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Abstract
Trajectory prediction is an important support for analysing the vessel motion behaviour, judging the vessel traffic
risk and collision avoidance route planning of intelligent ships. To improve the accuracy of trajectory prediction in
complex situations, a Generative Adversarial Network with Attention Module and Interaction Module (GAN-AI)
is proposed to predict the trajectories of multiple vessels. Firstly, GAN-AI can infer all vessels’ future trajectories
simultaneously when in the same local area. Secondly, GAN-AI is based on adversarial architecture and trained by
competition for better convergence. Thirdly, an interactive module is designed to extract the group motion features
of the multiple vessels, to achieve better performance at the ship encounter situations. GAN-AI has been tested
on the historical trajectory data of Zhoushan port in China; the experimental results show that the GAN-AI model
improves the prediction accuracy by 20%, 24% and 72% compared with sequence to sequence (seq2seq), plain
GAN, and the Kalman model. It is of great significance to improve the safety management level of the vessel traffic
service system and judge the degree of ship traffic risk.

1. Introduction

Maritime transportation accounts for around 90% of world trade, and the trade volume is still growing
at a rate even faster than the global economy (Kaluza et al., 2010). With the increase in numbers of
ships in the world comes an increase in the necessity for safety, intelligent shipping and efficiency. As
a fundamental research, trajectory prediction is a key technology to support accident early warning and
path planning without collision for intelligent navigation (Borkowski, 2010; Tu et al., 2017). The ship
trajectory prediction model with high prediction accuracy and good stability is of great significance to
ensure the safety of transportation and to promote the development of intelligent shipping.

At present, there are two main kinds of trajectory prediction methods: one is based on a kinematics
model while another is based on a neural network model. The methods based on the kinematics model
must build the state transfer equation to describe the motion law (Sutulo et al., 2002). Krzysztof ( 2017)
used the discrete Kalman filter to estimate the missing vessel trajectory sequence. Perera and Soares
(2010) used the extended Kalman filter to estimate the future position of the vessel by establishing the
state transition matrix. Zhang et al. ( 2019) and Huang (2018) established the state transition model
based on the hidden Markov model, and estimated the ship position in the future through the Markov
chain. Liu et al. (2019a) fused multiple source of sensors to improve the Markov method’s accuracy, and
the average error of prediction is lower than 5 km in the future 5 h. These cited methods usually have the
following disadvantages: first, the kinematics model is difficult to establish, as a result of considering
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the hydrological environment factors such as water and wind. Second, these methods cannot model the
ship’s continuous motion behaviour. As a result, these methods are not suited to predict future positions
at continuous time points. In recent years, with the development of machine learning and deep learning,
the artificial neural network model has become a research hotspot. Borkowski (2017) fused multiple-
source data on the basis of automatic identification system (AIS) data and obtained higher prediction
accuracy by using a long-short-term memory (LSTM) model. The average error of prediction is lower
than 78 m in the future 6 min. Tang et al. (Tang et al., 2019) used an LSTM neural network to model
the ship’s trajectory, mined the temporal and spatial distribution of the trajectory through data-driven
method and predicted the ship’s future trajectory. Their work achieved an average error of predictionthat
was less than 280 m in the future 10 min. Li et al. (Li et al., 2019) utilised the clustering method to
capture the trajectories’ features firstly and then used the LSTM to achieve an average error of prediction
that was less than 50 m in the future 10 min. Liu et al. (2019b) improved the prediction performance
of the plain Support Vector Machine (SVM) model through the adaptive chaos differential evolution
algorithm to optimise the model parameters. The average error of prediction is less than 33·41 m in
the future 60 s. Suo et al. (Suo et al., 2020) used the Gate Recurrent Unit Neural Network (GRU) to
improve computational time efficiency while the prediction accuracy is similar to LSTM. Although the
existing methods have made great progress in vessel trajectory prediction, there are still limitations in
two aspects. On the one hand, these methods do not consider the vessel’s interaction in a narrow complex
traffic environment. In practice, the behaviour of the vessel is not only related to its own state but is also
related to other vessels’ positions in the same water area. These works have achieved good results in the
prediction of single-ship trajectory in free water areas, but when the target encounters with other vessels,
the performance of this method will be poor, due to the fact that it ignores any interaction information.
On the other hand, the current method often uses the Euclidean distance between the realtrajectory and
the predicted trajectory as the loss function; it makes the model tend to learn the ‘average behaviour’ of
the training data and ignores the vessel’s ‘avoid behaviour’ at the true encounter.

In this paper, the Generative Adversarial Network (GAN) (Goodfellow et al., 2014) is used to model
the ship trajectory prediction task. To model ship interaction behaviour, the motion features are divided
into self-motion features and group motion features. The self-motion features include the single vessel’s
speed, acceleration, location and other data. The group motion features include the multiple vessels’
relative speed, relative acceleration and other data. In the generator of GAN-AI, an encoder based on
LSTM is used to process and extract the self-motion features. An interactive module based on another
LSTM is designed to process and analyse the group motion features. In the encoder and decoder,
the attention mechanism (Luong et al., 2015) is utilised to improve the model’s ability to model the
temporal–spatial sequence reasonably. Then the Multilayer Perceptron (MLP) (Sainath et al., 2015) is
used to reshape the data and output the future trajectory. Lastly, the network is optimised and trained by
the relative adversary loss and the variety loss of generator during training, to achieve a higher precision
result.

2. Problem definition

This paper aims to use the longitude x, latitude y, speed 𝑣, course 𝜃 recorded by AIS (Sun and Zhou,
2017) data to jointly infer the future trajectory of all ships involved in a ship encounter. To facilitate the
processing of vector data, the velocity of the vessel i at the time t is decomposed into the decomposition
speedin the X and Y directions:

𝑣𝑡𝑥𝑖 = 𝑣
𝑡
𝑖 · sin 𝜃𝑡𝑖 , 𝑡 ∈ [1, t𝑜𝑏𝑠] (1)

𝑣𝑡𝑦𝑖 = 𝑣
𝑡
𝑖 · cos 𝜃𝑡𝑖 , 𝑡 ∈ [1, t𝑜𝑏𝑠] (2)

It assumes that each trajectory sequence 𝑋𝑖 is composed of discrete trajectory sampling points p𝑡
𝑖 .

Each discrete sampling point p𝑡
𝑖 includes the vessel’s coordinate data and decomposition speedin the X
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Figure 1. Structure of GAN-AI.

and Y directions:

p𝑡
𝑖 = (𝑥𝑡𝑖 , 𝑦

𝑡
𝑖 , 𝑣

𝑡
𝑥𝑖 , 𝑣

𝑡
𝑦𝑖) (3)

X𝑖 = (p1
𝑖 , p2

𝑖 , . . . , p
tobs
𝑖 ) (4)

If the input X is the matrix including all ships’ trajectory sequence which at the same water area:

X = (X1,X2, . . . ,X𝑛) (5)

The task of the GAN-AI is to predict the future trajectory of all ships at the same time:

Ŷ = (Ŷ1, Ŷ2, . . . , Ŷ𝑛) (6)

Ŷ𝑖 = ((𝑥tobs+1
𝑖 , 𝑦tobs+1

𝑖 ), (𝑥tobs + 2
𝑖 , 𝑦tobs + 2

𝑖 ), . . . , (𝑥
tpred
𝑖 , 𝑦

tpred
𝑖 )) (7)

To help the model better learn the ship interaction, the GAN-AI model uses asymmetric input and
output. The input data includes the ship position information and velocity information. In the encoder,
the interaction module processes the single ship information into the relative distance information and
relative speed information between the multiple vessels, to learn the vessels’ interaction behaviour and
better estimate the future trajectory. The output data only includes the coordinate information of the
future vessel. It can make the model focus on the ship position prediction and improves the network
convergence ability by reducing the output variables of the multi-output neural network.

3. GAN-AI model

The structure of GAN-AI model is shown in Figure 1. The model consists of a generator and discrimina-
tor. The generator consists of a G-encoder, G-decoder, interaction module, attention module and MLP.
The discriminator consists of a D-encoder and MLP. During the training, the vessels’ historical trajec-
tory sequence X is encoded by the G-encoder, and the coding matrix of each trajectory 𝐻𝑒 is obtained.
Through the interaction module, the integrated data C that includes single information and group
information is collected. The G-decoder decodes the C as the context information to output the pre-
dicted trajectory Ŷ. The real trajectory and generated trajectory are input into the discriminator to
distinguish the reality of the trajectory, and the network parameters of the generator and discriminator
are optimised to make the predicted trajectory approach the real trajectory by decreasing the model loss.

3.1. Interaction model

An interactive module is used to process and learn the encounter information of multiple ships in the
same water area. At time t, the interaction module calculates the difference of coordinates and speeds
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between the ship i and j to get the relative distance information and relative speed information. Then
coding the relative motion information through a fully connected neural network (FCNN) (Sainath et al.,
2015) to get the hidden interaction information 𝑠𝑡𝑖 𝑗 , and then stores the group interaction information
into a set as 𝑆𝑡 . Finally, the individual motion information 𝐻𝑡

𝑒 and the group interaction information 𝑆𝑡
are together input into a MLP to obtain integrated state vector. The relevant formulae are:

𝐶𝑡 = Interact(X,𝐸) ⇒
⎧⎪⎪⎨
⎪⎪⎩
𝑠𝑡𝑖 𝑗 = 𝐹𝐶 (𝑥

𝑡
𝑖 − 𝑥

𝑡
𝑗 , 𝑦

𝑡
𝑖 − 𝑦

𝑡
𝑗 , 𝑣

𝑡
𝑥𝑖 − 𝑣

𝑡
𝑥 𝑗 , 𝑣

𝑡
𝑦𝑖 − 𝑣

𝑡
𝑦 𝑗 ;𝑊𝐼 )

𝑆𝑡 = [𝑠𝑡12, . . . , 𝑠
𝑡
𝑖 𝑗 , . . . , 𝑠

𝑡
𝑁−1𝑁 ], (𝑖 ≠ 𝑗)

𝐶𝑡 = 𝑀𝐿𝑃([𝑆𝑡 , 𝐻𝑡
𝑒];𝑊tanh)

(8)

where 𝑊𝐼 , 𝑊tanh is the weight matrices of the FCNN and the MLP with tanh activation function that
must be trained. 𝐻𝑡

𝑒 is the coding data obtained from the G-encoder and 𝐻𝑡
𝑒 includes the self-motion

features of all ships at time t.

3.2. Generator

The generator is mainly composed of a G-encoder and G-decoder, which are used to capture and analyse
the semantic information of historical trajectory and generate reasonable future trajectory sequence. In
the G-encoder, each trajectory sequence Xi is mapped and normalised by an FCNN to obtain vector 𝐸 𝑖 ,
and then the 𝐸 𝑖 is encoded by an LSTM (Bahdanau et al., 2014) to obtain the hidden representation of
trajectory 𝐻𝑒𝑖:

𝐸 𝑖 = 𝐹𝐶 (X𝑖;𝑊𝑒𝑚) (9)
𝐻𝑒𝑖 = 𝐿𝑆𝑇𝑀 (𝐸 𝑖 , 𝐻𝑖𝑛𝑖𝑡 ;𝑊𝑒𝑛) (10)

where 𝑊𝑒𝑚 and 𝑊𝑒𝑛 are the weight matrices of the FCNN and the LSTM that must be trained. 𝐻𝑒𝑖 is
the output of the LSTM neural network, which involves the potential characteristic information of the
position, speed, acceleration and so on of vessel i. 𝐻𝑖𝑛𝑖𝑡 is the initial state of the LSTM’s hidden layer
which is set by normal distribution. Through N times of processing, we can get the code matrix 𝐻𝑒 that
includes the self-motion features of N ships in the same water area:

𝐻𝑒 = [𝐻1, 𝐻2, . . . , 𝐻𝑁 ] (11)

To model the interactive behavior of the multiple ships, we input the 𝐻𝑒 and the X into the interaction
module introduced in Section 3.1. The interaction module can integrate the group motion information
and the monomer motion information at time 𝑡𝑜𝑏𝑠. The output 𝐶 of interaction module contains the N
ships’ own motion information and relative motion information:

𝐶 = [𝐶1, . . . , 𝐶𝑖 , . . . , 𝐶𝑁 ] = 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡 (X, 𝐻𝑒) (12)

To predict the future trajectory point of vessel i at time t, the G-decoder must be input the coordinate
data (𝑥𝑡−1

𝑖 , 𝑦𝑡−1
𝑖 ) and context information 𝐶𝑡−1

𝑖 that were obtained from the last time point, and then the
G-decoder can predict the trajectory point coordinates on continuous time points by iteration. At the
beginning of prediction, Gaussian noise z is superimposed 𝐶𝑖 to get 𝐶 ′

𝑖 , and the initial hidden state of
the LSTM decoder is initialised by 𝐶 ′

𝑖 to improve the noise reduction ability of the decoder:

𝐶 ′
𝑖 = [𝐶𝑖 , 𝑧] (13)

𝑒𝑡𝑑𝑖 = 𝐹𝐶 (𝑥
𝑡−1
𝑖 , 𝑦𝑡−1

𝑖 ;𝑊𝑒𝑑) (14)
ℎ𝑡𝑑𝑖 = 𝐿𝑆𝑇𝑀 [𝑒𝑡𝑑𝑖 , 𝐶

𝑡−1
𝑖 ;𝑊𝑑𝑒] (15)
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where 𝑊𝑒𝑑 , 𝑊𝑑𝑒 is the network matrices of the FCNN and LSTM that must be trained, and ℎ𝑡𝑑𝑖 is the
output LSTM. The FCNN in Equation (14) is used to map the coordinate to feature space and the LSTM
is used to decode context 𝐶𝑡−1

𝑖 . To solve the problem of memory degradation in the iterative updating
process of LSTM and make the model always focus on the real observation data 𝐶 ′

𝑖 from the G-encoder,
𝐶 ′
𝑖 and ℎ𝑡𝑑𝑖 are concatenated to calculate the attention weights 𝑎𝑡𝑖 through the attention module at each

update step. The weighted ℎ𝑡𝑑𝑖 can be obtained by multiplying ℎ𝑡𝑑𝑖 and 𝑎𝑡𝑖 , and then it is employed to
achieve coordinate prediction with an MLP. The formula is:

𝑎𝑡𝑖 = 𝐹𝐶 ([ℎ
𝑡
𝑑𝑖 , 𝐶

′
𝑖];𝑊𝑎) (16)

(𝑥𝑡𝑖 , 𝑦̂
𝑡
𝑖 ) = 𝑀𝐿𝑃(𝑎

𝑡
𝑖 · ℎ

𝑡
𝑑𝑖;𝑊𝑟𝑒𝑙𝑢) (17)

where 𝑊𝑑 ,𝑊𝑟𝑒𝑙𝑢 is the network matrices of the FCNN and MLP that must be trained. The FCNN in
Equation (16) is used to calculate the similarity between the ℎ𝑡𝑑𝑖 and 𝐶 ′

𝑖 to get the attention weights. The
MLP is used to shape the vector and output the future position. Finally, the prediction results are input
into the interaction module to update the context information 𝐶𝑡

𝑖 , and the 𝐶𝑡
𝑖 can be used to prediction

for next time step.

3.3. Discriminator

The discriminator is a classical binary classification model to judge whether the generated trajectory is
true or false. The discriminator and the generator compete with each other to make themselves converge
at the same time during training. The discriminator maps the trajectory sequences through an FCNN to
get feature vector R. An LSTM is used to further encode the R to get 𝐻𝑐 . Then run 𝐻𝑐 through an MLP
to output the reality of the trajectories:

𝑅 = 𝐹𝐶 (𝑀;𝑊𝑒𝑐), 𝑀 ∈ {𝑋𝑟 , 𝑋 𝑓 } (18)
𝐻𝑐 = 𝐿𝑆𝑇𝑀 (ℎ𝑖𝑛𝑖𝑡 , 𝑅;𝑊𝑐) (19)
𝑄 = MLP(𝐻𝑐;𝑊𝑠) (20)

where, 𝑊𝑒𝑐 ,𝑊𝑐 , 𝑊𝑠 are the parameters of the FCNN, LSTM, and MLP that must be trained. 𝑋𝑟 is the
set of real trajectory sequence, 𝑋 𝑓 is the set of fake trajectory sequence, ℎ𝑖𝑛𝑖𝑡 is the initialisation state
parameter of the LSTM network, 𝐻𝑐 is the output of the LSTM.

3.4. Loss function

The relative average loss (Wang et al., 2018) is used as the metric to estimate the distribution differences
between the fake and the real trajectories. The relative average loss function is defined as the probability
that the real trajectory is more realistic than the predicted trajectory in the discriminator. The formulae
are:

𝐷𝑅𝑎 (𝑥𝑟 , 𝑥 𝑓 ) = 𝜎(𝑄(𝑥𝑟 ) − E[𝑄(𝑥 𝑓 )]) (21)
𝐷𝑅𝑎 (𝑥 𝑓 , 𝑥𝑟 ) = 𝜎(𝑄(𝑥 𝑓 ) − E[𝑄(𝑥𝑟 )]) (22)

where 𝑥𝑟 denotes the real trajectory sequence, 𝑥 𝑓 denotes the predicted trajectory sequence, and 𝜎 is a
sigmoid function. In the GAN-AI model, the discriminator is only used to estimate the probability that
the input is the real trajectory, so the loss function of the discriminator is defined as:

𝐿𝐷 = −𝐸𝑥𝑟 [log(𝐷𝑅𝑎 (𝑥𝑎, 𝑥 𝑓 ))] − 𝐸𝑥 𝑓 [1 − log(𝐷𝑅𝑎 (𝑥 𝑓 , 𝑥𝑟 ))] (23)

The generator loss function is composed of 𝐿𝑅𝑎
𝐺 and 𝐿𝐿2, 𝐿𝑅𝑎

𝐺 is the adversarial loss function of
the generator and the discriminator and realises the competition between the discriminator and the
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generator. 𝐿𝐿2 is the variety loss (Gupta et al., 2018) to encourage GAN-AI to produce diverse samples.
It means the generator generates 𝑘 trajectories during training and chooses the minimum loss of the real
trajectory and the predicted trajectories as the model’s loss. The formulae are:

𝐿 = arg min
𝐺

max
𝐷

(𝐿𝑅𝑎
𝐺 + 𝐿𝐿2) (24)

𝐿𝑅𝑎
𝐺 = −𝐸𝑥𝑟 [log(1 − 𝐷𝑅𝑎 (𝑥𝑟 , 𝑥 𝑓 ))] − 𝐸𝑥 𝑓 [log(𝐷𝑅𝑎 (𝑥 𝑓 , 𝑥𝑟 ))] (25)
𝐿𝐿2 = min

𝑘
𝐸 [| |𝑥𝑟 − 𝑥 𝑓 | |2] (26)

4. Experiment

To assess the correctness and accuracy of the GAN-AI, the historical AIS data of Zhou Shan Port, China,
in January 2018 was selected to evaluate the model. That part of the channel is an intersection that is
not only narrow but also has high traffic density. A large number of small and medium-sized ships with
north-south and east-west directions encounter here every day, causing a complex traffic environment.
The experimental data are 2600 ship trajectories, including 2000 trajectories as training data and 600
trajectories as validation data.

4.1. Loss curves of training

To evaluate performance of the GAN-AI, a series of models have been trained and named as ‘GAN-AI-
KVN’, where ‘A’ denotes the GAN model assembles the attention module, and ‘I’ denotes the GAN
model assembles the interaction Mmodule; ‘K’ means the model uses a variety loss function during the
training; ‘N’ refers to the number of sampling time during test time and chooses the best prediction in L2
sense for quantitative evaluation. This paper compares the L2 loss-convergence curves of the classical
trajectory prediction model sequence to sequence (Seq2seq), the plain GAN model GAN-10v10, and the
improved GAN model: GAN-I-10v10 and GAN-AI-10v10. The initial learning rate is set to 0·001, and
an Adam (Kingma and Ba, 2014) optimisation algorithm is used to optimise the network parameters.
The batch size is set to 32, and the number of training iterations is set to 1,600. The observation sequence
length is set to 9, and the prediction sequence length is set to 9. The sampling interval is 10 s.

The comparison results of the training curve and validation curve of the four models are shown in
Figure 2. It can be seen from Figure 2 that the L2 loss of the four models shows a downward trend
through iterative training and tends to be stable after 1,600 iterations. Among the four models, GAN-
AI-10v10 has the best convergence, and the loss on the validation set is 0·331. The second best model
is the GAN-I-10v10 model, with a loss of 0·358 on the validation set. The loss of the Seq2seq model
on the validation data is 0·363. The GAN-10v10 model has the worst convergence, only 0·398. By
observing the convergence trend of the convergence curve, it can be found that although GAN-10v10
finally converges, the convergence curve fluctuates greatly. But GAN-I-10v10 does not appear to have
this phenomenon by assembling interactive modules, which can prove that interactive modules can
effectively help the GAN network to achieve stable convergence. The GAN-AI-10v10 model achieves
better convergence than does the GAN-I-10v10 model by assembling the attention module. It proves
that the attention mechanism can help the network capture and grasp the motion information of ships at
different times, thus improving the learning ability of the network.

4.2. Accuracy and analysis

To evaluate the trajectory prediction accuracy of the GAN-AI model, the average distance error (ADE)
and final distance error (FDE) metrics used in reference Gupta et al. (2018) are introduced. ADE
calculates the average Euclidean distance between the predicted trajectory and the real trajectory at each
time point. The FDE calculates the average Euclidean distance between the predicted trajectory and the
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Figure 2. Plots of models’ L2 loss curves: (a) is L2 loss curve of the Seq2seq; (b) is L2 loss curve of
the GAN-I-10v10; (c) is L2 loss curve of the GAN-10v10; (d) is L2 loss curve of the GAN-AI-10v10;.

real trajectory at the last time point of the prediction period. The formulae are:

𝐴𝐷𝐸 =

∑𝑛
𝑖=1

∑𝑡𝑝𝑟𝑒𝑑
𝑡=𝑡𝑜𝑏𝑠+1

√
((𝑥𝑡𝑖 − 𝑥

𝑡
𝑖 )

2
+ ( 𝑦̂𝑡𝑖 − 𝑦

𝑡
𝑖 )

2
)

𝑛(𝑡𝑝𝑟𝑒𝑑 − 𝑡𝑜𝑏𝑠)
(27)

FDE =

∑𝑛
𝑖=1

√
((𝑥

𝑡𝑝𝑟𝑒𝑑
𝑖 − 𝑥

𝑡𝑝𝑟𝑒𝑑
𝑖 )

2
+ ( 𝑦̂

𝑡𝑝𝑟𝑒𝑑
𝑖 − 𝑦

𝑡𝑝𝑟𝑒𝑑
𝑖 )

2
)

𝑛
(28)

This paper has compared the prediction accuracy of six models: seq2seq, GAN-10v10, Kalman
model, GAN-I-10v10, GAN-AI-10v10, and GAN-AI-20v20. Among them, seq2seq is the classical
nonlinear model, the Kalman model is the classical linear model, and other GAN models are assembled
different modules. Table 1 shows the comparison results of the trajectory prediction accuracy of six
models on the test data set. It can be found that at the scene of ship encounter, by adding an interaction
module, the model can learn ship interaction behaviour, effectively improve the prediction accuracy of
the model, and make GAN-I-10v10, GAN-AI-10v10 and GAN-AI-20v20 obtain higher precision than
other models without an interaction module. At the same time, by assembling the attention module, the
model can improve the ability to extract effective data at multiple time points, so that the ADE of GAN-
AI-10v10 is 1·8 m/3·0 m higher than that of GAN-I-10v10 at different prediction time length. Comparing
the model accuracy of GAN-AI-10v10 and GAN-AI-20v20, it can be found that higher sampling times
can effectively improve the prediction accuracy of the network during network training and evaluation,
making the ADE of GAN-AI-20v20 model reach 28·4 m/40·7 m. In this paper, the Kalman prediction
model gives a benchmark of the linear methods, which is compared with our non-linear method. .
Because the linear methods can not model the non-linear motion of vessels and the ADE of the Kalman
model only reaches 74·2 m/146·3 m at different prediction time lengths.
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Table 1. Comparison of ADE and FDE of different models.

Prediction
time length Metrics Seq2seq

GAN-
10V10

GAN-I-
10v10

GAN-AI-
10v10

GAN-AI-
20v20 Linear

90 s ADE/m 36·1 37·6 34·7 32·9 28·4 74·2
FDE/m 65·4 66·8 63·5 57·9 53·6 150·6

180 s ADE/m 51·2 53·6 51·9 48·9 40·7 146·3
FDE/m 98·7 103·3 97·8 93·8 82·4 284·8

Although ADE and FDE can objectively evaluate the prediction accuracy of the model, it is unable to
analyse the reasons for the differences in prediction accuracy of different models. Figure 3 compares the
prediction differences of five models in four typical real encounter scenarios. Figure 3a is the prediction
result of two ships in the crossing situation, Ship A is an accelerating ship to enter the port after judging
the situation, and Ship B keeps straight-line navigation. Comparing the predicted results about Ship B, it
can be found that the predicted results of the five models are similarly consistent, and they are consistent
with the distribution of the real trajectory in the navigation distance and direction. However, comparing
the prediction results about Ship A, Kalman model’s ADE/FDE only reaches 197.3m/409.1m that
achieved the largest prediction error, as it is a linear model that cannot effectively estimate the turning
behavior of the ship. Comparing to the linear method, the other four nonlinear methods can better
estimate the navigation trend of the ship’s future trajectory. But comparing to the GAN-AI-10v10,
the GAN-I-10v10, seq2seq and GAN-10v10 have greater errors in the navigation distance and course.
Figure 3b shows the prediction results of two ships in the real overtaking situation. Ship A is a slowly
left-turning ship. After judging the situation, Ship B takes the action of overtaking from Ship B’s
port side. Comparing the prediction results about Ship A, the prediction results of GAN-AI-10v10 are
consistent with the real trajectory, and ADE/FDE is 24·5 m/25·7 m. The GAN-10v10 and GAN-I-10v10
models have errors in the estimation of the navigation speed, but the course estimation is consistent with
the real result, while the Seq2seq model is consistent with the real result in the speed, but the course
estimation has errors. Comparing the prediction results about Ship B, excepting for the linear method,
the other four models are consistent with the real trajectory. Figure 3c is the prediction result in the free
situation. Although Ships A and B are in the same water area, they do not have interactive behaviour.
For the five prediction results, excepting for the distortion of the linear prediction method, the prediction
results of the other four models are similar to the real trajectory temporal–spatial distribution. Figure 3d
is the prediction result of the head-on situation. Ship A drives in a straight line after the encounter and
turns right at the later part of the journey. Ship B turns left and adjusts to the original route after the
encounter. Comparing the prediction results about· Ship A, the prediction results of GAN-AI-10v10
and seq2seq models are better in the former section, but the prediction of the turning track in the latter
section has deviation, and the ADE/FDE are 47·5 m/95·8 m and 49·6 m/101·4 m. Among the five models,
GAN-10v10 is the best, ADE/FDE is 46·6 m/33·6 m. The results of GAN-I-10v10 were the worst, and
ADE/FDE is 77·6 m/178·4 m. Comparing the results of ship B, the error of GAN-AI-10v10 and GAN-I
-10v10 is smaller, and the ADE/FDE are 45·8 m/77·4 m and 47·1 m/81·3 m. The results of seq2seq and
gan-10v10 are similar to the linear method, and ADE/FDE are greater than 50 m/85 m.

By comparing the trajectory prediction results in four different scenarios, it can be found that the
reason for GAN-AI-10v10 attains higher accuracy is that it can better estimate the parameters of
course and distance simultaneously in four scenarios. By assembling the interactive module, the GAN-
AI-10v10 model can better learn the ship’s course and speed changes. By assembling the attention
module, the GAN-AI-10v10 model can better allocate the parameter weight of the model and improve
the spatiotemporal modelling ability of the model. On the other hand, the GAN-I-10v10 model has a
wrong estimation of speed in the case of Figures 3a and 3b due to the lack of attention mechanism. The
seq2seq and GAN-10v10 models have error estimation of course in Figures 3a and 3b due to the lack
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Figure 3. Prediction results of four different situations: (a) is the result in the crossing situation; (b) is the result in the overtaking situation; (c) is the
result in the free situation; (d) is the result in the head-on situation.
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Figure 4. Effect of variety loss.

of interaction modules. It indicates that the attention module and interaction module can improve the
accuracy of speed and course estimation.

4.3. Analysis of variety loss

A series of models of GAN-AI-NVN have been trained to evaluate the influence between the performance
and the variety loss function. ‘NvN’ indicates the GAN-AI using the variety loss fuction during the
training. ‘N’ refers to the number of times we sample from GAN-AI model during test time. As shown
in Figure 4 the model can get better performance with the increase of N and the performance gets about
30% better with N = 70. On the other hand, the model’s computation will be increasing accordingly
with N and the rise of accuracy will be slower. As a result, N = 20 is a pretty setting for computation
and accuracy.

5. Conclusion

A GAN-AI model is proposed to predict the trajectory of multiple ships in the same water area
simultaneously. In the GAN-AI model, an attention module is designed to improve the ability of the
network to extract effective data and avoid memory degradation of LSTM. An interaction module is
designed to model the interaction behaviour information, such as relative distance and relative speed
between ships, so as to get better performance in complex interactive scenes. To improve the convergence
ability and prediction accuracy of the network, the adversarial loss function and variety loss function
are introduced into the network training. Using the ADE and FDE metrics to verify the GAN-AI model
on the real AIS historical data, the results show that the ADE/FDE of the GAN-AI-20V20 model is
less than 40·7 m/82·4 m under the prediction duration of 180s. Compared with seq2seq, plain GAN
and Kalman models, the performance has been improved by 20%, 24% and 72%, respectively. It is of
great significance to improve the strength of the vessel traffic management system, the path planning
of intelligent ships and the analysis of ship collision risk. On the other hand, more AIS data should be
extracted to validate the model’s generalisation ability and data fusion can also be utilised to improve
the accuracy further in future work.
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