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Stratorotational instability in Taylor–Couette
flow heated from above
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(Received 2 September 2008 and in revised form 3 December 2008)

We investigate the instability and nonlinear saturation of temperature-stratified
Taylor–Couette flows in a finite height cylindrical gap and calculate angular mo-
mentum transport in the nonlinear regime. The model is based on an incompressible
fluid in Boussinesq approximation with a positive axial temperature gradient applied.
While both ingredients, the differential rotation as well as the stratification due to the
temperature gradient, are stable themselves, together the system becomes subject of
the stratorotational instability and a non-axisymmetric flow pattern evolves. This flow
configuration transports angular momentum outwards and will therefore be relevant
for astrophysical applications. The belonging coefficient of β viscosity is of the order
of unity if the results are adapted to the size of an accretion disk. The strength of the
stratification, the fluid’s Prandtl number and the boundary conditions applied in the
simulations are well suited too for a laboratory experiment using water and a small
temperature gradient around 5 K. With such a set-up the stratorotational instability
and its angular momentum transport could be measured in an experiment.

1. Introduction
In recent years instabilities in stratified media has become of greater interest. In

view of astrophysical objects especially, the inclusion of stratification is relevant.
One simple model to study stratification effects is the classical Taylor–Couette (TC)
system. Thorpe (1968) found only a stabilizing effect of stratification. In the context of
stratorotational instability (SRI), stratification in TC flows is investigated numerically
with a fixed axial temperature gradient in a linear analysis studying the suppression
of the onset of Taylor vortices by Boubnov et al. (1996). With a fixed density gradient,
Molemaker, McWilliams & Yavneh (2001), Yavneh, McWilliams & Molemaker (2001)
and Shalybkov & Rüdiger (2005) show the onset of a linear instability and the growth
of non-axisymmetric modes. Experiments using artificially enlarged buoyancy due
to salt concentration (see Withjack & Chen 1974; Boubnov, Gledzer & Hopfinger
1995; LeBars & LeGal 2006) are in very good agreement with the linear results.
Caton, Janiaud & Hopfinger (2000) use an artificial diffusivity in the continuity
equation and also show the results of the linear stability analysis for a non-rotating
outer cylinder. Umurhan (2006) examines SRI analytically, especially the influence
of vertically changing buoyancy frequency, in the quasi-hydrostatic semi-geostrophic
limit. The author also shows that SRI survives only in the presence of no-slip radial
boundary conditions. In the context of accretion disks, Dubrulle et al. (2005) figure
out stability conditions and the influence of viscous dissipation and thermal diffusivity.
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376 M. Gellert and G. Rüdiger

In particular, they find that the Prandtl number dependence of the critical parameters
is unimportant. But fully nonlinear three-dimensional simulations do not exist. It is
the aim of the first part of this paper to describe the characteristics of SRI in the
nonlinear regime. The easiest way to do nonlinear simulations is to apply an axial
temperature gradient, where the top of the TC system has a higher temperature than
the bottom. The absence of a diffusivity in the continuity equation makes nonlinear
simulations with explicit density gradient more demanding and favours a temperature
gradient. Moreover, this is interesting from an astrophysical viewpoint: accretion
disks are heated from the central object at their top and bottom. Thus the TC system
heated from above could be seen as a simplified model for half of a disk. Of major
interest for accretion or protostellar disks is the problem of angular momentum
redistribution. Accretion works only if angular momentum is transported outwards
effectively. Angular momentum transport of SRI is the second aspect of this work.

2. Model
The SRI is investigated in a model where stratification is due to a temperature

gradient. Surprisingly, this gradient is positive, i.e. the cylindrical gap is heated
from above. This configuration, opposite to the negative gradient in Rayleigh–Bénard
systems, is perfectly stable. The second ingredient in our model is differential rotation.
The inner and outer cylinders rotate with different angular velocities. Both are chosen
to be positive, i.e. they exhibit the same direction of rotation. If the outer cylinder
rotates sufficiently slow, the flow without temperature gradient leads to the well-
known Taylor vortices for high enough Reynolds numbers. Beyond the Rayleigh line,
when the outer cylinder rotates fast enough, the system is hydrodynamically stable.
The combination of both stable parts can again drive the system to be unstable and
generate a new instability, the SRI.

Stratification is measured by the Froude number

Fr = Ωin/N, (2.1)

the ratio between angular velocity of the inner cylinder and stratification given by
the buoyancy frequency

N2 = αg
∂T

∂z
. (2.2)

Here α and g are the coefficient of volume expansion and gravity, respectively, and
T is the temperature.

For computations we fix the Froude number Fr , the cylinder height and the Prandtl
number. Rüdiger & Shalybkov (2008) show that moderate stratifications are the most
effective. This means that the instability is suppressed for too strong stratifications
as well as for too low values. For the latter in the limit Fr → ∞ the instability
disappears in favour of the hydrodynamically stable configuration. Hence rotation
and stratification of the same order, i.e. Fr ≈ 1, appear to be a good choice to excite
the instability. Rüdiger & Shalybkov (2008) found the optimum at Fr = 1.4, which
is well suited also for the nonlinear simulations presented here to get the smallest
critical Reynolds numbers.

From an astrophysical point of view one of the most interesting questions which
arises is whether the SRI can transport angular momentum. If the normalized
Reynolds stress QRφ/(RinΩin)

2, where Rin and Ωin are the inner radius and its
angular velocity in cylindrical coordinates (R, φ, z), respectively, defined by the
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Stratorotational instability in Taylor–Couette flow 377

velocity fluctuations correlation

QRφ = 〈U ′
RU ′

φ〉, (2.3)

turns out to be positive, then angular momentum is transported outwards. This
astrophysically important situation always appears to be true in our simulations, as
we show in § 5. Fluctuating quantities are defined as deviations from the azimuthally
averaged mean field, i.e. U ′ = U − 〈U〉 with

〈U〉 =
1

2π

∮
U dφ. (2.4)

Based on the idea that angular momentum transport is mainly enhanced via an
increase in viscosity, Shakura & Sunyaev (1973) introduce in a parameterized model
for a disk a coefficient

αSS =
QRφ

H 2Ω2
in

, (2.5)

with the density scale height H of the disk. If the value of the αSS is of the order
of unity, the angular momentum transport is considered to be very effective and
important. Taking the normalized Reynolds stress β = QRφ/(RinΩin)

2 for the SRI as
an α-like coefficient, this leads to

αSS =β

(
Rin

H

)2

≈ β × 103, (2.6)

with the so-called β viscosity (see Lynden-Bell & Pringle 1974; Huré, Richard & Zahn
2000). Here it is assumed that the SRI survives if the cylindrical container becomes
larger in the radial direction, which is not yet clear.

3. Equations and numerical treatment
We use a code based on the non-isothermal hydrodynamic Fourier spectral element

code described by Fournier et al. (2005) and Gellert, Rüdiger & Fournier (2007). With
this approach we solve the three-dimensional hydrodynamic equations in Boussinesq
approximation,

∂t U + (U · ∇)U = −∇p + ∇2U + Gr T êz, (3.1)

∂tT + (U · ∇)T =
1

Pr
∇2T , (3.2)

∇· U = 0, (3.3)

for an incompressible medium in a cylindrical annulus with inner radius Rin and outer
radius Rout. Free parameters are the Grashof number

Gr =
Ra

Pr
=

αg�T D3

ν2
(3.4)

and the Prandtl number Pr = ν/χ . Here ν is the viscosity of the fluid and χ its
thermal conductivity. D = Rout − Rin is the gap width. The Reynolds number does not
appear directly within the set of equations. It is defined, based on the inner cylinder’s
angular velocity, as Re =ΩinRinD/ν, with the gap width D (used as unit of length)
and the angular velocity of the inner cylinder Ωin. The unit of velocity is ν/D and
the unit of time, i.e. the viscous time, is D2/ν.
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378 M. Gellert and G. Rüdiger

The solution is expanded in M Fourier modes in the azimuthal direction. This gives
rise to a collection of meridional problems, each of which is solved using a Legendre
spectral element method (see e.g. Deville, Fischer & Mund 2002). Between M = 8 and
M = 32 Fourier modes are used. The polynomial order is varied between N = 8 and
N = 16 with three elements in the radial direction. The number of elements in the
axial direction depends on the height of the cylinder; the spatial resolution is the same
as for the radial direction. With a semi-implicit approach consisting of second-order
backward differentiation formula and the third-order Adams–Bashforth formula for
the nonlinear forcing terms, time stepping is done with second-order accuracy.

At the inner and outer walls no heat–flux conditions are applied. In the axial
direction, solid end caps with fixed temperatures T0 and T1 delimitate the cylindrical
gap. The velocities of both the inner and outer cylinders are fixed to Ωin and Ωout,
respectively. Stress-free conditions are applied on the end caps to prevent Ekman
circulation that would result from solid end caps rotating with the angular velocity
of the inner or outer cylinder. This restriction is not essential for the occurrence of
the instability if the aspect ratio Γ is large enough. It simplifies the following analysis
because data along the full cylinder height can be included.

As initial flow profile, we use the typical Couette profile

Ω(R) = a +
b

R2
, (3.5)

with

a =
μ − η2

1 − η2
Ωin, b =

1 − μ

1 − η2
R2

inΩin, (3.6)

the radius ratio η = Rin/Rout and the ratio of angular velocities μ =Ωout/Ωin. As initial
temperature distribution, the linear static advection profile is applied.

Without stratification the critical Reynolds numbers for an infinite cylinder with
η = 0.5 is Recrit =68 and Recrit = 90 for η = 0.78. With our simulations we find
Recrit = 69 and Recrit = 91, respectively, which we decided to be in good agreement.

4. Onset of instability
The SRI occurs as instability leading to non-axisymmetric flow patterns. After a

linear growth phase, nonlinear interactions of the unstable modes occur resulting
in a stable saturated state. The time the instability needs to evolve is around two
viscous time scales D2/ν or 120 system rotations, slightly depending on the Prandtl
number. With Pr = 1 it needs slightly more (150) rotations and for Pr � 7, nearly 100
rotations. After saturation a stationary state is reached where the flow pattern exhibits
a drift compared to systems rotation. The growth rate of the instability is rather slow
compared to other instabilities to produce (magnetohydrodynamic) turbulence like the
magnetorotational instability (MRI) (see Balbus & Hawley 1991) or Tayler instability
(TI) (see Tayler 1957; Rüdiger et al. 2007), where it is of the order of a few rotations.
For both instabilities magnetic effects play an essential role. The SRI, even if slower,
might be of comparable importance. As we will see in the following, it also leads to
significant angular momentum transport. Moreover, stratification can suppress MRI
or TI and hence it is the most efficient instability mechanism in environments with
weak or very strong magnetic fields. MRI and TI are suppressed by strong magnetic
fields. Also, in low-conducting environments like protostellar disks, where magnetic
effects are unimportant, non-magnetic instabilities could be of high relevance.
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Figure 1. Histograms of Fourier modes for Re = 500,Pr = 7 in the small gap η = 0.78.
(a) Plot for Fr = 0.7, (b) for Fr = 1 and (c) for Fr = 1.4. These show normalized total kinetic
energy of the flow reduced by the driving due to the fixed cylinder rotation.

In our simulations we use two different gap sizes. The first one is a small gap with
η =0.78, which was also utilized in Shalybkov & Rüdiger (2005), and the second one
is a wider gap with η = 0.5. Simulations are done with angular velocity ratios above the
Rayleigh line. This means μ > 0.25 for η = 0.5 and μ > 0.61 for η = 0.78. Two special
values, μ =0.354 for the wide gap and μ = 0.69 for the small gap, are most interesting.
These are the quasi-Keplerian profiles, i.e. inner and outer cylinders would rotate like
planets after the Keplerian law ∼R−3/2, between inner the profile differs slightly from
a Keplerian. After the Rayleigh stability criterion ∂R(R2Ω)2 > y0 the configurations
in our simulations are always hydrodynamically stable and the observed instability is
due to the interplay between stratification and differential rotation.

4.1. Wide gap

The lowest critical Reynolds number for the onset of the instability is Re = 285 for
η =0.5, and thus a rather weak stratification supports the SRI as the most effective.
The most obvious difference between both gap sizes is the dominating unstable mode.
For the wide gap, it is always m =1 in the observed parameter region Re � 1000,
1 � Pr � 10 and 0.7 � Fr � 2. All higher modes appear with gradual lower energy,
where the step from mode m to m + 1 is between 10 % and 20 % of the higher mode.
So the spectrum decreases very fast.

4.2. Small gap

In the case of the small gap, it is m =3, m =4 or m = 5 that becomes linear unstable
and grows exponentially. The lowest critical Reynolds number here is Re = 390 for
Fr = 1.4, again a weak stratification. When the unstable mode reaches a certain value,
nonlinear effects appear and a wide range of modes become excited. After reaching
the saturation level, the energy of the most unstable mode and of all harmonics stays
constant, and all other modes decay slowly on the thermal time scale. The most
unstable mode depends mainly on the stratification. For decreasing Fr = 1.4, 1.0, 0.7,
the mode with the largest growth rate changes from m =3 to m =4 to m =5. And
it is also this mode (and its harmonics) that dominates the saturated state (see
figures 1 and 2). For Fr = 1.6 it is m = 2 that becomes the largest non-axisymmetric
mode and dominates the solution. For this rather low stratification one needs a
larger Reynolds number of Re = 1000 to trigger the instability. So this solution is
not directly comparable to all the other three cases with Re = 500. But the rule of
decreasing m with the increase of Fr is still valid.

The Prandtl number within the range 1 � Pr � 10 has no obvious influence on
the type of solution and the most unstable mode. Moreover, neither a variation of
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Figure 2. Contour plots of radial velocity component UR in the mid-plane z = Γ/2 for Re =
500,Pr = 7 in the small gap η = 0.78. The plots are for (a) Fr = 0.7, Fr =1 and (b) Fr = 1.4.
The dominating Fourier mode is determined by the strength of the stratification.
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Figure 3. Radial and axial temperature profiles for Re = 700,Pr = 7,Fr =1.4 in the small
gap for several values of φ. Radial profiles are taken at half height and axial ones at the gap
centre. Deviations from the linear static profile are around 15 %.

the Reynolds number (in the unstable region) nor a variation of the steepness of
the rotation profile μ has an obvious effect. This is different from the results in
Shalybkov & Rüdiger (2005), where μ and Re have a clear effect on the stability of
the several modes. Either the lines of marginal stability for the modes are so close
to each other that a distinction in the nonlinear simulations is impossible or the
behaviour changes remarkably when the stratification is increased further. The lowest
Froude number reachable in the nonlinear simulations is Fr = 0.7 and the linear
analysis uses a value of Fr = 0.5. Low Fr is more demanding because Ra increases
quadratically with Fr , and also Re needs to be larger and limits the accessible
parameter space. Another aspect is in agreement with the linear analysis. For flat
profiles (μ = 0.72) we cannot find an instability for η = 0.78 and Re � 1000, which is
the maximum Reynolds number we can reach in our simulations. Thus, SRI feeds
from a good balance between stratification and rotation with a strong enough shear.
The deviation from the linear static temperature profile is shown in figure 3. For a
Reynolds number 1.5 times the critical one, it differs significantly by around 15 %
from the linear profile. This effect becomes larger with increasing Re and vanishes
near the onset of the stability.

5. Angular momentum transport
As shown in § 4, the variety of flow pattern is larger for the small gap container and

might be a good choice for a laboratory experiment. Regarding angular momentum
transport and its measurement, a wider gap is favourable as we demonstrate in the
following. Further aspects of an experimental realization is dealt in § 6.
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Figure 4. Pattern of Reynolds stress QRφ = 〈U ′
RU ′

φ〉 (a) for μ= 0.32 and its linear dependence
on shear (b). Angular momentum is transported outwards. Belonging parameters are Re =
450,Pr =1,Fr = 1 and η = 0.5.
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Figure 5. For Fr = 1.4, μ= 0.354 and η = 0.5: (a) angular momentum transport in terms of
the β viscosity at the gap centre (R =1.5) and averaged along z for Pr =1. For Re not in
direct vicinity of the stability boundary, β depends linear on Re. (b) The weak dependence on
the Prandtl number Pr is shown for Re = 600.

5.1. Wide gap

By using (2.3) the Reynolds stress QRφ is calculated for a fixed set of parameters. A
typical pattern in the R–z plane is shown in figure 4 on the left. Angular momentum
transport is always positive, i.e. directed outwards, with our configuration. The axial
wavenumber varies between 4 and 12 for Γ = 8 depending mainly on the Froude
number. Taking the value of QRφ in the gap centre (R = 1.5) averaged along z gives
the linear dependence on μ, as shown in figure 4 on the right. Thus the angular
momentum transport depends linearly on the shear.

An increase of Fr leads to decreased angular momentum transport because main-
tenance of the instability needs a stronger driving flow for increasing stratification.
Whether there exists a maximum of QRφ for given Fr with increasing Re, as is the case
for angular momentum transport due to the TI of a toroidal magnetic field (Gellert &
Rüdiger 2008), is not easy to say. Within the accessible range of Re � 1000, QRφ

increases linearly with Re and without indication of saturation (see figure 5a). A
significant Prandtl number dependence cannot be found (figure 5b).
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Figure 6. Same as in figure 5 but for the small gap with η =0.78 and Fr = 1.4.
It is for (a) Pr = 1 and (b) Re = 800.

The nearly vanishing influence of Pr might be a sign of the fact that it is not the
convection-like temperature mixing that determines the SRI. This is only a secondary
effect. The balance between centrifugal force and buoyancy is the crucial aspect. With
χ → 0 and constant ν, the instability appears without qualitative change. This results
in only a slight decrease in β . On the other hand, if both ν and χ are decreased
(constant Pr and increasing Re), the β viscosity grows rapidly and linearly with Re,
which means a scaling QRφ ∝ Ω3.

5.2. Small gap

Here the general behaviour is the same as for the wide gap. The different non-
axisymmetric modes are not reflected in β . Compared with the small gap, the β

viscosity is smaller by a factor of 4 but shows the same linear dependence on Re (see
figure 6). The unimportant variation with the Prandtl number appears in the same way
as for the wide gap for the observed Prandtl number range. This seems to be a very
general behaviour and has also been reported for Pr � 0.1 by Dubrulle et al. (2005).

6. Suggestion for a laboratory experiment
Experiments to study the SRI till now use a stratification accomplished by a salt

solution. Test probes along the depth help to keep the stratification linear as good as
possible. Even if the unstable system would evolve deviations from the linear profile
(and it would in the nonlinear regime as shown in figure 3), this is suppressed and
the profile is forced to stay unchanged. This disadvantage can be avoided by using
a temperature gradient to realize a strong enough stratification. Here the boundary
conditions are well defined and it is a rather easy task to keep them constant in time.
There exist many results, for instance from Rayleigh–Bénard experiments and other
convective systems, of working with temperature gradients in the laboratory. That is
why such a set-up is promising.

We show in the following of what size the TC system should be to reach appropriate
stratifications and rotation speeds for water as working fluid. The Prandtl number
of water is Pr ≈ 7. For a possible set of parameters with η = 0.5, Re = 500, Γ = 10
and Fr = 1.4, one needs a Grashof number of Gr =1.3 × 106. This corresponds to
a gap size of 6 cm for a temperature difference of 5 K or 9 cm for 2 K with water.
Such dimensions for a TC system and the temperature difference are realizable in
a laboratory. Figure 7 gives more details about dimensions, temperature differences
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Figure 7. Needed temperature difference between top and bottom (a), rotation frequency of
inner cylinder (b) and time to reach the saturation level (c) for η = 0.5,Re = 800,Fr = 1.4,
Γ = 10 and Pr = 7.16 (water).

and rotation frequency of possible experiments with the same parameters but with
Re =800.

The crucial point seems to be the choice of the aspect ratio of the cylinders. On one
hand one would like to extend the system to a high aspect ratio to limit perturbing
effects from the end caps. On the other hand, increasing height linearly increases
the required temperature difference, because it is the derivative dT/dz that controls
the instability and not the absolute value itself. Test simulations with solid end caps
rotating with the angular velocity of the outer cylinder revealed that a smoothing of
the pattern to axisymmetric structures near the top and bottom is inevitable, but it is
the only effect if the aspect ratio is Γ = 8 or higher. Between 20 % and 80 % of the
height the instability appeared in the same way as without solid end caps. Thus an
aspect ratio of Γ = 10 might be an optimal choice for an experimental realization.

Beneath the instability itself, the transport of angular momentum should also be
possible to measure. A scenario to do so could be the following. The whole system is
mounted on a rotation table rotating with the angular velocity of the inner cylinder.
The outer cylinder has its own drive to realize the relative angular velocity difference.
The inner cylinder is connected to the table only by using thin wires. If the instability
occurs, an additional torque acts on the inner cylinder and gives a measure for the β

viscosity.

7. Discussion
We have shown fully nonlinear simulations of the SRI with temperature stratifica-

tion in a cylindrical annulus. The stratification is stable, as well as the differentially
rotating flow. Both lead to unstable non-axisymmetric modes. Depending on the gap
width, these are the m =1 or m =2/3/4/5 modes in the investigated parameter range
of rather weak stratification with Froude numbers around Fr = 1. Weak stratification
results in the lowest critical Reynolds numbers for the onset of the SRI. On the
other hand, the instability is influenced only slightly by the Prandtl number of
the flow. The dominating mode m does not depend on Pr , but only on Fr . The
time the SRI needs to evolve and reach a saturated state is of the order of 120
rotations or two times the viscous time scale. Thus the growth rate of the instability
is rather slow compared to MRI and TI, where it is of the order of 10 rotations.
For both instabilities magnetic effects play the essential role. The SRI, even if slower,
might be of comparable importance when magnetic effects are rather unimportant
or if stratification suppresses MRI or TI. Thus it might become the most efficient
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instability mechanism in environments with weak or very strong magnetic fields or in
low-conducting environments like protostellar disks. We indeed find that SRI could
be a mechanism capable of transporting angular momentum. The normalized angular
momentum transport in terms of the β viscosity is of the order of 10−3, in terms
of the αSS for a thin disk around unity. This comparison with a thin disk assumes
that SRI still occurs in such a flat disk, which is not possible to answer with our
simulations at the moment. Nevertheless, the size of β and its linear growth with
Re is a sign of significant influence of the SRI for angular momentum transport
which might dominate over magnetic effects to produce turbulence in low-conducting
environments. Besides astrophysical motivation, angular momentum transport and
turbulent transport coefficients are also important for technical applications. In
tradition of the idea of Couette to measure viscosity of a fluid, the presented experi-
mental configuration could be used to measure the transport of angular momentum
or the increase of viscosity in the laboratory. With water it needs a TC system with
Γ ≈ 10 and a gap width of 6 cm to observe the SRI with a temperature difference of
5K between top and bottom. For Reynolds numbers around Re =1000, the time the
instability needs to grow and to saturate is around 25 min or 120 rotations at 0.5 Hz.
All these conditions seem to be appropriate for an experiment.

The authors would like to thank Rainer Hollerbach for stimulating discussions.
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