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Role of odd viscosity in falling viscous fluid
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The aim of the present study is to investigate the linear and nonlinear wave dynamics of
a falling incompressible viscous fluid when the fluid undergoes an effect of odd viscosity.
In fact, such an effect arises in classical fluids when the time-reversal symmetry is broken.
The motivation to study this dynamics was raised by recent studies (Ganeshan & Abanov,
Phys. Rev. Fluids, vol. 2, 2017, p. 094101; Kirkinis & Andreev, J. Fluid Mech., vol.
878, 2019, pp. 169–189) where the odd viscosity coefficient suppresses thermocapillary
instability. Here, we explore the linear surface wave and shear wave dynamics for the
isothermal case by solving the Orr–Sommerfeld eigenvalue problem numerically with
the aid of the Chebyshev spectral collocation method. It is found that surface and shear
instabilities can be weakened by the odd viscosity coefficient. Furthermore, the growth
rate of the wavepacket corresponding to the linear spatio-temporal response is reduced
as long as the odd viscosity coefficient increases. In addition, a coupled system of a
two-equation model is derived in terms of the fluid layer thickness h(x, t) and the flow
rate q(x, t). The nonlinear travelling wave solution of the two-equation model reveals
the attenuation of maximum amplitude and speed in the presence of an odd viscosity
coefficient, which ensures the delay of transition from the primary parallel flow with a flat
surface to secondary flow generated through the nonlinear wave interactions. This physical
phenomenon is further corroborated by performing a nonlinear spatio-temporal simulation
when a harmonic forcing is applied at the inlet.

Key words: nonlinear instability, shear-flow instability, transition to turbulence

1. Introduction

Over the last few years, there have been many studies carried out in deciphering the impact
of an odd viscosity in classical fluids since the seminal work of Avron (1998). As discussed
by Avron, if the time-reversal symmetry of the viscous fluid is broken either spontaneously
or by external fields, the non-dissipative effect of the odd viscosity coefficient needs
to be taken care of along with the dissipative effect of the even viscosity coefficient.
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He reported that the time-reversal symmetry for the superfluid He3 is broken
spontaneously, while the time-reversal symmetry for the two-dimensional quantum Hall
fluid is broken in the presence of an external magnetic field. As a result, the odd viscosity
component does not vanish; rather, it provides an off-diagonal contribution to the Cauchy
stress tensor. Hence, the modified Navier–Stokes equations are required to describe the
motion of a fluid endowed with an odd viscosity coefficient, which is expected to play a
significant role in the complex wave dynamics of such fluids.

In this context, Lapa & Hughes (2014) initiated the study of nearly circular swimmers
in two-dimensional fluids with odd viscosity at low Reynolds number. It was shown that
the non-vanishing odd viscosity component contributes to the hydrodynamic stress tensor
and plays a major role in swimming strategies. The effect of odd viscosity in chiral
active fluids was examined by Banerjee et al. (2017) due to the broken time-reversal
symmetry in their non-equilibrium steady states. On the other hand, the effect of an
odd viscosity in two-dimensional incompressible fluids was explored by Ganeshan &
Abanov (2017) to examine the bubble dynamics in a planar Stokes flow with stress-free
boundary conditions. It was predicted that the shape of the bubble is explicitly dependent
on the odd viscosity coefficient. The effect of odd viscosity on the free surface flow
of a colloidal chiral fluid was explored experimentally by Soni et al. (2019), where a
millimetre-scale cohesive chiral fluid flow was created by spinning millions of colloidal
magnets under a magnetic field. They demonstrated that the macroscopic chiral fluid flow
has a resemblance to the free surface flow of Newtonian fluids. Furthermore, they showed
that thin streams of chiral fluid become unstable as observed on the surface of a fluid
flowing past a solid object. Recently, the effect of the odd viscosity has been investigated
by Kirkinis & Andreev (2019) for a thin incompressible liquid film flow with broken
time-reversal symmetry. Basically, they deciphered the influence of the odd viscosity on
the thermocapillary instability for thin liquid films sitting on a heated solid substrate. As
discussed by Kirkinis & Andreev (2019), the waves induced by the thermocapillary effect
can be suppressed by the odd viscosity coefficient. Later, the effect of an odd viscosity
on the stability of a falling film was analysed by Zhao & Jian (2021a) in the presence of
an electromagnetic field. The instability analysis was performed under the framework of
the Benney-type surface evolution equation in terms of the local film thickness. It was
reported that both the odd viscosity and magnetic field stabilize the surface instability.
Weakly nonlinear analysis was also performed, which revealed that the supercritical stable
region is reduced by the odd viscosity coefficient. Zhao & Jian (2021b) further performed
a similar analysis for a viscoelastic liquid (Walters’ liquid B′′), where it was assumed that
the viscoelastic liquid has a property of broken time-reversal symmetry. They mentioned
that viscoelasticity destabilizes the surface instability. However, the surface instability
is stabilized by the odd viscosity through the increase of the critical Reynolds number.
The study proposed by Zhao & Jian (2021a) was further revisited by Chattopadhyay
(2021) and Mukhopadhyay & Mukhopadhyay (2021) in the presence of a slippery plane
based on the Benney-type surface evolution equation valid in the vicinity of the critical
Reynolds number for the surface mode. However, the effect of the electromagnetic field
was not included in their studies. Again, the stabilizing influence of the odd viscosity on
the surface mode was reported. A weakly nonlinear analysis was also carried out, and
the shrinking of the supercritical stable region was found. Obviously, the above studies
regarding thin film flows endowed with an odd viscosity coefficient were confined to the
vicinity of the threshold of instability. In addition, the experimental study of Soni et al.
(2019) based on a chiral fluid demonstrated some familiar features of free surface flows
such as droplets merging, spreading of fluid under the influence of gravity and instability
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Role of odd viscosity in falling viscous fluid

of thin streams. These facts motivate us to investigate the thin film instability in detail for
incompressible fluids with broken time-reversal symmetry. The effect of the magnetic field
is not incorporated in the current study.

The purpose of the present study is to explore the effect of an odd viscosity on the
surface wave and shear wave dynamics for a viscous incompressible fluid endowed with
an odd viscosity coefficient flowing down an inclined plane, not only in the low Reynolds
number regime but also in the high Reynolds number regime. In particular, the surface
wave appears in the low Reynolds number regime and evolves downstream when the
Reynolds number exceeds the critical value (5/4) cot θ , where θ is the inclination angle
with the horizontal (Benjamin 1957; Yih 1963). On the other hand, the shear wave appears
only in the high Reynolds number regime when the inclination angle is sufficiently small.
Furthermore, such waves compete with each other to trigger the primary instability of base
flow/parallel flow with a flat surface at a low value of inclination angle (Lin 1967; Bruin
1974). In order to study the linear dynamics of such waves, the Orr–Sommerfeld eigenvalue
problem is derived, while to deal with the nonlinear wave dynamics, the two-equation
depth-averaged model is derived in terms of the local fluid layer thickness and local
flow rate. The numerical solution of the Orr–Sommerfeld eigenvalue problem renders two
dominant modes, the so-called surface mode and shear mode, which can be stabilized by
the odd viscosity. In fact, the surface wave is generated by the surface mode responsible
for the streamwise component of the gravitational force, while the shear wave is generated
by the shear mode responsible for the viscous force (Chin, Abernath & Bertschy 1986).
The interesting result is that the surface mode dominates the primary instability of the base
flow at a low viscosity ratio of odd viscosity coefficient to even viscosity coefficient. But
there exists an unstable range of finite wavenumber where the shear mode dominates the
primary instability of the base flow at a high viscosity ratio when the Reynolds number
is large. On the other hand, the numerical solution of the two-equation model predicts
that both the maximum amplitude and speed of the steady state travelling wave solution
decrease in the presence of an odd viscosity coefficient. In addition, the odd viscosity
coefficient significantly delays the transition from the primary sinusoidal-type periodic
waves to secondary solitary-type waves developed through a sequence of nonlinear wave
interactions downstream.

2. Mathematical formulation

Suppose a two-dimensional incompressible viscous fluid with thickness h(x, t) flowing
down an inclined plane with angle θ subject to the gravitational force g, as shown
schematically in figure 1. The Cartesian coordinate frame is selected to describe the fluid
motion, where the origin is located in the inclined plane, and x and y axes are placed
in streamwise and cross-stream directions, respectively. Here, hN is the thickness of the
undeformed fluid surface indicated by the dashed line, and h(x, t) is the thickness of
the deformed fluid surface. We assume that the viscous fluid has a property with broken
time-reversal symmetry that introduces an additional viscosity coefficient, termed the odd
viscosity or Hall viscosity coefficient, to the Cauchy stress tensor. Such a non-dissipative
effect of the viscosity tensor was found in quantum Hall fluids at zero temperature
(Ganeshan & Abanov 2017). In fact, the time-reversal symmetry of a viscous fluid can
be broken either spontaneously or in the presence of an external magnetic field (Avron
1998). In general, the stress tensor τij of a viscous fluid can be represented in terms of the
rate of strain tensor ∂xluk as (Landau & Lifshitz 1959)

τij = −pδij + μijkl∂xluk, (2.1)

938 A9-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

15
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.155


A. Samanta
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Figure 1. Schematic diagram of a falling viscous fluid with an odd viscosity coefficient. Here, hN is the
thickness of the undeformed fluid surface indicated by the dashed line, and h(x, t) is the thickness of the
deformed fluid surface.

where μijkl is the viscosity tensor of rank 4 and p is the pressure of the fluid. Conservation
of angular momentum implies that the stress tensor is symmetric under the exchange of its
two indices i and j if the net external torque vanishes. However, if the first and last pairs of
indices are exchanged, i.e. if (ijkl) → (klij), the viscosity tensor is divided into symmetric
(even) and antisymmetric (odd) parts (Avron, Seller & Zograf 1995), where

μe
ijkl = μe

klij, μo
ijkl = −μo

klij. (2.2a,b)

The antisymmetric part associated with the non-dissipative effect vanishes with the aid
of the Onsager reciprocal relation Lαβ = Lβα (where α = ij and β = kl) if time-reversal
symmetry holds (Onsager 1931), where Lαβ represents any linear transport coefficient.
However, for an isotropic fluid with broken time-reversal symmetry, the antisymmetric
part is non-zero, and thereby, the Cauchy stress tensor τij will have two components rather
than one

τij = τ e
ij + τ o

ij , (2.3)

where τ e and τ o, respectively, represent the even and odd components of the Cauchy stress
tensor. The even component of the Cauchy stress tensor has a conventional form (Landau
& Lifshitz 1959; Batchelor 1993; Oron, Davis & Bankoff 1997)

τ e
ij = −pδij + μe(∂xiuj + ∂xjui), where i, j = 1, 2, (2.4)

where ui and uj are velocity components of the fluid, μe is the standard/even viscosity
coefficient and δij is the Kronecker delta. On the other hand, the odd component of the
Cauchy stress tensor can be expressed as (Avron 1998; Lapa & Hughes 2014; Kirkinis &
Andreev 2019)

τ o
ij = −μo(δi1δj1 − δi2δj2)(∂x2u1 + ∂x1u2)+ μo(δi1δj2 + δi2δj1)(∂x1u1 − ∂x2u2), (2.5)

where i, j = 1, 2 and μo is the odd viscosity coefficient. For the sake of simplicity, we
assume u1 = u, v1 = v, x1 = x and x2 = y. In what follows, we can show that

τ o
xy = μo(∂xu − ∂yv) = τ o

yx, τ 0
xx = −μo(∂yu + ∂xv), τ o

yy = μo(∂yu + ∂xv). (2.6a–c)

Obviously, the odd component of the Cauchy stress tensor also maintains the symmetric
property as manifested in the even component. Since the viscous fluid considered in the
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Role of odd viscosity in falling viscous fluid

present study has a property with broken time-reversal symmetry, the two-dimensional
fluid flow is governed by the modified Navier–Stokes equations (Kirkinis & Andreev 2019)

∂xu + ∂yv = 0, (2.7)

ρ(∂tu + u∂xu + v∂yu) = −∂xp + μe(∂xxu + ∂yyu)− μo(∂xxv + ∂yyv)+ ρg sin θ, (2.8)

ρ(∂tv + u∂xv + v∂yv) = −∂yp + μe(∂xxv + ∂yyv)+ μo(∂xxu + ∂yyu)− ρg cos θ. (2.9)

It should be noted that extra viscous terms appear in the momentum equations due to the
presence of an odd viscosity coefficient. The above governing equations are subjected to
the following boundary conditions. At the inclined plane, y = 0, fluid velocity components
must satisfy no-slip and no-penetration boundary conditions

u = 0, v = 0. (2.10a,b)

At the fluid surface, y = h(x, t), hydrodynamic stresses of the fluid must satisfy tangential
stress and normal stress boundary conditions (see, for example Kirkinis & Andreev 2019;
Zhao & Jian 2021a,b)

τijnjti = 0, i, j = 1, 2, (2.11)

τijninj = σ∂xxh/[1 + (∂xh)2]3/2, i, j = 1, 2, (2.12)

where σ is the surface tension, (t1, t2) = (1, ∂xh)/
√

1 + (∂xh)2 is the direction cosine of
the unit tangent vector t̂ and (n1, n2) = (−∂xh, 1)/

√
1 + (∂xh)2 is the direction cosine of

the unit normal vector n̂, placed on the fluid surface. Using the components of the Cauchy
stress tensor, tangential stress and normal stress boundary conditions at the fluid surface,
y = h(x, t), can be read as

μe

[1 + (∂xh)2]
[2(∂yv − ∂xu)∂xh + (∂yu + ∂xv){1 − (∂xh)2}]

+ μo

[1 + (∂xh)2]
[2(∂yu + ∂xv)∂xh + (∂xu − ∂yv){1 − (∂xh)2}] = 0, (2.13)

pa − p + 2μe

[1 + (∂xh)2]
[∂xu(∂xh)2 − (∂yu + ∂xv)∂xh + ∂yv] − σ

∂xxh
[1 + (∂xh)2]3/2

+ μo

[1 + (∂xh)2]
[(∂yu + ∂xv){1 − (∂xh)2} − 2∂xh(∂xu − ∂yv)] = 0, (2.14)

where pa is the ambient pressure. Finally, the kinematics of the fluid surface, y = h(x, t),
is governed by the kinematic boundary condition

∂th + u∂xh = v. (2.15)

As we are interested in inspecting the primary instability of base flow/parallel flow with a
flat surface, it is essential to determine the exact solution of the base flow equations. As a
consequence, we consider a uni-directional parallel flow with a constant fluid layer height.
This assumption converts the deformed fluid surface into a flat undeformed fluid surface,
i.e. y = h(x, t) = hN , and supplies a simplified set of governing equations for the base flow

μe∂yyu + ρg sin θ = 0, −∂yp + μo∂yyu − ρg cos θ = 0, (2.16a,b)

u = 0, at y = 0, μe∂yu = 0, pa − p + μo∂yu = 0, at y = hN . (2.17a–c)

Here, we prefer the surface velocity of the base flow, Us = ρgh2
N sin θ/(2μe), as the

characteristic velocity scale, the constant fluid layer height of the base flow, hN , as the
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characteristic length scale, μeUs/hN as the characteristic pressure scale and hN/Us as the
characteristic time scale. Therefore, we can write

x∗ = x/hN, y∗ = y/hN, h∗ = h/hN, u∗ = u/Us,
v∗ = v/Us, t∗ = t/(hN/Us), p∗ = p/(μeUs/hN),

}
(2.18)

where the star variables indicate the non-dimensional variables. For the sake of simplicity,
the star notation is dropped from the non-dimensional variables in the subsequent
mathematical formulation. The exact solution of the base flow equations (2.16a,b) and
(2.17a–c) in non-dimensional form can be expressed as follows:

U( y) = (2y − y2), P( y) = Pa + 2(μ+ cot θ)(1 − y), V = 0, (2.19a–c)
where Pa is the non-dimensional ambient pressure and μ = μo/μe is the ratio of the odd
viscosity coefficient to the even viscosity coefficient, which will be later referred to as the
viscosity ratio. It should be noted that the streamwise base velocity U( y) is independent
of the viscosity ratio μ. However, the basic pressure P( y) is explicitly dependent on the
viscosity ratio μ.

3. Linear stability analysis in the long-wave regime

In this section, we shall perform a linear stability analysis in the long-wave regime. To this
end, an infinitesimal disturbance is applied to the base flow. This fact is mathematically
expressed by the following flow variable decomposition:

u(x, y, t) = U( y)+ u′(x, y, t),
v(x, y, t) = v′(x, y, t),

p(x, y, t) = P( y)+ p′(x, y, t),
h(x, t) = 1 + h′(x, t),

⎫⎪⎬
⎪⎭ (3.1)

where u′(x, y, t), v′(x, y, t), p′(x, y, t) and h′(x, t) represent the perturbation velocity
components, perturbation pressure and perturbation surface deformation, respectively.
After substitution of the variable decomposition (3.1) in non-dimensional form into the
governing equations (2.7)–(2.15) and linearization about the base flow solution, one can
obtain the following non-dimensional perturbation equations:

∂xu′ + ∂yv
′ = 0, (3.2)

Re(∂tu′ + U∂xu′ + v′∂yU)+ ∂xp′ − (∂xxu′ + ∂yyu′)+ μ(∂xxv
′ + ∂yyv

′) = 0, (3.3)

Re(∂tv
′ + U∂xv

′)+ ∂yp′ − (∂xxv
′ + ∂yyv

′)− μ(∂xxu′ + ∂yyu′) = 0, (3.4)

where Re = ρUshN/μ
e, the Reynolds number, compares inertia with the viscous force.

At the inclined plane, y = 0, the linearized forms of no-slip and no-penetration boundary
conditions are

u′ = 0, v′ = 0. (3.5a,b)
On the other hand, at the fluid surface, y = 1, the boundary conditions can be linearized
as

∂yu′ + ∂xv
′ + h′∂yyU + μ(∂xu′ − ∂yv

′) = 0, (3.6)

−p′ + 2(μ+ cot θ)h′ + 2∂yv
′ + μ(∂yu′ + ∂xv

′ + h′∂yyU)− (1/Ca)∂xxh′ = 0, (3.7)

∂th′ + U∂xh′ − v′ = 0, (3.8)

where Ca = μeUs/σ , the capillary number compares the viscous force with the capillary
force. Next, we assume the solution of the perturbation equations (3.2)–(3.8) in the form
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of the normal mode (Yih 1963; Samanta 2020)

u′(x, y, t) = ũ( y) exp[ik(x − ct)] + c.c.,
v′(x, y, t) = ṽ( y) exp[ik(x − ct)] + c.c.,
p′(x, y, t) = p̃( y) exp[ik(x − ct)] + c.c.,

h′(x, t) = h̃ exp[ik(x − ct)] + c.c.,

⎫⎪⎬
⎪⎭ (3.9)

where c.c. represents the complex conjugate and the variables with the tilde notation
represent the amplitudes of perturbation variables. Here, k and c are respectively the
real wavenumber and complex wave speed of the infinitesimal perturbation because
we are interested in figuring out the temporal stability analysis. Next, we introduce
the perturbation streamfunction ψ ′(x, y, t) by using the relations u′ = ∂yψ

′ and v′ =
−∂xψ

′. After substitution of the normal mode form (3.9) into the perturbation equations
(3.2)–(3.8) and eliminating pressure terms, one can obtain the Orr–Sommerfeld eigenvalue
problem for the falling viscous fluid with broken time-reversal symmetry

(∂yyyyψ̃ − 2k2∂yyψ̃ + k4ψ̃)− ikRe[(U − c)(∂yyψ̃ − k2ψ̃)− ∂yyUψ̃] = 0, 0 ≤ y ≤ 1,
(3.10)

ψ̃ = 0, ∂yψ̃ = 0, at y = 0, (3.11)

∂yyψ̃ + k2ψ̃ + h̃∂yyU + 2 ikμ∂yψ̃ = 0, at y = 1, (3.12)

(∂yyyψ̃ − 3k2∂yψ̃)− ikRe(U − c)∂yψ̃ − 2 ik3μψ̃ − ikh̃[2 cot θ + k2/Ca] = 0, at y = 1,
(3.13)

(U − c)h̃ + ψ̃ = 0, at y = 1, (3.14)

where ψ̃ is the amplitude of the perturbation streamfunction.

3.1. Long-wave asymptotic solution
In accordance with the study of Yih (1963), the long-wave asymptotic solution of the
Orr–Sommerfeld eigenvalue problem (3.10) and (3.14) will be determined in the limit
k → 0. Consequently, we propose the following long-wave series expansion

ψ̃( y) = ψ̃0 + kψ̃1 + k2ψ̃2 + · · · ,
h̃ = h̃0 + kh̃1 + k2h̃2 + · · · ,
c = c0 + kc1 + k2c2 + · · · .

⎫⎬
⎭ (3.15)

It should be fruitful to mention here that the capillary number Ca appearing in the normal
stress boundary condition (3.13) has a stabilizing influence and assists in preventing the
break up of the nonlinear wave phenomenon discussed in § 5. For this reason, in the
subsequent calculation, the capillary number Ca is assumed to be of order O(k2), i.e.
Ca ∼ O(k2) (Ruyer-Quil et al. 2008). Inserting the long-wave series expansion (3.15) into
the Orr–Sommerfeld eigenvalue problem (3.10) and (3.14) and solving the equations up to
O(k), one can obtain the complex wave speed as follows:

c = 2 + ik
[

8
15

Re − 2μ− 2
3

cot θ − 1
3

k2

Ca

]
+ O(k2). (3.16)

Note that the resulting complex wave speed c is associated with the surface mode because
it is induced by the perturbation of the fluid surface. Obviously, the capillary number
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arises in the expression of the complex wave speed c in the O(k) approximation. Using
the neutral stability condition (ci ≈ kc1 = 0 as k → 0), we obtain the critical Reynolds
number for the surface mode in the limit k → 0 as

Rec = 5
4

cot θ + 15
4
μ. (3.17)

It should be noted that the critical Reynolds number Rec for the surface mode increases
in the presence of the viscosity ratio μ of odd viscosity coefficient to even viscosity
coefficient, as reported in the studies of Zhao & Jian (2021a,b) and Chattopadhyay
(2021) which were carried out under the framework of the Benney-type surface evolution
equation. Furthermore, (3.17) reveals that the vertical falling viscous fluid can be stable if
the odd viscosity coefficient is present because the critical Reynolds number is non-zero
when θ = π/2. As a consequence, there exists a range of the Reynolds number where the
vertical falling film endowed with an odd viscosity coefficient is stable to infinitesimal
disturbances. This result opposes the result of the vertical falling viscous fluid without an
odd viscosity coefficient (Oron & Gottlieb 2004) because the vertical falling viscous fluid
is always unstable for a non-zero Reynolds number. However, in this case, there exists a
stable range of the Reynolds number where the infinitesimal disturbances will be damped
although the fluid is falling over a vertical plane. As shown in the expression of basic
pressure (see (2.19a–c)), the impact of the depthwise gravitational force is intensified
by the viscosity ratio μ. Note that the depthwise gravitational force is positive and acts
opposite to the cross-stream direction through the hydrostatic pressure and pulls the fluid
away from the disturbance crest. As a result, the crest of the fluid surface deformation
decreases (Smith 1990). This physical phenomenon accounts for the stabilizing effect of
the viscosity ratio μ on the surface mode. The mechanism of long-wave surface instability
will be discussed further through the energy budget in § 4.2.

4. Linear stability analysis in the arbitrary wavenumber regime

In order to decipher the linear stability analysis in the arbitrary wavenumber regime, we
shall apply the Chebyshev spectral collocation method (Schmid & Henningson 2001).
Consequently, the amplitude of perturbation streamfunction ψ̃( y) is expanded in a
truncated series of Chebyshev polynomials (Orszag 1971; Boyd 2000)

ψ̃( y) =
N∑

i=0

ψ̃iTi( y), (4.1)

where Ti( y) are Chebyshev polynomials of the first kind, N is a positive integer
and ψ̃i are constant coefficients to be determined numerically. Since the Chebyshev
polynomials are defined over the domain −1 ≤ y ≤ 1, the domain of the fluid layer
is converted from 0 ≤ y ≤ 1 to −1 ≤ x ≤ 1 by using the linear transformation x =
(2y − 1). As a consequence, the derivatives are transformed as ∂y → 2∂x, ∂yy → 4∂xx
and so on. Using the series expansion (4.1) and evaluating the Chebyshev polynomials
at the Gauss–Lobatto collocation points xj = cos(πj/N) (which are the extrema of the
Chebyshev polynomials, where j = 0, 1, . . . ,N), the Orr–Sommerfeld eigenvalue problem
is recast into a generalized matrix eigenvalue problem

AX = ωBX , (4.2)

where ω is the eigenvalue, X is the associated eigenvector and A and B are
square matrices. Physically, ω = kc = ωr + iωi is the angular frequency of the
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Critical Reynolds number μ = 0 μ = 0.2 μ = 0.4 μ = 0.6 μ = 0.8 μ = 1.0

Analytical (Recs) 1.25 2.0 2.75 3.5 4.25 5.0
Numerical (Recs) 1.2509 1.9979 2.7481 3.5005 4.2498 5.0026

Table 1. Comparison between analytical and numerical results of the critical Reynolds number for the
surface mode when the viscosity ratio μ varies and θ = 45◦.

infinitesimal disturbance. If ωi is positive for at least one of the eigenvalues, the
infinitesimal disturbance will grow exponentially with time, and the infinitesimal
disturbance will be unstable. Otherwise, the infinitesimal disturbance will be stable if
ωi is negative for all eigenvalues. It should be useful to discuss here that spurious
eigenvalues may appear in the numerical solution of the matrix eigenvalue problem (4.2)
because of the homogeneous boundary conditions (3.11) used in the rows of matrix A.
However, these spurious eigenvalues are mapped to the arbitrary irrelevant stable modes
by carefully selecting the complex multiple to the corresponding rows of matrix B (Schmid
& Henningson 2001). In this way, one can avoid the spurious eigenvalues from the
generalized matrix eigenvalue problem (4.2).

4.1. Temporal stability for the surface mode in low to moderate Reynolds number regime
In order to justify the current numerical code, the numerical result is compared with the
long-wave analytical result when the viscosity ratio μ varies. Table 1 demonstrates the
comparison of the critical Reynolds number for the surface mode computed analytically
and numerically when θ = 45◦. Obviously, there is an excellent agreement between the
analytical and numerical results. Following the study of Kirkinis & Andreev (2019), the
numerical results are produced for silicon oil with ρ = 9.6 × 10−1 g cm−3, μe = 4.8 ×
10−1 g cm−1 s−1, σ = 2.08 × 101 g s−2, Us = 10 cm s−1 and θ = 45◦ (Tan, Bankoff &
Davis 1990). For instance, the value of the viscosity ratio μ ∼ 0.8 when the fluid layer
thickness is hN = 10−4 cm (Kirkinis & Andreev 2019). Figure 2 displays the neutral curve
and temporal growth rate for the surface mode when the viscosity ratio μ varies. It should
be noted that the unstable region generated by the surface mode diminishes with increasing
values of the viscosity ratio μ (see figure 2a). This fact is followed by the successive
increment of the critical Reynolds number. Hence, the viscosity ratio μ, or equivalently,
the odd viscosity coefficient, has a stabilizing effect on the surface mode. The above result
is further confirmed by producing the temporal growth rate for the surface mode illustrated
in figure 2(b). It is found that the temporal growth rate attenuates as long as the viscosity
ratio μ increases and ensures the stabilizing effect of μ on the surface mode. This fact
indicates that the amplitude (∝ exp[kcit]) of the infinitesimal disturbance decreases in
the presence of the odd viscosity coefficient, and consequently, investigation of the finite
amplitude nonlinear instability can be delayed for a viscous fluid endowed with an odd
viscosity coefficient. From the above result, one can also conclude that the transition from
laminar flow with a flat surface to turbulence occurred through a sequence of nonlinear
wave interactions for a viscous fluid with broken time-reversal symmetry can be delayed
by the odd viscosity coefficient.

4.2. Method of energy budget
Following the studies of Kelly et al. (1989) and Bhat & Samanta (2019), we want
to decipher the mechanism of long-wave surface instability based on the method of
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Figure 2. (a) Variation of the neutral curve for the surface mode in the (Re, k) plane for different values of
μ. Solid, dashed and dotted lines stand for μ = 1.2, μ = 1.4 and μ = 1.6, respectively. The arrow is pointing
out the direction of the decreasing unstable region with increasing μ. (b) Variation of the temporal growth rate
kci with wavenumber k for the surface mode when Re = 10. Solid, dashed and dotted lines stand for μ = 1.2,
μ = 1.4 and μ = 1.6, respectively. The arrow is pointing out the direction of decreasing temporal growth rate
with increasing μ. The other flow parameters are Ca−1 = 4 and θ = 45◦. U and S represent unstable and stable
regions.

energy budget. To this end, the linearized perturbation x-momentum equation (3.3)
is multiplied by the streamwise perturbation velocity component u′, the linearized
perturbation y-momentum equation (3.4) is multiplied by the cross-stream velocity
component v′, averaging those equations over the spatial coordinates y ∈ [0, 1] and x ∈
[0, λ] (λ = 2π/k, the wavelength of the infinitesimal disturbance) and finally combining
them, we obtain

1
2λ

∫ λ
0

∫ 1

0
∂t(u′2+v′2) dx dy+ 1

λ

∫ λ
0

∫ 1

0
u′v′∂yU dx dy = 1

Reλ

∫ λ
0

[u′(∂yu′ + ∂xv
′)]|y=1 dx

+ 1
Reλ

∫ λ
0

[v′(−p′ + 2∂yv
′)]|y=1 dx − 1

Reλ

∫ λ
0

∫ 1

0
[2(∂xu′)2 + (∂yu′ + ∂xv

′)2

+ 2(∂yv
′)2] dx dy + μ

Reλ

∫ λ
0
(v′∂yu′ − u′∂yv

′) dx. (4.3)

Using the perturbation tangential stress and normal stress boundary conditions (3.6) and
(3.7) at the fluid surface, y = 1, we can recast the energy budget equation in the following
form:

E + H + C = P + D + S , (4.4)

where

E = 1
2λ

∫ λ
0

∫ 1

0
∂t(u′2 + v′2) dx dy (4.5)

describes the rate of change of kinetic energy of the infinitesimal disturbance,

H = 2 cot θ
Reλ

∫ λ
0

[h′v′]|y=1 dx (4.6)

represents the rate of work done against hydrostatic pressure,

C = − 1
Re Caλ

∫ λ
0

[∂xxh′v′]|y=1 dx (4.7)
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specifies the rate of work done against surface tension,

P = −1
λ

∫ λ
0

∫ 1

0
u′v′∂yU dx dy (4.8)

represents the energy production to the infinitesimal disturbance through the Reynolds
stress,

D = − 1
Reλ

∫ λ
0

∫ 1

0
[2(∂xu′)2 + (∂yu′ + ∂xv

′)2 + 2(∂yv
′)2] dx dy (4.9)

specifies the viscous energy dissipation of the infinitesimal disturbance, and

S = − 1
Reλ

∫ λ
0

[h′u′∂yyU]|y=1 dx (4.10)

describes the work done by the perturbation shear stress due to the displacement of the
fluid surface. Using the long-wave series expansion (3.15), the integrals representing
different terms in the energy budget equation (4.4) are evaluated analytically and can be
expressed up to O(k2) as

E ≈ 2
3

k2
[

8
15

Re − 2μ− 2
3

cot θ − 1
3

k2

Ca

]
G2 = −2

3
ik2c1G2, (4.11)

H ≈ cot θ
Re

k2
[

8
15

Re − 2μ− 2
3

cot θ − 1
3

k2

Ca

]
G2 = −cot θ

Re
ik2c1G2, (4.12)

C ≈ 1
2Re Ca

k4
[

8
15

Re − 2μ− 2
3

cot θ − 1
3

k2

Ca

]
G2 = − 1

2Re Ca
ik4c1G2, (4.13)

P ≈ 1
60

k2
[

2
3

cot θ − 31
84

Re + 1
3

k2

Ca

]
G2, (4.14)

D ≈
[
− 2

Re
+ k2

(
− 17

45
cot θ − 20

3Re
+ 4

3
cot2 θ

Re
− 1249

2520
Re + 4

3
μ+ 4

Re
μ cot θ

)

+k2
(

− 17
90

k2

Ca
+ 4 cot θ

3Re
k2

Ca
+ 2μ

Re
k2

Ca

)
+ k2

3Re
k4

Ca2

]
G2, (4.15)

S ≈
[

2
Re

+ k2
(

41
90

cot θ + 20
3Re

− 2 cot2 θ
Re

+ 4321
5040

Re − 8
3
μ− 6

Re
μ cot θ

)

+k2
(

41
180

k2

Ca
− 2 cot θ

Re
k2

Ca
− 3μ

Re
k2

Ca

)
− k2

2Re
k4

Ca2

]
G2, (4.16)

where G = exp[kcit]. It should be noted that the analytical expressions of different terms in
the energy budget equation (4.4) are explicitly dependent on the viscosity ratioμ, and these
terms will be strongly modified by the viscosity ratio μ. Furthermore, these expressions
coincide with that of Bhat & Samanta (2019) when the viscosity ratio μ is set to zero and if
the imposed shear stress is removed from the study of Bhat & Samanta (2019). Obviously,
the work done by the perturbation shear stress at the disturbed fluid surface is balanced
by the viscous energy dissipation in the limit k → 0. Apparently, it seems that the rate of
change of kinetic energy of the infinitesimal disturbance becomes weaker in the presence
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μ E P D H C S

0.0 0.0955 −0.0050 −0.4240 0.0247 0.0020 0.5512
0.1 0.0940 −0.0051 −0.4232 0.0239 0.0019 0.5481
0.2 0.0924 −0.0052 −0.4225 0.0230 0.0018 0.5448
0.3 0.0907 −0.0052 −0.4217 0.0222 0.0018 0.5415
0.4 0.0889 −0.0053 −0.4209 0.0214 0.0017 0.5381
0.5 0.0870 −0.0054 −0.4201 0.0205 0.0016 0.5346
0.6 0.0850 −0.0054 −0.4192 0.0197 0.0016 0.5309
0.7 0.0829 −0.0055 −0.4183 0.0189 0.0015 0.5271
0.8 0.0808 −0.0056 −0.4174 0.0181 0.0014 0.5233
0.9 0.0785 −0.0056 −0.4165 0.0173 0.0014 0.5193
1.0 0.0762 −0.0057 −0.4155 0.0165 0.0013 0.5152

Table 2. Numerical magnitudes of different terms in the energy budget equation (4.4) for several values of
the viscosity ratio μ when Re = 20, k = 0.2, Ca−1 = 4 and θ = 45◦.

of the viscosity ratio μ, and perhaps this is the reason for the stabilizing effect of μ. In
order to figure out this physical phenomenon, the different terms in the energy budget
equation (4.4) are computed numerically for several values of the viscosity ratio μ and
demonstrated in table 2 when Re = 20, k = 0.2, Ca−1 = 4 and θ = 45◦, where the rate of
change of kinetic energy of the infinitesimal disturbance decays with rising values of μ. As
discussed by Kelly et al. (1989) and Smith (1990), the energy is transferred from the base
flow to the disturbance due to the work done by the perturbation shear stress generated
by the basic velocity at the deformed fluid surface. In the presence of the viscosity ratio
μ, the work done by the perturbation shear stress attenuates, which compensates for the
reduction of the disturbance kinetic energy and the viscous energy dissipation. This fact
can be attributed to the stabilizing influence of viscosity ratio μ on the primary instability
of the base flow induced by the surface mode.

4.3. Temporal stability for the shear mode in the high Reynolds number regime
In this section, we are interested in deciphering the linear stability analysis of a shear mode
which generally emerges numerically for a large value of the Reynolds number when the
inclination angle is sufficiently small (Lin 1967; Bruin 1974; Chin et al. 1986; Floryan,
Davis & Kelly 1987). Here, we shall create the results for a water flow with Kapitza
number Γ = (Re2 sin θ)1/3/Ca = 4280, which relies only on the physical properties of
a fluid (Chin et al. 1986). There is evidence, which will be shown later in figure 4(b),
that the viscosity ratio μ, or equivalently, the odd viscosity coefficient, does not have
a significant impact on the shear mode unless the inclination angle is very small. For
this reason, the numerical results are produced for θ = 1′ = 1◦/60. Figure 3 displays the
neutral curve and temporal growth rate for the shear mode when the viscosity ratio μ
varies. It is found that the unstable zone generated by the shear mode decays as long as
the viscosity ratio increases and this fact is followed by the successive increment of the
critical Reynolds number. Hence, the shear instability can also be weakened with the aid
of an odd viscosity coefficient, as observed for the surface instability. This result is further
confirmed by plotting the temporal growth rate for the shear mode when Re = 7000.
Indeed, the temporal growth rate becomes weaker with increasing values of the viscosity
ratio μ. Basically, in the high Reynolds number regime, the viscous effect induced by
the even viscosity coefficient shows a destabilizing influence, and its impact diminishes
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Figure 3. (a) Variation of the neutral curve for the shear mode in the (Re, k) plane for different values of μ.
Solid, dashed and dotted lines stand for μ = 0, μ = 10 and μ = 20, respectively. The arrow is pointing out
the direction of decreasing unstable region with increasing μ. (b) Variation of the temporal growth rate kci
with wavenumber k for the surface mode when Re = 7000. Solid, dashed and dotted lines stand for μ = 0,
μ = 10 and μ = 20, respectively. The arrow is pointing out the direction of decreasing temporal growth rate
with increasing μ. The other flow parameters are Γ = 4280 and θ = 1′ = 1◦/60; U and S represent unstable
and stable regions.

in the presence of an odd viscosity coefficient and causes a stabilizing influence on the
shear mode. Although the viscosity ratio has a stabilizing effect on the shear mode,
its impact on the shear mode is not as significant as noticed for the surface mode.
Consequently, the shear mode may have a chance to dominate the primary instability of
the base flow in the presence of an odd viscosity coefficient. In order to inspect such
a physical phenomenon in the high Reynolds number regime, a numerical computation
is performed when Γ = 4280 and θ = 1◦. Figure 4(a) demonstrates that the onset of
instability for the shear mode remains far away from that of the surface mode when
μ = 0, and thereby, the primary instability of the base flow is triggered by the surface
mode. However, as soon as the viscosity ratio increases, the scenario becomes different.
For instance, there exists an unstable range of finite wavenumber at μ = 4, where the shear
mode dominates the primary instability of the base flow rather than the surface mode. This
result is demonstrated in figure 4(c) for Re = 8000 and μ = 4. Obviously, the temporal
growth rate is associated with the surface mode passing through zero (k = 0, kci = 0),
while the temporal growth rate associated with the shear mode does not pass through zero
(k = 0, kci = 0) but rises in the finite wavenumber regime. Furthermore, there exists an
unstable range of wavenumber for the shear mode where the temporal growth rate for the
surface mode is fully negative, which indicates the dominant effect of the shear mode on
the primary instability of the base flow and supports the result reported in figure 4(a).
Figure 4(b) shows that the viscosity ratio μ does not have a significant impact on the shear
mode when θ = 1◦.

4.4. Linear spatio-temporal analysis
The linear spatio-temporal response corresponding to an infinitesimal perturbation
superimposed on a viscous fluid with broken time-reversal symmetry is explored under
the framework of the Orr–Sommerfeld eigenvalue problem (3.10)–(3.14), where the
wavenumber k = kr + iki and the angular frequency ω = kc = ωr + iωi are assumed to
be complex. As the Orr–Sommerfeld eigenvalue problem (3.10)–(3.14) is a biquadratic
polynomial in wavenumber k, one can expect the appearance of four spatial branches
as identified by Brevdo et al. (1999) and Samanta (2016) for a viscous fluid without an
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Figure 4. (a) Variation of the neutral curve in the (Re, k) plane for different values of μ. Solid, dashed and
dotted lines stand for μ = 0, μ = 2 and μ = 4, respectively. (b) Variation of the neutral curve for the shear
mode in the (Re, k) plane for different values of μ. Solid, dashed and dotted lines stand for μ = 0, μ = 2 and
μ = 4, respectively. (c) Variation of the temporal growth rate kci with wavenumber k for the shear and surface
modes when Re = 8000 and μ = 4. Solid and dashed lines represent the temporal growth rates for the shear
mode and surface mode, respectively. The other flow parameters are Γ = 4280 and θ = 1◦; U and S represent
unstable and stable regions.

odd viscosity coefficient. In fact, these spatial branches may grow or decay spatially in
upstream or downstream directions depending on their sign, which can be understood from
figure 5(a), where the results are displayed for Re = 40, Ca−1 = 83 and θ = 4.6◦ (Brevdo
et al. 1999) when the viscosity ratio μ varies. Indeed, there exist four spatial branches
lying in either side of the complex k-plane. In particular, branches 2 and 4 remain in the
upper half-zone of the complex k-plane, and therefore, these branches will grow spatially
in the upstream direction. By contrast, the branch 3 remains in the lower half-zone of
the complex k-plane, and therefore, it will grow spatially in the downstream direction.
However, branch 1 lies on both sides of the complex k-plane, but the spatial growth rate
−ki corresponding to branch 1 attenuates with rising values of μ (see figure 5b). This fact
again ensures the stabilizing influence of the viscosity ratio μ on the primary instability of
the base flow. The long-time asymptotic behaviour of these spatial branches can be figured
out through the spatio-temporal behaviour of a Green’s function G (x, t), whose absolute
value is proportional to the exponential function of the growth rate of the wavepacket
(Huerre & Roosi 1998; Huerre 2000; Samanta 2016)

|G (x, t)| ∝ exp[γ (V )t], (4.17)

where γ (V ) = ω∗
i − V k∗

i is the growth rate of the wavepacket associated with the
spatio-temporal response. Here, ω∗ = ω(k∗) = ω∗

r + iω∗
i is the angular frequency at the

saddle point k = k∗ = k∗
r + ik∗

i , and V is the spatio-temporal ray velocity of an observer
such that ∂kω(k∗) = V . If γ (V ) is positive along at least one ray x/t = V , the observer
will perceive that the wavepacket is growing exponentially with time, and the flow
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Figure 5. (a) Variation of the spatial branches in the (kr, ki) plane for different values of μ. Solid, dashed
and dotted lines stand for μ = 0, μ = 1 and μ = 2, respectively. (b) Close-up view of the spatial branch 1
in the (kr, ki) plane for different values of μ. Solid, dashed and dotted lines stand for μ = 0, μ = 1 and
μ = 2, respectively. The arrow is pointing out the direction of increasing ki with increasing μ. The other flow
parameters are Re = 40, Ca−1 = 83 and θ = 4.6◦.
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Figure 6. (a) Variation of the growth rate γ (V ) of the unstable wavepacket with ray velocity V for different
values of μ. Solid, dashed and dotted lines stand for μ = 0, μ = 0.5 and μ = 1, respectively. The arrow is
pointing out the direction of decreasing γ (V ) with increasing μ. (b) Variation of the spatial amplification rate
ki(V ) with minus sign with ray velocity V for different values of μ. Solid, dashed and dotted lines stand for
μ = 0, μ = 0.5 and μ = 1, respectively. The other flow parameters are Re = 40, Ca−1 = 83 and θ = 4.6◦.

configuration will be unstable. By contrast, if γ (V ) is negative along all rays x/t = V ,
the observer will perceive that the wavepacket is decaying exponentially with time, and
the flow configuration will be stable. The variation of the growth rate of the wavepacket
with ray velocity is revealed in figure 6(a) with rising values of μ. It is found that the
growth rate of the wavepacket reduces as long as μ increases and confirms the stabilizing
effect of μ, as noticed in the study of the temporal stability analysis. Furthermore, there
exists an unstable range of ray velocity where the spatial amplification rate is positive
(see figure 6b). Therefore, an observer who travels with a ray velocity belonging to that
range always perceives a spatially growing wavepacket. In addition, the above result also
indicates that the spatio-temporal disturbance is convectively unstable for a falling viscous
fluid with broken time-reversal symmetry.

5. Low-dimensional model

In this section, we are interested in deriving a low-dimensional model for a viscous fluid
flow with broken time-reversal symmetry by using the boundary layer approximation
together with the depth-averaged technique proposed by Shkadov (1967), Chang,
Demekhin & Kopelvitch (1993), Chang (1994), Nguyen & Balakotaiah (2000), Ruyer-Quil
& Manneville (2000) and Kalliadasis et al. (2012). More specifically, we are interested in
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developing a reduced second-order two-equation model in terms of the local fluid layer
thickness h(x, t) and the local flow rate q(x, t), which is consistent up to O(ε) in inertia
terms and up to O(ε2) in viscous terms. To this end, we assume that the surface of the
viscous fluid evolves slowly downstream with respect to space and time, and thereby,
we can consider spatial derivative ∂x ∼ O(ε) and time derivative ∂t ∼ O(ε), where ε ∼
k ∼ 1/λ� 1, where λ is the wavelength of the disturbance which is large in comparison
with the fluid layer thickness. According to this assumption, the modified Navier–Stokes
equations and the associated boundary conditions (2.7)–(2.15) are simplified and can be
recast in non-dimensional form as

∂xu + ∂yv = 0, (5.1)

Re(∂tu + u∂xu + v∂yu) = −∂xp + ∂xxu + ∂yyu − μ∂yyv + 2, (5.2)

∂yp − ∂yyv − μ∂yyu + 2 cot θ = 0, (5.3)

u = 0, v = 0, at y = 0, (5.4)

(∂yu + ∂xv)− 4∂xu∂xh + 2μ(∂yu∂xh + ∂xu) = 0, at y = h(x, t), (5.5)

p − Pa − 2∂yv + (1/Ca)∂xxh + 2μ2∂xu = 0, at y = h(x, t), (5.6)

∂th + u∂xh = v, at y = h(x, t). (5.7)

Here, we assume that the capillary number Ca ∼ O(ε2) and that is why it is kept in the
normal stress boundary condition (5.6). Next, integrating the mass conservation equation
(5.1) over the fluid layer domain [0, h] and using the kinematic boundary condition (5.7),
we obtain the depth-averaged mass conservation equation (Luchini & Charru 2010)

∂th + ∂xq = 0, (5.8)

where q(x, t) = ∫ h(x,t)
0 u(x, y, t) dy is the local flow rate. Similarly, integrating the

y-momentum equation (5.3) over the fluid layer domain [0, h] and using the normal stress
boundary condition (5.6), we obtain the expression for the pressure distribution

p(x, y, t) = −∂xu − ∂xu( y = h)+ μ∂yu − μ∂yu( y = h)+ 2 cot θ(h − y)

− (1/Ca)∂xxh − 2μ2∂xu( y = h)+ Pa. (5.9)

Inserting (5.9), the x-momentum equation (5.2) can be rewritten into the following form:

Re(∂tu + u∂xu + v∂yu) = 2 − 2 cot θ∂xh + (1/Ca)∂xxxh + ∂yyu + 2∂xxu + ∂x[∂xu( y=h)],
(5.10)

where the cross-stream velocity component v(x, y, t) will be replaced by the streamwise
velocity component u(x, y, t) through the relation

v(x, y, t) = −
∫ y

0
∂xu dy ∼ O(ε). (5.11)

Now we require the explicit expression for the streamwise velocity component u(x, y, t) to
derive the depth-averaged momentum equation. In accordance with the study of Samanta,
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Ruyer-Quil & Goyeau (2011), we assume

u(x, y, t) = u0(x, y, t)+ u1(x, y, t), (5.12)

where the leading-order velocity distribution u0(x, y, t) is of the form

u0(x, y, t) = a(x, t)y2 + b(x, t)y + c(x, t), (5.13)

and it must satisfy the base flow configuration

u0(x, y, t)( y = 0) = 0, ∂yu0(x, y, t)( y = h) = 0,
∫ h

0
u0(x, y, t) dy = q(x, t).

(5.14a–c)

Using the boundary and integral conditions (5.14a–c), the unknown coefficients a(x, t),
b(x, t) and c(x, t) are evaluated

a(x, t) = − 3q
2h3 , b(x, t) = 3q

h2 , c(x, t) = 0. (5.15a–c)

It should be fruitful to mention here that u1(x, y, t) is, in fact, a first-order streamwise
velocity correction of the leading-order streamwise velocity distribution u0(x, y, t), and
it is required to arrest the deformation of the fluid surface from primary flow with
a parabolic velocity profile. Moreover, u1(x, y, t) must satisfy the integral condition∫ h

0 u1(x, y, t) dy = 0 to conserve the flow rate q(x, t) of the entire flow system. However,
the expression of u1(x, y, t) is not needed here because we shall use the weighted residual
approach (Finlayson 1972), where the weight function w(x, y, t) will be evaluated instead
of u1(x, y, t) with the help of the following boundary value problem:

∂yyw = d2, w( y = 0) = 0, ∂yw( y = h) = 0, (5.16a–c)

where d2 is an arbitrary constant. After multiplication of the weight function w(x, y, t)
with the momentum equation (5.10) and then performing integration over the fluid layer
domain [0, h], we obtain the following depth-averaged momentum equation:

Re[∂tq + (17/7)q/h∂xq − (9/7)q2/h2∂xh] = (5/3)h[1 − cot θ∂xh + {1/(2Ca)}∂xxxh]

− (5/2)q/h2 + [4q/h2(∂xh)2 − (9/2)∂xq∂xh/h − 6q/h∂xxh + (9/2)∂xxq]

+ μ[(15/4)q/h2∂xh − (15/4)∂xq/h] + μ2[(15/2)∂xq∂xh/h − (15/2)q/h2(∂xh)2].
(5.17)

Equations (5.8) and (5.17) form a two-equation model for a viscous fluid flow with broken
time-reversal symmetry, which is compatible up to O(ε) in inertia terms and compatible
up to O(ε2) in viscous terms. Furthermore, the present two-equation model recovers the
two-equation model derived by Ruyer-Quil & Manneville (2000) if the viscosity ratio μ
vanishes. The little differences found only in coefficients of the right-hand side terms of
(5.17) at μ = 0 are the consequence of the choice of various non-dimensional reference
scales. For example, the average velocity of the base flow with a flat surface was preferred
as the reference velocity scale in the study of Ruyer-Quil & Manneville (2000), while the
present study considers the surface velocity of the base flow with a flat surface as the
reference velocity scale.
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5.1. Linear stability analysis
The linear stability analysis of the two-equation model (5.8) and (5.17) is accomplished
with the aid of normal mode decomposition, where an infinitesimal disturbance is
superimposed on the base flow solution h = h0 = 1. Hence, for the disturbed fluid surface,
the fluid layer height and the flow rate can be expressed as

h(x, t) = h0 + h̃ exp[ik(x − ct)] + c.c.,
q(x, t) = q0 + q̃ exp[ik(x − ct)] + c.c.,

}
(5.18)

where q0 = ∫ 1
0 U( y) dy = 2/3 is the non-dimensional flow rate when the non-dimensional

base flow fluid layer height h0 = 1. Here, h̃ and q̃ are, respectively, the amplitudes of
the perturbation fluid surface and perturbation flow rate. Inserting the normal mode
decomposition (5.18) into the two-equation model (5.8) and (5.17) and linearizing with
respect to the base flow solution h = h0 = 1, one can express the dispersion relation in the
following form:

ω2 − ω

[
34k
21

+ 15kμ
4Re

− 5i
2Re

− 9 ik2

2Re

]

+
[

4k2

7
− 5k2 cot θ

3Re
+ 5k2μ

2Re
− 5k4

6Ca Re
− 5 ik

Re
− 4 ik3

Re

]
= 0, (5.19)

where ω = kc is the angular frequency of the disturbance. Using the long-wave expansion
c = c0 + kc1 + k2c2 + O(k3) in the limit k → 0, we can easily determine the critical
Reynolds number for the surface mode, and it can be expressed as

Rec = 5
4

cot θ + 15
4
μ, (5.20)

which coincides with the analytical expression of the critical Reynolds number procured
from the Orr–Sommerfeld eigenvalue problem in the limit k → 0. Hence, the reduced
two-equation model (5.8) and (5.17) captures the result of the Orr–Sommerfeld
eigenvalue problem in the long-wave regime. In order to validate with the results of
the Orr–Sommerfeld eigenvalue problem in the moderate Reynolds number regime, the
dispersion relation (5.19) is solved numerically by using AUTO 07p (Doedel et al.
2007) for the water flow with ρ = 9.83 × 10−1 g cm−3, μe = 4.67 × 10−3 g cm−1s−1,
σ = 6.62 × 101 g s−2, Us = 10cm s−1 and θ = 45◦ (Tan et al. 1990; Kirkinis &
Andreev 2019). The ensuing results are displayed in figure 7. It should be noted that the
reduced two-equation model (5.8) and (5.17) recovers the results of the Orr–Sommerfeld
eigenvalue problem reasonably well in the moderate Reynolds number regime. In this case
also, the viscosity ratio μ exhibits a stabilizing influence on the surface mode because the
unstable zone separated by the neutral curve reduces (see figure 7a) and the temporal
growth rate induced by the surface mode diminishes (see figure 7b) with the rising
values of μ. These results are fully compatible with the results evaluated from the
Orr–Sommerfeld eigenvalue problem.

5.2. Nonlinear travelling wave solution
Here, we shall focus on computing the steady state travelling wave solution under
the framework of the two-equation model (5.8) and (5.17). In fact, such waves
evolve downstream with a constant speed and shape relative to the moving frame
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Figure 7. (a) Variation of the neutral curve for the surface mode in the (Re, k) plane for different values of μ.
Solid, dashed and dotted lines stand for μ = 1.2, μ = 1.4 and μ = 1.6, respectively. The arrow is pointing out
the direction of decreasing unstable region with increasing μ. (b) Variation of the temporal growth rate kci with
wavenumber k for the surface mode when Re = 10. Solid, dashed and dotted lines stand for μ = 1.2, μ = 1.4
and μ = 1.6, respectively. The arrow is pointing out the direction of decreasing temporal growth rate with
increasing μ. The other flow parameters are Ca−1 = 1417 and θ = 45◦; U and S represent unstable and stable
regions. Thick and thin lines represent results obtained from the Orr–Sommerfeld equation and two-equation
model, respectively.

ξ = (x − ct), where c is the speed of the moving frame (Alekseenko, Nakoryakov &
Pokusaev 1985; Liu & Gollub 1994; Balmforth 1995; Indireshkumar & Frenkel 1997;
Ruyer-Quil & Manneville 2000; Mudunuri & Balakotaiah 2006; Samanta 2014). Using
the transformation ξ = (x − ct), the depth-averaged mass conservation equation (5.8) can
be converted into the following form:

q = qc + ch, (5.21)

where qc = ∫ h
0 (u − c) dy is the flow rate in the moving frame. Similarly, the

depth-averaged momentum equation (5.17) can be converted into the following differential
equation:

Rehξ [c2−(17/7)cq/h+(9/7)q2/h2]=(5/2)q/h2−(5/3)h[1−cot θhξ+{1/(2Ca)}hξξξ ]

− [4q/h2h2
ξ−(9/2)c/hh2

ξ−6q/hhξξ+(9/2)chξξ ]−μ[(15/4)q/h2hξ−(15/4)c/hhξ ]

− μ2[(15/2)c/hh2
ξ − (15/2)q/h2h2

ξ ], (5.22)

where hξ = dh/dξ , hξξ = d2h/dξ2 and hξξξ = d3h/dξ3. The above third-order
differential equation (5.22) is more convenient to study by using dynamical system theory,
and thereby, it is recast into a coupled system of first-order differential equations

dU

dξ
= F (U), (5.23)

where U = (h, hξ , hξξ )T is a column matrix. The system of first-order differential
equations (5.23) is solved numerically by using AUTO 07p (Doedel et al. 2007) with the
aid of periodic boundary conditions together with the integral condition (1/λ)

∫ λ
0 h dξ = 1

(Kalliadasis et al. 2012). The numerical results are produced again for water flow with
ρ = 9.83 × 10−1 g cm−3, μe = 4.67 × 10−3 g cm−1 s−1, σ = 6.62 × 101 g s−2, Us =
10 cm s−1 and θ = 45◦ (Tan et al. 1990; Kirkinis & Andreev 2019) while the viscosity
ratio μ varies. A variety of steady state travelling waves characterized by their number
of principal humps can be computed numerically with distinct wavelength and speed
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Figure 8. (a) Variation of the steady state travelling wave profile for different values of μ. Solid, dashed and
dotted lines stand for μ = 0, μ = 0.2 and μ = 0.4, respectively. The arrow is pointing out the direction of
decreasing maximum fluid layer height with increasing μ. (b) Variation of the flow rate for the steady state
travelling wave for different values of μ. Solid, dashed and dotted lines stand for μ = 0, μ = 0.2 and μ = 0.4,
respectively. The arrow is pointing out the direction of decreasing maximum flow rate with increasing μ. The
other flow parameters are k = 0.01, Re = 5, Ca−1 = 1417 and θ = 45◦.

(Nakaya 1989). However, we are interested in computing a solitary wave with one principal
hump whose back and front tails approach a constant value far away from the perturbed
fluid surface, i.e. hξ = hξξ = hξξξ = 0 at ξ → ±∞ (Pumir, Manneville & Pomeau 1983).
Figure 8 demonstrates the travelling wave solution and flow rate for the periodic wave (k =
0.01) when the viscosity ratioμ varies. Obviously, the travelling wave profile exhibits a big
principal hump preceded by capillary ripples, which is also called a γ2-type wave because
it has a shape of the solitary hump (Chang et al. 1993; Liu & Gollub 1994). However,
the interesting fact is that the maximum amplitude as well as the flow rate of the γ2-type
wave profile attenuate with rising values of μ, which significantly delays the transition of
a viscous fluid from a primary base flow with a flat surface to a nonlinear secondary
flow created by the nonlinear wave interactions if the time-reversal symmetry of the
viscous fluid is broken. Actually, the increasing amplitude is correlated with the increasing
speed of a γ2-type periodic travelling wave shown in figure 8(a). Hence, the nonlinear
interaction between localized periodic travelling waves will be delayed because the speed
of the travelling wave reduces as long as μ increases and causes a slower transition to
secondary flow. This physical fact can also be understood from the results of the nonlinear
spatio-temporal simulation discussed in § 5.3. Moreover, the above result fully supports
the stabilizing influence of the odd viscosity coefficient as manifested in the result of
primary instability of the base flow. In addition, the local flow rate q is non-negative in
the capillary regime, and therefore, the backflow phenomenon (Dietze, Leefken & Kneer
2008) does not seem to occur in the present flow configuration. Figure 9 demonstrates the
variation of maximum amplitude hmax and speed c of the solitary wave when the Reynolds
number changes. In fact, the solitary waves emerge downstream through a sequence of
nonlinear wave interactions, where the fast waves absorb the slow waves in front of them
and, ultimately, generate solitary waves with a very large wavelength (Pumir et al. 1983;
Chang et al. 1993; Liu & Gollub 1994; Salamon, Armstrong & Brown 1994; Chang,
Demekhin & Kopelvitch 1995; Ramaswamy, Chippada & Joo 1996; Vlachogiannis &
Bontozoglou 2001; Malamataris, Vlachogiannis & Bontozoglou 2002; Gao, Morley &
Dhir 2003; Ruyer-Quil & Manneville 2005; Pradas, Tseluiko & Kalliadasis 2011). It should
be noted that the curves in figure 9 exhibit a rapid increase at low Reynolds number
followed by a plateau at Reynolds numbers above 15. These two distinct behaviours of
amplitude and speed of the solitary wave found in two different regimes of the Reynolds
number were identified by Ooshida (1999) based on the surface equation for a viscous
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Figure 9. (a) Variation of the maximum amplitude with Reynolds number for the solitary wave. Solid, dashed
and dotted lines stand for μ = 0, μ = 0.2 and μ = 0.4, respectively. The arrow is pointing out the direction of
decreasing maximum amplitude with increasing μ. (b) Variation of the speed with Reynolds number for the
solitary wave. Solid, dashed and dotted lines stand for μ = 0, μ = 0.2 and μ = 0.4, respectively. The arrow is
pointing out the direction of decreasing speed with increasing μ. The other flow parameters are Ca−1 = 1417
and θ = 45◦.
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Figure 10. Streamline distribution in the moving frame: (a) μ = 0, (b) μ = 0.2, (c) μ = 0.4. The other flow
parameters are k = 0.01, Re = 5, Ca−1 = 1417 and θ = 45◦.

fluid without an odd viscosity coefficient. In particular, the first one is the drag–gravity
regime at low Reynolds number, where the flow dynamics is triggered by viscous drag and
gravity, and inertia plays the role of perturbation. On the other hand, the second one is
the drag–inertia regime at moderate Reynolds number, where the inertia effect on the flow
dynamics is dominant. Figure 10 displays the streamline distribution under the wave in the
moving frame for rising values of μ, where the recirculation pattern does not appear. As
the maximum amplitude of the steady state travelling wave decays as long as μ increases,
the surface velocity of the fluid does not exceed the speed of the travelling wave and this
fact compensates for the non-existence of recirculation phenomenon under the wave in the
moving frame.

5.3. Nonlinear spatio-temporal simulation
The nonlinear spatio-temporal evolution of the two-equation model (5.8) and (5.17) is
accomplished with the aid of a quasi-linearized Crank–Nicolson scheme (Richtmeyer
& Morton 1967; Kalliadasis et al. 2012; Samanta 2014). In fact, the current numerical
scheme is consistent with second-order precision in time, while the spatial derivatives are
discretized by the central finite difference technique with second-order precision in space.
For our own convenience, the two-equation model (5.8) and (5.17) is converted into a
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matrix form
∂tP(x, t) = Q[P(x, t)], (5.24)

where P = (h, q)T is a column matrix while linear and nonlinear terms involving h, q and
their spatial derivatives are included in the matrix Q(P). The detailed information on the
numerical scheme can be found in Kalliadasis et al. (2012) and Samanta (2014). In order
to perform the numerical simulation, we impose a harmonic periodic forcing at the inlet
through the modulation of the flow rate

q(0, t) = q0(1 + A cos 2πft), (5.25)

where q0 = 2/3 is the base flow rate at the uniform fluid layer height h0 = 1. Here, f is
the forcing frequency and A is the forcing amplitude. We have imposed a soft boundary
condition at the outlet based on the lowest-order hyperbolic wave equation (Samanta,
Goyeau & Ruyer-Quil 2013)

∂tq + vf ∂xq = 0, (5.26)

where vf > 0 is the front velocity. Actually, this outlet boundary condition is used
to minimize the generation of upstream propagating disturbances, and enhances the
numerical stability. Following the experimental study of Liu & Gollub (1994), the
spatio-temporal numerical simulation is carried out for a water–glycerin mixture with
ρ = 10.7 × 10−1 gm cm−3, μe = 6.7 × 10−2 gm cm−1 s−1, σ = 6.7 × 101 gm s−2 and
θ = 6.4◦ while the viscosity ratio μ changes, or equivalently, the odd viscosity coefficient
changes. Figure 11(a) reveals that the small amplitude sinusoidal response evolves spatially
into finite amplitude localized waves with a big hump preceded by capillary ripples in
the computational domain [0, 2000 mm] when μ = 0 and f = 3 Hz, as observed in the
experimental work of Liu & Gollub (1994). In this case, the primary humps between
two localized waves are not well separated from each other because there is a significant
overlap between the front and tail of two successive localized waves, which may yield
a strong nonlinear interaction among them downstream (see figure 11d). As soon as the
effect of the odd viscosity is included, the outcome of the nonlinear response changes
drastically. In the presence of μ, the small amplitude sinusoidal response undergoes a
very slow transition to localized waves with reduced amplitude at μ = 2 (see figure 11b).
If μ is further increased (μ = 4), the nonlinear response exhibits sinusoidal-type periodic
waves in the computational domain [0, 2000 mm] (see figure 11c), where the amplitudes of
the sinusoidal-type waves attenuate remarkably by the odd viscosity coefficient. However,
if the same numerical experiment is repeated in an extended computational domain
[0, 5000 mm], the sinusoidal-type periodic waves appearing in the inception regime turn
into saturated multi-peaked waves in the computational domain [4000 mm, 5000 mm] (see
figure 11e). Obviously, localized solitary waves have not formed yet. Next, the numerical
simulation is performed when the frequency of the harmonic forcing is f = 1.5 Hz.
The ensuing results can be found in figure 12. Again, a similar scenario happens in
the computational domain of interest with increasing μ. At μ = 0, the small amplitude
waves immediately turn into a regular train of solitary-type waves with a large teardrop
shape followed by capillary ripples after the inception zone (see figure 12a), as found
in the experimental work of Liu & Gollub (1994). In this case, the solitary-type waves
are well separated from each other. Apparently, it seems that the successive solitary-type
waves are almost identical to each other (see figure 12d). As soon as μ increases, the
transition process from a primary sinusoidal-type wave to a secondary solitary-type wave
is delayed significantly in the presence of an odd viscosity coefficient (see figures 12b and
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Figure 11. The spatial evolution of an inlet forcing at large time with frequency f = 3 Hz when A = 0.01,
Re = 29, Ca−1 = 70 and θ = 6.4◦; (a) μ = 0, (b) μ = 2, (c) μ = 4. (d) A zoomed-in version of panel (a) in
the computational domain [1200 mm, 1600 mm]. (e) A zoomed-in version of panel (c) in the computational
domain [4000 mm, 5000 mm].

12c). In fact, the solitary-type waves are evolving far away from the inception zone if the
numerical experiment is performed in an extended computational domain [0, 5000 mm]
(see figure 12e). However, the localized saturated solitary-type waves have not formed yet.
From the above results, one can finally conclude that the transition from laminar flow to
weak turbulence corresponding to an inlet sinusoidal disturbance will be delayed if the
time-reversal symmetry of a viscous fluid is broken.

6. Discussion and conclusions

The present manuscript deals with the wave dynamics of a falling viscous fluid with
broken time-reversal symmetry. Linear stability analysis is explored based on the
Orr–Sommerfeld eigenvalue problem. The long-wave analysis predicts that a surface wave
appears in the low Reynolds number regime and the onset of instability for the surface
wave is enhanced in the presence of an odd viscosity coefficient. The numerical solution
in the arbitrary wavenumber regime shows that the unstable domain induced by the surface
mode diminishes as long as the viscosity ratio increases and confirms the stabilizing
influence of the viscosity ratio. However, a shear mode appears in the numerical simulation
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Figure 12. The spatial evolution of an inlet forcing at large time with frequency f = 1.5 Hz when A = 0.01,
Re = 29, Ca−1 = 70 and θ = 6.4◦; (a) μ = 0, (b) μ = 2, (c) μ = 4. (d) A zoomed-in version of panel (a) in
the computational domain [1200 mm, 1600 mm]. (e) A zoomed-in version of panel (c) in the computational
domain [4000 mm, 5000 mm].

along with the surface mode when the Reynolds number is high and the inclination
angle is sufficiently small. It is found that the shear mode can be stabilized by the odd
viscosity coefficient. Furthermore, the surface mode controls the primary instability of
base flow/parallel flow with a flat surface when the viscosity ratio is low. As soon as the
viscosity ratio increases, there exists an unstable range of finite wavenumber where the
shear mode controls the primary instability of the base flow rather than the surface mode.

On the other hand, nonlinear stability analysis is explored based on the depth-averaged
two-equation model. In the linear regime, the two-equation model recovers the result of
the Orr–Sommerfeld eigenvalue problem. In the nonlinear regime, it is found that both
the maximum amplitude and flow rate of the steady state travelling wave attenuate as long
as the odd viscosity coefficient increases. As a consequence, the fluid surface velocity
does not have an opportunity to exceed the speed of the travelling wave to generate a
recirculation pattern in the streamline distribution. Since the flow rate in the capillary
regime is non-negative, the backflow phenomenon does not seem to occur in the present
flow configuration. Finally, the nonlinear spatio-temporal analysis discloses a significant
transition delay from primary sinusoidal-type waves to secondary solitary-type waves for a
viscous fluid with broken time-reversal symmetry. In fact, this physical fact is responsible
for the significant reduction of the amplitude of the travelling wave in the presence of
an odd viscosity coefficient. Actually, the increasing amplitude is correlated with the
increasing speed of a travelling wave. As a consequence, the nonlinear interaction between
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evolving travelling waves will be delayed because the speed of the travelling wave reduces
as long as μ increases and results in a slower transition to the solitary-type wave with a
large teardrop shape preceded by capillary ripples.
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