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The Compton Effect tn Wave Mechanics. By Dr P. A. M.
Dirac, St John’s College.

[Recetved 8 November, read 22 November 1926.]

§ 1. Introduction.

The problem of the scattering of radiation by a free electron
has been treated by the author* on the basis of Heisenberg’s
matrix mechanics, which was first modified to be in agreement
with the principle of relativity. The main point of this modifica-
tion is that, whereas in the non-relativity theory one deals with
matrices whose elements vary with the time according to the law
€, in the relativity theory the elements of the matrices must vary
according to the law e** where ¢’ =t — (L, 2, + l,m, + l;z,)/c if they
are to determine correctly the radiation emitted in the direction
specified by the direction cosines (l,, l,, I5), @,, z; and z; being the
coordinates of theelectronat the time ¢. These matrices were obtained
by writing the Hamiltonian equation of the system in the form

H =W =0 oooioieeecianan (1),

where W' is a variable canonically conjugate to ¢ and H’ com-
mutes with ¢', and then using H’ as an ordinary Hamiltonian
function of a dynamical system that has W’ for its energy and ¢
for its time variable.

This method is rather artificial; particularly so since on the
quantum theory there is no unique way of writing the Hamiltonian
equation in the form (1) {owing to ambiguity in the order of
factors in H'], and it has to be proved that all reasonable ways of
doing so lead to the same results. A more natural and more easily
understood method of obtaining the matrices is provided by
Schridinger’s wave mechanicst.

In this method we do not need to write the Hamiltonian
equation in any special form, such as (1), in order to obtain
Schrédinger’s wave equation from it, by applying the rules which
consist of letting the momentum symbols denote certain operators.
When we have obtained the solutions v, of the wave equation,
then we can get a matrix representation of the dynamical variables
by obtaining expansions of the type

A ‘I’a = EI'AG'G‘P‘B')

* Roy. Soc. Proc. A, vol. 111, p. 405 (1926). This paper is referred to later by
doc. cit.

1 Bee Schrodingers papers in the 4nn. d. Phys., vols. 79—81 (1926). For
the general method of obtaining matrices from the wave mechanics, see section 2
of the author’s paper, Roy. Soc. Proc. A, vol. 112, p. 661 (1926).
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where A is a dynamical variable, and the coefficients A, are
functions of any steadily increasing variable such as ¢ or#. These
coefficients are then the elements of the matrix that represents 4.
If we do choose just ¢ to be the variable of which the A.,’s are
functions, then we get the matrix representation that is suitable
for determining the radiation emitted in the direction (I, l,, L).
The matrix elements would now be of the form ae® !, where the
a’s and w’s are constants, and we would then take the w's to be
the frequencies and the a’s (if 4 is a component of total polarisa-
tion) to determine, according to classical formulae, the intensities
of the components of radiaticn emitted in the direction (4, I,, Ls).

§ 2. Solution of the Wave Equation.

We consider a free electron exposed to plane polarised incident
radiation of wave number v/27 moving in the direction of the =,
axis with its electric vcetor in the direction of the z, axis. The
Hamiltonian equation of the system is*

mc? = W?/c® — p? ~ [p, + @’ cosv (ct — z,)]P — py,
where p,, p., ps and — W are the variables canonically conjugate
to x,, 7,, %5 and ¢, and a’ is a constant, which may be assumed to
be small. [p, differs from the ordinary component of momentum in

the z, direction by the term a’cos v (¢t — 2,).]
Schrodinger’'s wave equation is now

{m*c* — W2lc*+ p? + [p. + @' cos v (ct — a,) P+ ps’} ¥ =0...(2),
in which the symbols p,, p;, p, and W mean the operators

., 0 . 0 . 0 . 0
—th—, —zhﬁz, —zha—zz and zha—t.
We must find the solutions v, of this equation, and we can then
determine the matrix representing a component X of the polari-

sation by obtaining an expansion for X, of the form
X\"ﬂ = zc'Xa’u‘P'u’,

where the coefficients X . are functions of the single variable ¢'.
We now, as in the previous treatment of the problem, apply
the linear canonical transformation

z’ =ct—x p=—p' +L,W/ec
-'cz' =T Pe= Pal + an’/O (3)
%,'——;z' p3= pal+l3WI/c o )

U=t—(ha+ Lo, + bizy)c W=W' —cp/’

The purpose of this transformation is two-fold ; first it introduces
explicitly the variable ¢’ in terms of which we want.the matrix

* Loc. cit., equation (21).
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elements, and secondly we shall be able to solve the wave equation
in the new co-ordinates directly by separation of the variables. By
substituting for p,, p,, ps and W in (2) their values given by the
second set of equations (3), we find for the wave equation in the
new co-ordinates, with neglect of terms involving a%,
{m*cc+2W'[c. [(A=1L)p/ + Lp) + L,ps + L.a’ cosva,]
+p,%+ ps* + 2a'p; cos vz} Y =0...... (4).

The symbols p,’, p), ps’ and W’ here mean the operators

0 . 0 ., 0 . 0
3—551_” —’Lha—%,, —’I,hé;:, and 1’1@.

Since the wave equation (4) does not involve z,, ;' or ¢’
explicitly, it will have solutions of the form
Vo= il giesmlh  ginitlh o (g,'),

where a,, a, and a, are arbitrary constants, and v (z,') is a function
of the single variable z,". With this form for yr, we have

PEVa=aVa, PiYe=a¥a, Wih.=anl,

and, more generally, if f(p,’, p;, W’) is any function of p,, pJ and
W’, which may also involve " and p,” (f is thus an operator) we

have
f(le, psl, W,) \Pa =f(a21 aa: a‘) ‘Ira'
This rule applied to the left-hand side of equation (4) gives

{2a./c.[(1 = 1) p) + L, + a5+ L0 cos vay]
+ b + 20'a, cos vy} eIk g b gt Ik 5 (2,) =0,

—th

where b=m2c® + a2 + a.

The factors ¢s%'/%, ¢2s%s'/h and e~*¢'/* may be cancelled out, and a
simple differential equation for the function y (2,) will then be
left, whose solution is

, . by
X (z')=exp -1 {(l,a, + lya, +-§%> o,

+ 2L+ i—“’) sin w'} /(1 —L)h.
The solution of equation (4) is thus

Yo =VYay, a5, 0= €XP L {(l — L) (azy + asz)’ — a,t’)

- (l,,aB + Lag + 2%2) 2 — a;’ (lE + %)sin va:,’}/(l —-L)k
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and since it contains the three arbitrary parameters a,, a;, a,, and
may also be multiplied by a fourth arbitrary parameter, it is a
general solution.

§ 8. The Integrals of the Equutions of Motion.

The first integrals of the equations of motion are obviously
p., ps and W’'. We must now determine the second integrals.
We can do this in a way that is completely analogous to the way
followed en the classical theory when one is solving a problem by
the Hamilton-Jacobi method. Put

Va=expiSafh ccovviiiiiiiniinn. (6).

Then 8, corresponds to the principal function in the Hamilton-
Jacobi method, and 88/da, is a constant of integration of the
system, where a, is any one of the parameters occurring in ..

To prove this theorem on the quantum theory, differentiate (6)
partially with respect to a,. This gives

oV _ 1 ,.Sdha&_ 7 08,

3, RC " e, _hda VO

which shows that 0S,/0a, . Y, is of the form
—thfffe(a, a)Yra-da, dag' da,,

where c(a/, a) is a certain very discontinuous “function” of
ag, a5, &, and a;, a;, a/, which is equal to zero except when
|a; ~ a)'|. |as—a;'| and | @, —a/| are very small, and is very large
and positive when a,’ is a little greater than a,, and very large and
negative when a,’ is a little less than a,. Now — k¢ (@, @) gives
the elements of the matrix that represents 3S,/da,, and since these
elements are all constants (7.e. independent of t'), 3S./da, must be a
constant of integration of the system.

To apply this theorem in the present example, we must
differentiate the index of the exponential in (5) partially with
respect to a,, a, and a,. This gives

c !
a-4L)z - (l, + al”) x’ — z—:— sin vz, = ¢,
4

: 4
cas\
(-b)z' - (la + 7“") , =0y} eeenn (™),
, cb , caa, . ,
_(l—ll)t +2—a—‘2$, +VT‘281DV.Z‘1 =c,

where ¢,, ¢, and ¢, are the second integrals. These formulae corre-
spond to equations (35), (34) and (30) respectively in loc. cit.,
which were there obtained by more laborious methods.
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§ 4. The Matriz Elements.

We must now find the matrices that represent the components
of the polarisation of the system. We need do this only for two
components in directions that are perpendicular to the direction of
emission (/;, l,, ;) and mutually perpendicular. We can take these
components to be the quantities.

2
X=lz, - llz_l’l s + (1 fﬂ-l - l,) @
1 1
and Y=L+ (lf—il,- ll) x, — ll’—_l’t‘a:,,

multiplied by the electronic charge, as in the previous treatment
of the problem®. Expressed in terms of the dashed variables, X
and Y are given by

A=) X =let' =Lz + (A -1)
A-L)Y =let —La'+(1-1) .
With the help of equations (7) we find

A-DX=c+ 2“2“‘ cot+ Lt + 2a _bl’) Gy 2c:b:,a,, sin vz,
4

_ _ 2,0, 20-Naa, , [ea’ 2ed’a?\ . ,

A=Y =c+ 5 Gt b U+ (E ~ha, sin vz,

+let e (8).

In these expressions for X and Y we know the matrices that
represent all the terms except those involving sinwvz,’. [The
matrices representing the ¢'s have already been discussed in the
preceding section, while the matrix that represents ¢’ is simply the
diagonal matrix with diagonal elements #.] Thus, in order to com-
plete the matrix determination of X and ¥, we have only to find
the matrix that represents sin vz,” and multiply it by the (constant)
coefficients of sinvz,’ in the expressions (8). Since we are working
only to the first order in a’, and an a’ occurs already in the
coefficients of sinvz,’, we may neglect a’ altogether when finding
the matrix that represents sin va,’.

With this approximation, we have from (5)

€ oy ay, a0 =e3p 1 {(1 — 1)) (a2 + 325 —a,t’)
— [ty + lotty + cb/2a, + (1 = b) hw} /}/(1 = L)
=exp —w'ct’ . expt{(1 — L) (wzs + a2y — a,t’)
— [laas + byay + cb/2a/ 2} /(1 ~ L) b,

* Loc. cit., equations (38).
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where »* and a are two new constants satisfying

a=her +a, o 9
chb cb
and '27‘ + (1 -_ ll) hll = —2-a—‘, .................. (10)
We now have the relation
eim’ \pah as, a2 = —iv'ct’ :\’,“, o, ot

which gives an expansion for the lefi-hand side of the required
type. It shows that the general element of the matrix representing
¢*=', namely €** (@, as, a,; @5, a7, a,'), vanishes except when

a2'=a2, a3'= [ 2 (11),

and a, and a, satisfy the condition (10), and is equal to e~ when
these conditions are fulfilled. In the same way it may be shown
that the general element of the matrix representing ¢~*#’, which
we write for convenience e#\' (a,, a5, a,’; as, @, @,), vanishes except
when the same conditions (10) and (11) are fulfilled, in which case it
equals €. We can now write down without further trouble all
the elements of the matrices representing X and Y.

§ 5. Physical Interpretation of the Matriz Elements.

The constant terms and the terms proportional to ¢ in the ex-
pressions (8) for X and ¥ will contribute nothing to the emitted
radiation, and may be ignored. We are thus left with only the
terms proportional to sinvz,’ to investigate. We see that their
matrices contain only elements referring to transitions in which
p, ps and W’ change from a set of values a,, a5, a, to a set
a, ay, a; given in terms of a;, a;, a, by equations (10) and (11)
(or from the a”s to the &’s), and further that the wave number of
the radiation emitted during such a transition is v’/2w, where v’ is
given by (9). Using the symbol A to denote the increase in a
constant of integration of the system during a transition, we have
from (11), (9) and (10)

Apz’ =0, 'Aps’ =0, AW =—hev'............ (12)
and A (B2 W) = (1= b) kv oo, (13).

These relations are sufficient to determine the recoil momentum
of the electron and the frequency of the scattered radiation.
Equation (13) or its equivalent equation (10) can be most con-
veniently used if we observe that, with neglect of a’, p,’ is repre-
sented by a diagonal matrix whose diagonal elements a, are given
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by —h times the coefficient of ;" in the index of the exponential

in (5), ve.
a, = — (La, + ey + ¢b/2a)/(1 — 1)
,_fcb ch TV
so that Ap) = (27‘ - -27;‘-,) / A=l == hweeern.., (14).

The fact that we have to neglect o’ in order to be able to give a
meaning to Ap,’ corresponds physically to the fact that in order to
give a meaning to the recoil momentum of the electron we must
neglect the oscillations of the electron due to the incident radia-
tion. Equations (12) and (14) give, when written in terms of the
undashed variables,

Ap, = hy — L'

Ap, = — LA
Ap;; = - l3hV’
AW/e=hv— b,

which are just the equations that express the conservation of
momentum and energy on Compton’s light-quantum theory of
scattering. (We are neglecting a’ again when we count p, as an
ordinary momentum.)

The elements of the matrix that represents the periodically
varying part of X are

200,00,

v(m*e*+ a® + af) a, (1 —¢,)

et v'et’

Lo ,
X (ay, a3, ay; @, ag, a))=

and
—icad'aya,

v(mPct+ a)? +as%) a (1-1,)
where the a’s are given in terms of the a’s by (10) and (11). The
product of these two matrix elements gives a quarter of the square
of the amplitude, which, by insertion in the formula of the classical
theory, determines the intensity of the emitted radiation. The
amplitude squared is thus

iv'et’
€ )

’ ’ ’.
X(ae, a5, Ay ; y, d5, A)=

ctaalas?
P (mict + a? + a2 a0, (1 — 1,

Instead of actually evaluating the intensity from this formula, we
can obtain results more simply by comparing Cx* with its value
according to the classical theory. This classical value is given by
one putting h = 0 in (15), which comes to writing a, for the a/ in
the denominator. Hence the quantum value of Cx® is just a,/a,’
times its classical value. This result may easily be verified to hold
also for C'¢?, the amplitude squared of Y.

Cx’=4
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From (9) and (10) we have

a,—a, = hcy
1 1 2(1-1)

and ——-—= hy,
a a, cb
which give, by division,
,_ b
aQa, = m) -; tesecsetaservasanates (16).

If the electron is initially at rest, we have initially
pl=p2=p8=01 W=m02)

from which, using the transformation equations (3), we find for the
initial values of p,, p,’ and W',

lame lyme me?

a”:—l_—-—l;’ a3=_1——71’ a‘=i_-:_l,'
This gives
2
b=m*c +a + ay =%—"_l—%:,

so that from (16)

The amplitude squared is thus greater than its value according
to the classical theory in the ratio »/v. Since the intensity 1s
proportional to the amplitude squared multiplied by the fourth

ower of the frequency, and the frequency of the scattered radiation
18 less than its value on the classical theory in the ratio »'/y, it
follows that the intensity is less than its value on the classical
theory in the ratio ('/v)>. This result is the same as that obtained
in loc. cit., and is in guod agreement with experiment®.

* Note added in proof :—A paper by W. Gordon dealing with the same subject
has recently appeared [Zeits. f. Phys., vol. 40, p. 117 (1926)). Gordon’s method
makes use of an expression for the electric density for determining the field produced
by the scattering electron, and differs from the method of the present paper, in
which the wave equation is used merely as a mashematical help for the calculation
of the matrix elements, which are then interpreted in accordance with the assump-
$ions of matrix mechanics.
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