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This work addresses the transition from 2D steady to 2D unsteady laminar flow for
a fully developed regime in a symmetric wavy channel geometry. We investigate the
existence and characteristics of the spatio-temporal structure of the fully developed
unsteady laminar flow for those particular geometries for which the steady flow
presents a periodic variation of the main stream velocity component. We perform a 2D
global linear stability analysis of the fully developed steady laminar flow, and we show
that, for all the geometries studied, the transition is triggered by a Hopf bifurcation
associated with the breaking of the symmetries and the invariance of the steady flow.
Critical Reynolds numbers, most unstable modes and their characteristics are presented
for large ranges of the geometric parameters, namely wavenumber α from 0.3 to 5
and amplitude from 0 (straight channel) to 0.5. We show that it is possible to define
geometries for which the wavenumber is proportional to the most unstable mode
wavenumber for the critical Reynolds number. From this modal study we address a
weakly nonlinear stability analysis with a view to obtaining the Landau coefficient
g, and then the sub- or supercritical nature of the first bifurcation characterising
the transition. We show that a critical geometric amplitude beyond which the first
bifurcation is supercritical is associated with each geometric wavenumber.

Key words: instability, parametric instability, transition to turbulence

1. Introduction
The transition from steady laminar to unsteady turbulent flow in ducts is one of

the main research areas in fluid mechanics. For open-shear flows, the mechanisms
of this transition (or routes to turbulence) are not yet perfectly known – particularly
for subcritical instability – despite the major efforts made. Most shear-flow studies
consider flat walls in the context of parallel or quasi-parallel flows, i.e. with slight
velocity variation in the main stream flow direction (Monkewitz, Huerre & Chomaz
1993). The stability of open spatially periodic shear flows has not been studied
much in terms of the large main stream variation of the velocity module. There
are two primary ways to study the shear-flow transition: first, the classical linear
stability analysis in which we look at the minimum Reynolds number for which
an infinitesimal perturbation will be exponentially amplified at an asymptotically
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long time (Drazin & Reid 2004); and second, the more recent non-modal stability
approach which addresses transient growth analysis of an initial perturbation (Schmid
& Henningson 2001) for which the non-normal nature of the linear operator is
highlighted (Chomaz 2005). In this study, we consider the global 2D linear stability
analysis. Then, from this modal study, weak nonlinear stability is used to determine
the sub- or supercritical nature of the transition and quantify the amplitude of the
most unstable modes. This paper contributes to the knowledge of the transition in
the particular case of 2D symmetric wavy channel flow using the methods described
above. We consider a 2D (x, y) symmetric wavy channel with a minimum height 2H0
defined by two periodic walls: Hu(x), Hl(x) with the same period L, and amplitude
E as shown in figure 1. This geometry is found, in particular, in heat and/or mass
transfer applications, in the transition regime where unsteadiness is supposed to
promote heat and/or mass transfer. The determination of the critical conditions for
the appearance of instability and the spatio-temporal structure of the most unstable
mode is of great importance for these applications. Many similar geometries have been
studied, such as wavy channel (Sobey 1980; Nishimura, Ohori & Kawamura 1983;
Wang & Vanka 1995), grooved channel (Ghaddar et al. 1986) and saw-tooth (Greiner,
Chen & Wirtz 1990). All the geometries considered in these studies are 2D channels
for which the laminar flow presents a core flow with quasi-parallel streamlines (for
example, see figure 2 for Reynolds number Re = 100). This quasi-parallel core flow
has a main direction. Geometries for which the flow exhibits a strong change in its
main direction – as in a sinuous channel – are not covered in this paper. In most
cases, the transitional flow regime (often called self-sustained oscillatory flow) is
characterised by a relatively low critical Reynolds number Re=O(100), large spatial
structure (of the order of the characteristic length of the geometry) and low temporal
frequency. Most studies exclusively consider the ‘spatially periodic fully developed’
regime, and generally the spatial period of the fluctuations is supposed to be equal to
the geometric period. Thus, very few studies address the verification of the validity
of this hypothesis. The main questions we wish to address are as follows. Near
criticality, does the ‘spatially periodic’ unsteady fully developed regime exist for this
2D hypothesis, even for a large wall amplitude? What is its spatio-temporal structure,
i.e. the geometric structure of the instabilities, and are they correlated with the spatial
periodicity of the channel? Otherwise, what is the nature of the first bifurcation (sub-
or supercritical)?

2. Bibliography
2.1. Experiments and visualisations

It is well established that in a 2D periodic section channel, for very low Reynolds
numbers (creeping flows, Re = O(1)), after a few waves, the flow is 2D, steady
and spatially periodic with the same period and symmetries as the geometry. These
features are highlighted by visualisations made by Stephanoff, Sobey & Bellhouse
(1980), Nishimura et al. (1983) and Kim (2001) for a wavy channel and Herman
& Mayinger (1990) for a grooved channel. In particular cases, asymmetric steady
flow has been shown in symmetric geometries such as that studied by Takaoka et al.
(2009). All these experiments show, beyond a first critical Reynolds number, the birth
of vortices in the furrows, and these vortices grow in size with the Reynolds number.
Adachi & Hasegawa (2006) showed that the flow is unsteady for Reynolds numbers
beyond 220 and that the spatial period seems to be equal to one geometric period
for some flow conditions and equal to two for other conditions. Unfortunately, they
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FIGURE 1. Example of the geometry of a symmetric wavy channel with a straight
main core flow.
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FIGURE 2. Streamlines of the steady base flow for Nishimura geometry and different
Reynolds numbers Re from 1 to 100 (M = 2).

did not clarify these conditions. Gschwind & Kottke (2000) showed 3D structures in
symmetric and asymmetric periodic channel flows, but their visualisations were made
for Reynolds numbers much greater than the critical Reynolds number. Nishimura
et al. (1990) made snapshots of steady and unsteady flow regimes for large wall
amplitude modulation and large aspect ratios of a wavy symmetric channel. The flow
seems to be globally spatially periodic for a low Reynolds number, but beyond a
critical Reynolds number of approximately 200 the flow becomes unsteady, and the
visualisations made show no particular spatial structure for the sixth to eighth wave
sections. The flow seems to have lost its spatial periodicity, particularly visible in
the vortex zone. The visualisations made from the ninth to the eleventh modules
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show a period equal to two geometric periods. For an asymmetric channel flow, the
visualisations made by Nishimura et al. (1986) show the interaction between adjacent
waves (the sixth and seventh) at Re = 350, and then no spatial periodicity is found.
For this Reynolds number, intermittency and 3D spanwise structures are observed.
In the same way, Nishimura et al. (2003) have shown by visualisations that the
transition occurs at a low Reynolds number (Rec = 170) in a wavy-walled tube with
a large amplitude. As for a symmetric wavy plane channel, no spatial periodicity
was observed at supercritical Reynolds number but an intermittent flow behaviour in
the transitional regime (170 < Re < 200). Rush, Newell & Jacobi (1999) visualised
the unsteady developing flow in wavy geometries. For symmetric wavy geometry,
they showed that beyond a critical Reynolds number equal to 300 and a critical
entry length (from the eighth wave for Re = 300 and until the third for Re = 900),
the flow presents macroscopic unsteadiness leading to high mixing. They write the
following: ‘The onset of mixing is accompanied by small oscillations in the core flow,
and once roller vortices form and are advected downstream, this shear layer-driven
exchange of fluid results in macroscopic mixing.’ The visualisation performed does
not show spatial periodic structure but rather a more complex flow in the main flow
direction. The same kinds of results have been obtained by Stephanoff (1986), but no
structure analysis of the unsteady flow was performed. Kim (2001) present nice PIV
instantaneous velocity measurements in a wavy channel. For Re = 500, the velocity
fields in the fifth and sixth modules are completely different. The symmetry appears
to be clearly broken at the sixth module. No information is given about the eventual
3D structure.

In conclusion, it appears that visualisations of the unsteady laminar flow in
periodic section passages do not allows us to suppose that ‘periodic fully developed
laminar unsteady flow’ exists and is spatially periodic. This assumption, commonly
used in linear stability analysis or numerical simulation of unsteady laminar flow
(self-sustained), seems to be completely unfounded.

2.2. Numerical studies
There are many numerical studies on laminar flow in this kind of geometry, essentially
for heat and mass transfer applications. Many of them consider the steady fully
developed problem, as in the first model by Sobey (1980). For all these studies, the
fully developed steady flow is supposed to be 2D and spatially periodic with the
same period as the geometry. Among the unsteady simulations, we note those of
Guzman & Amon (1994, 1996) and Amon, Guzmán & Morel (1996), who made a
2D direct numerical simulation of the laminar flow for a Nishimura symmetric wavy
channel (period L = 9.33H0; amplitude E = 2.33H0). Assuming a spatially periodic
developed flow with a period equal to the geometric period, they show that a chaotic
flow regime is reached after a sequence of supercritical Hopf bifurcations from
periodic to quasi-periodic and finally chaotic self-sustained flow regimes. With these
conditions, they obtained a first critical Reynolds number of 130, at which the flow
becomes unsteady and periodic in time. They noted that the perturbations look like a
Tollmien–Schlichting (TS) wave. For Reynolds numbers beyond 200, the flow exhibits
temporal quasi-periodic behaviour with two main frequencies and their harmonics.
For Re= 400, a frequency-locking phenomenon is obtained, and when the Reynolds
number is further increased, a third frequency appears and chaos is obtained. They
concluded that this scenario is similar to the Ruelle–Takens–Newhouse scenario, but
all these results were made assuming a perturbation with the same period as the
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geometry. They completed this study with a 3D simulation, in order to determine
whether the spanwise flow disturbance could affect their 2D conclusions. They used
a 3D channel with a spanwise aspect ratio equal to 5.7 geometrical periods. For
Re = 226 (quasi-periodic flow), they observed a spanwise standing wave resulting
in an inflectional streamwise velocity profile. They noted that the frequency of the
streamwise and transverse velocity is not affected by the 3D effect. They concluded
the following: ‘The effects of the spanwise standing waves are localised near the
sidewalls, not affecting the quasi-periodic flow regime and the transition route to
chaos for the three-dimensional flows.’ Now, the question is whether these results are
affected by the strong hypothesis of simple spatial periodicity.

Many other authors have made direct numerical unsteady simulations following the
same hypothesis but without real validation. Wang & Vanka (1995), for the same
Nishimura experimental geometry, tried to validate this hypothesis by solving 2D
laminar unsteady flow with three spatial periods. They concluded that ‘no differences
were observed between the instantaneous flow patterns in individual furrows, thus
demonstrating the adequacy of using only one wave as the computational domain’.
Numerous authors referred to this paper to justify this main hypothesis (Ničeno
& Nobile 2001 for example). Unfortunately, the visualisation of the velocity
vectors cannot really show the perturbation, and, as we will show, the velocity
amplitude of the supercritical perturbation is O(10−2), so they are very difficult
to observe experimentally. Cho, Kim & Shin (1998) studied the linear stability of
two-dimensional steady flow in wavy-wall channels. They simulated the behaviour of
an infinitesimal disturbance of the steady 2D solution with the use of an unsteady 3D
code. They considered a periodic wall such as L= 3Hm (where Hm is the half mean
height of the channel) and a variable modulation amplitude E. They showed that for
E/Hm greater than 0.26 (E> 0.7H0), the 2D critical Reynolds number is greater than
that obtained by a 3D study. This condition was verified for the geometry studied
by Nishimura and Amon. Unsteady two-dimensional studies were then numerically
validated for this geometry. Again, it must be noted that all these results supposed
that the spatial structure of the disturbances have the same period as the geometry.

A few authors have chosen another way, namely working on rough channels.
Cabal, Szumbarski & Floryan (2002) studied the linear stability of the steady flow
in a wavy channel with a small wall amplitude (E < 0.1Hm). They used Floquet
theory, considering a spatial perturbation whose wavelength is totally independent of
the geometric period. They showed that the first instability mode has the form of
steady streamwise vortices that do not propagate (are time independent). For a fixed
Reynolds number equal to 3000 and with a wall amplitude of E= 0.02Hm, the most
unstable situation corresponds to a geometric spatial period with a wavenumber of
α = 3 (wavelength L = 2.1Hm) and a spanwise wavelength corresponding to 2.15Hm.
The second mode gives rise to travelling wave instability that can be viewed as a TS
wave. These results are in keeping with those of Kim (2001) and the visualisations
of Nishimura et al. (1990) and Gschwind & Kottke (2000). Floryan (2003) examined
the question of stability in a diverging–converging channel with very small amplitude,
such as steady base flow, and found that it does not present vortices. In Cabal et al.
(2002), the authors considered a 3D small periodic disturbance whose wavelength is
not equal to the geometric period. They found that the first instability corresponds to
standing streamwise vortices and the second instability to a travelling wave. These
streamwise vortex disturbances were considered to be a centrifugal instability effect.
For the limiting case corresponding to a plane Poiseuille flow (zero amplitude wall
modulation), they showed that the first linear instability corresponded to 2D TS
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travelling waves (Orszag 1971), while the second corresponded to streamwise steady
vortices (Orszag & Patera 1983). The spatial structure of the TS wave was not
investigated. In the following paper, Floryan (2005) considered a 2D linear stability
analysis for small wall amplitude by Floquet theory. They supposed a perturbation
with a wavenumber of k= δ+ nα (where α is the geometric wavenumber) and noted
that all the disturbances can be separated into two groups, i.e. those whose structure is
related to the structure of distributed roughness (α/δ rational) and those independent
of the roughness (α/δ irrational). They determined neutral curves for a roughness
amplitude of E/Hm = 8× 10−3 and wall wavenumber varying from 0.01 to 10. They
showed, for Re= 6000 and for wavenumbers α in the range from 0.01 to 10, that the
unstable disturbance Floquet exponent δ verifies the condition 0.97 < δ < 1.05; they
obtained the same behaviour for different Reynolds numbers. Then, they defined a
‘global’ critical Reynolds number Ret associated with a critical roughness wavenumber
Ec/Hm and a critical disturbance wavenumber δc. Comparing their results with the
stability of plane Poiseuille flow, they concluded that the instability is governed by
a non-normal operator, as for Poiseuille flow, and thus that the instability remains
subcritical in the case of rough walls.

We will discuss these results in the following sections. We note that the most
unstable disturbance wavenumber is in the range shown previously, even for grooves
with rectangular or triangular shapes. Finally, these results have been validated
by an experimental study (Asai & Floryan 2006) focused on the two-dimensional
travelling wave instability excited by a loudspeaker. The critical Reynolds number
and spatial growth rate were analysed, but the wavelength chosen (equal to the
critical wavelength of plane Poiseuille flow) does not gives us any information on
the interaction between the spatial geometric wave and the spatial structure of the
unsteady flow. The same kind of analyses have been made by Selvarajan, Tulapurkara
& Ram (1999) for a channel with a large geometric period (α= 2πHm/L= 0.1) and a
weak amplitude.

All the previous studies consider fully developed spatially periodic flows. There
are very few numerical studies concerning the developing flow problem. We have
analysed (Blancher, Creff & Le Quéré 2004) the flow development in a channel
such as Nishimura’s. We have shown that, beyond a critical Reynolds number (which
is the critical Reynolds number obtained by linear stability analysis for the fully
developed flow: Re= 76), the entry perturbations are spatially exponentially amplified
with a spatial growth rate proportional to the temporal amplification rate of the
linear stability analysis as well as the symmetric or antisymmetric perturbations.
The factor of proportionality is related to the group velocity of the wavepacket
observed. For Reynolds numbers beyond this critical value, the convective nature
of the flow instability is demonstrated. The growing wavepacket is centred on a
dominant wavenumber kc, which does not correspond to the geometrical period, as
linear stability analysis has shown. We previously studied the temporal linear stability
analysis of the fully developed 2D steady laminar flow (Blancher 1991; Blancher
et al. 1994) using a spectral method for the same geometry as Nishimura with a
2D perturbation hypothesis. In all cases studied, the most unstable mode corresponds
to a sinuous TS wave with broken symmetry. This symmetry breaking is the sign
of a supercritical Hopf bifurcation, as observed by Guzman & Amon (1994). We
have shown that the most unstable mode does not have the same period as the
geometry. The critical Reynolds number obtained for two geometric periods (M = 2,
where M is the number of geometric periods of the perturbation in the linear stability
analysis) is lower than the critical Reynolds number obtained for only one period.
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This result has been used in heat transfer simulation (Blancher, Creff & Le Quéré
1998), showing the importance of the ‘fully developed periodicity’ hypothesis in heat
transfer computations. Finally, we have shown (Blancher et al. 2004) that increasing
the number of periods used for the linear stability analysis up to M = 3 and M = 4
gives a maximum temporal amplification rate for a disturbance characterised by N= 7
waves on M = 4 periods for Re= 150. This most unstable mode is a sinuous mode,
like a TS wave with a wavelength of λ = 4L/7H0, corresponding to a wavenumber
k = 2πNH0/(ML) = 1.17. Now, the question we have to ask is what happens with
M = 8, 10 or more periods? We will try to answer this question in the present study.

The paper is organised as follows. First, we present the numerical method used for
the linear stability analysis, and we validate the method against some results for a
straight channel (e= 0). Then, we complete the previous 2D linear stability analysis
considering up to M = 10 geometric periods for Nishimura geometry. We obtain the
critical Reynolds number, the neutral curves and the dispersion relations. The spatial
structure of the different modes will be discussed. The linear stability analysis is then
performed for other wavy symmetric geometries. The limits of this parametric study
range from a small spatial period (L = 0.6H0, α = 10) – related to a rough surface
– to a large one (L = 18H0, α = 0.33) associated with a relative amplitude e = E/L
varying from the limiting plane Poiseuille flow case (e = 0) to e = 0.5. Second, by
a weakly nonlinear analysis using the dispersion relation, we compute the Landau
coefficient g, whose real part allows us to determines the sub- or supercritical nature
of the transition versus the geometrical parameters. Finally, the conclusion gives the
main results obtained in this parametric linear and weakly nonlinear stability analysis
of symmetric wavy channels.

3. Geometry and governing equations
As shown in figure 1, we consider a 2D (X, Y) channel with the main direction

X defined by two periodic walls of shapes HU(X) and HL(X) with the same spatial
period L (wavenumber α = 2πH0/L). They are such that HU >HL for all X, and we
suppose that there exists a straight main core flow between min(HU) and max(HL).
We denote H0 as half of the minimum height of the channel chosen as the reference
length ((X, Y)=H0(x, y)) as follows:

2H0 =min(HU)−max(HL). (3.1)

The amplitudes of the walls are respectively EU and EL, defined as

EU =max(HU)−min(HU) and EL =max(HL)−min(HL). (3.2a,b)

To reduce the computational domain, we use a transformation of coordinates as
follows:

ξ = 2πxH0

L
= αx= x

λ
and η= y− g(x)

h(x)
, (3.3a,b)

where g(x)= (hU + hL)/2 and h(x)= (hU − hL)/2. The computational domain is then
0 6 ξ 6 2π and −1 6 η6+1.

For a symmetric channel considered here, g(x)= 0, h(x)= hU(x) and the amplitude
of the wavy walls is E= EU = EL. The 2D unsteady Navier–Stokes equations written
in the vorticity–streamfunction formulation with the mapping coordinates (3.3) can be
written as follows after some transformations:

ω̃=∆′ψ,
1
α

h2ω̃t + h(ψηω̃ξ −ψξ ω̃η)− 2h′ψηω̃= α

Re
∆′′ω̃.

 (3.4)
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The Reynolds number is defined as Re = U0H0/ν, with U0 the mean flow rate
velocity at the minimum section (2H0). The operators ∆′ and ∆′′ are defined in
appendix A, ω̃ and ψ are the modified vorticity and streamfunction as defined in
Blancher et al. (1998, (3a)).

4. Steady base flow
All the experiments, visualisations and numerical simulations discussed in the

introduction show that for a small enough Reynolds number the fully developed flow
is laminar and steady. In this steady regime, the fully developed flow has all the
symmetries of the geometry, in particular spatial periodicity with the same period
as the geometry. For very low Reynolds numbers, we observe ‘creeping’ flows that
follow the shapes of the walls. Beyond the critical Reynolds number, we observe
(Nishimura et al. 1990; Blancher 1991) the birth of a streamline detachment in the
diverging part of the channel (Re= 8 for the Nishimura geometry). On increasing the
Reynolds number, we note a growth of the vortex size, which fills the quasi-totality
of the furrows and leads to the creation of a steady quasi-parallel main core flow.
Further increase of the Reynolds number will lead to destabilisation of the flow. The
steady streamfunction ψS(ξ , η) is then supposed to be 2π periodic, and, by use of
the Galerkin method, the streamfunction is as follows:

ψS(ξ , η)= η+ 1/2η(1− η2)+
Nx∑

n=0

Ny∑
j=4

[ψS
n,j cos(nξ)+ φS

n,j sin(nξ)]Pj(η), (4.1)

where Pj(η) is a polynomial basis made with Chebyshev polynomials that verifies
the homogeneous boundary conditions. To obtain better precision and avoid spurious
modes, the vorticity is developed on a larger number of harmonics, Kx, depending on
the shape of the geometry (Kx= Nx+ 2 for a pure sinusoidal shape). The unknown
streamfunction is expanded on the truncated basis of N= (2Nx+ 1)(Ny− 3) functions,
defining a basis (B). The dimension of the basis (B) is N and is not orthogonally
related to the scalar product (Blancher 1991). Writing the unknown coefficients
ψS

n,j, φ
S
n,j as vector XS on the basis B, (3.4) can be written as follows:

YS = D′XS,

N(XS, YS)= α

Re
D′′YS,

 (4.2)

where N(X, Y) is a nonlinear quadratic operator, and D′ and D′′ are linear ones, YS

represents the vector of the vorticity coefficients. The expressions of the operators D′
and D′′ are given in appendix A. These equations are solved by a Newton algorithm,
giving the steady solution XS. These results are illustrated in figure 2, which presents
steady streamlines, and can also be found in Blancher (1991).

5. Linear stability analysis
To determine the critical Reynolds number for the fully developed laminar flow

and the spatio-temporal structure of the instabilities, we perform a linear temporal
normal mode instability analysis. Because the velocity profiles are strongly streamwise-
dependent, this stability analysis is a 2D global analysis as defined by Theofilis (2003).
We consider an unsteady streamfunction ψT(ξ , η, t) such as

ψT(ξ , η, t)=ψS(ξ , η)+ψ(ξ, η, t), (5.1)
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where ψ(ξ, η, t) is considered to be a perturbation of the steady solution ψS(ξ , η).
Assuming ωT(ξ , η, t) = ωS(ξ , η) + ω(ξ, η, t) and infinitesimal perturbations, after
linearisation, we obtain the following linear stability equations:

ω̃=∆′ψ,
1
α

h2ω̃t + h(ψS
η ω̃ξ −ψS

ξ ω̃η)− 2h′ψS
η ω̃+ h(ψηω̃S

ξ −ψξ ω̃S
η)− 2h′ψηω̃S = α

Re
∆′′ω̃.


(5.2)

Looking at (5.2), we note that these linear partial differential equations have spatial
periodic coefficients, and following an analysis based on spatial Floquet theory, such
as that by Floryan (2005), we consider an infinitesimal unsteady 2D perturbation as
follows:

ψ(ξ, η, t)=Re

[
exp(iδξ + ζ t)

∞∑
n=−∞

∞∑
j=4

[ψn,j exp(inξ)+ φn,j exp(inξ)]Pj(η)

]
, (5.3)

where δ is the Floquet exponent, assumed to be real, and ζ = σ + iγ is the complex
pulsation; both are to be determined. The first question to answer is the domain
for which we should perform this analysis. We note that the spatial structure of the
perturbation is directly linked to the Floquet exponent and that the perturbation will
be spatially periodic only if δ is rational. However, we do not know anything about
it, so we have chosen to approach its value by a rational. Along with the assumption
that the flow is two-dimensional, this is the main assumption that we have made.
To determine the Floquet exponent δ, we consider the approximate rational value
δ=P/M; i.e. we will search for a spatially periodic perturbation for which the period
is a multiple M of the geometric period (ML) as follows:

ψ(ξ, η, t)=Re

[
exp(ζ t)

∞∑
m=0

∞∑
j=4

[ψm,j cos(mξ/M)+ φm,j sin(mξ/M)]Pj(η)

]
. (5.4)

With truncation at orders Nx and Ny, with use of the vector formulation – we use
the perturbation vector X – and introducing this streamfunction hypothesis into the
linearised perturbation Navier–Stokes equations (5.2), we obtain a linear eigenvalue
problem as follows:

Y = D′X,
1
α
ζHY = α

Re
D′′Y − LSY − L∗SX,

 (5.5)

where H, D′, D′′, LS, L∗S are real linear operators (see appendix A). This is a
generalised eigenvalue problem that can be formally written as follows:

ζQX= LX with L=
[ α

Re
D′′D′ − LSD′ − L∗S

]
and Q= 1

α
HD′. (5.6)

The main question we wish to answer is thus how many geometrical periods M
we should use for the linear stability analysis in order to approach the most unstable
mode, i.e. is the first instability that appears in the steady periodic fully developed
flow spatially periodic? Then, if yes, what is its wavelength?

First, in order to validate the model, we consider the particular case of a straight
plane channel (amplitude E= 0). Thus, the stability problem is that of plane Poiseuille
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FIGURE 3. (Colour online) Part of the eigenvalue spectrum: ζ = σ + iγ with γ > 0 for
different periodicity hypotheses M for Nishimura geometry and Re= 100.

fully developed flow. For this particular case, the stability analysis is reduced to the
classical Orr–Sommerfeld problem; no Floquet exponent has to be determined, and
a simple monochromatic wave (wavenumber α with M = 1) can describe the most
unstable mode. With an order development order Ny= 128 we retrieved perfectly the
classical results of Orszag (1971): critical Reynolds number Rec= 3848 (based on the
mean flow rate velocity), most unstable critical wavenumber kc = 1.0205 associated
with a symmetric streamfunction perturbation (sinuous mode) as the dispersion and
marginal stability curves.

5.1. Results: linear stability, Nishimura geometry
The first geometry we have considered is that of Nishimura’s experiments, L =
9.333H0 and E= 2.333H0. The spatial modulation of the main stream velocity uS in
the flow direction associated with the presence of a quasi-parallel core flow is the
main characteristic of the base flow whose stability we want to study. As an example,
figure 2 presents the steady streamlines for different Reynolds numbers. The vortex
in the furrow appears from a detachment Reynolds number Red equal to 8. It grows
with the Reynolds number and leads to a quasi-parallel main core flow for Re= 100.
It is clear that the velocity profiles present a large inflexion due to the vortex in
the furrow. These results confirm the large variation of the velocity along x and the
necessity of a global linear stability approach.

5.1.1. Spectrum
Figure 3 shows part of the eigenvalue spectrum ζ =σ + iγ with γ >0 (the spectrum

is, of course, symmetric) for Re= 100 and for different periodicity hypotheses M. The
spectrum for M= 5, 7, 8 is presented. We observe the remarkable arrangement of the
eigenvalues on particular branches such as those obtained for the plane channel. These
curves are independent of the hypothesis M, so they are intrinsic to the geometry. We
also note the existence of eigenvalues on the real axis associated with non-oscillating
modes (γ = 0). It has recently been shown (Rivera-Alvarez & Ordonez 2014) that
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FIGURE 4. The first most unstable sinuous modes (S1) for Nishimura geometry (M = 5)
and Re= 100. Here, N is the number of waves observed for a particular mode.

these modes become the most unstable modes when the geometric period increases
beyond a critical value (L > 24H0, i.e. α < 0.25). The results presented here are
outside this range (0.3<α < 5). All these results were obtained with the polynomial
development orders Nx = 8M and Ny = 32. This choice results from different order
trials and gives a good approximation (<0.1 %) of the first eigenvalue spectrum.
These orders must be adjusted for other geometries or Reynolds numbers.

On increasing the number of geometric periods in hypothesis M, we expect to
obtain a series of continuous or quasi-continuous curves because the flow is supposed
to be open (infinite) in the x direction. The discontinuities observed on the curves
associated with high frequencies are in fact due to the order of truncation of Nx.
We have observed that increasing the order of Nx makes these discontinuities
disappear. The first curve on the right (with some positive real eigenvalue part
that indicates that these modes can be amplified) corresponds to sinuous modes
(symmetric streamfunction or even polynomials, named S1 modes, as for the straight
channel), as shown by the first snapshot of the perturbation streamfunction (the
associated eigenmode) presented in figure 4. Similarly, the second curve (on the left)
is related to varicose modes (antisymmetric streamfunction or odd polynomials, the
V1 mode shown in figure 5). They are all associated with a negative eigenvalue real
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FIGURE 5. The first most unstable varicose modes (V1) for Nishimura geometry (M= 5)
and Re= 100. Here, N is the number of waves observed.

part (for this Reynolds number, no amplification is expected in the linear regime for
these modes). The other branches on the left are alternatively associated with sinuous
and varicose ‘degenerated’ modes as the modes of the plane channel. Indeed, as
shown in figure 4 (obtained for Re= 100 and M = 5), the first modes are symmetric
with respect to the x axis; they correspond to sinuous modes. In contrast, the 12th,
14th and 15th modes are antisymmetric (varicose modes, figure 5). We note that, on
one hand, the first mode is sinuous and looks like a TS wave like those observed in
plane Poiseuille flow instability (Orszag 1971). On the other hand, this mode does
not adopt the spatial period of the geometry but instead exhibits N = 8 wavelength
for M= 5 periods. Table 1 gives the first 20 eigenvalues (σ , γ ), the type S or V, the
number N of waves for the modes presented in figures 4 and 5 and their reduced
wavenumber k as follows:

k= (2πNH0)/ML. (5.7)

We also observe that the spectrum presents eigenvalues on the real axis
(corresponding to steady perturbation modes, the zero-frequency mode), while the
plane channel spectrum does not contain these modes. This result is due to the
non-monochromatic form of the perturbation streamfunction searched for. Another
difference from the plane channel spectrum is the fact that – as observed in the
sinuous modes – the most unstable varicose modes curve presents a maximum that
grows with the Reynolds number. There is a critical Reynolds number for which the
most unstable varicose mode can be amplified. However, for this Reynolds number
the hypothesis of infinitesimal perturbation may no longer be valid. This question
will be discussed later.
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σ γ Type N k

3.37× 10−2 0.5480655 S 8 1.077118
3.25× 10−2 0.4408112 S 7 0.9424778
2.43× 10−2 0.6587945 S 9 1.211757
2.32× 10−2 0.3391251 S 6 0.8078381
8.52× 10−3 0.2474933 S 5 0.6731985
3.23× 10−3 0.7724243 S 10 1.346397
−1.42× 10−2 0.1689648 S 4 0.5385588
−2.99× 10−2 0.8881559 S 11 1.481037
−5.92× 10−2 0.1007026 S 3 0.4039191
−7.01× 10−2 0.00× 100 S 5 0.6731985
−7.37× 10−2 1.005395 S 12 1.615676
−7.61× 10−2 0.6314984 V 6 0.8078381
−7.68× 10−2 7.62× 10−2 S 1 0.1346397
−7.71× 10−2 0.5465498 V 5 0.6731985
−8.43× 10−2 0.7116413 V 7 0.9424778
−8.58× 10−2 0.4545218 V 4 0.5385588
−9.29× 10−2 0.00× 100 V 5 0.6731985
−9.39× 10−2 3.23× 10−4 V 4 0.5385588
−9.41× 10−2 1.19× 10−4 V 3 0.4039191
−9.47× 10−2 1.26× 10−3 S 3 4.04× 10−1

TABLE 1. The first 20 eigenvalues ζ classified by decreasing real part σ for Re= 100
and M = 5 for Nishimura geometry.

5.1.2. Dispersion relation
In figure 6(a), we have plotted the temporal amplification factor σ (real part

of the eigenvalues) of the most unstable modes versus their wavenumber k for
Re = 100 for different spatial periodicities up to M = 10. This figure shows that
the ‘potentially’ amplified modes are all sinuous and correspond to a spectral band
between kmin= 0.519 and kmax= 1.642, and that the most unstable mode corresponding
to the extremum wavenumber kext = 1.134 is associated with a maximum temporal
amplification rate (σext = 0.085). All these results were obtained using a polynomial
interpolation (up to degree 6) of the spectrum results for spatial periodicities from
M= 2 to M= 10. We note that for this Reynolds number, the most unstable varicose
mode is not ‘potentially’ amplified. Together with these results, we have plotted
(figure 6b) the dispersion relation γ = f (k), i.e. the curve of the dependence of the
temporal pulsation of the perturbation γ on the spatial wavenumber k for the sinuous
and varicose modes. We note that the points characterising the sinuous modes are
almost aligned for the potentially amplified band [kmin, kmax]. We recall that the slope
of this line gives the group velocity vg of the wavepacket. Therefore, for the amplified
bandwidth, the dispersion relation can be written as follows:

γ (k)= vgk− γ0; (5.8)

vg = 0.787 and γ0 = 0.291 for these particular conditions. Here, γ0 is positive and
the phase velocity c(k) = vg − γ0/k is always smaller than the group velocity. The
varicose modes present the same kind of behaviour with a smaller group velocity.
We also have to note that increasing the spatial periodicity hypothesis M towards
infinity results in more and more points on the dispersion curve σ(k). We can then
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FIGURE 6. (a) Temporal amplification factor σ and (b) temporal frequency γ as a
function of the wavenumber k, Re= 100.

ask the question of whether or not this curve is ‘continuous’. The question of the
‘continuity’ of the dispersion curves is open; we cannot be sure that on increasing the
index periodicity M we will obtain the entire spectrum. It seems more likely that we
will obtain an infinite (countable) number of points on this curve as the rational N/M
on the real axis. This question is directly linked to the spatially periodic open flow
considered, i.e. the weak confinement in the main direction x. We have repeated this
calculus for different Reynolds numbers ranging from Re= 50 to Re= 500. Looking
at figure 6(a,b) we observe the superimposition of points at particular values: k =
α, (3/2)α, 2α. These wavenumbers are proportional to the geometric wavenumber
α. Therefore, the geometry characteristics are present in the spectrum through these
particular values of k. Otherwise, for this geometry we note that the k= (3/2)α point
is very close the extremum kext.

In figure 7(a), we have plotted the amplified wavenumber band [kmin, kmax] versus the
Reynolds number for the sinuous and varicose modes. We obtain curves, called neutral
curves (or marginal stability curves), of the instability such as those for the plane
Poiseuille flow instability (Drazin & Reid 2004). The sinuous mode curve clearly
shows that the critical Reynolds number is approximately Rec = 76, and the most
unstable mode corresponds to a sinuous travelling wave with a critical wavenumber
of kc = 0.94. We note that the extremum wavenumber (most amplified mode) varies
from k = 0.9 to k = 1.3. These values are in agreement with the results presented
by Floryan (2005), who found a perturbation wavenumber between 1.02 and 1.06 for
very small wall amplitude of a wavy wall using Floquet’s theory. It seems that this
is a general result, and we confirm this result by computing the neutral curve for
different geometries. The neutral curve for the varicose modes is similar to that for
the sinuous modes with a critical Reynolds number equal to 185 and associated with
a critical wavenumber equal to 0.92. Figure 7(b) shows that the dispersion relation is
practically independent of the Reynolds number for values of the wavenumber in the
‘potentially’ amplified range, and the group and phase velocity are quasi-independent
of the Reynolds number in the linear amplified range. We can then suppose that the
wavepacket characteristics are relatively close to those of the main core flow (quasi-
parallel streamlines) for all Reynolds numbers slightly larger than the critical Reynolds
number. We note that the results we have obtained for a geometry with a large wall
amplitude (E = 2.333H0) are very close to those Floryan obtained for a very small
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FIGURE 7. (a) Marginal stability curves kmin, kmax and kext versus the Reynolds number
and (b) dispersion curves for ‘sinuous’ (S1) and ‘varicose’ (V1) modes for the Nishimura
geometry.
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FIGURE 8. (a) Critical Reynolds numbers Rec and Red and (b) critical wavenumber kc
versus wall amplitude e for a geometric wavenumber α = 0.673 (L= 9.333).

amplitude (Floryan 2005). We now consider whether this result is always valid for
other geometric parameters.

5.2. Results: other symmetric geometries
5.2.1. Constant geometric period L, variable amplitude E

First, we have kept the same geometric period L= 9.3333H0 (α= 0.673) and varied
the wall amplitude E. With the same method as that previously used, for geometric
amplitudes ranging from e= 0 to e= 0.5 we computed the critical Reynolds number
Rec, the critical wavenumber kc and the detachment Reynolds number Red (beyond
which detachment appears, leading to the formation of a vortex in the furrows). For
all these cases, we computed the dispersion relations with Nx= 8M, Ny= 32 and for
M = 5, 6, 7 and 8.

Figure 8(a) presents the critical Reynolds number Rec and the ‘detachment’
Reynolds number Red versus the wall amplitude ratio e.

We observe that the two curves cross for a particular value of the wall amplitude
ratio, e∗ = 0.04. For a small wall amplitude (e < e∗), the critical Reynolds number

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

69
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.693


Fully developed transitional flow in a symmetric channel 265

–0.5

0

0.5

1.0

1.5

0 1 2 3 4 5

–0.4

–0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

(a) (b)

FIGURE 9. (a) Reduced marginal curves k–kc versus ε = (Re − Rec)/Rec with wall
amplitude 0.03< e< 0.25, (b) with 0< e< 0.015 for α = 0.673 (L= 9.333).

is smaller than the ‘detachment’ Reynolds number, and transition occurs without
reverse flow. Reciprocally, for a large wall amplitude the critical Reynolds number
is lower than the detachment one, and the transition occurs with reverse flow in the
furrows. We expect the origin or nature of the transition to be different in each of
these two cases, as supposed by Zhou et al. (2003) in their analysis. This result
highlights the fundamental importance of the wall amplitude e in the transition
phenomenon for periodic section channels. This first conclusion has to be confirmed
by the weakly nonlinear analysis we have undertaken later in this work. We note
that for sufficiently large wall amplitude e > 0.07, the critical Reynolds number Rec
exhibits exponential decreasing behaviour versus e, Rec = 17.26 exp(−0.99e), with a
correlation coefficient equal to 0.995. It is clear that the critical Reynolds number
is practically inversely proportional to the wall amplitude ratio e if the ratio is not
too small. We have plotted the critical wavenumber kc versus the wall amplitude
e in figure 8(b). It appears that the critical wavenumber depends slightly on the
wall amplitude and that the curve presents two distinct regions. For e < 0.03, the
critical wavenumber kc increases slightly with the wall amplitude (from 1 to 1.2) and
obviously tends towards the value 1.0206 when e approaches zero (plane Poiseuille
flow). However, for e> 0.03, the critical wavenumber decreases with increase of the
geometrical amplitude until values lower than one are reached (large perturbation
wavelengths). We observe that the particular wall amplitude e∗ coincides with the
maximum perturbation wavenumber kc. This particularity is not always verified, as
we will show later.

Figure 9(a) gives the reduced neutral (or marginal) curves kmin–kc and kmax–kc
versus the relative Reynolds number gap ε= (Re−Rec)/Rec for large wall amplitudes
0.06< e< 0.5. The curves present the same shape, particularly for very small ε, i.e. in
the linear range. We note that the critical band wavenumber [kmin, kmax] increases with
the geometric amplitude for the same relative Reynolds number gap ε. However, we
have to note that the ‘extremum’ curves kext–kc (corresponding to the maxima of
the eigenvalue real part) increase slightly with ε but more and more weakly. These
results can easily be justified by the quasi-uniform main core flow associated with
the presence of vortices in the steady flow (the critical Reynolds number is greater
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FIGURE 10. (a) Dispersion relation: pulsation γ versus wavenumber k for wall amplitude
0.03< e< 0.25, (b) for 0< e< 0.015 for a geometric wavenumber α= 0.673 (L= 9.333).

than the detachment Reynolds number for these amplitudes (figure 8a)). For smaller
amplitudes (e < 0.03), figure 9(b) shows the same results. In this case, we observe
that the amplified wavenumber bands are different, and the ‘extremum’ curves
are almost the same, but they present different behaviour in that the ‘extremum’
wavenumber decreases with e (from 1.2 to 1). The dispersion relations of pulsation
γ versus wavenumber k such as those presented in figure 9(b) have been plotted
in figure 10(a) for large amplitude (0.03 < e < 0.5) and in figure 10(b) for small
amplitude (e 6 0.03) for a slightly supercritical Reynolds number. As expected, the
dispersion relation has a weak dependence on the wall amplitude for this particular
geometric period. These results, i.e. the slight dependence of the critical wavenumber
and dispersion relation on the wall amplitude, are explained by the quasi-parallel
steady base core flow due to the vortices in the furrow when they are present. From
these figures, it appears that the group velocity is quasi-constant and equal to 0.78
for large wall amplitudes and decreases slightly with the wall amplitude for e< 0.03.
All the previous results have been obtained for a constant and relatively large wall
period L= 9.333H0. We now consider what happens for other geometric periods.

5.2.2. Effect of the period of the geometry
For these computations, we have chosen different values for the number of periods

(M hypothesis) depending on α: M = 3, 4, 5 for α = 5.385 up to M = 13, 14, 15, 16
for α = 0.3366. As described previously, the truncation orders are equal to Nx= 8M
and Ny = 32. Figure 11 presents the critical Reynolds number (Rec) and the critical
detachment Reynolds number (Red) versus the geometric wall amplitude e for different
geometric wavenumbers α. We note that keeping e constant and varying α corresponds
to varying the height H between the two walls defining the 2D channel. Bringing the
walls closer increases the reduced period L (i.e. decreases the geometric wavenumber).
This figure shows for each wavenumber considered the critical amplitude e∗ beyond
which the instability is associated with detachment for the steady flow (intersection of
the curves Rec and Red).

Figure 12 presents the critical wavenumber kc versus the geometry wavenumber α
for different wall amplitudes e. All the curves have the same behaviour, increasing
from a small wavenumber α (large geometric period L) to a maximum and then

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

69
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.693


Fully developed transitional flow in a symmetric channel 267

101

100

102

103

104

10010–110–210–3

FIGURE 11. Critical Reynolds numbers Rec and Red versus the geometric wall amplitude
e with the wall wavenumber α as a parameter.
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FIGURE 12. Critical wavenumber kc versus geometric wavenumber α for different wall
amplitudes e. The straight lines 1:1 and 1:2 allow the determination of the geometric
wavenumber α for particular geometries.

decreasing with increase of the geometric wavenumber (small period L) towards the
straight channel critical wavenumber. From these curves, we can define particular
geometries for each wall amplitude parameter e such that their wavenumber α is
proportional to the spatial structure of the most unstable mode instability. Plotting
straight lines as pkc = qα, we define a geometry corresponding to the q wavelength
instability mode wave for p geometric periods. We name these particular types of
wavy geometries p:q geometries. For example, the 1:1 geometry corresponds to a
geometry for which the most unstable mode has (for the critical Reynolds number)
the same wavenumber as the geometry. We must also notice that the Nishimura
geometry is very close to the 3:2 particular geometry for e= 0.25.
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For all these particular geometries, the most unstable mode does not depend on
the geometric hypothesis M. Then, we can affirm that near the onset of instability,
the spatial structure of the instability will have p wavelengths corresponding to q
geometric periods. Taking M = q, we can precisely determine the spatio-temporal
structure of the instabilities for the critical Reynolds number, but only if the
bifurcation is supercritical. Then, a weakly nonlinear stability analysis giving the
Landau constant is necessary to know whether the bifurcation is sub- or supercritical.
These geometries, particularly the 1:2 geometries, for which the critical wavelength
instability is equal to two geometric periods, seem to be an interesting way to enhance
heat and/or mass transfer in a transitional regime and will be studied further in the
future.

6. Weakly nonlinear stability analysis
6.1. Introduction

The 2D global modal linear stability considering infinitesimal perturbation allows us
to obtain the patterns (modes) that could be amplified. The amplitude of these modes
is unknown, so in order to know the spatio-temporal structure of the flow we have to
compute this amplitude taking into account the nonlinear terms in the Navier–Stokes
equations. For this reason we have developed a weakly nonlinear analysis, i.e. an
analysis of the amplitude of the first most unstable mode slightly beyond the critical
Reynolds number. An envelope equation is then obtained by a Taylor approximation
of the dispersion relations. This allows us to write a Ginzburg–Landau equation with
complex coefficients depending on the geometric parameters: wall wavenumber α
and amplitude e. In particular, the sign of the Landau constant g will give us the
sub/supercritical nature of the instability.

6.2. Amplitude equations
We look at an unsteady streamfunction defined as in (5.1), solution of the full
nonlinear equation (3.4). The unsteady part of the streamfunction ψ(ξ, η, t), written
in the eigenvector basis ψk for a particular periodicity hypothesis M, is

ψ(ξ, η, t)=Re

[
K∑

k=1

Ak(t)ψk(ξ , η)

]
, (6.1)

where Ak is the amplitude of the kth mode: ψk(ξ , η) (the modes are sorted by
decreasing real part of the eigenvalues). These eigenvectors are denoted Vk in the
(B) basis defined previously. Introducing this definition in the unsteady equation (3.4)
leads to the amplitude equation:

K∑
k=1

dAk

dt
Vk =

K∑
k=1

ζkAkVk −Q−1N

(
K∑

l=1

AlVl,

K∑
m=1

AmD′Vm

)
. (6.2)

In order to obtain a system of ordinary differential equations (ODEs) we have to
determine the adjoint operator L∗ of the tangent operator L. For this we first define a
inner product such as

〈U;V〉 =
∑

i

∑
j

si,jUiVj =Ut
SV. (6.3)
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Here, S is a definite and positive symmetric matrix, defined from the basis (B) such
that

si,j = 1
2π

∫ 2π

0

∫ 1

−1
blbmµ(η)dηdξ . (6.4)

Here, µ(η) is a weight function associated with the Chebyshev polynomials. We
would like to mention that the basis (B) is not orthogonal and, with the choice we
made, S is a symmetric band matrix around the diagonal with seven bands. The
adjoint operator must verify

〈L∗Vk;Vn〉 = 〈Vk; LVn〉; (6.5)

then
(Vk)

tSLVn = (L∗Vk)
tSVn = (Vk)

tL∗t
SVn. (6.6)

This relation has to be verified for all the eigenvectors, leading to (L∗)tS=SL, and
finally the adjoint matrix is

L∗ = S−1LtS, (6.7)

since the matrix S is real and symmetric and L and L∗ are real.
We have noted that the adjoint eigenmode associated with the most unstable sinuous

(S1) mode has the same symmetry and spatial periodicity as the (S1) mode but with
a negative phase velocity, i.e. a wave travelling upstream.

Let us denote by V∗k the eigenvector of L∗ associated with the eigenvalue ζk. The
initial nonlinear problem (3.4) can then be written as

ζQX= LX−N(X, D′X). (6.8)

Projecting (6.2) on V∗k , and using the properties of the adjoint operator, we obtain
a system of K ODEs:

dAk

dt
= ζkAk −

K∑
i=1

K∑
j=1

Gk;i,jAiAj (k= 1,K), (6.9)

with
Gk;i,j = 〈Q−1N(Vi, D′Vj);V∗k〉/〈Vk;V∗k〉. (6.10)

If we look at the coefficient Gk;i,j we observe that it represents the nonlinearity
of the Navier–Stokes equations, i.e. the effect of resonance between modes. The
modes (i.e. the eigenvectors) are characterised by their geometrical properties: their
symmetry versus the x axis (sinuous or varicose modes) and the wavenumber N on M
geometric periods. The symmetries of the most unstable modes give interesting results
for the nonlinear effect on mode amplitudes; for example, if Vk is a sinuous mode (a
symmetric streamfunction, i.e. an even function of η), then the coefficient Gk;i,j will
be different from zero if and only if the nonlinear term N(Vi, D′Vj) is symmetric.
Looking at the operator D′ in the case of a symmetric channel, we note that it will be
symmetric only when Vi and Vj have opposed symmetries. Then, a symmetric mode
cannot be resonant with itself for symmetric geometries; only symmetric (sinuous)
and antisymmetric (varicose) modes can be resonant. In particular, the most unstable
mode (always sinuous) will be resonant only with an antisymmetric (varicose) mode.
If Vk is a varicose mode (an antisymmetric mode, i.e. an odd function of η), then the
coefficient Gk;i,j will be different from zero if and only if N(Vi,D′Vj) is antisymmetric.
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Therefore, if the geometry is symmetric, it is necessary that Vi and Vj have the same
symmetry. Then, a varicose mode can be resonant with itself, and its amplitude
will depend on the amplitude of the coupling between varicose/varicose modes or
sinuous/sinuous ones.

In the same way, looking at the symmetry of the shape of the geometry h(x), we
observe two kinds of modes: the ‘even modes’, such that the number of waves N is
even, and the ‘odd modes’, such that the number N is odd. We named this property
the ‘parity’ of the modes, so by a simple symmetry analysis, we can conclude the
following.

(i) If h(x) is a simple cosine (as in the Nishimura geometry), we note that if the
mode Vk corresponds to an ‘odd mode’, the resonant modes Vi and Vj will be
of opposite ‘parity’.

(ii) On the contrary, if the mode Vk is an ‘even mode’, then the resonance will be
between modes with the same ‘parity’.

A complete study and resolution of these ODEs will be made in another study.

6.3. Weakly nonlinear analysis: the Ginzburg–Landau equation
6.3.1. Landau equation

In this weakly nonlinear study, following Manneville (1990) and Newell, Passot &
Lega (1993), the first K modes in (6.9) are separated into two groups: active modes (a)
(the most unstable ones) and passive modes (p). Using classical vocabulary, passive
modes are ‘slaved’ by active ones and then, using the formalism developed by Plaut
(2008), we are looking for a weakly nonlinear solution such as

V(a) =
∑

k

Ak(t)V(a)
k and V(p) =

∑
k

Ak(t)V
(p)
k . (6.11a,b)

Using the symmetries of active modes (Plaut 2008, see chapter 2.2), the passive
modes are obtained by

V(p) = L−1N(V(a), D′V(a)). (6.12)

If the most unstable mode is sufficiently isolated, the amplitude equation of the most
active unstable mode A1 is then the classical Landau equation:

dA1

dt
= ζ1A1 − g|A1|2A1, (6.13)

with g the Landau constant as computed by Plaut (2008),

g= 〈N(V1|U1)+N(V1|U0);V∗1〉, (6.14)

where
U1 =−(L+ 2πγcQ)

−1N(V1,V1) (6.15)

and
U0 =−(L+ 2πγcQ)

−1N(V1|V1). (6.16)

The sign of the real part of the Landau constant g will give us the nature of the
bifurcation (subcritical if Re(g) < 0 or supercritical if Re(g) > 0). Obviously, all these
parameters depend on the periodicity hypothesis M chosen.
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0 5 10 15

FIGURE 13. Instantaneous streamlines of the adjoint streamfunction associated with the
most unstable mode for the Nishimura geometry.

6.3.2. Envelope equation, the complex Ginzburg–Landau equation
We have shown that in most cases the spectrum presents different branches

associated with particular modes (sinuous, varicose). For ordinary symmetric geometry,
the most unstable critical mode needs a large enough geometric periodicity hypothesis
M to obtain a good approximation for the determination of the critical wavenumber
kc and critical Reynolds number Rec. In the hypothesis of a continuous branch of the
dispersion relation we have made implicitly, we can use the analysis developed by
Manneville (1990) and Plaut (2008) on dynamical dissipative systems with a view to
obtaining an envelope equation as the complex amplitude Ginzburg–Landau equation:

τ

(
∂A1

∂t
+ vg

∂A1

∂x

)
= ε(1+ is)A1 + χ 2(1+ ib)

∂2A1

∂x2
− Γ (1+ ic)|A2

1|A1, (6.17)

where A1(x, t) is the complex amplitude of the most unstable mode V1 at criticality:
(Rec, γc, kc).

Here, ε = (Re− Rec)/(Rec) represents the deviation from the criticality, τ =
1/(Rec∂σ/∂Re|c) is the characteristic time, χ 2=−τ(∂2σ)/(∂k2)|c/2 is the characteristic
length, vg = ∂γ /∂k|c is the group velocity, s= Rec∂γ /∂Re|c and b= (∂2γ )/∂k2|c are
two constants, and Γ (1+ ic)= τg is the Landau constant, supposed to be identical to
the previous discrete problem. The values of these parameters are given in the next
section for the Nishimura geometry.

6.4. Results
All the results presented hereafter concern the Nishimura geometry (see § 5.1).

Figure 13 presents the adjoint eigenmodes associated with the most unstable mode
for the M= 2 hypothesis. We observe that the adjoint eigenmodes associated with the
most unstable mode have the same spatio-temporal structure (same symmetries and
spatial periodicity) as the direct modes, but it is highly stretched, which characterises
a travelling wave going upstream, as is well known.

Table 2 gives the Landau coefficients we have obtained for different periodicity
hypotheses (Re= Rec). From these results we can determine the Landau constant by
linear approximation for the critical wavenumber kc = 0.946, giving g= 36.6+ 29.4i.
The real part of the Landau coefficient g is clearly positive, then the first transition
must be supercritical for the Nishimura geometry, which is an argument in favour of
the 2D perturbation hypothesis.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

69
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.693


272 S. Blancher, Y. Le Guer and K. El Omari

M N k Re(g) Im(g)

6 8 0.897597901 30.77578626 27.71732188
8 11 0.925647835 34.05554499 28.68476095
5 7 0.942477796 36.18334482 29.25281343
7 10 0.961712037 38.5478337 29.89652684
4 6 1.009797639 52.6651218 38.8570714

TABLE 2. The real part of the ‘Landau coefficient’ g versus the periodicity hypothesis M.
Here, N is the number of waves for M geometric periods and k is the associated critical
wavenumber. The Reynolds number is the critical Reynolds number Rec = 76.

10010–2 10–110–3

–10

–8

–6

–4

–2

0

2

4

FIGURE 14. Real part of the Landau coefficient g versus the geometric amplitude e and
wavenumber α, for the critical Reynolds number.

We have repeated the same calculus for the different geometries considered, and
figure 14 shows the real part of the Landau coefficient versus the geometrical
parameters. It appears that there is a critical amplitude ec for which the bifurcation
would undergo a transition from subcritical (Re(g) < 0) to supercritical (Re(g) > 0).
We have to note that at first order, looking at the Landau amplitude equation, the
module of the asymptotic amplitude |A1| of the most unstable mode will be such that

d|A1|
dt
= 0, then |A1| =

√
ε

τRe(g)
. (6.18)

It appears clearly that the module of the amplitude is inversely proportional to the
real part of the Landau constant. Then, we can suppose that we will have a large
amplitude |A1| for a geometric amplitude e slightly larger than the critical one ec.

Figure 15 gives this critical amplitude ec versus the geometry’s wavenumber α. On
the same figure we have also plotted the critical detachment amplitude for steady
base flow (amplitude for which there exists a reverse flow for the critical Reynolds
number). We note that the two curves intersect at α = 0.8 and e = 0.03, and then
four zones are highlighted: zone I, supercritical 2D transition with reverse flow; zone
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10–1

10–2

10–3

10110010–1

Zone I
Zone III

Zone II Zone IV

(detachment)
(subcritical/supercritical)

FIGURE 15. Critical geometric amplitudes ec (onset of detachment and the sub- to
supercritical transition) versus the wavenumber of the geometry α. The different zones
correspond to zone I, steady reverse flow and supercritical bifurcation; zone II, no reverse
steady flow and supercritical bifurcation; zone III, reverse steady flow with a subcritical
bifurcation; zone IV, no reverse steady flow with a subcritical bifurcation.

Rec kc τ vg s χ2 b Γ c

76 0.946 8.02 0.791 −5.19 1.67 0.774 293 0.802

TABLE 3. Parameters of the Ginzburg–Landau equation (6.17) for the Nishimura geometry.

II, supercritical transition without reverse flow; zone III, subcritical transition with
reverse flow; and zone IV, subcritical transition without reverse flow, as Poiseuille
flow (e = 0). Although these results are valid only in the 2D hypothesis, we would
expect that they must have some impact on the ongoing 3D analysis. We expect also
to show that for the supercritical zones, we would observe a first 2D Hopf bifurcation
associated with a sinuous TS wave perturbation. However, for the subcritical zones,
we expect a 3D subcritical first bifurcation as for Poiseuille flow (viscous instability?),
linked to a large temporal growth in the transient regime as developed by Schmid &
Henningson (2001); this non-modal analysis will be undertaken elsewhere. In the case
of steady reverse flow and subcritical bifurcation or steady quasi-parallel flow without
reverse flow but with a supercritical bifurcation, the nature of the transition is currently
unknown. A 3D stability analysis is then essential with a view to understanding the
transition.

As an example, table 3 presents the coefficients of the Ginzburg–Landau equation
(6.17) we have obtained for the Nishimura geometry. A complete study of this
equation versus the geometrical parameters is ongoing.

7. Conclusions
In conclusion, under the 2D hypothesis and for a ‘periodic fully developed’ steady

base flow, for an ordinary symmetric wavy geometry, it does not seem that the 2D
transition has a spatially periodic structure. In all studied cases, the first stage of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

69
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.693


274 S. Blancher, Y. Le Guer and K. El Omari

transition is characterised by a breaking of the symmetry along with a breaking of the
periodical invariance in the main stream direction. The most unstable mode is always
a sinuous mode (symmetric streamfunction) associated with a Hopf bifurcation. In all
the cases studied, the spatial structure of the 2D most unstable mode is not ‘tuned’
with the geometry. Thus, within the limit of this 2D linear stability analysis and
slightly beyond the critical Reynolds number, we expect the spatial structure of the
unsteady flow – after a developing length – to exhibit a quasi-periodic spatio-temporal
structure. It appears that the amplitude of the geometry defined by e = E/L plays a
leading role in the transition, with the critical Reynolds number varying as Re−1 for
sufficiently large amplitudes. Otherwise, the critical wavenumber kc varies between
0.8 and 1.5 for geometrical wavenumbers α ranging from 0.3 to 10. This result
shows that the most unstable perturbation wave is affected by the amplitude of the
geometry. For a fixed spatial periodicity, small geometric amplitudes are associated
with smaller perturbation wavenumbers than for the reference straight channel with
a TS wave. Reciprocally higher geometric amplitudes are associated with larger
wavelength perturbations. We also observed that the most unstable varicose mode
has a wavelength that is always equal to a multiple of the geometric period. Thus,
the varicose modes are naturally ‘tuned’ to the geometry characteristics, and in most
cases the associated eigenvector is a steady mode (γ = 0).

For particular geometries, we expect to have near criticality a 2D spatio-temporal
periodic instability that is spatially proportional to the geometric period. These
particular geometries will be studied in a subsequent work. The method described here
can be applied to other symmetric geometries such as grooved channels, triangular
tooth channels, etc. as well as non-symmetric geometries. The only condition is that
a channel with a main straight stream flow modulated by periodic walls must be
considered, and of course the existence of a supercritical Hopf bifurcation.

Subsequently, a weakly nonlinear analysis based on these modal results allows
us to determine the super- or subcritical nature of the transition and the associated
complex Ginzburg–Landau equation. It is shown that for each geometric period,
there is a critical geometrical amplitude beyond which the transition is supercritical
(possibly 2D), and reciprocally below this value, the transition could be subcritical
(then possibly 3D). The existence of a reverse steady flow is not related to the
super- or subcritical nature of the transition. A discussion around the main assumption
considered in this paper, i.e. the existence of a 2D and fully developed base flow, is
undertaken. These 2D conclusions have to be verified by a 3D modal and non-modal
stability analysis, which is ongoing.
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Appendix A
The operators that appear in the linear eigenvalue problem (5.5) are given in this

appendix.
Operator D′:

D′( )= h2( )ξξ + a(ξ , η)( )ξ,η + b(ξ , η)( )η,η + c(ξ , η)( )η, (A 1)
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with
a(ξ , η)=−2hg′ − (h2)′η
b(ξ , η)= 1/α2 + g′2 + 2h′g′η+ h′2η2

c(ξ , η)= 2h′g′ − hg′′ − ((h2)′′/2− 3h′2)η

 . (A 2)

Operator D′′:

D′′( )= h2( )ξξ + a(ξ , η)( )ξ,η+ b(ξ , η)( )η,η+ c∗(ξ , η)( )η+ d(ξ , η)( )ξ + e(ξ , η)f , (A 3)

with
c∗(ξ , η)= c(ξ , η)+ 4h′g′ + 4h′2η
d(ξ , η)=−2(h2)′

e(ξ , η)=−2(hh′′ − 3h′2)

 . (A 4)

The other operators LS, L∗S and H are

LS( )= h(ψS
η ( )ξ −ψS

ξ ( )η)− 2h′ψS
η ( )

L∗S( )= h(ω̃S
ξ ( )η − ω̃S

η( )ξ )− 2h′ω̃S( )η
H( )= h2( )

 . (A 5)
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