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Let n � 3 and 0 < m < (n − 2)/n. We extend the results of Vazquez and Winkler
(2011, J. Evol. Equ. 11, no. 3, 725–742) and prove the uniqueness of finite points
blow-up solutions of the fast diffusion equation ut = Δum in both bounded domains
and R

n × (0,∞). We also construct initial data such that the corresponding solution
of the fast diffusion equation in bounded domain oscillates between infinity and
some positive constant as t → ∞.
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1. Introduction

The equation

ut = Δum (1.1)

arises in many physical and geometrical models [1,4,19,20]. When m > 1, (1.1) is
called the porous medium equation which appears in the modelling of the flow of
gases through porous media and oil passing through sand etc. Equation (1.1) also
arises as the large time asymptotic limit in the study of the large time behaviour
of the solution of the compressible Euler equation with damping [12,18]. When
m = 1, (1.1) is the heat equation. When 0 < m < 1, (1.1) is called the fast diffusion
equation. Whenm = (n− 2)/(n+ 2) and n � 3, (1.1) arises in the study of Yamabe
flow on R

n [5,6,8]. Note that the metric gij = u4/(n+2) dx2, u > 0, n � 3, is a
solution of the Yamabe flow [6,8],

∂gij

∂t
= −Rgij in R

n × (0, T )

if and only if u is a solution of

ut =
n− 1
m

Δum
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in R
n × (0, T ) with m = (n− 2)/(n+ 2) where R(·, t) is the scalar curvature of the

metric gij(·, t). Recently, Golse and Salvarani [9] and Choi and Lee [2] have
shown that (1.1) also appears as the nonlinear diffusion limit for the generalized
Carleman models.

Although there is a lot of study on (1.1) for the case m > (n− 2)+/n, there are
not many results of (1.1) for the case 0 < m < (n− 2)/n, n � 3. When 0 < m �
(n− 2)/n and n � 3, existence of positive smooth solutions of{

ut = Δum, u � 0, in R
n × (0, T )

u(x, 0) = u0 in R
n

for any 0 � u0 ∈ Lp
loc(R

n), p > (1 −m)n/2, satisfying the condition,

lim inf
R→∞

1
Rn−(2/(1−m))

∫
|x|�R

u0 dx � C1T
1/(1−m)

for some constant C1 > 0 was proved by Hsu in [11].
Let Ω ⊂ R

n be a smooth bounded domain. When 0 < m � (n− 2)/n, n � 3 and
0 ∈ Ω, existence of singular solutions and asymptotic large time behaviour of (1.1)
in (Ω\{0}) × (0,∞) which blow up at {0} × (0,∞) when the initial value u0 satisfies

c1|x|−γ1 � u0(x) � c2|x|−γ2 ∀x ∈ Ω\{0}

for some constants c1 > 0, c2 > 0 and γ2 � γ1 > 2/(1 −m) were proved by Vazquez
and Winkler in [21]. Uniqueness of singular solutions of (1.1) in (Ω\{0}) × (0,∞)
that blow up at {0} × (0,∞) and existence of singular initial data such that the cor-
responding singular solution of (1.1) in (Ω\{0}) × (0,∞) oscillates between infinity
and some positive constant as t→ ∞ were proved by Vazquez and Winkler in [22].

When 0 < m � (n− 2)/n and n � 3, existence of singular solutions of (1.1) in
(Rn\{0}) × (0,∞) which blow up at {0} × (0,∞) when the initial value u0 satisfies

c1|x|−γ � u0(x) � c2|x|−γ ∀x ∈ R
n\{0}

for some constants c1 > 0, c2 > 0 and 2/(1 −m) < γ < (n− 2)/m was proved by
Hui and Kim in [14]. Asymptotic large time behaviour of such solution was also
proved by Hui and Kim in [14] when 2/(1 −m) < γ < n.

Let a1, a2, . . . , ai0 ∈ Ω, Ω̂ = Ω\{a1, a2, . . . , ai0} and R̂n = R
n\{a1, a2, . . . , ai0}.

For any δ > 0, let Ωδ = Ω\(∪i0
i=1Bδ(ai)) and R

n
δ = R

n\(∪i0
i=1Bδ(ai)) where

BR(x0) = {x ∈ R
n : |x− x0| < R}, BR = BR(0), B̂R(x0)=BR(x0)\{x0} and B̂R =

B̂R(0) for any x0 ∈ R
n and R > 0. Let δ0(Ω) = 1/3min1�i,j�i0(dist(ai,Ω), |ai −

aj |) and δ0(Rn) = 1/3min1�i,j�i0 |ai − aj |. For any 0 < δ � δ0(Ω), let Dδ = {x ∈
Ω : dist (x, ∂Ω) < δ}. Let R0 > 0 be such that a1, . . . , ai0 ∈ BR0 . For any R > R0

and 0 < δ � δ0(Rn), let Ωδ,R = BR\ ∪i0
i=1 Bδ(ai). When there is no ambiguity we

will drop the parameters Ω, R
n, and write δ0 instead of δ0(Ω) or δ0(Rn). Unless

stated otherwise we will assume that 0 < m < (n− 2)/n and n � 3 for the rest of
this paper.
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Existence of singular solutions of (1.1) in Ω̂ × (0, T ) which blow up at
{a1, a2, . . . , ai0} × (0, T ) was proved by Hui and Kim in [13] when the initial
value u0 satisfies

u0(x) ≈ |x− ai|−γi for x ≈ ai ∀i = 1, 2, . . . , i0

for some constants γi > max(n/2m, (n− 2)/m) for any i = 1, 2, . . . , i0. When 0 �
f ∈ L∞(∂Ω × [0,∞)) and the initial value 0 � u0 ∈ Lp

loc(Ω\{a1, . . . , ai0}) (Lp
loc(R̂n)

respectively) for some constant p > n(1 −m)/2 satisfies

u0(x) � λi

|x− ai|γi
∀0 < |x− ai| < δ1, i = 1, . . . , i0 (1.2)

for some constants 0 < δ1 < min(1, δ0), λ1, . . . , λi0 ∈ R
+ and γ1, . . . , γi0 ∈

(2/(1 −m),∞), existence of singular solutions of

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut = Δum in Ω̂ × (0,∞)

u = f on ∂Ω × (0,∞)

u(ai, t) = ∞ ∀t > 0, i = 1, . . . , i0

u(x, 0) = u0(x) in Ω̂

(1.3)

and ⎧⎪⎪⎨⎪⎪⎩
ut = Δum in R̂n × (0,∞)

u(ai, t) = ∞ ∀i = 1, . . . , i0, t > 0

u(x, 0) = u0(x) in R̂n

(1.4)

respectively was proved by Hui and Kim in [15]. It was proved in [15] that the
singular solutions of (1.3) and (1.4) constructed in [15] have the property that for
any T > 0 and δ2 ∈ (0, δ1) there exists a constant C1 > 0 such that

u(x, t) � C1

|x− ai|γi
∀0 < |x− ai| < δ2, 0 < t < T, i = 1, 2, . . . , i0. (1.5)

Moreover [15] if the initial value u0 also satisfies

u0(x) � λ′i
|x− ai|γ′

i

∀0 < |x− ai| < δ1, i = 1, . . . , i0, (1.6)

for some constants λ′1, . . ., λ
′
i0

∈ R
+, and γ′i � γi for all i = 1, . . . , i0, then for any

T > 0 and δ2 ∈ (0, δ1) there exists a constant C2 > 0 such that the singular solutions
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of (1.3) and (1.4) constructed in [15] satisfy

u(x, t) � C2

|x− ai|γ′
i

∀0 < |x− ai| < δ2, 0 < t < T, i = 1, 2, . . . , i0. (1.7)

When f � μ0 and u0 � μ0 for some constant μ0 > 0, the singular solutions of (1.3)
and (1.4) constructed in [15] also satisfy

u(x, t) � μ0 ∀x ∈ Ω̂ (R̂n respectively), t > 0. (1.8)

Asymptotic large time behaviour of such singular solutions was also proved by Hui
and Kim in [15].

In this paper, we extend the results of Vazquez and Winkler [22] and prove the
uniqueness of singular solutions of (1.3) and (1.4). We also construct initial data
u0 such that the corresponding singular solution of (1.3) with f = μ0 > 0 oscillates
between infinity and some positive constant as t→ ∞. More precisely we will prove
the following results.

Theorem 1.1. Let n � 3, 0 < m < (n− 2)/n, 0 < δ1 < min(1, δ0), μ0 > 0, f1, f2 ∈
C3(∂Ω × (0,∞)) ∩ L∞(∂Ω × (0,∞)) be such that f2 � f1 � μ0 on ∂Ω × (0,∞) and

μ0 � u0,1 � u0,2 ∈ Lp
loc(Ω\{a1, . . . , ai0}) for some constant p >

n(1 −m)
2

(1.9)

be such that

λi

|x− ai|γi
� u0,1(x) � u0,2 � λ′i

|x− ai|γ′
i

∀0 < |x− ai| < δ1, i = 1, . . . , i0 (1.10)

holds for some constants λ1, . . ., λi0 , λ
′
1, . . ., λ

′
i0

∈ R
+ and

γ′i � γi >
2

1 −m
∀i = 1, 2, . . . , i0. (1.11)

Suppose u1, u2 are the solutions of (1.3) with u0 = u0,1, u0,2, f = f1, f2, respectively
which satisfy

uj(x, t) � μ0 ∀x ∈ Ω̂, t > 0, j = 1, 2 (1.12)

such that for any constants T > 0 and δ2 ∈ (0, δ1) there exist constants C1 =
C1(T ) > 0, C2 = C2(T ) > 0, such that

C1

|x− ai|γi
� uj(x, t) � C2

|x− ai|γ′
i

∀0 < |x− ai| < δ2, 0 < t < T, i = 1, 2, . . . , i0, j = 1, 2. (1.13)

Suppose u1, u2 also satisfy

‖ui(·, t) − u0,i‖L1(Ωδ) → 0 as t→ 0 ∀0 < δ < δ0, i = 1, 2. (1.14)

Then

u1(x, t) � u2(x, t) ∀x ∈ Ω̂, t > 0. (1.15)
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Theorem 1.2. Let n � 3, 0 < m < (n− 2)/n, 0 < δ1 < min(1, δ0), μ0 > 0, μ0 �
f1 � f2 ∈ L∞(∂Ω × (0,∞)) and (1.9), (1.10), hold for some constants λ1, . . ., λi0 ,
λ′1, . . ., λ

′
i0

∈ R
+ and

2
1 −m

< γi � γ′i <
n− 2
m

∀i = 1, 2, . . . , i0. (1.16)

Suppose u1, u2 are the solutions of (1.3) with u0 = u0,1, u0,2, f = f1, f2, respectively
which satisfy (1.12) and (1.14) such that for any constants T > 0 and δ2 ∈ (0, δ1)
there exist constants C1 = C1(T ) > 0, C2 = C2(T ) > 0, such that (1.13) holds.
Then (1.15) holds.

Theorem 1.3. Let n � 3, 0 < m < (n− 2)/n, 0 < δ1 < min(1, δ0), μ0 > 0, R1 >

R0 and μ0 � u0,1 � u0,2 ∈ Lp
loc(R̂n) for some constant p > n(1 −m)/2 such that∫

Rn\BR1

|u0,j − μ0|dx <∞ ∀j = 1, 2. (1.17)

Let (1.10) hold for some constants λ1, . . ., λi0 , λ
′
1, . . ., λ

′
i0

∈ R
+ and

2
1 −m

< γi � γ′i < n ∀i = 1, 2, . . . , i0. (1.18)

Suppose u1, u2 are the solutions of (1.4) with u0 = u0,1, u0,2 respectively which
satisfy

uj(x, t) � μ0 ∀x ∈ R̂n, t > 0, j = 1, 2 (1.19)

and ∫
R̂n

|uj(x, t) − μ0|dx �
∫

R̂n

|u0,j − μ0|dx ∀t > 0, j = 1, 2 (1.20)

such that for any constants T > 0 and δ2 ∈ (0, δ1) there exist constants C1 =
C1(T ) > 0, C2 = C2(T ) > 0, such that (1.13) holds. Then

u1(x, t) � u2(x, t) ∀x ∈ R̂n, t > 0. (1.21)

Theorem 1.4. Let n � 3, 0 < m < (n− 2)/n, 0 < δ1 < min(1, δ0) and μ0 > 0.
There exists u0 ∈ Lp

loc(Ω\{a1, . . . , ai0}) for some constant p > n(1 −m)/2, u0 � μ0

in Ω̂, such that

λi

|x− ai|γi
� u0(x) � λ′i

|x− ai|γ′
i

∀0 < |x− ai| < δ1, i = 1, . . . , i0 (1.22)

for some constants satisfying (1.11) and λ1, . . ., λi0 , λ
′
1, . . ., λ

′
i0

∈ R
+ such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut = Δum in Ω̂ × (0,∞)

u = μ0 on ∂Ω × (0,∞)

u(ai, t) = ∞ ∀t > 0, i = 1, . . . , i0

u(x, 0) = u0(x) in Ω̂

(1.23)
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has a unique solution u with the property that u oscillates between μ0 and infinity
as t→ ∞.

This paper is organized as follows. In § 2 we will prove the uniqueness of singular
solutions of (1.3) and (1.4). In § 3 we will prove the existence of initial data such
that the corresponding solution of (1.3) with f = μ0 > 0 oscillates between infinity
and some positive constant as t→ ∞.

We start with some definitions. For any 0 � f ∈ L∞(∂Ω × (0,∞)) and 0 � u0 ∈
L1

loc(Ω̂), we say that u is a solution of⎧⎪⎪⎨⎪⎪⎩
ut = Δum in Ω̂ × (0,∞)

u = f on ∂Ω × (0,∞)

u(x, 0) = u0(x) in Ω̂

(1.24)

if u ∈ L∞
loc(Ω\{a1, . . . , i0} × (0,∞)) is positive in Ω̂ × (0,∞) and satisfies (1.1) in

Ω̂ × (0,∞) in the classical sense with

‖u(·, t) − u0‖L1(K) → 0 as t→ 0 (1.25)

for any compact set K ⊂ Ω̂ and∫ t2

t1

∫
Ω̂

(uηt + umΔη) dxdt =
∫ t2

t1

∫
∂Ω

fm ∂η

∂ν
dσdt+

∫
Ω̂

u(x, t2)η(x, t2) dx

−
∫

Ω̂

u(x, t1)η(x, t1) dx (1.26)

for any t2 > t1 > 0 and η ∈ C2
c ((Ω\{a1, . . . , ai0}) × (0,∞)) satisfying η ≡ 0 on ∂Ω ×

(0, T ). We say that u is a solution of (1.3) if u is a solution of (1.24) and satisfies

u(x, t) → ∞ as x→ ai ∀t > 0, i = 1, . . . , i0. (1.27)

For any 0 � u0 ∈ L1
loc(R̂n) we say that u is a solution of (1.4) if u ∈ L∞

loc(R̂n ×
(0,∞)) is positive in R̂n × (0,∞) and satisfies (1.1) in R̂n × (0,∞) in the classical
sense and (1.25), (1.27), hold for any compact set K ⊂ R̂n.

For any set A ⊂ R
n, we let χA be the characteristic function of the set A. For

any a ∈ R, we let a+ = max(0, a).

2. Uniqueness of solution

In this section, we will prove the uniqueness of singular solutions of (1.3) and (1.4).

Lemma 2.1. Let n � 3, 0 < m < (n− 2)/n, 0 < δ1 < δ0, 0 � f ∈ L∞(∂Ω × [0,∞))
and 0 � u0 ∈ Lp

loc(Ω\{a1, . . . , ai0}) for some constant p > n(1 −m)/2 be such that
(1.2) holds for some constants λ1, . . ., λi0 ∈ R

+ and γ1, . . . , γi0 ∈ (2/(1 −m),∞).
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Let u be the solution of (1.3) constructed in theorem 1.1 of [15]. Then there exists
a constant C > 0 such that∫

Dδ

u(x, t) dx �
{(∫

D2δ

u0 dx
)1−m

+ Ct

}1/(1−m)

+ |Dδ|‖f‖L∞ ∀t > 0, 0 < δ < δ0/2 (2.1)

holds.

Proof. We will use a modification of the proof of theorem 2.2 of [10] to prove
this lemma. For any 0 < ε < 1, let k > ‖f‖L∞ + ε. Let 0 < δ < δ0/2. We choose
φ ∈ C∞(Ω) such that 0 � φ � 1 in Ω, φ(x) = 0 for any x ∈ Ω\D2δ and φ(x) = 1 for
any x ∈ Dδ. Let α > 2/(1 −m) and η(x) = φ(x)α. Then by direct computation,

Cη :=
(∫

Ω

(η−m|Δη|)1/(1−m) dx
)1−m

<∞.

For any 0 < ε < 1 and M > 0, let⎧⎪⎨⎪⎩
u0,M (x) = min(u0(x),M)

u0,ε,M (x) = min(u0(x),M) + ε

fε(x, t) = f(x, t) + ε ∀(x, t) ∈ ∂Ω × (0,∞)

and let uM and uε,M be the solutions of⎧⎪⎨⎪⎩
ut = Δum in Ω × (0,∞)

u(x, t) = fε on ∂Ω × (0,∞)

u(x, 0) = u0,ε,M in Ω.

and ⎧⎪⎨⎪⎩
ut = Δum in Ω × (0, TM )

u(x, t) = f on ∂Ω × (0, TM )

u(x, 0) = u0,M in Ω

respectively constructed in [15] for some maximal time TM > 0 of existence. By
the result in [15] TM → ∞ as M → ∞. Moreover uε,M decreases and converges to
uM in Ω × (0, TM ) uniformly in C2,1(K) for every compact subset K of Ω as ε→ 0
and uM increases and converges to u in Ω̂ × (0,∞) uniformly in C2,1(K) for every
compact subset K of Ω̂ as M → ∞. By approximation we may assume without loss
of generality that uε,M ∈ C2(Ω × (0,∞)). Then by the Kato inequality ([4,16]),

∂

∂t

(∫
Ω

(uε,M − k)+η dx
)

�
∫

Ω

(um
ε,M − km)+Δη dx

� C

∫
Ω

(uε,M − k)m
+ |Δη|dx

https://doi.org/10.1017/prm.2019.49 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.49


2856 K. M. Hui

� C

(∫
Ω

(uε,M − k)+η dx
)m(∫

Ω

(η−m|Δη|)1/(1−m) dx
)1−m

= C1

(∫
Ω

(uε,M − k)+η dx
)m

∀t > 0, 0 < ε < 1,M > 0 (2.2)

for some constants C > 0, C1 > 0. Integrating (2.2) over (0, t) and letting ε→ 0,
M → ∞ and k → ‖f‖L∞ ,∫

Dδ

(u(x, t) − ‖f‖L∞)+ dx

�
{(∫

D2δ

(u0 − ‖f‖L∞)+ dx
)1−m

+ C1(1 −m)t

}1/(1−m)

∀t > 0

and (2.1) follows. �

Proposition 2.2. Let n � 3, 0 < m < (n− 2)/n, 0 < δ1 < δ0, 0 � f ∈ L∞(∂Ω ×
[0,∞)) and 0 � u0 ∈ Lp

loc(Ω\{a1, . . . , ai0}) for some constant p > n(1 −m)/2 be
such that (1.2) holds for some constants λ1, . . ., λi0 ∈ R

+ and γ1, . . . , γi0 ∈
(2/(1 −m),∞). Let u be the solution of (1.3) constructed in theorem 1.1 of [15].
Then

‖u(·, t) − u0‖L1(Ωδ) → 0 as t→ 0 ∀0 < δ < δ0. (2.3)

Proof. Let 0 < δ < δ0 and 0 < δ′ < δ0/2. Then by lemma 2.1,

‖u(·, t) − u0‖L1(Ωδ) � ‖u(·, t) − u0‖L1(Ωδ\Dδ′ ) + ‖u(·, t)‖L1(Dδ′ ) + ‖u0‖L1(Dδ′ )

� ‖u(·, t) − u0‖L1(Ωδ\Dδ′ ) +
(
‖u0‖1−m

L1(D2δ′ )
+ Ct

)1/(1−m)

+ |Dδ′ |‖f‖L∞ + ‖u0‖L1(Dδ′ ). (2.4)

Letting t→ 0 in (2.4),

lim sup
t→0

‖u(·, t) − u0‖L1(Ωδ) � |Dδ′ |‖f‖L∞ + 2‖u0‖L1(D2δ′ ) ∀0 < δ′ < δ0/2

⇒ lim
t→0

‖u(·, t) − u0‖L1(Ωδ) = 0 as δ′ → 0

and (2.3) follows. �

Proof of theorem 1.1. We will use a modification of the proof of theorem 6
of [22] to prove the theorem. Let 0 < δ < δ0 and t1 > t0 > 0. Since u1, u2 ∈
L∞

loc(Ω\{a1, . . . , i0} × (0,∞)) there exists a constant M1 > 0 such that

uj(x, t) � M1 ∀x ∈ Ωδ, t0 � t � t1, j = 1, 2. (2.5)

By (1.12) and (2.5), equation (1.1) for u1 and u2 are uniformly parabolic on
every compact subset of Ω\{a1, . . . , i0} × (0,∞). Hence by the parabolic Schauder
estimates [17], u1, u2 ∈ C2,1(Ω\{a1, . . . , i0} × (0,∞)).
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We choose a nonnegative monotone increasing function φ ∈ C∞(R) such that
φ(s) = 0 for any s � 1/2 and φ(s) = 1 for any s � 1. For any 0 < δ < δ0,
let φδ(x) = φ(|x|/δ). Then |∇φδ| � C/δ and |Δφδ| � C/δ2. Let α > max(2 +
n, γ1, γ2, . . . , γi0) − n. We choose 0 < ψ ∈ C∞(Ω\{a1, . . . , ai0}) such that ψ(x) =
|x− ai|α for any x ∈ ∪i0

i=1Bδ0(ai). Let δ2 = δ1/2 and T > 0. Then there exists a
constant c1 > 0 such that

ψ(x) � c1 ∀x ∈ Ω\ ∪i0
i=1 Bδ2(ai). (2.6)

By (1.13) and the choice of α, for any i = 1, . . . , i0,∫
Bδ2 (ai)

|x− ai|α(u1 − u2)+(x, t) dx

� CT

∫ δ2

0

ρα+n−γi−1 dρ = C ′
T δ

α+n−γi

2 <∞ ∀0 < t < T (2.7)

for some constants CT > 0, C ′
T > 0. Since u1, u2 ∈ L∞

loc(Ω\{a1, . . . , i0} × (0,∞)),
by (1.14) and (2.7) for any T > 0 there exists a constant C0(T ) > 0 such that∫

Ω̂

ψ(x)(u1 − u2)+(x, t) dx � C0(T ) <∞ ∀0 < t < T. (2.8)

Let

wδ(x) = Πi0
i=1φδ(x− ai).

By the Kato inequality ([4,16]) for any 0 < δ < δ1, t > 0,

∂

∂t

(∫
Ω̂

(u1 − u2)+ψwδ dx
)

�
∫

Ω̂

(um
1 − um

2 )+Δ(ψwδ) dx

=
∫

Ω̂

{wδΔψ + 2∇ψ · ∇wδ + ψΔwδ} (um
1 − um

2 )+ dx

�
∫

Ω̂

(um
1 − um

2 )+wδΔψ dx

+
C

δ

i0∑
i=1

∫
δ/2�|x−ai|�δ

|x− ai|α−1(um
1 − um

2 )+(x, t) dx

+
C

δ2

i0∑
i=1

∫
δ/2�|x−ai|�δ

|x− ai|α(um
1 − um

2 )+(x, t) dx

�
∫

Ω̂

(um
1 − um

2 )+wδΔψ dx

+ C

i0∑
i=1

∫
δ/2�|x−ai|�δ

|x− ai|α−2(um
1 − um

2 )+(x, t) dx. (2.9)
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By direct computation,

Δψ = Δ|x− ai|α = α(α+ n− 2)|x− ai|α−2 ∀x ∈ B̂δ0(ai), i = 1, . . . , i0. (2.10)

By (1.12) and the mean value theorem,

(um
1 − um

2 )+(x, t) � mμm−1
0 (u1 − u2)+(x, t) ∀x ∈ Ω̂, t > 0. (2.11)

By (2.6), (2.9), (2.10) and (2.11),

∂

∂t

(∫
Ω̂

(u1 − u2)+ψwδ dx
)

� C

∫
Ω\∪i0

i=1Bδ2 (ai)

(um
1 − um

2 )+(x, t) dx

+ C

∫
∪i0

i=1Bδ2 (ai)

|x− ai|α−2(um
1 − um

2 )+(x, t) dx

� C

∫
Ω̂

(u1 − u2)+(x, t)ψ(x) dx

+ C

∫
∪i0

i=1Bδ2 (ai)

|x− ai|α−2(um
1 − um

2 )+(x, t) dx.

(2.12)

By (1.13) and the mean value theorem for any |x− ai| � δ2, 0 < t < T , i = 1, . . . , i0,

|x− ai|α−2(um
1 − um

2 )+(x, t) � m|x− ai|α−2u2(x, t)m−1(u1 − u2)+(x, t)

� mC1(T )m−1|x− ai|(1−m)γi−2+α(u1 − u2)+(x, t)

� mC1(T )m−1δ
(1−m)γi−2
0 |x− ai|α(u1 − u2)+(x, t)

� mC1(T )m−1δ
(1−m)γi−2
0 ψ(x)(u1 − u2)+(x, t).

(2.13)

By (2.12) and (2.13),

∂

∂t

(∫
Ω̂

(u1 − u2)+ψwδ dx
)

� CT

∫
Ω̂

(u1 − u2)+(x, t)ψ(x) dx. (2.14)

Integrating (2.14) over (0, t), by (1.14) and (2.8),∫
Ω̂

(u1 − u2)+(x, t)ψ(x)wδ(x) dx

� CT

∫ t

0

∫
Ω̂

(u1 − u2)+(x, t)ψ(x) dxdt ∀0 < t < T

⇒
∫

Ω̂

(u1 − u2)+(x, t)ψ(x) dx

� CT

∫ t

0

∫
Ω̂

(u1 − u2)+(x, t)ψ(x) dxdt ∀0 < t < T as δ → 0. (2.15)
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By (2.15),

u1(x, t) � u2(x, t) ∀x ∈ Ω̂, 0 < t < T. (2.16)

Letting T → ∞ in (2.16) we get (1.15) and the theorem follows. �

By theorem 1.1, lemmas 2.3 and 2.15 of [15] and theorem 1.1 and proposition
2.2, we have the following result.

Theorem 2.3. Let n � 3, 0 < m < (n− 2)/n, 0 < δ1 < min(1, δ0), μ0 > 0, f ∈
C3(∂Ω × (0,∞)) ∩ L∞(∂Ω × (0,∞)) be such that f � μ0 on ∂Ω × (0,∞) and μ0 �
u0 ∈ Lp

loc(Ω\{a1, . . . , ai0}) for some constant p > n(1 −m)/2 be such that (1.2) and
(1.6) hold for some constants satisfying (1.11) and λ1, . . ., λi0 , λ

′
1, . . ., λ

′
i0

∈ R
+.

Then there exists a unique solution u of (1.3) which satisfies (1.8) and (2.3) such
that for any constants T > 0 and δ2 ∈ (0, δ1) there exist constants C1 = C1(T ) > 0,
C2 = C2(T ) > 0, depending only on λ1, . . ., λi0 , λ

′
1, . . ., λ

′
i0

, γ1, . . ., γi0 , γ
′
1, . . .,

γ′i0 , such that

C1

|x− ai|γi
� u(x, t) � C2

|x− ai|γ′
i

∀0 < |x− ai| < δ2, 0 < t < T, i = 1, 2, . . . , i0

(2.17)
holds.

Proof of theorem 1.2. We will use a modification of the proof of lemma 2.3 of [3]
to prove the theorem. Let

A = A(x, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u1(x, t)m − u2(x, t)m

u1(x, t) − u2(x, t)
∀x ∈ Ω̂, t > 0 satisfying u1(x, t) �= u2(x, t)

mu1(x, t)m−1 ∀x ∈ Ω̂, t > 0 satisfying u1(x, t) = u2(x, t)

0 ∀x = ai, i = 1, . . . , i0, t > 0.

For any k ∈ Z
+, let

αk(x, t) =

⎧⎪⎨⎪⎩
|u1(x, t)m − u2(x, t)m|

|u1(x, t) − u2(x, t)| + (1/k)
∀x ∈ Ω̂, t > 0

0 ∀x = ai, i = 1, . . . , i0, t > 0

and Ak = Ak(x, t) = αk(x, t) + k−1. We choose a nonnegative monotone increasing
function φ ∈ C∞(R) such that φ(s) = 0 for any s � 0 and φ(s) = 1 for any s � 1.
Let 0 < δ2 � δ1/2. For any δ ∈ (0, δ2/2) and j � 2/δ2, let φj(x) = φ(j(|x| − δ)). Let
t1 > t0 > 0 and 0 � h ∈ C∞

0 (Ωδ2). For any k ∈ Z
+ and 0 < δ � δ2/2, let ψk,δ be the

solution of ⎧⎪⎨⎪⎩
ψt +AkΔψ = 0 in Ωδ × (0, t1)

ψ(x, t) = 0 on ∂Ωδ × (0, t1)

ψ(x, t0) = h(x) in Ωδ

(2.18)

and

wj(x) = Πi0
i=1φj(x− ai).
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Then |∇wj | � Cj and |Δwj | � Cj2 for some constant C > 0. By the maximum
principle, 0 � ψk,δ � ‖h‖L∞ in Ωδ × (0, t1). Hence ∂ψk,δ/∂ν � 0 on ∂Ω × (0, t1).
Then∫

Ωδ

(u1(x, t1) − u2(x, t1))h(x) dx

=
∫

Ωδ

(u1(x, t0) − u2(x, t0))ψk,δ(x, t0)wj(x) dx+
∫ t1

t0

∫
∂Ω

(fm
2 − fm

1 )
∂ψk,δ

∂ν
dσ dt

+
∫ t1

t0

∫
Ωδ

(u1 − u2){wj(∂tψk,δ +AΔψk,δ)

+A∇wj · ∇ψk,δ +Aψk,δΔwj}dxdt

� ‖h‖L∞

∫
Ωδ

(u1(x, t0) − u2(x, t0))+ dx+
∫ t1

t0

∫
Ωδ

|u1 −u2||A−Ak||Δψk,δ|dxdt

+ C

i0∑
i=1

∫ t1

t0

∫
δ�|x−ai|�δ+j−1

|um
1 − um

2 |{j|∇|x− ai| · ∇ψk,δ| + j2ψk,δ}dxdt

= I1 + I2 + I3. (2.19)

We will now use a modification of the proof of theorem 2.1 of [7] to estimate the
derivative of ψk,δ on ∪i0

i=1∂Bδ(ai) × (0, t1). Let

qi(x) =
δ2−n − |x− ai|2−n

δ2−n − δ2−n
2

· ‖h‖L∞ ∀i = 1, . . . , i0. (2.20)

Then for any i = 1, . . . , i0, qi satisfies⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

qt +AkΔq = 0 in (Bδ2(ai)\Bδ(ai)) × (0, t1)

q = 0 on ∂Bδ(ai) × (0, t1)

q = ‖h‖L∞ on ∂Bδ2(ai) × (0, t1)

q � 0 on Bδ2(ai)\Bδ(ai)

(2.21)

Since ψk,δ is a subsolution of (2.21), by the maximum principle,

0 � ψk,δ(x, t) � qi(x) ∀δ � |x− ai| � δ2, 0 < t � t1, i = 1, . . . , i0 (2.22)

⇒
∣∣∣∣∂ψk,δ

∂ν

∣∣∣∣ � ∣∣∣∣∂qi∂ν

∣∣∣∣ = (n− 2)δ1−n

δ2−n − δ2−n
2

‖h‖L∞ on ∂Bδ(ai) × (0, t1) ∀i = 1, . . . , i0.

(2.23)

By (2.20) and the mean value theorem,

qi(x) � (n− 2)j−1δ1−n

δ2−n − δ2−n
2

‖h‖L∞ ∀δ � |x− ai| � δ + j−1, i = 1, . . . , i0. (2.24)
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By (1.13), (1.16), (2.19), (2.22), (2.23) and (2.24),

I3 � C

i0∑
i=1

j

∫ t1

t0

∫
δ�|x−ai|�δ+j−1

|um
1 − um

2 |

×
{
|∇|x− ai| · ∇ψk,δ| + (n− 2)δ1−n

δ2−n − δ2−n
2

‖h‖L∞

}
dxdt

= C

i0∑
i=1

∫ t1

t0

∫
∂Bδ(ai)

|um
1 − um

2 |

×
{∣∣∣∣∂ψk,δ

∂ν

∣∣∣∣+ (n− 2)δ1−n

δ2−n − δ2−n
2

‖h‖L∞

}
dxdt as j → ∞

� 2C
(n− 2)δ1−n

δ2−n − δ2−n
2

‖h‖L∞

i0∑
i=1

∫ t1

t0

∫
∂Bδ(ai)

|um
1 − um

2 |dσ dt

� C ′‖h‖L∞t1δ
1−n

δ2−n − δ2−n
2

i0∑
i=1

δn−1−mγ′
i . (2.25)

By the same argument as the proof of lemma 2.3 of [4],

lim
k→∞

I2 = 0. (2.26)

Hence letting first j → ∞ and then k → ∞ in (2.19), by (2.25) and (2.26),∫
Ωδ

(u1(x, t1) − u2(x, t1))h(x) dx � ‖h‖L∞

∫
Ωδ

(u1(x, t0) − u2(x, t0))+ dx

+
C ′‖h‖L∞t1δ

1−n

δ2−n − δ2−n
2

i0∑
i=1

δn−1−mγ′
i . (2.27)

Letting t0 → 0 in (2.27), by (1.14) and (1.16),∫
Ωδ

(u1(x, t1) − u2(x, t1))h(x) dx � C ′‖h‖L∞t1δ
2−n

δ2−n − δ2−n
2

i0∑
i=1

δn−2−mγ′
i

⇒
∫

Ω̂

(u1(x, t1) − u2(x, t1))h(x) dx = 0 ∀t1 > 0 as δ → 0. (2.28)

We now choose a sequence of smooth functions 0 � hi ∈ C∞
0 (Ωδ2) such that hi(x) →

χ{u1>u2}∩Ωδ2
(x) for any x ∈ Ωδ2 as i→ ∞. Putting h = hi in (2.28) and letting

i→ ∞, ∫
Ωδ2

(u1(x, t1) − u2(x, t1))+ dx = 0 ∀t1 > 0, 0 < δ2 < δ1/2

⇒
∫

Ω̂

(u1(x, t1) − u2(x, t1))+ dx = 0 ∀t1 > 0 as δ2 → 0

and (1.15) follows. �
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By theorem 1.1, lemmas 2.3 and 2.15 of [15] and theorem 1.2 and proposition
2.2 we have the following result.

Theorem 2.4. Let n � 3, 0 < m < (n− 2)/n, 0 < δ1 < min(1, δ0), μ0 > 0,
f ∈ L∞(∂Ω × (0,∞)) be such that f � μ0 on ∂Ω × (0,∞) and μ0 � u0 ∈
Lp

loc(Ω\{a1, . . . , ai0}) for some constant p > n(1 −m)/2 be such that (1.2) and
(1.6) hold for some constants satisfying (1.16) and λ1, . . ., λi0 , λ

′
1, . . ., λ

′
i0

∈ R
+.

Then there exists a unique solution u of (1.3) which satisfies (2.3) such that
for any constants T > 0 and δ2 ∈ (0, δ1) there exist constants C1 = C1(T ) > 0,
C2 = C2(T ) > 0, such that (2.17) holds.

Proof of theorem 1.3. Since the proof is similar to the proof of theorem 1.2, we will
only sketch the argument here. Let

A = A(x, t)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u1(x, t)m − u2(x, t)m

u1(x, t) − u2(x, t)
∀x ∈ R̂n, t > 0 satisfying u1(x, t) �= u2(x, t)

mu1(x, t)m−1 ∀x ∈ R̂n, t > 0 satisfying u1(x, t) = u2(x, t)

0 ∀x = ai, i = 1, . . . , i0, t > 0.
(2.29)

For any k ∈ Z
+, let

αk(x, t) =

⎧⎪⎨⎪⎩
|u1(x, t)m − u2(x, t)m|

|u1(x, t) − u2(x, t)| + (1/k)
∀x ∈ R̂n, t > 0

0 ∀x = ai, i = 1, . . . , i0, t > 0
(2.30)

and Ak = Ak(x, t) = αk(x, t) + k−1. Let 0 < δ2 � δ1/2. For any δ ∈ (0, δ2/2) and
j � 2/δ2, let φ, φj and wj be as in the proof of theorem 1.2. Let t1 > t0 > 0,
R′

0 > R1 + 1, R > 2R′
0 and h ∈ C∞

0 (Ωδ2,R′
0
). For any k ∈ Z

+ and 0 < δ � δ2/2, let
ψk,δ,R be the solution of⎧⎪⎨⎪⎩

ψt +AkΔψ = 0 in Ωδ,R × (0, t1)

ψ(x, t) = 0 on ∂Ωδ,R × (0, t1)

ψ(x, t0) = h(x) in Ωδ,R

(2.31)

By the maximum principle, 0 � ψk,δ,R � ‖h‖L∞ in Ωδ,R × (0, t1). Hence
∂ψk,δ,R/∂ν � 0 on ∂BR × (0, t1). Then by an argument similar to the proof of
theorem 1.2, ∫

Ωδ,R

(u1(x, t1) − u2(x, t1))h(x) dx

� ‖h‖L∞

∫
Ωδ,R

(u1(x, t0) − u2(x, t0))+ dx

+
∫ t1

t0

∫
Ωδ,R

|u1 − u2||A−Ak||Δψk,δ,R|dxdt
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+
∫ t1

t0

∫
∂BR

|u1(x, t)m − u2(x, t)m|
∣∣∣∣∂ψk,δ,R

∂ν

∣∣∣∣ dσ dt

+
Cδ2−n

δ2−n − δ2−n
2

‖h‖L∞

i0∑
i=1

δn−2−mγ′
i . (2.32)

Let

Q(x) =
|x|2−n −R2−n

(R/2)2−n −R2−n
‖h‖L∞ .

Then Q satisfies

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
qt +AkΔq = 0 in (BR\BR/2) × (0, t1)

q = 0 on ∂BR × (0, t1)

q = ‖h‖L∞ on ∂BR/2 × (0, t1)

q � 0 on BR\BR/2

(2.33)

Since ψk,δ,R is a subsolution of (2.33), by the maximum principle,

0 � ψk,δ,R(x, t) � Q(x) ∀R/2 � |x| � R, 0 < t � t1

⇒
∣∣∣∣∂ψk,δ,R

∂ν

∣∣∣∣ � ∣∣∣∣∂Q∂ν
∣∣∣∣ = (n− 2)R1−n

(R/2)2−n −R2−n
‖h‖L∞ � C

R
‖h‖L∞ on ∂BR × (0, t1).

(2.34)

By (2.32) and (2.34),∫
Ωδ,R

(u1(x, t1) − u2(x, t1))h(x) dx

� ‖h‖L∞

∫
Ωδ,R

(u1(x, t0) − u2(x, t0))+ dx

+
∫ t1

t0

∫
Ωδ,R

|u1 − u2||A−Ak||Δψk,δ,R|dxdt

+
C‖h‖L∞

R

∫ t1

t0

∫
∂BR

|u1(x, t)m − u2(x, t)m|dσ dt

+
Cδ2−n

δ2−n − δ2−n
2

‖h‖L∞

i0∑
i=1

δn−2−mγ′
i . (2.35)

Letting first k → ∞ and then t0 → 0, δ → 0 in (2.35), by the proof of lemma 2.3 of
[4] and similar argument as the proof of theorem 1.2, the first term, second term
and the last term on the right hand side of (2.35) vanish. This together with the
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mean value theorem and (1.19) implies that∫
B̂R

(u1(x, t1) − u2(x, t1))h(x) dx

� C‖h‖L∞

R

∫ t1

t0

∫
∂BR

|u1(x, t)m − u2(x, t)m|dσ dt

� mCμm−1
0 ‖h‖L∞

R

∫ t1

0

∫
∂BR

|u1(x, t) − u2(x, t)|dσ dt

� C ′‖h‖L∞

R

{∫ t1

0

∫
∂BR

|u1(x, t) − μ0|dσ dt+
∫ t1

0

∫
∂BR

|u1(x, t) − μ0|dσ dt
}
.

(2.36)

By (1.20) there exists a sequence {Rj}∞j=2 ⊂ (2R′
0,∞), Rj → ∞ as j → ∞, such

that ∫ t1

0

∫
∂BRj

(|u1(x, t) − μ0| + |u2(x, t) − μ0|) dσ dt→ 0 as j → ∞. (2.37)

Putting R = Rj in (2.36) and letting j → ∞, by (2.37),∫
R̂n

(u1(x, t1) − u2(x, t1))h(x) dx = 0 ∀t1 > 0. (2.38)

By (2.38) and an argument similar to the proof of theorem 1.2,∫
R̂n

(u1(x, t1) − u2(x, t1))+ dx = 0 ∀t1 > 0

and (1.21) follows. �

By theorem 1.2, lemmas 2.3 and 2.15 and the proof of theorem 1.6 of [15] and
theorem 1.3 we have the following result.

Theorem 2.5. Let n � 3, 0 < m < (n− 2)/n, 0 < δ1 < min(1, δ0), μ0 > 0 and
μ0 � u0 ∈ Lp

loc(R̂n\{a1, . . . , ai0}) for some constant p > n(1 −m)/2 be such that
(1.10) holds for some constants satisfying (1.18) and λ1, . . ., λi0 , λ

′
1, . . ., λ

′
i0

∈ R
+.

Suppose (1.17) also holds for some constant R1 > R0. Then there exists a unique
solution u of (1.4) which satisfies

u(x, t) � μ0 ∀x ∈ R̂n, t > 0

and ∫
R̂n

|u(x, t) − μ0|dx �
∫

R̂n

|u0 − μ0|dx ∀t > 0

such that for any constants T > 0 and δ2 ∈ (0, δ1) there exist constants C1 =
C1(T ) > 0, C2 = C2(T ) > 0, such that (2.17) holds.
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3. Existence of highly oscillating solution

In this section, we will prove the existence of initial data such that the corresponding
solution of (1.23) oscillates between infinity and some positive constant as t→ ∞.
We start with a stability result for the solutions of (1.23).

Lemma 3.1. Let n � 3, 0 < m < (n− 2)/n, 0 < δ1 < min(1, δ0), μ0 > 0. Let
{u0,j}∞j=1 ⊂ Lp

loc(Ω\{a1, . . . , ai0}) for some constant p > n(1 −m)/2 be a sequence
of functions satisfying

u0,j � μ0 on Ω\{a1, . . . , ai0} ∀j ∈ Z
+ (3.1)

such that

λi

|x− ai|γi
� u0,j(x) � λ′i

|x− ai|γ′
i

∀0 < |x− ai| < δ1, i = 1, . . . , i0, j ∈ Z
+

(3.2)
holds for some constants satisfying (1.11), λ1, . . ., λi0 , λ

′
1, . . ., λ

′
i0

∈ R
+. Let

μ0 � u0 ∈ Lp
loc(Ω\{a1, . . . , ai0}) be such that (1.22) holds. Let u, uj, j ∈ Z

+, be the
unique solutions of (1.23) with initial value u0, u0,j respectively, given by theorem
2.3. Suppose

u0,j → u0 in Lp
loc(Ω\{a1, . . . , ai0}) as j → ∞. (3.3)

Then uj converges to u uniformly in C2,1(Ωδ × (t1, t2)) as j → ∞ for any 0 < δ <
δ0 and t2 > t1 > 0.

Proof. Let 0 < δ′ < δ < δ0 and t2 > t1 > 0. By (3.3) there exists a constant M1 > 0
such that

‖u0,j‖Lp(Ωδ′ ) � M1 ∀j ∈ Z
+. (3.4)

By (3.4) and lemma 2.9 of [15] there exists a constant M2 > 0 depending on M1

and μ0 such that

‖uj‖L∞(Ωδ×(t1/2,t2)) � M2 ∀j ∈ Z
+. (3.5)

By theorem 2.3,

uj � μ0 in Ω\{a1, . . . , ai0} × (0,∞) ∀j ∈ Z
+. (3.6)

By (3.5) and (3.6) equation (1.1) for uj are uniformly parabolic on every compact
subset of Ω\{a1, . . . , ai0} × (0,∞). Hence by the Ascoli theorem, diagonalization
argument, and an argument similar to the proof of lemma 2.11 of [15] and theorem
1.1 of [13] the sequence {uj}∞j=1 has a subsequence {ujk

}∞k=1 that converges uni-
formly in C2,1(Ωδ × (t1, t2)) to a solution v of (1.23) as k → ∞ for any 0 < δ < δ0
and t2 > t1 > 0 and

v � μ0 in Ω̂ × (0,∞). (3.7)
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Since by theorem 2.3 for any T > 0 there exists constants C1 = C1(T ) > 0, C2 =
C2(T ) > 0, such that (2.17) holds for any uj , putting u = ujk

in (2.17) and letting
k → ∞,

C1

|x− ai|γi
� v(x, t) � C2

|x− ai|γ′
i

∀0 < |x− ai| < δ2, 0 < t < T, i = 1, 2, . . . , i0.

(3.8)

By lemma 2.1 there exists a constant C > 0 such that

∫
Dδ1

uj(x, t) dx �

⎧⎨⎩
(∫

D2δ1

u0,j dx

)1−m

+ Ct

⎫⎬⎭
1/(1−m)

+ |Dδ1 |μ0 ∀t > 0, 0 < δ1 < δ0/2, j ∈ Z
+

�
{(

|D2δ1 |1−1/p‖u0,j‖Lp(D2δ1 )

)1−m

+ Ct

}1/(1−m)

+ |Dδ1 |μ0 ∀t > 0, 0 < δ1 < δ0/2, j ∈ Z
+. (3.9)

Let ε > 0. By (3.3) there exists j0 ∈ Z
+ such that

‖u0,j‖Lp(Dδ1 ) � ‖u0‖Lp(Dδ1 ) + ε ∀0 < δ1 < δ0, j � j0. (3.10)

By (3.9), (3.10) and Holder’s inequality,∫
Ωδ

|uj(x, t) − u0,j(x)|dx �
∫

Ωδ\Dδ1

|uj(x, t) − u0,j(x)|dx

+
{

(|D2δ1 |1−1/p(‖u0‖Lp(D2δ1 ) + ε))1−m + Ct
}1/(1−m)

+ |Dδ1 |μ0 + |Dδ1 |1−1/p(‖u0‖Lp(Dδ1 ) + ε)

∀0 < δ1 < δ0/2, t > 0, j � j0. (3.11)

Letting j = jk → ∞ in (3.11),∫
Ωδ

|v(x, t) − u0(x)|dx �
∫

Ωδ\Dδ1

|v(x, t) − u0(x)|dx

+
{(

|D2δ1 |1−1/p(‖u0‖Lp(D2δ1 ) + ε)
)1−m

+ Ct

}1/(1−m)

+ |Dδ1 |μ0 + |Dδ1 |1−1/p(‖u0‖Lp(Dδ1 ) + ε)

∀0 < δ1 < δ0/2, t > 0. (3.12)

Letting first t→ 0 and then δ1 → 0 in (3.12),

lim
t→0

∫
Ωδ

|v(x, t) − u0(x)|dx = 0 ∀0 < δ < δ0. (3.13)
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By (3.7), (3.8), (3.13) and theorem 2.3, v = u in (Ω\{a1, . . . , ai0) × (0,∞). Hence
uj converges to u uniformly in C2,1(Ωδ × (t1, t2)) as j → ∞ for any 0 < δ < δ0 and
t2 > t1 > 0 and the lemma follows. �

We next recall two results from [15].

Theorem 3.2 (cf. theorem 1.3 of [15]). Suppose that n � 3, 0 < m < (n− 2)/n
and μ0 > 0. Let μ0 � u0 ∈ Lp

loc(Ω\{a1, . . . , ai0}) for some constant p > n(1 −m)/2
satisfy (1.22) for some constants satisfying (1.18) and λ1, . . ., λi0 , λ

′
1, . . ., λ

′
i0

∈ R
+.

Let u be the solution of (1.23) given by theorem 2.3. Then

u(x, t) → μ0 in C2(K) as t→ ∞ (3.14)

for any compact subset K of Ω\{a1, . . . , ai0}.

Theorem 3.3. Suppose that n � 3, 0 < m < (n− 2)/n and μ0 > 0. Let μ0 � u0 ∈
Lp

loc(Ω\{a1, . . . , ai0}) for some constant p > n(1 −m)/2 satisfy (1.2) for some
constants satisfying

γ1 >
n− 2
m

, γi >
2

1 −m
∀i = 2, . . . , i0, (3.15)

and 0 < δ1 < δ0, λ1, . . ., λi0 ∈ R
+. Let u be the solution of (1.23) given by theorem

2.3. Then

u(x, t) → ∞ on K as t→ ∞ (3.16)

for any compact subset K of Ω̂.

Proof of theorem 1.4. We will use a modification of the proof of theorem 1 of [22] to
construct the oscillating solution u of (1.23) as the limit of a sequence of solutions
uj of (1.23) with initial value u0,j that satisfies appropriate blow-up condition at
the points a1, . . . , ai0 . Let

α1 >
n− 2
m

, α2 =
2/(1 −m) + n

2
,

and let K be a compact subset of Ω̂. We choose j1 ∈ Z
+ such that j1 >

max(δ−1
0 , μ

1/α1
0 , μ

1/α2
0 ). Let

u0,1(x) =

{
jα2
1 ∀x ∈ Ω\ ∪i0

i=1 B1/j1(ai)

|x− ai|−α2 ∀x ∈ B1/j1(ai), i = 1, . . . , i0.

Then u0,1(x) � μ0 for any x ∈ Ω\{a1, . . . , ai0}. By theorem 2.3 there exists a
unique solution u1 of (1.23) which satisfies u1 � μ0 in (Ω\{a1, . . . , ai0}) × (0,∞).
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By theorem 3.2,

u1(x, t) → μ0 in C2(K) as t→ ∞.

Hence there exists a constant t1 > 1 such that

μ0 � u1(x, t1) � μ0 +
1
2

∀x ∈ K. (3.17)

For any j ∈ Z
+, j > j1, let

u0,1,j(x) =

{
u0,1(x) ∀x ∈ Ω\B1/j(a1)

|x− a1|−α1 ∀x ∈ B1/j(a1).
(3.18)

Then u0,1,j(x) � μ0 for any x ∈ Ω\{a1, . . . , ai0} and j > j1. For any j > j1, let
u2,j be the unique solution of (1.23) with u0 = u0,1,j given by theorem 2.3 which
satisfies u2,j � μ0 in (Ω\{a1, . . . , ai0}) × (0,∞). Since u0,1,j converges to u0,1 in
Lp

loc(Ω\{a1, . . . , ai0}) as j → ∞, by lemma 3.1 u2,j(x, t1) converges to u1(x, t1)
uniformly in K as j → ∞. Hence there exists j2 ∈ Z

+,j2 > j1, such that

|u2,j2(x, t1) − u1(x, t1)| � 1
4

∀x ∈ K. (3.19)

Let u2 = u2,j2 and u0,2 = u0,1,j2 . By (3.17) and (3.19),

μ0 � u2(x, t1) � μ0 +
3
4

∀x ∈ K.

By (3.18) and theorem 3.3,

u2(x, t) → ∞ in C2(K) as t→ ∞.

Hence there exists a constant t2 > t1 + 1 satisfying

u2(x, t2) � 3 ∀x ∈ K.

Repeating the above argument we get sequences {u0,k}∞k=1 ⊂ Lp
loc(Ω\{a1, . . . , ai0}),

{jk}∞k=1 ⊂ Z
+ and {tk}∞k=1 ⊂ R

+, such that jk+1 > jk and tk+1 > tk + 1 for all
k ∈ Z

+, which satisfy

u0,k(x) � μ0 in Ω\ {a1, . . . , ai0} ∀k ∈ Z
+,

u0,k(x) = u0,k−1(x) ∀x ∈ Ω\B1/jk
(a1), k � 2

and

u0,k(x) =

{ |x− a1|−α2 ∀x ∈ B1/jk
(a1) if k � 1 is odd

|x− a1|−α1 ∀x ∈ B1/jk
(a1) if k � 2 is even
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and if uk is the solution of (1.23) with u0 = u0,k given by theorem 2.3, then uk

satisfies

μ0 � uk(x, tl) � μ0 +
1
2l

+ · · · + 1
2k

� μ0 +
1

2l−1
∀x ∈ K, 1 � l � k and l is odd, (3.20)

uk(x, tl) > l +
3
2
−
(

1
2l

+ · · · + 1
2k

)
> l ∀x ∈ K, 1 � l � k and l is even (3.21)

and

|uk(x, tl) − uk+1(x, tl)| < 1
2k

∀x ∈ K, 1 � l � k, k ∈ Z
+.

Let

u0(x) =

⎧⎪⎪⎨⎪⎪⎩
jα2
1 ∀x ∈ Ω\ ∪i0

i=1 B1/j1(ai)

|x− ai|−α2 ∀x ∈ B1/j1(ai), i = 2, . . . , i0

u0,k(x) ∀1/jk+1 � |x− a1| � 1/jk, k � Z
+.

Then u0 � μ0 in Ω\{a1, . . . , ai0},

u0(x) =

{ |x− a1|−α2 ∀1/jk+1 � |x− a1| � 1/jk, k � Z
+ and k is odd

|x− a1|−α1 ∀1/jk+1 � |x− a1| � 1/jk, k � Z
+ and k is even,

and u0,k converges to u0 in Lp
loc(Ω\{a1, . . . , ai0}) as k → ∞. let u be the unique

solution of (1.23) given by theorem 2.3. Then by lemma 3.1 uk converges to u on
every compact subset of Ω̂ × (0,∞) as k → ∞. letting k → ∞ in (3.20) and (3.21)
we have

μ0 � u(x, tl) � μ0 +
1

2l−1
∀x ∈ K, l ∈ Z

+ and l is odd

⇒ lim
k→∞

u(x, t2k−1) = μ0 uniformly in K

and

u(x, tl) � l ∀x ∈ K, l ∈ Z
+ and l is even

⇒ lim
k→∞

u(x, t2k) = ∞ uniformly in K

and the theorem follows. �
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