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Let n >3 and 0 < m < (n — 2)/n. We extend the results of Vazquez and Winkler
(2011, J. Evol. Equ. 11, no. 3, 725—742) and prove the uniqueness of finite points
blow-up solutions of the fast diffusion equation u+ = Au™ in both bounded domains
and R™ x (0, 00). We also construct initial data such that the corresponding solution
of the fast diffusion equation in bounded domain oscillates between infinity and
some positive constant as ¢ — oo.

Keywords: uniqueness; fast diffusion equation; time oscillating behaviour

2010 Mathematics subject classification: Primary: 35K65
Secondary: 35B51; 35B40

1. Introduction
The equation
uy = Au™ (1.1)

arises in many physical and geometrical models [1,4, 19, 20]. When m > 1, (1.1) is
called the porous medium equation which appears in the modelling of the flow of
gases through porous media and oil passing through sand etc. Equation (1.1) also
arises as the large time asymptotic limit in the study of the large time behaviour
of the solution of the compressible Euler equation with damping [12,18]. When
m =1, (1.1) is the heat equation. When 0 < m < 1, (1.1) is called the fast diffusion
equation. When m = (n — 2)/(n + 2) and n > 3, (1.1) arises in the study of Yamabe
flow on R" [5,6,8]. Note that the metric g;; = u* ("2 dz?, u >0, n >3, is a
solution of the Yamabe flow [6, 8],

dg; j
ot

= _Rgz'j in R" x (O,T)

if and only if « is a solution of

n—1

Au™

Uy =
m
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in R™ x (0,7) with m = (n — 2)/(n + 2) where R(-,t) is the scalar curvature of the
metric g;;(-,t). Recently, Golse and Salvarani [9] and Choi and Lee [2] have
shown that (1.1) also appears as the nonlinear diffusion limit for the generalized
Carleman models.

Although there is a lot of study on (1.1) for the case m > (n — 2)4 /n, there are
not many results of (1.1) for the case 0 <m < (n —2)/n, n > 3. When 0 < m <
(n—2)/n and n > 3, existence of positive smooth solutions of

up = Au™ u >0, inR"x(0,7T)
u(

x,0) = ug in R"

for any 0 < ug € LY _(R™), p > (1 — m)n/2, satisfying the condition,

loc

1
liminfi/ upda > €T 0™
Foo Rn=(/0=m)) [ 70 !

for some constant Cy > 0 was proved by Hsu in [11].

Let Q C R™ be a smooth bounded domain. When 0 < m < (n — 2)/n, n > 3 and
0 € Q, existence of singular solutions and asymptotic large time behaviour of (1.1)
in (Q2\{0}) x (0, 00) which blow up at {0} x (0, 00) when the initial value ug satisfies

alz]™" wup(x) < eolz|™ Vo € Q\{0}

for some constants ¢; > 0, co > 0 and v2 > 71 > 2/(1 — m) were proved by Vazquez
and Winkler in [21]. Uniqueness of singular solutions of (1.1) in (Q\{0}) x (0, 00)
that blow up at {0} x (0, 00) and existence of singular initial data such that the cor-
responding singular solution of (1.1) in (2\{0}) x (0, c0) oscillates between infinity
and some positive constant as t — 0o were proved by Vazquez and Winkler in [22].

When 0 < m < (n—2)/n and n > 3, existence of singular solutions of (1.1) in
(R™\{0}) x (0, 00) which blow up at {0} x (0, 00) when the initial value uq satisfies

alz]™Y Sup(z) < ealx|™” Vo e R™\{0}

for some constants ¢; > 0, ¢ >0 and 2/(1 —m) <y < (n —2)/m was proved by
Hui and Kim in [14]. Asymptotic large time behaviour of such solution was also
proved by Hui and Kim in [14] when 2/(1 —m) < v < n.

Let ai,aq,...,a; €9, 0= ON\{ay,as,...,a;,} and R = R™\{ay,as,...,a;,}
For any &>0, let Qs =Q\(U2,Bs(a;)) and R =R™\ (U2, Bs(a;)) where
§R(xo) ={x e R": |z —x9| < R}, Bg = Bgr(0), Bgr(xo) = Br(xo)\{zo} and Br =
Bpr(0) for any xzp € R” and R > 0. Let dp(€2) = 1/3mini<; j<i, (dist(a;, Q), |a; —
a;|) and 6o(R™) = 1/3mini<; j<i, |a; — a;j]. For any 0 < 0 < 60(2), let Ds = {x €
Q. dist (x,00) < 6}. Let Ry > 0 be such that ay,...,a; € Br,. For any R > Ry
and 0 < ¢ < 0o(R™), let Q5 r = Br\ U2, Bs(a;). When there is no ambiguity we
will drop the parameters Q, R™, and write dp instead of dp(£2) or dp(R™). Unless
stated otherwise we will assume that 0 < m < (n —2)/n and n > 3 for the rest of
this paper.
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Existence of singular solutions of (1.1) in € x (0,7) which blow up at
{a1,a9,...,a;} x (0,7) was proved by Hui and Kim in [13] when the initial
value ug satisfies

up(x) = |z —a;|77" forxm~a; Vi=1,2,...,0
for some constants 7; > max(n/2m, (n — 2)/m) for any i = 1,2,...,4p. When 0 <

J € L>=(09 x [0,00)) and the initial value 0 < ug € LY (Q\{a1,...,ai,}) (Lfoc(]liz)
respectively) for some constant p > n(1 —m)/2 satisfies

Ai

Uo(l‘)>m VO<|x—ai\<51, izl,...,’io (12)
for some constants 0 < d; < min(1,80),A\1,..., A, €ERT and  yy,...,v, €

(2/(1 —m), ), existence of singular solutions of

w = Au™ in € x (0,00)

u=f on 99 x (0,00)

‘ , (1.3)
u(a;,t) = 0o Vi>0, i=1,...,10
w(z,0) = ug(z) in Q
and
u = Au™  in R x (0, 00)
u(a;, t) = 0o Vi=1,...,%9, t>0 (1.4)

o~

u(z,0) = up(x) in R

respectively was proved by Hui and Kim in [15]. It was proved in [15] that the
singular solutions of (1.3) and (1.4) constructed in [15] have the property that for
any 7' > 0 and 62 € (0,671) there exists a constant C; > 0 such that

C
u(z,t) > m VO < |o—a;| < 82,0 <t <T,i=1,2, ... i. (1.5)

Moreover [15] if the initial value ug also satisfies

PV
up(z) < e VO< |z —ai <d,i=1,..., 10, (1.6)
|z — a;|7
for some constants A}, ..., )\;0 eR*t, and v/ > ~; for all i = 1,..., g, then for any

T > 0and 65 € (0,67) there exists a constant Co > 0 such that the singular solutions
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of (1.3) and (1.4) constructed in [15] satisfy

C
u(z,t) < |727 VO < |z —a;| < 82,0 <t <T,i=1,2,...,i. (1.7)
T — a;|"i

When f > po and ug > po for some constant pg > 0, the singular solutions of (1.3)
and (1.4) constructed in [15] also satisfy

w(z,t) = po Vo e (@‘ respectively),t > 0. (1.8)

Asymptotic large time behaviour of such singular solutions was also proved by Hui
and Kim in [15].

In this paper, we extend the results of Vazquez and Winkler [22] and prove the
uniqueness of singular solutions of (1.3) and (1.4). We also construct initial data
ug such that the corresponding singular solution of (1.3) with f = ug > 0 oscillates
between infinity and some positive constant as t — oo. More precisely we will prove
the following results.

THEOREM 1.1. Letn >3,0<m < (n—2)/n,0 < <min(1,dy), uo >0, f1, f2 €
C3(9Q x (0,00)) N L®(92 x (0,00)) be such that fo = f1 = po on 9Q x (0,00) and

(1—m)

po <ug1 <ugp € LY (N {ai1,...,ai,})  for some constant p > o 5 (1.9)

be such that

Ai Al
———— <ypr(x) Sypo < —+— VO<|x—ay| <d,i=1,...,1 1.10
= a 0.1(2) < uo,2 = i | | <d o (L.10)
holds for some constants Ay, ..., Nig, Ay, ..., Aj, € RT and
Ny > Vi=1,2,..., 0. (1.11)
1-—m

Suppose u1, uy are the solutions of (1.3) with ug = uo,1,u0,2, f = f1, f2, respectively
which satisfy

wi(e,t) > po Yo et >0j=1,2 (1.12)

such that for any constants T >0 and 3 € (0,01) there exist constants Cy =
C1(T) >0, Co = Cy(T) > 0, such that

C C
<y t) < ——7
|z — ag[" |z — a;[™
VO < |z —a;] < 9,0 <t <Ti=1,2,...,00,5 =1,2. (1.13)

Suppose uy, uz also satisfy
lui(-,t) —woillL1(s) =0 ast—0 V0 <0 <dg,i=1,2. (1.14)
Then
uy (z,t) < us(z,t) Vo e Q,t>0. (1.15)
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THEOREM 1.2. Let n >3, 0<m < (n—2)/n, 0 < <min(1,d), po >0, po <
f1 < fa € L®(092 x (0,00)) and (1.9), (1.10), hold for some constants A1, ..., Ny,
1o A, €RT and

)
L <A< IS =12, . (1.16)
1—-m m

Suppose uy, ug are the solutions of (1.3) with ug = uo 1,02, [ = f1, f2, respectively
which satisfy (1.12) and (1.14) such that for any constants T > 0 and 02 € (0,61)
there exist constants C1 = C1(T) >0, Cy = Co(T) >0, such that (1.13) holds.
Then (1.15) holds.

THEOREM 1.3. Let n >3, 0 <m < (n—2)/n, 0 <d; <min(1,d), po >0, Ry >
Ry and p1o < up1 < ugo € LY _(R™) for some constant p > n(1l —m)/2 such that

loc
/ |uo,j — poldz < oo Vj=1,2. (1.17)
RIL\BRl
Let (1.10) hold for some constants A1, ..., Xiy, A|, ..., \j € RT and

<vi<yi<n Vi=1,2,...,i. (1.18)

1—-m

Suppose uy, ug are the solutions of (1.4) with ug = ug1,u,2 respectively which
satisfy

wj(z,t) > po Yo €RY, t>0, j=1,2 (1.19)

and
/A |uj(x,t) — po| do < /A luoj — poldz VE>0, j=1,2 (1.20)
n Rn

such that for any constants T >0 and 09 € (0,61) there exist constants Cy =
C1(T) > 0, Cy = Co(T) > 0, such that (1.13) holds. Then

uy (z,t) <up(x,t) Vo eRP, > 0. (1.21)
THEOREM 1.4. Let n >3, 0<m < (n—2)/n, 0<4d; <min(l,d) and po > 0.
Thire existsug € LY, (QN\{a1,...,a;,}) for some constantp > n(1 —m)/2, ug > pio
in ), such that
A () < Al Y0 < | | <d1,i=1 ' (1.22)
——— < up(r) < —— T —a; yi=1,...,1 .
|x—ai%‘\ 0 \|l‘—ai’yi i 1 0
for some constants satisfying (1.11) and A1, ..., Ny, Ap, ..., Aj, € R* such that

w = Au™ in Q x (0,00)
u = on 99 x (0,00
Ho ( ) (1.23)
u(a;, t) = 0o Vt>0,i=1,...,4

u(z,0) = up(z) in Q
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has a unique solution u with the property that u oscillates between py and infinity
ast — oo.

This paper is organized as follows. In § 2 we will prove the uniqueness of singular
solutions of (1.3) and (1.4). In §3 we will prove the existence of initial data such
that the corresponding solution of (1.3) with f = po > 0 oscillates between infinity
and some positive constant as t — oc.

We start with some definitions. For any 0 < f € L>°(92 x (0,00)) and 0 < ug €
Ll

1 (€), we say that u is a solution of

u = Au™ in © x (0, 00)
u=f on 99 x (0,00) (1.24)
w(z,0) = up(z) in Q

if ue L (Q\{ai,...,ip} x (0,00)) is positive in Q x (0,00) and satisfies (1.1) in

loc
2 x (0,00) in the classical sense with

Ju(-,t) = uollprxy — 0 ast—0 (1.25)

for any compact set K C Q and

to to 877
/ /(unt +u"An)dzdt = / S —dodt + / u(x, to)n(z, te) do
t1 Q t1 o0 8” ﬁ

— [ e tnte ) da (1.26)

Q

for any to > t; > 0and n € C2((Q\{a1,...,a;}) x (0,00)) satisfying n = 0 on 9 x
(0, 7). We say that u is a solution of (1.3) if u is a solution of (1.24) and satisfies

u(z,t) o0 asz—a; Yt>0,i=1,... 1. (1.27)

For any 0 < ug € Llloc(]liz) we say that u is a solution of (1.4) if u € Lf:c(]li; X
(0,00)) is positive in Rm x (0,00) and satisfies (1.1) in Rn x (0,00) in the classical
sense and (1.25), (1.27), hold for any compact set K C Rn.

For any set A C R™, we let x4 be the characteristic function of the set A. For

any a € R, we let a; = max(0,a).

2. Uniqueness of solution

In this section, we will prove the uniqueness of singular solutions of (1.3) and (1.4).

LEMMA 2.1. Letn 23,0 <m < (n—2)/n, 0<d; <dp, 0< f € L>®(0Q x[0,00))
and 0 < ug € LY (Q\{a1,...,ai,}) for some constant p > n(1 —m)/2 be such that

loc

(1.2) holds for some constants A1, ..., \iy € RT and v1,...,7v, € (2/(1 —m), o0).
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Let u be the solution of (1.3) constructed in theorem 1.1 of [15]. Then there exists
a constant C' > 0 such that

/mu@,t)dxg{(/Dmuodx)“’”m}

4 Ds|||flle V>0, 0<8<do/2 (2.1)

1/(1-m)

holds.

Proof. We will use a modification of the proof of theorem 2.2 of [10] to prove
this lemma. For any 0 <e <1, let k> || f|lr~ +¢c. Let 0 < < do/2. We choose
¢ € C>(Q) such that 0 < ¢ < 11in Q, ¢(x) = 0 for any = € Q\Das and ¢(z) = 1 for
any z € Ds. Let a > 2/(1 —m) and n(z) = ¢(z)“. Then by direct computation,

1—-m
C, = (/ (™| Ag|)t/ A=) dx) < o0,
Q

For any 0 < e <1 and M > 0, let
uo,m () = min(ug(z), M)
Ug,e, v () = min(ug(z), M) + ¢
fe(z,t) = f(z,t) +e V(x,t) € 09 x (0,00)
and let ups and u. ps be the solutions of
up = Au™  in Q x (0,00)
u(z,t) = fe on 0§ x (0, 00)
u(z,0) =upep in Q.
and
up = Au™  in Q x (0,Th)
u(z,t) = f on 09 x (0,Tn)
u(z,0) =up,pm  in Q

respectively constructed in [15] for some maximal time Th; > 0 of existence. By
the result in [15] T — oo as M — oo. Moreover u. p; decreases and converges to
ups in Q x (0, Ty) uniformly in C%!(K) for every compact subset K of Q ase — 0
and uy; increases and converges to u in £ x (0, 00) uniformly in C>!(K) for every

compact subset K of Qas M — 00. By approximation we may assume without loss
of generality that u. py € C%(Q x (0,00)). Then by the Kato inequality ([4,16]),

% (/Q(UE,M - k)+77d$>

< [ (g~ k)1 Ando
Q

<C [ (wens — K7I80] da
Q
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m 1-m
<0 ([ = 0punas) ([ ormiany /oo a)
Q Q
=C </(us7Mk)+7]dx> Vi>0,0<e<1,M>0 (2.2)
Q

for some constants C' > 0, Cy > 0. Integrating (2.2) over (0,t) and letting ¢ — 0,
M — oo and k — || f]| L=,

/ (u(a ) — |l )+ da
Ds

1—-m 1/(1—m)
< {(/ (U0—||f|Loo)+dx) +C1(1—m)t} vt >0
Dys

and (2.1) follows. O

PROPOSITION 2.2. Let n >3, 0 <m < (n—2)/n, 0 <d <dy, 0< f € L2002 x
[0,00)) and 0 < ug € LY (Q\{a1,...,a;,}) for some constant p > n(1 —m)/2 be

loc
such that (1.2) holds for some constants A1, ..., N, € RT and v1,...,7i, €
(2/(1 —m),c0). Let u be the solution of (1.3) constructed in theorem 1.1 of [15].
Then
u(-t) —uollLiy) =0 ast—0 Y0<d<d. (2.3)

Proof. Let 0 < 6 < dg and 0 < 6" < §p/2. Then by lemma 2.1,

lu(-t) —uollLr(s) < llut) —wollLr@s\ny) + lul Ol o, + lluoll (o,
- 1/(1=m)
< llu,t) = wollr@any) + (ol ) +Ct)
+ [Ds || fll e + [Juoll 21Dy (2.4)
Letting ¢t — 0 in (2.4),
hrtns(glp ||U(,t) — UOHLI(Q(S) < ‘D5/|||fHLoo + 2||“0||L1(D25/) V0 < 6’ < 60/2
= lim lu(-,t) —uollpia,y =0 asd —0

and (2.3) follows. O

Proof of theorem 1.1. We will use a modification of the proof of theorem 6
of [22] to prove the theorem. Let 0 <d < dy and t; > o > 0. Since ui,ug €
Lo (\{a1,...,i0} x (0,00)) there exists a constant M; > 0 such that

’UJj(Q?,t) <M, Vze Qg, to <t <1y, j = 1,2. (25)

By (1.12) and (2.5), equation (1.1) for u; and uy are uniformly parabolic on
every compact subset of Q\{ai,...,ip} x (0,00). Hence by the parabolic Schauder
estimates [17], u1,us € C*1(Q\{ay,...,io} x (0,00)).
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We choose a nonnegative monotone increasing function ¢ € C°°(R) such that
@(s) =0 for any s<1/2 and ¢(s)=1 for any s> 1. For any 0< 4§ < do,
let ¢s(x) = ¢(|z|/d). Then |Ves| < C/§ and |Ags| < C/5%. Let o > max(2 +
N1, 92, - - - Yig) — M- We choose 0 < ¢ € C°(Q\{a1,...,a;}) such that ¢(z) =
|z — a;|* for any x € U B, (a;). Let 6 = 6;/2 and T > 0. Then there exists a
constant ¢; > 0 such that

b(x) = e Vo e Q\UL, Bs,(a;). (2.6)

By (1.13) and the choice of «, for any i = 1,. .., g,

/ |z — a;|*(u1 — ug) 4 (2, t) de
B52(ai)

b2
< CT/ Pt il dp = CLOST T <00 VO<t< T (2.7)
0
for some constants Cp > 0, Cf > 0. Since uy,uz € LS (Q\{a1,...,io} x (0,00)),

by (1.14) and (2.7) for any T > 0 there exists a constant Co(7) > 0 such that
/A Y(x)(ug —ug)4(z,t)de < Co(T) <o VO<t<T. (2.8)
Q

Let
ws(x) = T2, ds(x — a;).
By the Kato inequality ([4,16]) for any 0 < § < d1, t > 0,

% (/@(ul — ug) 1+ hws d:l:)
< [ ) Awus) do
0
= /A {ws Ay + 2V - Vws + pAws} (ui® —uy') 4 dx
0

< /A(uin —uy") yws Ay da
o)

C & _
+S3 o aal" ), 1)
i—1 7/ 0/2<|z—a;|<0

C io/
+ = .’L’—aiaum_um il?,t da
52; 5/2§\$—ai\<5| | (uf" = uz') 4 ()

< /A(UT —uy")yws Ay da
9)

i0
+ C’Z/ |z — a;|* 2 (ul — ud?) 4 (2,t) d. (2.9)
i=1"90

/2<|z—a;|<d
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By direct computation,
A =Alr — ;| = ala+n—2)|z—a;|*? Vo€ By (a;), i=1,...,i. (2.10)
By (1.12) and the mean value theorem,
(Wl —ud) g (2, 8) < mp(ug — ug) 4 (z,8) Yo e, t>0. (2.11)
By (2.6), (2.9), (2.10) and (2.11),

0

[~ wa)svusae) < [ (" — ) 4 (3, 1) do
ot
13 O\UY, By, ()

e / & — a2l — )y (3, 1) do
B§2 a'L
<C [ (0~ w2 (o (e) do
Q

e[ @ — a2 — u') (2, 1) da.
1 1Bsy (ai)
(2.12)
By (1.13) and the mean value theorem for any |z — a;| < d2, 0 <t < T,i=1,..., 4o,

& — a2 — ug) (2, 6) < mle - al*us(, ) - ug) s (2, 0)

<mCy ()™M — a7 0y — ug) (1)
<mCy(T)" 160" 2|z — il (w1 — u2) 4 (x, )
<mOy (T)" 105 T R (@) (ur — ua) 4 (2, ).
(2.13)
By (2.12) and (2.13),
0
g </A (uy — ug) 4 Yws dz) < CT/A(ul —uz) 4 (x, ) (x) de. (2.14)
t \Ja o

Integrating (2.14) over (0,¢), by (1.14) and (2.8),
| (w1 = w2 o0 @pws(o) do
< CT/O /ﬁ(u1 — )y (w, )b(z)dedt VO <t <T
= [ (1= ) (o) da

¢
< CT/ /A(ul —ug)y(x,)p(x)dedt YO<t<T asd— 0. (2.15)
0 JO
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By (2.15),
uy (z,t) <us(z,t) VeeQ0<t<T. (2.16)
Letting T — oo in (2.16) we get (1.15) and the theorem follows. O

By theorem 1.1, lemmas 2.3 and 2.15 of [15] and theorem 1.1 and proposition
2.2, we have the following result.

THEOREM 2.3. Let n >3, 0<m < (n—2)/n, 0 <01 <min(1,d00), o >0, f€
C3(09Q x (0,00)) N L>(0Q x (0,00)) be such that f > po on 9Q x (0,00) and pg <
ug € LY (Q\{a1,...,a;,}) for some constant p > n(1 —m)/2 be such that (1.2) and
(1.6) hold for some constants satisfying (1.11) and Ay, ..., Xiy, A}, ..., Xj, € RT.
Then there exists a unique solution u of (1.3) which satisfies (1.8) and (2.3) such
that for any constants T > 0 and 65 € (0,061) there exist constants C1 = C1(T) > 0,
Cay = C3(T) > 0, depending only on A1, ..., Nig, A, oo iy Vs s Yios Vis - o
Vi, s such that

Cy

|z — a;

: - V0 <|x—a;| <8,0<t<T,i=1,2,...,09
v |z —a;

i (2.17)

holds.

Proof of theorem 1.2. We will use a modification of the proof of lemma 2.3 of [3]
to prove the theorem. Let

Ul(‘rv t)m - UQ(xa t)m

Vo € Q,t > 0 satisfyi t t
i (2,0 — (@) x € O, t > 0 satisfying uy (x,t) # ua(x, 1)

A=Az, t) = ~
() muy (z, )™ " Vo € Q,t > 0 satisfying uq (z,t) = ua(z,t)

0 Ver=a;, i1=1,...,i0,t > 0.
For any k € Z7T, let
|’u,1(:c,t)m 7u2(f£,t)m|
ay(z,t) = |ui(z,t) —ua(z, )] + (1/k)
0 V.’E:ai,izl,...,io,t>0

Vre,t>0

and Ay = Ag(x,t) = ag(z,t) + k1. We choose a nonnegative monotone increasing
function ¢ € C*°(R) such that ¢(s) =0 for any s < 0 and ¢(s) =1 for any s > 1.
Let 0 < 02 < 01/2. For any ¢ € (0,02/2) and j > 2/d, let ¢j(x) = ¢(j(|z| — 0)). Let
t1 >ty >0and 0 < h € C§(Qs,). For any k € Z* and 0 < § < d2/2, let ¢y, 5 be the
solution of

Y+ A A =0 in Q5 x (0,41)
P(x,t) =0 on 9Qs x (0,t1) (2.18)
Y(,to) = h(z) in Qs

and

wj(x) = I ¢ (2 — ay).
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Then |Vw;| < Cj and |Aw;| < Cj? for some constant C' > 0. By the maximum
principle, 0 < ¢ s < |||l L in Q5 x (0,%1). Hence Oy, 5/0v < 0 on 99 x (0,t1).
Then

/ (ur (2, 11) — wa(, 11)) () dar
Qs

5’%5 do dt

:/ (u1(, to) — uz(x,t0))r,s(x, to)w;(x dl“*‘/ / - /")

t1
/ / (ur — u) {w; (Optpe.s + ADYy o)

+ AVw; - Vipy, s + Ahy s Aw; } da dt

t1
< ||| pe / (uy(z,ty) — us(w,t)) 4 do + / / |ur — ug||A — Ag||A¢y 5| da dt
Qs to Qs

i0 t1
vey [ ! = {1V — aul - Vg + s} el
j Sle—ai|<o+5~1
=10+ 1+ Is. (2.19)

We will now use a modification of the proof of theorem 2.1 of [7] to estimate the
derivative of ¢y s on U;° ;0Bs(a;) x (0,t1). Let

_ 52777, o |l‘ o ai|27n

qi(z) = P Nl pe Vi=1,..., 4. (2.20)
Then for any i = 1,...,1g, ¢; satisfies
g+ ArAg =0 in (Bs, (a:)\Bs(a:)) x (0,t1)
q=20 on 0Bs(a;) x (0,t1) (2.21)

q=|[hllL= on 0Bs,(a;) x (0,11)
q=>0 on Bs,(a;)\Bs(a;)

Since 9y, s is a subsolution of (2.21), by the maximum principle,

0 <’(/Jk5(l‘ t) < ql(,T) Vi < |x—ai| <02,0<t <t i=1,... 10 (222)
3%,& dgi|  (n—2)0' " . .
i’ o o = WH}L”LOO on 335(%) X (O,tl) Vz:l,...,zo.
(2.23)
By (2.20) and the mean value theorem,
n—2)j toln . .
qi(z) <¢Hh”,—qx <lr—a)| <o+ Ni=1,... 4. (2.24)

§2=n — 53"
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By (1.13), (1.16), (2.19), (2.22), (2.23) and (2.24),

1o t1
n<eyif | s
i—=1 Jto JoK|r—as|<o+5t

( )61 n

{|V|xaz| Vsl + 220
752

20 t1
_ m m
¢ E / / ui — ug'|
i=1Y%to 0Bs(a;)

||h||Lw} da dt

Oy 5 (n —2)5t—" .
. {‘ v + §2-n — 52" |h||Lee p dzdt as j — oo
20( 51 n ||hH f:/ / | m m|d dt
" L= Uy — Uy o
52 OBs(ai)
C/||hHL°°t151 " n—1—m~y,
MR 20 (2.25)

By the same argument as the proof of lemma 2.3 of [4],
lim I, = 0. (2.26)

Hence letting first j — oo and then & — oo in (2.19), by (2.25) and (2.26),

/ (ui(z,t1) —uz(z, t1))h(z) de < ||h||L°°/ (ur (@, to) — uz(z, 1))+ da
Qs Qs

C IRl t16"™ & 1
+ T > 6 i (2.27)

Letting t9 — 0 in (2.27), by (1.14) and (1.16),

/ 2-n 0
/ (Ul (x, t1) — UQ(QJ, tl))h(g;) dz < M Z 6n727m’yi
Qs

927n — 5§_n i=1
:>/A(u1(x,t1) —ug(z,t1))h(x)de =0 Vt; >0 asd — 0. (2.28)
Q
We now choose a sequence of smooth functions 0 < h; € C§°(€s,) such that h;(z) —
X{ur>us}n0, () for any z € Qs, as i — oco. Putting h = h; in (2.28) and letting

1 — 00,

/ (ul(x,tl)—ug(m,tl))+dx:0 Vt1 > 0, 0<(52<(51/2
Q

52

:>/A(u1(a?,t1)—ug(:v,tl))+dx:0 Vi1 >0 asdy — 0
0

and (1.15) follows. O
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By theorem 1.1, lemmas 2.3 and 2.15 of [15] and theorem 1.2 and proposition
2.2 we have the following result.

THEOREM 24. Let n>3, 0<m<(n—2)/n, 0<d <min(1,d), po >0,
feL>®02x(0,00)) be such that f>pg on 90 x (0,00) and o < ug €
LY (Q\{a1,...,a;,}) for some constant p > n(1—m)/2 be such that (1.2) and
(1.6) hold for some constants satisfying (1.16) and A1, ..., Xiy, N, ..., Aj, € R,
Then there exists a unique solution u of (1.3) which satisfies (2.3) such that
for any constants T >0 and 3 € (0,01) there exist constants C, = C1(T) > 0,

Cy = Co(T) > 0, such that (2.17) holds.

Proof of theorem 1.3. Since the proof is similar to the proof of theorem 1.2, we will
only sketch the argument here. Let

A= A(z,t)

ul(l’,t)m - u2(£7t>m

up(x,t) — ug(x,t)

Yz eR"t>0 satisfying us (z,t) # ua(x,t)

muy (o, 1) Va € R7,t > 0 satisfying up(x,t) = uz(x,t)
0 Ve =a;,i=1,...,i9,t > 0.
(2.29)
For any k € ZT, let
H)m — t)m _
ua (2, 8 uz(, | Ve e R, ¢t >0
ag(z,t) = |ua(z,t) —ua(z, 0)| + (1/k) (2.30)
0 Ve=a;, t=1,...,i9,t >0

and Ay, = Ap(z,t) = ag(x,t) + k71 Let 0 < dy < 01/2. For any d € (0,62/2) and
Jj=2/d2, let ¢, ¢; and w; be as in the proof of theorem 1.2. Let t; > to > 0,
Ry > R1+1, R>2Rj and h € C5°(Qy,,ry ). For any k € Z* and 0 < § < d2/2, let
Yr.5,r be the solution of

Py + AkA’l/) =0 in Q(S,R X (O,tl)
P(x,t) =0 on 95 r x (0,t1) (2.31)
Y(z,to) = h(z) in Qg

By the maximum principle, 0 < ¥¢rsr < ||hllze in Qs5r x (0,t1). Hence
Oy s.r/0v <0 on OBR x (0,t1). Then by an argument similar to the proof of
theorem 1.2,

/ (u1(z,t1) — uo(x,t1))h(x) dz
Qs.r
<Ile= [ (e to) = ua(anto)) do

ty
+/ / |U17u2|‘A7AkHA1/Jk,5yR|d:Cdt
to JQs.r
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" OVr.5,R
/ / Jug (@, t)™ —U2$tm|’ do dt
9Bpr
c§2—n 0 I
+ m”hﬂm > o gnmrmmn (2.32)
i=1
Let
‘x|27n _ R27n
= hl feo.
Q) = gy = e
Then @ satisfies
=0 on 0Bg x (0,t
! ax(0.0) (2.33)
q = ||h||Loo on 8BR/2 X (O,tl)
q 2 O on BR\BR/2

Since v s r is a subsolution of (2.33), by the maximum principle,

< Ysr(zt) <Qx) VR/2< |z|<R,0<t<

OV 5. R 0Q (n—2)R'""
2 < e oo < iy =S 83 O,t .
:»] wot] < |0 bl < Glhll= o 0B x (0,11
(2.34)
By (2.32) and (2.34),
/ (ur(z,t1) — ua(z, t1))h(x) de
Qs.r
<Ml [ (o) — wal ). do
Qs r
t1
/ / lur — || A — Ap||Adbpsn| da dt
Qs R
ty
C”h”Loo/ / lur (z,t)™ — ug(z,t)™| do dt
OBRr
062 " n—2—m
+ S P \h||LooZ<5 Vi, (2.35)

Letting first k& — oo and then tg — 0, 6 — 0 in (2.35), by the proof of lemma 2.3 of
[4] and similar argument as the proof of theorem 1.2, the first term, second term
and the last term on the right hand side of (2.35) vanish. This together with the
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mean value theorem and (1.19) implies that
/A (ui(z,t1) — ua(z, t1))h(x) de
Br

Clihllz= HL / / lug (2, 6)™ — ug(x,t)™| do dt
OBr

m—1 Al e
< M/ / ut (@, 1) — uz(z,t)|do dt
R OBr

C'Nhll= [ [ "
< —— |ug(z,t) — po| do dt + |ui(x,t) — poldodt p .
R o JoBg o JoBg

(2.36)

By (1.20) there exists a sequence {R;}32, C (2R, 00), Rj — 00 as j — oo, such
that

t1
/ / (lua(z,t) — pol| + |ua(z,t) — pol)dodt — 0 as j — oo. (2.37)
o JoBg,
Putting R = R; in (2.36) and letting j — oo, by (2.37),
/A (un(z, t1) — ws(@, t1)h(z)dz =0 Vi1 > 0. (2.38)
By (2.38) and an argument similar to the proof of theorem 1.2,

/A (un(a,t1) — ua(@, t1)) s dz = 0 ¥y > 0
and (1.21) follows. O

By theorem 1.2, lemmas 2.3 and 2.15 and the proof of theorem 1.6 of [15] and
theorem 1.3 we have the following result.

THEOREM 2.5. Let n >3, 0<m < (n—2)/n, 0<d; <min(1,d), po >0 and

Lo < ug € LIOC(]R \{ai,...,ai}) for some constant p > n(l —m)/2 be such that
(1.10) holds for some constants satisfying (1.18) and A1, ..., Xiy, Ay, ..., Aj, € R,

10
Suppose (1.17) also holds for some constant Ry > Ry. Then there e:cists a unique

solution u of (1.4) which satisfies
u(z,t) = po Ve R7,t>0
and
/A |u(z,t) — po| da < /A lug — poldz ¥Vt >0

such that for any constants T >0 and o € (0,01) there exist constants Cy =
Cy(T) > 0, Cy = Co(T) > 0, such that (2.17) holds.
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3. Existence of highly oscillating solution

In this section, we will prove the existence of initial data such that the corresponding
solution of (1.23) oscillates between infinity and some positive constant as ¢ — oco.
We start with a stability result for the solutions of (1.23).

LEMMA 3.1. Let n>3, 0<m < (n—2)/n, 0<06 <min(1,d), po>0. Let

{uo 352, € Ly, (N\{a1,...,ai}) for some constant p > n(1 —m)/2 be a sequence
of functions satisfying
ug; = po  on Q\{ai,...,a;,} Vjezt (3.1)
such that
A (z) < at V0 < | | <6y, i=1,...,00,j€Z"
———— <ugi(z) L —— T —a; ,oi=1,...,10,
Iz — a7 0,7 iz — ag|" 1 0]

(3.2)
holds for some constants satisfying (1.11), Ay, ..., iy, A}, ..., Nj, € RT. Let
po <ug € LY (Q\{a1,...,ai,}) be such that (1.22) holds. Let u, u;, j € ZT, be the
unique solutions of (1.23) with initial value ug, uo ; respectively, given by theorem
2.3. Suppose

ug; —uo in LY (Q\{a1,...,a;}) asj— . (3.3)

Then uj converges to w uniformly in C*(Qs x (t1,t2)) as j — oo for any 0 < 6 <
50 and ty > t1 > 0.

Proof. Let 0 < ¢’ < § < dg and to > ¢1 > 0. By (3.3) there exists a constant M; > 0
such that

luo jllLr 0,y < My VjeZF. (3.4)

By (3.4) and lemma 2.9 of [15] there exists a constant My > 0 depending on M
and pg such that

[ || oo (5 x (t1 /2,82)) < M2 Vi € ZF. (3.5)

By theorem 2.3,
u;j = po  in Q\{a,...,a;} x (0,00) VjeZ. (3.6)

By (3.5) and (3.6) equation (1.1) for u; are uniformly parabolic on every compact
subset of Q\{a1,...,a;,} x (0,00). Hence by the Ascoli theorem, diagonalization
argument, and an argument similar to the proof of lemma 2.11 of [15] and theorem
1.1 of [13] the sequence {u;}52, has a subsequence {u;, }3, that converges uni-
formly in C?1(Q2s x (t1,t2)) to a solution v of (1.23) as k — oo for any 0 < § < g
and to > t; > 0 and

v>pe  in Qx (0,0). (3.7)
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Since by theorem 2.3 for any T > 0 there exists constants C; = C1(T) > 0, Cy =
Co(T') > 0, such that (2.17) holds for any u;, putting v = u;, in (2.17) and letting

k — oo,
C C
— e t) S —22— VO<|z—ai| <&0<t<T,i=1,2, ... 1.
|x — a;|7i |z — a;|%
(3.8)
By lemma 2.1 there exists a constant C' > 0 such that
1—m 1/(1—m)
/ uj(x,t)de < / ug,j do +Ct
D(jl D2(51
+ |Ds, |po ¥t > 0,0 <8y < 6o/2,j € Z*
1—m 1/(1—m)
< {(|D2511_1/P||U0,j||LP(Dzal)) +Ct}
+ |Ds, lpo ¥t > 0,0 < 8 < 60/2,j € Z*. (3.9)
Let € > 0. By (3.3) there exists jo € Z* such that
[wo,jllLr(Ds,) < lluolle(ps,) +€ VO <01 <o, 5 = Jjo- (3.10)
By (3.9), (3.10) and Holder’s inequality,
/ |Uj(l’,t) 7U07j(l’)|dl‘ < / |Uj($6,t) 7U0,j(l‘)‘d$
Qs Qs5\Ds,
- o 1/(1=m)
+ {(UDas, "2 (ol zo(as, ) + )™ + Ct}
+ |Ds, |10 + 1Ds, |~ P (Jluol| Lo (s, ) + €)
YO < &1 < 8o/2,t > 0,5 > jo. (3.11)
Letting j = ji — oo in (3.11),
/ [v(a,t) —up(x)| de < / |v(a,t) —up(x)| dz
Qs Qé\Dél
m 1/(1—m)
(1D gy +9) 2
+[Ds,|po + Do, [' 2 (l[uol Lo (s, ) + €)
VO < b < 50/2,t > 0. (312)
Letting first ¢ — 0 and then 6; — 0 in (3.12),
lim [v(z,t) —up(z)|de =0 V0 <J < dp. (3.13)

t—0 Qs
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By (3.7), (3.8), (3.13) and theorem 2.3, v = u in (Q\{a1,...,a;,) x (0,00). Hence
u; converges to u uniformly in C*1(Qs x (t1,t2)) as j — oo for any 0 < § < §p and
to > t1 > 0 and the lemma follows. O

We next recall two results from [15].

THEOREM 3.2 (cf. theorem 1.3 of [15]). Suppose that n >3, 0 <m < (n—2)/n
and po > 0. Let po < ug € LY (WN\{a1,...,ai,}) for some constant p > n(1 —m)/2
satisfy (1.22) for some constants satisfying (1.18) and A1, ..., Xi,, A}, ..., Aj, € RT.
Let u be the solution of (1.23) given by theorem 2.3. Then

uw(z,t) — po  in C*(K) ast— oo (3.14)
for any compact subset K of Q\{a1,...,a;,}.

THEOREM 3.3. Suppose that n > 3, 0 <m < (n —2)/n and po > 0. Let pig < ug €
LY (Q\{a1,...,a;,}) for some constant p >n(l—m)/2 satisfy (1.2) for some
constants satisfying

n—2

Y>> Vi > Vi=2,...,ip, (3.15)
m

1—m

and 0 < 81 < dg, A1, - .-, Niy € RT. Let u be the solution of (1.23) given by theorem
2.3. Then

u(z,t) 200 on K ast— oo (3.16)
for any compact subset K of Q.

Proof of theorem 1.4. We will use a modification of the proof of theorem 1 of [22] to
construct the oscillating solution u of (1.23) as the limit of a sequence of solutions
u; of (1.23) with initial value ug ; that satisfies appropriate blow-up condition at
the points ay, ..., a;,. Let

-2 2/(1—
Oél>n s 042:—/( m)+n
m

and let K be a compact subset of Q. We choose j1 € ZT such that j; >

max(d; !, ﬂ(l)/al , u(l)/QQ). Let

(@) i Vo € Q\ UL, Byyj, (ai)
Up,1\r) =
lv —a;|~** Vo€ Byyj(ai), i=1,... 1.

Then wug1(x) > po for any = € Q\{ay,...,a;}. By theorem 2.3 there exists a
unique solution uy of (1.23) which satisfies u1 > po in (Q\{a1,...,a;}) % (0,00).
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By theorem 3.2,
up(z,t) — po  in C*(K) ast— oo.

Hence there exists a constant ¢t; > 1 such that
1
po < uy(z,ty) < po + 3 Vr € K. (3.17)

For any j € Z*, j > j1, let

(3.18)

onl(l') Yz S Q\Bl/j(al)
uo,1,5(w) =

|z —ai|™* Vr € Byj(ar).
Then w1 j(x) > po for any =z € Q\{a1,...,a;,} and j > j;. For any j > ji, let
ug j be the unique solution of (1.23) with ug = ug,1,; given by theorem 2.3 which
satisfies ug ; = po in (Q\{a1,...,a;,}) x (0,00). Since ug1,; converges to up1 in

LY (Q\{a1,...,a;}) as j — oo, by lemma 3.1 us j(z,t1) converges to ui(,t;)
uniformly in K as j — co. Hence there exists jo € ZT,js > j1, such that

Vz € K. (3.19)

1
|u27]'2(x7t1) - Ul(.’E,t1)| < i

Let us = ug j, and up2 = ug1,j,- By (3.17) and (3.19),
3
u0§u2(x,t1)<uo+1 Vr € K.

By (3.18) and theorem 3.3,
us(z,t) — oo in C*(K) ast— oo.
Hence there exists a constant to > t; + 1 satisfying
us(x,ta) =3 Vo e K.

Repeating the above argument we get sequences {ug , }52; C LY (Q\{a1,...,a;}),

{je}s2, CZ*T and {tx}32, C RT, such that jyi1 > ji and tgy1 >t + 1 for all
k € Z, which satisfy

uor(z) = po  in O\ {as,...,a;,} VkeZm,

uo, k() = uop-1(z) Vo € Q\Byj,(a1),k > 2

and
|z —a1|” " Vo€ By (ar) ifk is odd
uo.k(z) = N

=
B |$ — a1|7°‘1 Vo € Bl/]k (al) if k>

1
2 is even
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and if uy is the solution of (1.23) with ug = ug given by theorem 2.3, then wuy

satisfies
1 1
po S ur(,t) S po + 5y o+ o
1
S,LLO—FF Vo e K,1 <1< kand]lis odd, (3.20)
3 1 1 .
ug(z,t;) >l+§— ?+~~+27 > Vee K, 1<lI<kandliseven (3.21)
and
1
|uk(a:,tl) — uk+1(x,tl)| < 27 Vee K,1<I<kke A
Let
Ji? vV € Q\ U 1 By, (a;)
UO(I) = \:c — ai|70‘2 VIE S Bl/_71 (al) 2, 0
o k() V1/jk+1 < |z —a1] < 1/Jk, VAR

Then ug > po in Q\{as,...,a;},

(@) |z —a1|7* Y1/jre1 < |z —a1| < 1/jg, k= ZT  and k is odd
Up\r) =

|z —a1|™* V1/jpe1 < |z —a1| < 1/jp, k> ZT  and k is even,
and wg converges to ug in L (Q\{a1,...,a;}) as k — oo. let u be the unique

solution of (1.23) given by theorem 2.3. Then by lemma 3.1 uj converges to u on
every compact subset of Q x (0,00) as k — oo. letting & — oo in (3.20) and (3.21)
we have

1
po < u(z, ) <’MO+F Ve e K,l € Z" and [ is odd

= lim w(z,top—1) = po  uniformly in K

k—o0

and

u(z,t)) =1 Vo e K,l€Z" and [ is even

= klim u(z,tor) = 0o  uniformly in K
and the theorem follows. O
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