. Hence we have

−n
u2

h

t
=−Ak

u3
h

`h
(4.3)

from which uh/`h = n/(Akt), giving a time scale for this turbulent flow as t =
n`h/(Akuh)∼ `h/uh (the usual eddy turnover time). Substituting this into our diffusion
length `v we have `v ∼ √ν`h/uh = `h/

√
Re, a scaling for `v first proposed by

Godoy-Diana et al. (2004) to describe the viscous regime of stratified turbulence.
The final step is then to let εk ≈ ν(∂uh/∂z)2 ∼ νu2

h/`
2
v ∼ u3

h/`h and we have recovered
the dissipation scaling for the viscous dissipation. Considering that we are interested
in the case Pr = ν/D = 1, which is the case in the DNS runs, the same analysis
clearly also leads to εp ∼ u3

h/`h and therefore the total dissipation ε presents the
same scaling. In conclusion we can say with some confidence that this rederivation
and figure 7(a) further strengthen the scaling proposed for the viscous regime (see
Godoy-Diana et al. 2004; Brethouwer et al. 2007).

We now consider the high-resolution run R49F0.1. In figure 7(b) the full evolution
of this run is presented. It is relatively clear that after an initial transient associated
with the stratified turbulence becoming fully developed, the curve flattens out at
around t/τ0 = 11.5. Again, the boundary demarcating the region in which R > 7
from the later times at which R < 7 is given, and it occurs close to the end of
the simulation. There is a period of about 3τ0 ahead of this boundary during which
both εk and εp scale with horizontal quantities alone and, when normalized, reach
a constant plateau. Despite the fact that the dissipation scaling is presented earlier
than the low-resolution runs, at this time we are already in the transition between
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FIGURE 8. (Colour online) Comparison of R and buoyancy Reynolds number for two
low-Frh,ss runs, R80F0.2 and R49F0.1. The full evolution in time is shown.

the strongly stratified regime and the viscous regime. At t/τ0 = 11.5, R = 10 but
the buoyancy Reynolds number Reb = 2.1, as can be seen in figure 8 showing the
concurrent evolution of R and Reb for runs R80F0.2 and R49F0.1. This value of Reb

is too low, as can be seen more clearly when calculating the ratio of dissipation due
to vertical gradients of horizontal velocity to the total dissipation, εk,hv/εk = 0.69 at
this time. The turbulent motion is starting to be dominated by vertical shear and we
are approaching the viscous regime. So we have been unable to verify the dissipation
scaling in the strongly stratified regime. Our partial result does, however, support
the claim that the dissipation scaling ε ∼ u3

h/`h is a robust result, holding across the
various regimes of stratified turbulence.

4.4. Horizontal spectra of horizontal kinetic energy
According to Lindborg (2006) the horizontal spectrum of horizontal kinetic energy
(which is very similar to the spectrum of full kinetic energy, given that the vertical
component of velocity is small) should scale as Eh(kh) ∼ ε

2/3
k k−5/3

h for strongly
stratified turbulence. Let us now see if this is the case for our decaying runs. Figure 9
shows one-dimensional horizontal spectra of horizontal kinetic energy compensated
by multiplication by ε

−2/3
k k5/3

h for the four DNS runs. These compensated spectra
should present a plateau at a constant value of Ẽh(kh) = ε

−2/3
k k5/3

h Eh(kh) over the
stratified inertial range if the Lindborg scaling applies. We have chosen to plot
the spectra using a linear axis for the y-axis as often log–log plots show apparent
plateaus where there is still significant variation in the compensated spectra. We can
see that the compensated spectra present about half a decade of constancy for runs
F1.3, F0.6 and F0.3, starting from a wavenumber kh ≈ 10. We have chosen the time
instants in figure 9 as they present the clearest stratified inertial range and these times
correspond to R ≈ 15 for the three runs with a clear plateau. This is in line with
previous knowledge (Bartello & Tobias 2013) that Re (`v/`h)

2 = 10 appears to be the
lower bound for the strongly stratified horizontal spectra to be observed. In our DNS
simulations this condition actually would translate to Re Fr2

h/Fr2
v ≈ 8Re Fr2

h = 8R > 10
or R > 1.3 using the value Frv = 0.35 reached by all our runs. We find in our runs
that R≈ 15 is needed for the stratified inertial range to be observed. The extent of the
stratified inertial range should be from the horizontal integral scale to the Ozmidov
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FIGURE 9. (Colour online) Compensated horizontal spectra of horizontal kinetic energy,
Ẽh(kh) = ε

−2/3
k k5/3

h Eh(kh). (a) Run R18.kF1.8 at t = 20.4τ0 (R = 14.6, Frh = 0.16),
(b) run R330F0.6 at t = 12.3τ0 (R = 15.9, Frh = 0.12), (c) run R80F0.2 at t = 8.8τ0
(R = 15.6, Frh = 0.096), (d) run R26F0.1 at t = 5.4τ0 (R = 20, Frh = 0.11). (e) Run
R49F0.1 at t= 5.6τ0 (R = 29.7, Frh = 0.11).

scale, and this range is determined solely by the Froude number since koz/k`h ∼Fr−3/2
h

(Lindborg 2006). Hence the lower the Froude number the more wavenumbers the
inertial range covers, and this is consistent with our results with run F0.3 presenting
the longest inertial range.

There is a limit, however, to how low we can push the Froude numbers in a
decaying context, as exemplified by run R26F0.1 where no stratified inertial range
is visible. We interpret this as the effect of the vertical dissipation of large-scale
horizontal motions, which becomes important at R=O(10). Clearly, since R=Re Fr2

h,
this occurs at earlier times for runs that start from low Frss. Now, the stratified cascade
with its inertial range inevitably sets in after the dissipation peak and formation of
smallest scales. As a result it appears that, for the case R26F0.1, there is not
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FIGURE 10. (Colour online) Horizontal spectra of horizontal kinetic energy compensated
such that Ẽh(kh) = ε

−2/3
k k5/3

h Eh(kh) for (a) R330F0.6 from t = 11τ0 up to t = 13.6τ0

(horizontal line corresponds to Ẽh = 0.44), (b) R80F0.2 from t = 7.4τ0 up to t = 9.6τ0

(horizontal line corresponds to Ẽh = 0.43).

enough time for the spectrum to become fully developed before vertical diffusion
dominates. To add some numerical evidence to this argument, all runs present a peak
in dissipation at t = 4.4τ0 and we have R = 15 at a later time highly dependent on
Frh,ss. For the case R26F0.1 this time is t = 6.6τ0 (for the other runs the times are
given approximately in figure 9), and hence two initial eddy turnover times are not
sufficient for the stratified cascade to fully develop. On the other hand run R80F0.2
has about 4.5 turnover times before diffusion starts becoming important so that an
inertial range can be established.

The bottom plot in figure 9 corresponds to run R49F0.1 at an early time. At this
instant, there is no plateau observable on the horizontal spectrum of horizontal kinetic
energy, but rather a dip at kh ≈ 20 and a bump at kh ≈ 80, similarly to what was
observed by Augier et al. (2015).

The compensated spectra in figure 9 are for a given time instant. It is interesting
to observe the evolution of the spectra in time to check whether the scaling with the
kinetic energy dissipation is correct. Results for the one-dimensional horizontal spectra
of horizontal kinetic energy over a range of times are presented in figure 10 for cases
R330F0.6 and R80F0.2. It is clear that the curves collapse well over two to three
integral time scales, showing that the dependence on the kinetic energy dissipation is
met in our simulations. Moreover, the constant describing the compensated horizontal
spectra is C1= 0.44± 0.02 for the four runs excluding run R26F0.1. For times beyond
the ones considered in figure 10 the spectra are viscously dominated without much of
an inertial range, highlighting that the buoyancy Reynolds number is low at late times.

It is important to note that k−5/3
h horizontal spectra are presented well before the

dissipation scaling ε ∼ u3
h/`h is shown, meaning that the result for the spectra

is applicable to the regime of strongly stratified turbulence. For instance, the
high-resolution run has εk,hv/εk = 0.419 at the time at which the spectra are shown,
which is not too far from the isotropic value of εk,hv/εk = 4/15 = 0.267. The −5/3
form of the horizontal kinetic energy spectra is a statement that the dissipation
scaling holds on a scale-by-scale basis, or v3

h/sh ∼ εk where vh and sh are local
scales in the cascade. It is therefore surprising that this scaling holds in the inertial
range in our DNS runs but, at the same times, not at the integral scales, which are
feeding the downscale cascade of energy in the horizontal. At high enough R and
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FIGURE 11. (Colour online) Compensated horizontal spectra of potential energy, Ẽp(kh)=
ε−1

p ε
1/3
k k5/3

h Ep(kh). The runs and corresponding times are the same as those given in
figure 9.

buoyancy Reynolds number it is expected that both results will be recovered, but in
our simulations the horizontal-transfer-to-dissipation balance is found scale-by-scale
but not in a volume-averaged sense.

4.5. Horizontal spectra of potential energy

The horizontal spectra of potential energy predict that Ep(kh) ∼ εpε
−1/3
k k−5/3

h , which
is found from cascade arguments (analogous to those that lead to the form for the
horizontal spectrum of horizontal kinetic energy) and on insisting that the time scale
of the buoyancy fluctuations is the same as the convective time scale. It follows from
this that the form of the horizontal spectrum is a Corrsin–Obukhov spectrum, which
governs passive scalar advection. Figure 11 shows five compensated horizontal spectra
of potential energy, one for every run at the same times as for the horizontal kinetic

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

66
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.667


Decaying stratified turbulence 227

0

0.2

0.4

0.6

0.8

(a) (b)1.0

t

t

0

0.2

0.4

0.6

0.8

1.0

t

t

FIGURE 12. (Colour online) Compensated horizontal 1-D spectra of potential energy
with Ẽp(kh) = ε−1

p ε
1/3
k k5/3

h Ep(kh) for (a) F0.6 from t = 11τ0 up to t = 13.1τ0 (horizontal
line corresponds to Ẽp = 0.61), (b) F0.3 from t = 7.4τ0 up to t = 8.8τ0 (horizontal line
corresponds to Ẽp = 0.62).

energy spectra in figure 9. Except for the high-resolution run R49F0.1 presenting a
clear inertial range behaviour, the results are less convincing than the kinetic energy
spectra. Nonetheless the spectra present a limited inertial range as shown more
clearly by the time evolution of the potential energy spectra for runs F0.6 and F0.3
in figure 12. The constant appears to be C2 = 0.61± 0.03 across the runs, except for
case R26F0.1 where, as for the kinetic energy spectra, there is no clear plateau.

4.6. Horizontal energy flux spectra
We have calculated the horizontal energy flux spectra Πk(kh) and Πp(kh) by summing
the transfer spectra over cylinders of radius kh in Fourier space; here kh is a two-
dimensional wavenumber, kh=

√
k2

x + k2
y . For more details on the definition of kinetic

energy and potential energy transfer spectra the reader is referred to Augier, Chomaz
& Billant (2012). The horizontal energy flux spectra highlight the energy transfers
in the horizontal direction at a certain wavenumber kh. If Πk(kh) > 0 then there is
downscale transfer of kinetic energy to higher wavenumbers than kh, and if Πk(kh)< 0
there is an upscale transfer at this wavenumber. Moreover, a region of constant Πk or
Πp defines an inertial range (see Lindborg 2006). In figure 13 we show Πk and Πp
together with the corresponding 2-D horizontal spectra for runs R80F0.2 and R49F0.1.
The times at which the energy flux spectra are shown are towards the end of the
period over which the 1-D spectra present a collapse over time (see figure 10). The
energy spectra are compensated to show a k−5/3

h -range, which is very limited in run
R80F0.2 and slightly more pronounced in the high-resolution run R49F0.1. In all
cases the energy flux spectra are constant over a narrow range, which correlates well
with the k−5/3

h -region in the 2-D spectra (except for Πk in run R80F0.2, which is flat
starting from wavenumbers kh < 10, where there is clearly no k−5/3

h -region). In both
runs, the region Πp= const. extends to higher wavenumbers than the region Πk= const.
The ranges are narrow due to the limited dynamic range in the runs, but the fact that
Πk and Πp present a region of constancy provides confirmation that we indeed have
an inertial range in the horizontal direction. The kinetic and potential energy fluxes
are negative at small wavenumbers, showing that there is a small upscale transfer at
large scales. However, in both the runs under consideration, the transfer of kinetic
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FIGURE 13. (Colour online) Energy flux spectrum in the horizontal direction together
with the corresponding horizontal 2-D spectrum (compensated): (a) horizontal kinetic
energy spectrum Ẽh(kh)= ε−2/3k5/3

h Eh(kh) and kinetic energy flux spectrum for run R80F0.2,
(b) potential energy spectrum Ẽp= ε−1

p ε
1/3
k k5/3

h Ep(kh) and potential energy flux spectrum for
run R80F0.2 (both (a) and (b) are at t/τ0 = 9.3), (c) horizontal kinetic energy spectrum
and horizontal kinetic energy flux spectrum for run R49F0.1, (d) potential energy spectrum
and potential energy flux spectrum for run R49F0.1 (both (c) and (d) are at t/τ0 = 7.5).
The horizontal wavenumber is incremented by 0.5 to show the transfers to the shear modes
with kh = 0.

energy to the shear modes kh = 0 is negligible at the times shown, and it is actually
downscale for run R80F0.2 from this mode. At other times, there is a transfer of
kinetic energy towards the kh = 0 mode but this mode never dominated the dynamics
in our simulations.

As is apparent from figure 13 we have Πk < εk and Πp < εp in the inertial range.
If we form total transfers Π = Πk + Πp then the ratio of the total transfer to the
total dissipation is Π/ε ≈ 0.53 in the inertial range for both runs under consideration.
Hence only about half of the dissipation rate can be attributed to downscale transfer
of energy in the horizontal in our decaying stratified turbulence. This means that the
remaining half of the dissipation rate must be accounted for by energy transfers in
the vertical direction or by dissipation acting at scales of the order kh ≈ 30 or lower,
presumably due to vertical shear at these horizontal scales. The cascade of energy in
the horizontal has therefore been confirmed in our DNS of stratified turbulence but
perhaps it should be put into perspective that it accounts for only roughly half of the
total energy dissipation in the flow. Further simulations with a greater dynamic range
are needed to confirm this statement.
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(a) (b)

FIGURE 14. (Colour online) (a) Compensated vertical spectra of horizontal kinetic energy,
Ẽh(kv)=N−2k3

vEh(kv). (b) Horizontal and vertical 1-D spectra of horizontal kinetic energy
(main plot) and potential energy (inset) for the case R1.8kF1.8 at t= 27.2τ0.

4.7. Vertical energy spectra
Vertical spectra of horizontal kinetic and potential energy are predicted to scale as
Eh(kv) ∼ Ep(kv) ∼ N2k−3

v according to the strongly stratified turbulence theory. This
particular form for Eh(kv) means that the vertical Froude number is of order unity
on a scale-by-scale basis. It is important to test whether the vertical spectra in our
decaying runs obey this scaling or not. In figure 14(a), vertical spectra of horizontal
kinetic energy for all four cases at specific times are presented, the spectra having
been compensated so that a horizontal plateau would show accordance with the
scaling above. There is no evidence of such a plateau in any of the DNS runs,
the spectra being considerably shallower than k−3

v before the rapid viscous decay at
high wavenumbers. Similar vertical spectra were found by Bartello & Tobias in their
decaying simulations (S. M. Tobias 2014, personal communication).

It should be pointed out that the range of vertical wavenumbers at which the k−3
v -

spectrum is predicted is narrow, the scales ranging from the buoyancy scale uh/N to
the Ozmidov scale `oz=

√
εk/N3, which scales like Fr−1/2

h (see Lindborg 2006). Given
the moderately low Froude number in our runs, which is Frh = O(0.1) during the
time when R = O(10), the results for vertical spectra are not so surprising. Limited
support has been provided to date for such steep vertical spectra: Augier et al. (2012)
have found k−3

v -vertical spectra in their simulations of transient evolution of the zigzag
instability while Almalkie & de Bruyn Kops (2012) have found this scaling in only
one of their high-resolution forced runs of stratified turbulence.

The vertical spectra in our DNS runs at intermediate to late times are actually rather
similar to their horizontal equivalents, as shown in figure 14(b) for both kinetic and
potential energy. The vertical and horizontal spectra present closely matching trends
at varying wavenumber, meaning that the vertical spectra are closer to k−5/3

v than k−3
v

over the stratified inertial range. Beyond a transition wavenumber that corresponds to
the Ozmidov scale `oz it is expected that there is a return to an isotropic Kolmogorov
spectrum of the form Eh(kv) ∼ ε2/3

k k−5/3
v (see Brethouwer et al. 2007; Augier et al.

2012). Our shallow vertical spectra may be the result of an early transition to isotropic
conditions due to the moderately low Frh. We will discuss this point further in the
discussion that follows in § 5.
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5. Discussion

The fact that the vertical spectra do not present an N2k−3
v -dependency has an

important implication: the vertical Froude number is not of order unity on a
scale-by-scale basis in our simulations. We will now see that this is actually not
so surprising if we consider that our scaling argument from which we found Frv ∼ 1
implies that Frh� 1. Let us consider scale-by-scale Froude numbers Frsh = vh/Nsh and
Frsv = vh/Nsv, where vh, sh=π/kh and sv =π/kv are local scales in the cascade. The
reason for using a factor of π and not 2π when relating a scale to its corresponding
wavenumber is that sh and sv are scales and not wavelengths, i.e. a region of correlated
positive buoyancy such as a yellow structure in figure 3 presents scales sh and sv
while if we consider also an adjacent blue structure we will have a wavelength. We
found some evidence from our horizontal spectra that at intermediate scales in the
inertial range we should have ε ∼ v3

h/sh. This leads to

Frsh =
vh

Nsh
∼ (εsh)

1/3

Nsh
= ε

1/3k2/3
h

π2/3N
(5.1)

so it is clear that Frsh steadily grows from its integral scale value Frh as we move to
smaller scales. Run F0.3 presents the clearest inertial range of Eh(kh) – see figure 9 –
but on substituting the values of dissipation at this time in (5.1), we see that Frsh >Frv
for kh> 80. This value compares well with the wavenumber at the end of the stratified
inertial range, estimated to be kh = 50, as can be seen in figures 9 and 10. However,
this value of kh is only about 10 vertical wavenumbers after the peak in Eh(kv) so it
appears that the condition Frsh� 1 is not well satisfied for most of the vertical scales
and Frsv can therefore not be of order unity for these scales. The typical argument
reads that the horizontal Froude number becomes unity at the Ozmidov scale with
koz = π

√
N3/εk ≈ 470 for run F0.3 at t= 8.8τ0 (the time of figure 9). But, by using

the value of Frv from our simulations, the estimate for the transition wavenumber is
greatly reduced (the use of the total dissipation also reduces this value, but by a much
smaller amount), making it practically impossible to observe a vertical inertial range
as predicted by the strongly stratified turbulence theory.

In the future, greater computer capabilities will allow Frh to be pushed much lower,
while keeping R >O(10), thus allowing Frsh to be small over a large range of scales.
The scaling analysis of § 2 should therefore be valid over these scales, for which
Frsv ∼ 1 as a result. It follows that the level of anisotropy decreases as we go down
the cascade:

vz

vh
∼ sv

sh
= Frsh

Frsv
∼ Frsh ∼

ε1/3k2/3
h

N
, (5.2)

where vz is a local vertical velocity scale and we have used continuity in the first step.
Therefore the distribution of vertical kinetic energy across horizontal scales is given
by

v2
z ∼
(
ε1/3k2/3

h

N

)2 (
ε

kh

)2/3

∼ ε
4/3k2/3

h

N2
, (5.3)

which grows as we move to smaller and smaller scales up to a transition wavenumber
that is of the order of koz. This means that, as discussed previously by Davidson (2013)
and Riley & Lindborg (2013), the vertical velocity fluctuations peak at the Ozmidov
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FIGURE 15. (Colour online) Evolution of the non-dimensionalized vertical velocity
variance and the horizontal Froude number in (a) run R80F0.2, (b) run R49F0.1. The
solid grey curve (cyan online) corresponding to 〈u2

z 〉|kz 6=0/u2
h represents the variance of uz

(non-dimensionalized by u2
h), with the removal of the contributions to the variance of the

wavenumber kz= 0. The solid dark curve (red online) corresponds to the horizontal Froude
number. The dashed curve (green online) with the large and periodic oscillations is the
variance of u2

z non-dimensionalized by u2
h considering all vertical wavenumbers.

scale, `oz, rather than at the integral scale `h. From (5.3) we therefore have 〈u2
z 〉 ∼

v2
z (kh = koz)∼ ε/N, from which the following result is obtained:

〈u2
z 〉

u2
h
∼ ε/N

u2
h
∼ uh

N`h
= Frh (5.4)

rather than 〈u2
z 〉 =Fr2

h u2
h, the naive deduction obtained by applying continuity without

realizing that vertical velocity is a small-scale quantity in stratified turbulence.
We have attempted to test equation (5.4) in our simulations. However, large

oscillations with frequency equal to twice the Brunt–Väisälä frequency on the
〈u2

z 〉-curve appear to cause a mismatch between 〈u2
z 〉/u2

h and Frh. This can be observed
in figure 15. By removing the mode kz = 0 from the vertical 1-D spectra of u2

z , one
isolates the dynamics that is independent of this kz = 0 wavenumber, at which the
oscillations are expected according to the IGW dispersion relation. The summation
of the 1-D spectra of u2

z from the first non-zero vertical wavenumber to the largest
vertical wavenumber is presented together with the evolution of Frh in time in
figure 15. The match of functional forms is good for both low-Frh,ss runs considered:
run R80F0.2 and the high-resolution run R49F0.1.

Another observation that we may add to support this relation is that visualizations
of uz appear to be isotropic as seen in figure 16, at variance with the other fields, ux,
uy and b, which invariably present the characteristic layering of stratified turbulence
(see figures 3–5). This is suggestive of uz being a smaller scale quantity, as at small
scales we have a return to isotropy. It is hoped that further simulations of stratified
turbulence at lower Frh will confirm these preliminary findings.

6. Conclusions
We have presented results from a scaling analysis and DNS of stratified turbulence

starting from a high value of R and a Froude number of order one. The alternative
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FIGURE 16. (Colour online) Visualization of the uz field in run R80F0.2 at t/τ0 = 10,
corresponding to Frh = 0.09 and R = 13.3.

scaling analysis based upon the vorticity equations leads simply and directly to the
well-known scaling result for the vertical length scale of the turbulence as `v = uh/N.
In doing so it highlights the importance of horizontal vorticity in stratified turbulence,
and in particular of vertical shearing of horizontal velocity at large scales (which can
be interpreted physically as pancake vortices sliding one on top of the other). The
DNS results are in line with the scaling prediction on the vertical scale at high R
and show the first signs of a transition to a viscous scaling at R =O(1).

A frequent assumption in the literature on stratified turbulence is εk ∼ u3
h/`h and

εp ∼ u3
h/`h, which can be useful when interpreting the results of forced simulations.

The results of our runs have shown its validity, yet only for the transition regime
between the strongly stratified turbulence and the viscous regimes. This result does
suggest that the dissipation scaling is robust, holding across the regimes of stratified
turbulence. The horizontal spectra are largely in line with the Lindborg forms over a
limited inertial range. The presence of an inertial range is confirmed by the energy
flux spectra Πk and Πp being approximately constant over a narrow kh-range. The
k−5/3

h -spectra are observed from early times so that we are still in a state close to
strongly stratified turbulence. The reason why the spectra present k−5/3

h -ranges at times
when the dissipation does not show ε ∼ u3

h/`h is not understood, and is a point that
deserves further attention. The constants C1 and C2 for the horizontal kinetic and
potential energy spectra are different in our runs, while previous results had them
as being very close with C1 = C2 ≈ 0.5 as found by Lindborg (2006) and Lindborg
& Brethouwer (2007). More importantly, the vertical spectra Eh(kv) and Ep(kv) are
very far from k−3

v and are closer to k−5/3
v over a range of wavenumbers. This result

is thought to be due to the insufficiently low horizontal Froude numbers in the cases
under consideration. It is possible that by pushing horizontal Froude numbers down
to very low values Frh = O(10−3) the form N2k−3

v for the vertical spectra will be
recovered and the scaling Frv ∼ 1 will be found to hold over a range of scales. The
computational requirements for such a run are very high, but they could lead to the
resolution of an important open issue in stratified turbulence.
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