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Modelling of fluid–particle interactions is a major area of research in many fields of
science and engineering. There are several techniques that allow modelling of such
interactions, among which the coupling of computational fluid dynamics (CFD) and the
discrete element method (DEM) is one of the most convenient solutions due to the balance
between accuracy and computational costs. However, the accuracy of this method is
largely dependent upon mesh size, where obtaining realistic results always comes with
the necessity of using a small mesh and thereby increasing computational intensity. To
compensate for the inaccuracies of using a large mesh in such modelling, and still take
advantage of rapid computations, we extended the classical modelling by combining it
with a machine learning model. We have conducted seven simulations where the first one is
a numerical model with a fine mesh (i.e. ground truth) with a very high computational time
and accuracy, the next three models are constructed on coarse meshes with considerably
less accuracy and computational burden and the last three models are assisted by machine
learning, where we can obtain large improvements in terms of observing fine-scale features
yet based on a coarse mesh. The results of this study show that there is a great opportunity
in machine learning towards improving classical fluid–particle modelling approaches by
producing highly accurate models for large-scale systems in a reasonable time.

Key words: wet granular material, coastal engineering, river dynamics

1. Introduction

Problems of fluid–particle interactions are great in number, and they have constituted
significant research topics in the areas of environmental engineering (control and
management of such natural hazards as landslides and avalanches), chemical engineering
(designing fluidized bed systems) and geo-systems, where fluid–solid interactions are a
controlling factor on energy production. Depending on the scale and the complexity of the
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problem, there have been many studies that have attempted to advance our understanding
of these phenomena experimentally (Khan & Richardson 1989; Ling et al. 2012; Ramezani
et al. 2018; Wagner et al. 2019). However, the common drawbacks of all experimental
studies are that they are very difficult to accurately reproduce, and results are not as easily
extractable. Furthermore, control of the boundary conditions is also difficult. Among
the numerical approaches that allow modelling of fluid–particle interactions, the most
significant ones are: lattice-Boltzmann method coupled with the discrete element method
(DEM) (Lu & Hsiau 2008; Houlsby 2009; Rycroft, Orpe, & Kudrolli 2009; Hassanpour
et al. 2011), smoothed particle hydrodynamics (Ji, Chen & Liu 2019; Xu, Dong & Ding
2019; Chen et al. 2020) and computational fluid dynamics (CFD-DEM) (Wu et al. 2010;
Hager et al. 2011; Jayasundara et al. 2011; Chen et al. 2012; Tong et al. 2013; Zhao & Shan
2013a; Li, Zhao & Kwan 2020b).

The CFD-DEM method has been shown to be superior in terms of computational
efficiency and is more numerically convenient than the methods listed above. This method,
as an Euler—Lagrange method, uses CFD to solve the locally averaged Navier–Stokes
equations to model fluid flow, and Newton’s equation of motion for the system of particles
through DEM, where CFD is continuum based, and DEM is a discrete-based method.
The coupling between these methods is achieved by exchanging fluid–particle interaction
forces, such as a viscous force, pressure gradient force and drag force (Tsuji, Kawaguchi
& Tanaka 1993; Xu & Yu 1997; Xu et al. 2001; Zhu et al. 2007; O’Sullivan 2011). This
method has been applied with great success to problems in a large number of applications,
industries and engineering branches, including chemical and petroleum engineering,
material processing, manufacturing and the mining industries, problems that involve
large- and small-scale fluid–particle interactions (Zhu et al. 2008). More importantly,
this approach has been successfully applied to problems related to geo-materials, such
as underwater sandpile formation, flow under sheet pile walls, sinkholes and seepage flow
in soils, and deformations in porous media (Suzuki et al. 2007; Chen, Drumm & Guiochon
2011; Zhao & Shan 2013a,b; Zhang & Tahmasebi 2019).

Nevertheless, the accuracy of this approach is largely dependent upon the size and
number of mesh cells that are used in a given case. In an ideal scenario, regardless of
the scale of the problem, one would use the maximum number and the smallest size
of cells possible to capture all the fine-scale fluid features. However, this comes with a
considerable computational trade-off. Increasing the number of cells boosts the number
of computations that must be carried out for a particular domain. Therefore, depending
on the problem, one must find compromises between fast, but inaccurate/accurate, and
slow solutions. Sometimes it is possible to decrease the speed of the simulations by
conducting mesh independence analysis to determine the largest size of mesh that can be
used, without a significant loss of accuracy. But even then, improvements in CPU speeds
are usually very insignificant. Furthermore, we always want to have the most accurate
response and observe the fine-scale features produced by the fluid and solid whether we
deal with small- or large-scale systems. Due to this computational obstacle, however, it
has been generally accepted to use fine-mesh systems for small problems. Thus, observing
such features for large problems is either not possible, or one must invest significant
computational resources to accomplish it, which is often prohibitive. The comparison
between coarse- and fine-scale modelling is shown in figure 1. As demonstrated, the
coarse-scale modelling cannot show the fine-scale features and often suffices for a general,
and crude, representation.
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(b)
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Figure 1. Comparison between (a) coarse-scale and (b) fine-scale modelling for the same time step.

With the recent developments in machine learning (ML) methods and their successful
application to classical engineering problems, various advances have been made to
accelerate numerical methods (Kachrimanis, Karamyan, & Malamataris 2003; Ariana,
Vaferi, & Karimi 2015; Benvenuti, Kloss, & Pirker 2016; Chaurasia & Nikkam 2017;
Liang et al. 2018a,b; Figueiredo et al. 2019; Brevis, Muga, & van der Zee 2020; Prieto
2020). This capacity has also been extended to problems related to fluid dynamics and
granular flow (Radl & Sundaresan 2014; Kutz 2017; Wan & Sapsis 2018; Fukami, Fukagata
& Taira 2019; Li et al. 2020a; Park & Choi 2020; Aghaei Jouybari et al. 2021) where
its applications towards the former has been extensively reviewed (Brenner, Eldredge,
& Freund 2019; Brunton, Noack, & Koumoutsakos 2020; Fukami, Fukagata, & Taira
2020a). For example, a ML approach was used for the estimation of gravitational solid
flows (Garbaa et al. 2014). In a study conducted by Antony, Zhou & Wang (2006),
a mechanistic neural network was applied to predict the micro-macroscopic behaviour
of dense granular systems, subjected to quasi-static shearing. In another relevant study
by Farizhandi, Zhao & Lau (2016), a ML method was developed towards modelling
the change in the distribution of particles in fluidized beds. ML methods have also
been applied to predict the permeability of loosely packed granular systems based on
experimental and literature data (Mahdi & Holdich 2017). More importantly, ML has been
applied in an Euler–Euler fluid–particle coupling problem to improve a filtered two-fluid
model by estimating a drag correction for coarse-mesh simulations (Jiang et al. 2019). In
their study, they were able to correct the inaccuracies that come with using a large-scale
mesh when modelling gas–solid fluidized beds. All such developments have motivated us
to tackle the complex problem of fluid–particle interactions using ML with the hope of
improving such modelling by learning the phenomena that occur in fine-scale simulations
and transferring them to coarse-scale models. Hence, as a result of investigating how
ML can be applied to the problem of mesh dependence, one could improve the inherent
inaccuracies associated with a coarse mesh when using classical coupling methods and
retain the superior computational speed associated with large-mesh systems. In this paper,
therefore, we do not aim to criticize the existing drag force models but to demonstrate
how ML can potentially be used to enhance those models with lower accuracies for large
simulation domains.

This paper, therefore, aims to improve the current multi-physics numerical framework
for fluid–particle interactions and offer a more efficient alternative, which can make
the application of such models more feasible for various problems in mining, chemical,
geotechnical and energy resources, as well as to problems like prevention of debris
flow and granular failure hazards. To do so, we will use ML due to its ability to work
with large data and find complex relationships among them. In addition, the rationale
behind using ML is that the drawbacks of the coupling methods, in particular the fluid
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dynamics, could be mitigated by substituting some of the controlling computations with
ML. To be more specific, we hypothesize that the drag force is the controlling factor in
particle displacement, therefore we substitute the drag force calculations for large-scale
problems with a ML model trained on fine-scale simulations to predict drag forces during
run time based on fluid and particle velocities. Similar attempts have also been made
to enhance the resolution of turbulent flows using an image-to-image regression, while
we aim to improve the computations of fluid–particle interactions in a two-phase and
dynamic system by substituting the drag force calculations in coarse-scale simulation via
a pre-trained ML model on a fine-scale simulation (Fukami, Fukagata, & Taira 2020b;
Kim et al. 2021). The final results of the coarse-scale coupling aided by ML have
demonstrated significant improvements and greater similarity with the fine-scale (ground
truth) modelling, compared with a classical coarse-scale simulation.

The remainder of this paper is organized as follows: in § 2 we discuss the methodology
that we follow for conducting the numerical simulations for the fluid and solid, and we also
briefly discuss the proposed ML method. In § 3 we outline the model set-up, its geometry
and parameters that were used to conduct the simulations. Section 4 focuses on presenting
the results obtained from three models, namely fine-scale, coarse-scale and coarse-scale
ML-aided models. Finally, § 5 summarizes and concludes the paper.

2. Methodology

In this section, we will discuss the implemented modelling approaches to simulate
fluid–solid interactions, the governing equations of which (i.e. CFD-DEM) can be found
in many relevant studies (Xu & Yu 1997; Hager et al. 2011; Zhao & Shan 2013a,b; Ku, Li
& Løvås 2015). First, we will elaborate on the major equations that are responsible for the
particle–particle and particle–wall interactions. Then, we will discuss the methodology
that stands behind the fluid component of the simulation. Third, we will provide the
key equations that enable fluid–particle coupling and exchange of forces and momenta.
Finally, we will discuss how ML is implemented to improve the capabilities of the utilized
modelling and what network architecture was found to be most optimal in our simulations.

2.1. Governing equations – particle system
Most problems in fluid–solid modelling are approached by approximating inter-particle
interactions, as in these cases such forces can be averaged (Hinch & Serayssol 1986;
Yang et al. 2019) and treated as lubrication forces. However, in situations where particles
are expected to undergo large displacements (i.e. granular column collapse), computing
inter-particle interactions requires a greater precision (Topin et al. 2012). To this end,
the DEM is fully capable of accomplishing this and is a promising methodology for our
simulations.

DEM is a rapidly developing tool that has largely impacted the particle technology sector
(Höhner, Wirtz & Scherer 2013; Vidyapati & Subramaniam 2013; Bertuola et al. 2016;
Mandal & Khakhar 2016; Wan et al. 2018; Zhang et al. 2018a,b). Since its first formulation,
there has been a great improvement in DEM in solving many micromechanical problems
(Chen & Qiu 2012) such as soil consolidation (Cui, Chan, & Nouri 2017), erosion (Tang,
Chan, & Zhu 2017), debris flow entrainment (Payne et al. 2008), granular flow mobility
(Xu, Hu & Gao 2016; Ding & Xu 2018) and soil irregular vibration (Zhang et al. 2016;
Zhang et al. 2018a,b).
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In classical DEM, contact forces between objects are calculated by allowing a small
overlap between the solid bodies (usually not larger than 5 % of the particle radius), where
the forces are proportional to the amount of overlap. Thus, the choice of contact model
becomes significant. In this study, since we are interested only in observing mechanical
inter-particle behaviour, we adopt the Hertzian force model as it neglects cohesive forces
between the particles (Hertz 1882). In our coupled system, the governing equations of
particle motion are the classical DEM equations, extended by a force term F f

i , which
accounts for the fluid–particle interactions

mp
dvp

dt
=

∑
Np,w

F p,w + F f
p + mpg, (2.1)

Ip
dωp

dt
=

∑
Np,w

Mp,w, (2.2)

where mp is particle mass, vp is the velocity of particles, F p,w particle–particle
or particle–wall force, F f

p is the particle–fluid interaction force, g is gravitational
acceleration, ωp is the angular velocity, Ip is the moment of inertia and Mp,w is the moment
acting on particles, created either by other particles or walls. The particle–fluid interaction
term F f

p accounts for all fluid–solid interaction forces, namely the pressure gradient force
F∇p, drag force F d, viscous force F∇·τ , virtual mass force F vm, Basset force F B, Saffman
force F Saff and Magnus force F Mag (Crowe et al. 2011)

F f
p = F∇p + F d + F∇·τ + F vm + F B + F Saff + F Mag. (2.3)

In most scenarios, the first three forces account for the majority of fluid–particle forces,
and others may be neglected. Therefore, in our models we use

F f
p = F∇p + F d + F∇·τ . (2.4)

As mentioned earlier, the Hertzian contact force model along with Coulomb’s friction
law are responsible for describing the interactions between particles (i.e. F p,w).

We use the Koch–Hill drag force (Koch & Hill 2001), given by

F d = Vpβ

γp
(uf − vp), (2.5)

where Vp denotes particle volume and β is the interphase momentum exchange term,
defined by

β =
18μf γ

2
f γp

d2
p

(
F0(γp) + 1

2
F3(γp)Rep

)
, (2.6)

where γf is local porosity (volume fraction of fluid in a given cell), γp is the volume
fraction of solid (γf + γp = 1) and

Rep = γf ρf |uf − vp|dp

μf
, (2.7)

where ρf is the fluid density, uf and vp are fluid and particle velocities, respectively, dp is
particle diameter and μf is fluid viscosity.
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Furthermore, functions F0 and F3 are given as

F0(γp) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + 3
√

γp

2
+ 135

2
γp ln(γp) + 16.14γp

1 + 0.681γp − 8.48γ 2
p + 8.16γ 3

p
if γp < 0.4

10γp

γ 3
f

if γp ≥ 0.4

, (2.8)

F3(γp) = 0.0673 + 0.212γp + 0.0232
γ 5

f
. (2.9)

2.2. Governing equations – fluid system
Computational fluid dynamics (CFD) uses numerical analysis and data structures to
analyse and solve problems that involve fluid flows and has been applied to a wide range of
research and engineering problems. In this paper, CFD is coupled with DEM to calculate
the drag, pressure gradient and viscous forces. To do so, the fluid domain is discretized
into a set of cells, and the following governing equations are solved at each cell for locally
averaged state variables, such as pressure, density and fluid velocity:

∂

∂t
(γf ρf ) + ∇ · (γf ρf ) = 0, (2.10)

∂

∂t
(γf ρf uf ) + ∇ · (γf ρf uf uf ) = −γf ∇p − Kpf (γf τf ) + ∇ · (γf τf ) + γf ρf g + f , (2.11)

where γf is the void fraction (fluid content of a calculation cell), ρf is the fluid density, uf
is the fluid velocity, p is pressure, τf is the liquid stress tensor, g is the gravity vector and
Kpf is the implicit particle–fluid momentum exchange term given by

Kpf =
γf .

∣∣∣∣∣∑p
F d

∣∣∣∣∣
Vcell.|uf − vp| . (2.12)

In this approach, interaction forces for each particle are calculated first. To obtain Kpf , the
forces of all particles in each fluid cell are summed.

2.3. ML Assisted Modelling
The model uses five variables as inputs, namely: (i) particle velocity in the X direction
(vp,x), (ii) particle velocity in the Z direction (vp,z), (iii) fluid velocity in the X direction
(uf ,x), (iv) fluid velocity in the Z direction (uf ,z), (v) void fraction. These variables are
connected to two outputs which are the drag forces in the X and Z directions (F d,x, F d,z).
The training set is obtained from the fine-scale modelling with a cell size of 4 cm, particle
size of 0.1 cm and where the number of particles = 41 500; see figure 2. The fluid and
particle properties of the training are identical to the ground truth modelling, as well as
simulation control parameters such as time step and coupling interval. The training case
was simulated for 7.5 s of free fall of the particle column. The architecture of the utilized
ML is provided in figure 4. In particular, a multilayer-perceptron neural network model was
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Figure 2. Numerical model set-up and the initial position of granular particles of the training dataset.
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Figure 3. Sensitivity analysis of the effect of the number of layers and neurons on prediction accuracy, using
the ELU activation function. The numbers in the matrix indicate R2.

used for this task. In this paper, we optimized the architecture of the utilized network using
the grid search method, which is a common method for parameter tuning (Liashchynskyi &
Liashchynskyi 2019). This method automatically adjusts the hyperparameters by searching
all possibilities and combinations such that the final estimations are optimum. Then, the
final ML model is derived and used for all computations. An example of the effect of the
number of layers and their neurons is provided in figure 3. In this study, a network with
three hidden layers and [170 70 30] neurons is used, which resulted in a model with an
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Activation Function Equation R2

ReLU ϕ(x) =
{

0 if x ≤ 0
x if x > 0 0.8185

ELU ϕ(x) =
{
α(ex − 1) if x ≤ 0
x if x > 0 0.8408

Sigmoid ϕ(x) = 1/(1 + e−x) 0.4113

Tanh ϕ(x) = (ex − e−x)/(ex + e−x) 0.7023
Softsign ϕ(x) = x/(1 + |x|) 0.7378

Softplus ϕ(x) = ln(1 + ex) 0.8332

SELU ϕ(x) = β

{
α(ex − 1) if x < 0
x if x ≥ 0 0.8096

Loss Function Equation R2

MSE L( y,yp) =
∑n

i=1 (yi−yp
i )

2

n 0.8408

MAE L( y,yp) =
∑n

i=1 |yi−yp
i |

n 0.3809

MSLE L( y,yp) =
∑n

i=1 (log(yi+1)−log( yp
i +1))

2

n 0.1256

MAPE L( y,yp) =
∑n

i=1

∣∣∣∣ yi−yp
i

yi

∣∣∣∣
n 0.2449

Log-Cosh L( y,yp) =
n∑

i=1

log(cosh( yp
i − yi)) 0.7937

Training data size R2

1 000 000 0.8689
500 000 0.8642
250 000 0.8408
100 000 0.7881
50 000 0.7601
25 000 0.5913
10 000 0.2106

Table 1. Summary of sensitivity analysis for different parameters in our proposed ML network.

average accuracy coefficient of R2 = 0.8408. Based on the further sensitivity analysis
(table 1), we found that the exponential linear unit (ELU) activation function, mean
squared error (MSE) loss function and training set that consists of 250 000 data points
resulted in higher prediction accuracies. Model training specifications are summarized in
table 2. In this paper, all R2 values signify the average R2 of F d,x and F d,z, which is
calculated using

R2
( y,ŷ) = 1 −

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − ȳ)2
, (2.13)

where yi is the true value of ith sample– ŷi represents the predicted value for total n
samples, and ȳ = (1/n)

∑n
i=1 yi, i.e. the mean of the observed data.
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Input layer Hidden layers Output layer
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vp, z

vp,x

Figure 4. Our proposed ML architecture for estimating the drag force in the X and Z directions.

Parameter Value Parameter Value

Number of hidden layers 3 Model optimizer Adamax
Number of neurons 170–70–30 Learning rate 0.001
Number of epochs 2000 β1 0.9
Training/Validation 85/15 % β2 0.999
Batch size 500 ε 1×10−7

Training + Validation data size 250 000 Training CPU cost 1856 s

Table 2. Specifications used for training.

In this study, we assign an activation function to each node (neuron) of the network and
determine whether the neuron should be activated, which depends on whether the input
of that neuron is relevant to the prediction or not. To be more specific, we used the ELU
activation function for all hidden layers. The output of this function is determined based
on the following equation:

y =
{

α(ex − 1) if x ≤ 0

x if x > 0
, (2.14)

where α is a coefficient. In most cases, this parameter is chosen to be between 0.1 and
0.3. The outputs of this activation function, therefore, range from slightly below zero
(exponential relation in the case of x < 0) and y = x (linear relation in the case of x > 0).
To compare the effect of the activation function on the a posteriori results of the simulation
we chose the three activation functions that performed best during the sensitivity analysis
phase, namely ELU, Rectified Linear Unit (ReLU, table 1) and smooth approximation of
ReLU (Softplus, table 1), and conducted three ML-assisted simulations on an 8 cm mesh.
The results are shown in figure 5. Based on the visual analysis of the results, we concluded
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0.84 s

SoftplusReLUElu

0.51.0 1.5 2.02.5 3.00 0 0.1 0.2 0.3 0.4 0.5

Velocity (m s–1) Drag force (N)

Ground truth

m

Figure 5. Runoff, velocity and drag force evolution for ground truth fine-scale (4 cm mesh) CFD-DEM,
coarse-scale (8 cm mesh) ML-assisted modelling using the ELU activation function, coarse-scale (8 cm
mesh) ML-assisted modelling using the ReLU activation function and coarse-scale (8 cm mesh) ML-assisted
modelling using the Softplus activation function.

that ELU is optimal in terms of prediction accuracy during a priori training, and when
used for a posteriori coarse-scale ML-assisted simulation. These results are also shown
quantitatively in figure 6.

Another indispensable part of any neural network is a loss (cost) function. This function
calculates the difference between the output of the algorithm and the true values, and it
evaluates how well the model predicts the target values. The goal of the network is to
minimize the output of the loss function and thereby increase the accuracy of predictions.
For our network, we used the MSE loss function, which follows the expression below

MSE =

n∑
i=1

(yi − yp
i )

2

n
, (2.15)

where yi and yp
i are true and predicted values, respectively, and n is the number of

samples/data.
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Figure 6. Quantitative comparison between the performances of several activation functions on the
prediction capability of the proposed ML model.

To find the optimal weights and eventually minimize the loss function, we used
backpropagation, which is a widely used algorithm in the training of ML. In this concept,
the gradients of the activation functions in each successive neuron are tracked to optimize
the weights and reduce the loss function. The gradients are then used by an optimization
algorithm – AdaMax in our case – to update the model weights (Kingma & Ba 2015).
It ultimately calculates to what degree the output values are affected by each individual
weight of the model, by going back from the error function to a specific weight of a neuron.

The dataset was randomly split as follows: 85 % (212 500 data points) for training and
15 % (37 500 data points) for validation and 20 000 data points were used for testing. It
should also be noted that only 2.3 % of the fine-scale data, which are generated from the
training model (figure 2), are used for training. The reason for this was to make sure that
the trained network is not biased toward the training and boundary conditions.

3. Model set-up

To demonstrate the performance of our proposed method, we used a two-dimensional
polygonal pack with 20 000 spherical particles and water as an ambient fluid, where the
properties of both phases are listed in table 3. For the coupling parameters between fluid
and solid, we used a coupling interval of 50 (meaning that one CFD step is coupled with
DEM after 50 DEM steps), and the drag force model was chosen to be the Koch—Hill
model, as using this model we observed the greatest discrepancy between the fine and
coarse cases. A schematic representation of the considered physical domain is shown in
figure 7. As can be seen, this model is very different from the one we used for training the
ML model (figure 2).
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Figure 7. Numerical model set-up and the initial position of the utilized granular system for testing the
proposed ML model.

Granular system Size 20 000 particles, 0.01 mm in
radius

Particle density 5650 kg m−3

Contact model parameters Inter-particle and particle–wall
friction coefficient

μ = 0.1

Young’s modulus (Hertz model) 70 GPa
Poisson’s ratio 0.3
Restitution coefficient 0.7
Rolling friction μr = 0.1

Geometry Height, Length, Width 2 m, 12 m, 0.04 m
Simulation control Time step (DEM) 0.0002

Time step (CFD) 0.01
Coupling interval 50 (no. of DEM/CFD steps)
Simulated real-time 5 s (25 000 steps in DEM)

Fluid properties Viscosity 1×10−6 m2 s−1

Density 1000 kg m−3

Cell size Fine – 4 cm, Coarse - 8 cm,
16 cm, 32 cm.

Number of cells Fine (15 K), Coarse (3750,
900, 228)

Drag force model Koch–Hill
Injection speed 3 m s−1

a priori CPU time Training Case simulation 2080 s
ML Training 1856 s

CPU time full
simulation/Full case
size/CFD part size

Fine CFD-DEM (4 cm) 1550 s /3.29 Gb/1.76 Gb

Coarse CFD-DEM (8 cm) 800 s /2.29 Gb/0.75 Gb
Coarse CFD-DEM (16 cm) 635 s /2.05 Gb/0.48 Gb
Coarse CFD-DEM (32 cm) 627 s /1.98 Gb/0.42 Gb
Coarse ML-CFD-DEM (8 cm) 865 s /2.29 Gb/0.75 Gb
Coarse ML-CFD-DEM (16 cm) 776 s /2.05 Gb/0.48 Gb
Coarse ML-CFD-DEM (32 cm) 695 s /1.98 Gb/0.42 Gb

CPU time per particle drag
force calculation

CFD-DEM 4×10−7 s

ML-CFD-DEM 1.75×10−5 s

Table 3. Model parameters used in the granular failure simulation.
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Figure 8. Parity plots between predicted and exact values of F d,x and F d,z; (a) fine scale (4 cm mesh), (b)
coarse scale (8 cm mesh), (c) coarse scale (16 cm mesh), and (d) coarse scale (32 cm mesh).

The simulations were carried out in parallel using 4 cores of an Intel i7-7700 CPU. The
computational times of the simulations for fine (4 cm), coarse (8, 16, 32 cm) and coarse (8,
16, 32 cm) ML-assisted cases are presented in table 3. The trained network was converted
to C++ and executed during run time to produce the desired drag force using the particle
velocity, fluid velocity and void fraction as inputs. Figure 8 demonstrates the accuracy
of the predictions using the ML-assisted model, where true values are the drag forces
obtained from fine-scale modelling, (a) shows the model performance using identical input
parameters as the fine-mesh simulation and (b–d) represent model performance using the
averaged input values of the fluid velocity and void fraction according to the respective
mesh resolution. Generally, the model demonstrates good predictions for the entire data
range. It can be noted, however, that the accuracy of the predictions diminishes when the
data approach negative values. This observation can be explained by the fact that the data
in the training set are mostly positive, and the model did not have sufficient data (compared
with the positive values) to be as accurate for negative values.

4. Results and discussion

In this study, seven simulations were performed on the geometry shown in figure 7, using
the particle and fluid properties listed in table 3. To observe the differences between the
fine and coarse models and then to be able to improve the coarse simulation, we conducted
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an injection simulation in a granular pack, where the first case, representing fine-scale
modelling, was performed using a 4 cm mesh and the second, third and fourth cases,
representing the coarse-scale modelling, were performed using 8, 16 and 32 cm meshes,
respectively. Similarly, the force computations were replaced with a ML model for the
final drag force predictions in the later coarse models. The drag predictions (in the X and Z
directions) are based on five inputs (particle and fluid velocities in the X and Z directions,
and void fraction)

First, we visually discern substantial differences between the fine and coarse simulations
in terms of particle runoff evolution and the final height of the granular system; see
figure 9. Clearly, using a coarse mesh to solve the fluid–particle interactions results in
a considerable loss in the ability of the utilized numerical simulation to demonstrate
fine-scale features, and the coupling of the drag force between the fluid and solid becomes
less accurate. This can be observed at all stages of the simulation and is most apparent
during the first 1.5 s of injection, where the shock wave-like propagation of the granular
system is observed in fine-scale modelling but is not present in the coarse modelling. We
observe that, towards the first 40 % of the simulation time, the granular system in the coarse
case has almost attained a form that is close to its final shape, without any considerable
variation in height or increase in runoff, while the shape of the granular system in the fine
mesh is very dynamic and the outer boundary of the granular system is gradually moving
towards the outlet throughout the simulation. Furthermore, due to using a coarse mesh,
the effect of the drag force on the particles becomes insignificant to the degree that water
flow is reserved to a corner flow at the top of the domain, without affecting the particles
underneath. This fact poses a problem, since, if a similar case was only performed on a
coarse mesh and if it was related to a natural system, such as landslides or avalanches, then
this modelling would present an overly optimistic result. The difference between the fine
and coarse modelling in terms of the effects of the drag force can be visually confirmed
in figures 9(a) and 9(b). As can be seen, the influence of the drag force on the movement
of particles is much more significant in the case of fine-mesh modelling than it is in the
coarse-mesh simulation. Therefore, it is clear at this point that the discrepancies between
the fine and coarse models are substantial.

In figure 9(c), we present the results for ML-assisted modelling using a coarse mesh.
From a visual examination of the evolution of the particle positions, we observe that the
results of the proposed method using 8 and 16 cm mesh sizes are far closer to the fine-scale
modelling, i.e. figure 9(a), than the corresponding coarse modelling, i.e. figure 9(b), even
though we are still using a coarse mesh to conduct this simulation. We note that, at all
stages of the simulation, the proposed ML-assisted modelling using the two mesh sizes
mentioned above is much more similar to the fine case, indicating that the inherent issue
of the loss in the accuracy associated with using a coarse mesh has been greatly improved.
A simple visual comparison shows that the shape of the granular system at all stages of the
simulation resembles the fine case. Furthermore, we observe that the height and run-off
distance, in all ML-assisted cases, are dynamic, in contrast to the original coarse cases.
Moreover, the distribution of the drag forces which are shown in figure 9 demonstrates
that, although coarse mesh is used, the coupling between the fluid flow and particles is
far superior in the ML-assisted case than in regular coarse-scale modelling. Figure 10
further demonstrates the ability of the proposed ML-assisted modelling to compensate for
inaccuracies when using a coarse mesh. Here, one can observe that, proportionally to the
drag force distribution, velocities of individual particles in the case of fine-scale modelling

938 A20-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

17
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.174


High-resolution fluid–particle interactions

2 4 6 8

m
2 4 6 8

m
2 4 6 8

5 s

4 cm

4 cm

4 cm

4 cm

4 cm

4 cm 8 cm

16 cm

32 cm

8 cm

16 cm

32 cm

8 cm

16 cm

32 cm

8 cm

16 cm

32 cm

8 cm

16 cm

32 cm

8 cm

16 cm

32 cm

2.32 s

1.82 s

1.34 s

1.12 s

0.84 s

Drag force (N)

0 0.1 0.2 0.3 0.4 0.5

m

(b)(a) (c)

Figure 9. Runoff and drag force evolution for (a) ground truth fine-scale (4 cm mesh) CFD-DEM, (b) three
coarse-scale CFD-DEM (8, 16, 32 cm meshes) and (c) coarse-scale (8, 16, 32 cm mesh) ML-assisted modelling.

and the proposed ML-assisted simulation (more so in the 8 and 16 cm cases) are largely
similar and reside on the same scale at all stages of injection. Whereas the original coarse
modelling demonstrates a comparative lack of particle movement.

The differences in the velocities in the system can be further observed in the evolution
of the fluid velocity presented in figure 11. Here, we note that, as opposed to the fine
mesh and ML-assisted modelling, the coarse-mesh modelling demonstrates a comparative
lack of turbulent flow and vorticity in the system. The flow in the coarse-mesh modelling
becomes relatively stable at the early stages of the simulation and the presence of the
solid exerts only a superficial influence on the flow, compared with the original fine-scale
case and the corresponding ML-assisted coarse cases. We also observe that, towards the
fifth second of the simulation, the distribution of fluid velocities in the case of coarse-mesh
modelling demonstrates a trend towards a sharp transition from smaller to larger velocities.
This trend is also confirmed quantitatively in figure 15.
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Figure 10. Runoff and particle velocity evolution for (a) ground truth fine-scale (4 cm mesh) CFD-DEM, (b)
three coarse-scale CFD-DEM (8, 16, 32 cm meshes) and (c) coarse-scale (8, 16, 32 cm meshes) ML-assisted
modelling.

In order to quantitatively compare the results for all three cases, we plotted several
important and quantifiable parameters, which will assist us in conducting a more rigorous
and detailed comparison. To be able to have a general understanding of the distribution
of data in the domain, the average behaviours are compared. Furthermore, in some cases,
and if necessary, more information is also provided. First, as the most important parameter
in our methodology, the drag force data are presented in figure 12(a). The results suggest
that the drag force data in the first two ML-assisted modelling cases (using 8 and 16 cm
mesh sizes) are significantly closer to the ground truth case (fine-mesh modelling) than the
corresponding coarse-mesh cases, and the last ML-assisted case (32 cm mesh) can also be
considered an improvement as compared with the corresponding CFD-DEM case, but to
a lesser degree. The proposed ML-assisted cases reflect the major spike in drag forces
that are observed around first second of the simulation. Additionally, in order to confirm
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Figure 11. Fluid velocity evolution for (a) ground truth fine-scale (4 cm mesh) CFD-DEM, (b) three
coarse-scale CFD-DEM (8, 16, 32 cm meshes) and (c) coarse-scale (8, 16, 32 cm meshes) ML-assisted
modelling.

that the results of the simulations can be reliably reproduced by conducting identical a
priori ML training and using the produced network for future simulations, we conducted
three identical trainings (each time with a different seed number) which are then used
on the same coarse-scale ML-assisted simulations (8 cm mesh). This analysis allows one
to observe how ML models with different initializations can affect the responses. These
results are presented in figure 12. Here, the upper and lower bounds of the cloud region
indicate the maximum and minimum values obtained from coarse-scale ML-assisted
simulation for a particular time step.

Furthermore, to see how our ML-assisted modelling performs compared with other
well-established methodologies for calculating the drag force, we selected two additional
methods, namely those of Di Felice (1994) and Gidaspow (1994), and performed identical
CFD-DEM flow simulations using an 8 cm mesh. A quantitative comparison of the average
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Figure 12. Comparison of average drag force evolution using fine (4 cm) mesh CFD-DEM; coarse (8 cm) mesh
CFD-DEM using three most common models for calculating drag force, i.e. Koch–Hill, Di Felice, Gidaspow;
and ML-assisted coarse (8 cm) CFD-DEM modelling.

drag force evolution is provided in figure 12. The individual drag force evolution curves
suggest that the two additional classical drag force models perform very similarly to
the Koch–Hill model, and demonstrate similarly poor performance on the coarse grid,
compared with the ML-assisted modelling.

Another observation that we consider is that the spike in the case of the proposed
ML-assisted modelling (for all mesh sizes, but less noticeably for 32 cm) comes 0.1–0.2 s
earlier than in the ground truth case. This can also be confirmed by visual examination
of the shape evolution snapshots in figures 9 and 10, where the top of the granular wave
at the upper part of the domain in the case of ML-assisted modelling is moving ahead
of the one shown in the ground truth case. Next, the particle velocities are shown in
figure 13(b). Here, the similarity of the ML-assisted modelling to the fine-scale ground
truth is even more apparent. More importantly, even at the 16 cm mesh size, where a
significant discrepancy between the fine and coarse scales is expected, the ML-assisted
modelling results are substantially closer to the ground truth than the corresponding
coarse CFD-DEM, and the 32 cm ML-assisted case demonstrates a spike on a similar
scale, however, its overall shape is less comparable to the original fine-scale CFD-DEM
modelling. The third set of comparisons includes particle–particle and particle–wall
collision forces; see figure 13(c). Here, the largest spikes (around 1 s) correspond to
the moment when the particles hit the upper wall of the domain. The average values of
the forces around 1 s quantitatively demonstrate that the collision forces in the cases of
coarse-scale modelling are very insignificant, compared with the ground truth and the
ML-assisted (8 and 16 cm) modelling, which is also evident visually in the snapshots
shown in figures 9 and 10. The ML-assisted (32 cm) case, however, demonstrates no
improvement in terms of collision force evolution. Next, the evolution of kinetic energy
in the pack is shown in figure 13(d).

One of the most important quantifiable physical properties that we present in this
study is the comparison of runoff and height evolution between all three cases; see
figure 14. Here, we can confirm the previous visual observations regarding the differences
between the fine- and coarse-scale modelling, and the similarities of fine-scale and
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Figure 13. Uncertainty quantification of the effect of different initializations on the proposed ML model for
predicting (a) drag force, (b) particle velocity, (c) collision force and (d) kinetic energy evolution of the granular
system. The pink colour indicates fluctuations of the ML-assisted modelling (8 cm), where the solid red curve
indicates the average value based on the conducted simulations.

ML-assisted simulations. The final run-off distance at the fifth second of the simulation
for the ground truth CFD-DEM case (4 cm mesh) was 9.1 m, 5.9, 6.5, 6.9 m for the
coarse-scale (8, 16, 32 mesh sizes) CFD-DEM and 9.5, 8.5, 9.4 m for the ML-assisted
(8, 16, 32 mesh sizes) cases, respectively. In terms of the final height of the granular
system, the values are 0.856 m (ground truth), 1.353, 1.151, 0.903 m (8, 16, 32 mesh sizes
CFD-DEM) and 0.876, 0.94, 0.7 m (8, 16, 32 mesh sizes ML assisted). We also confirm
that the height and run-off distance of the coarse-scale case undergo almost no changes
after the first 2 s of the simulation, which is observed visually in figures 9 and 10 (except
for height evolution of 8 cm mesh CFD-DEM modelling).

Another metric that we have included in this paper is the fluid pressure evolution;
see figure 15. Compared with the coarse-scale simulation, the pressure values of the
ML-assisted modelling are much closer to the fine-scale modelling, than in the original
coarse-scale case. All ML-assisted cases are characterized by a major spike, similar to the
ones found in other evolution plots (e.g. drag force, particle velocity, etc.). As expected,
the overall resemblance to the fine scale diminishes with the increase in mesh size, where
using 32 cm mesh resulted in a considerably less similar curve shape.

We also have compared the fluid velocity for all cases and the results are shown in
figure 16. Here, the average values in all three cases are relatively similar. However, the
median values suggest that the transition between the values of fluid velocity is much
sharper in the case of coarse-scale CFD-DEM (8 cm mesh size) modelling. All these
visual and quantitative comparisons between the three cases suggest that the shortcoming
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Figure 14. Runoff (a) and height (b) evolution of the granular system for fine-scale, coarse-scale and
ML-assisted cases.
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Figure 15. Evolution of average pressure of the fluid phase for fine-scale, coarse-scale and ML-assisted cases.

of coarse-scale modelling has for the most part been largely improved by combining it
with a ML model previously trained on ground truth fine-scale data.

5. Conclusions

The importance of studying fluid–solid interactions is manifested in a large number of
areas of science and engineering. It is, therefore, very important to have fast and accurate
models that allow the modelling of these phenomena. Several computational techniques
are used for simulating fluid–particle interactions, among which the coupling of CFD and
DEM has proven to be most convenient in terms of computational costs, accuracies of
predictions and complexity of implementation. However, the most prominent limitation of
this approach is that it is largely dependent on the size of the mesh of the fluid domain.

The fact is, when the coupling is conducted on a large-scale mesh, even though it
results in faster simulations, the results are inaccurate, and the fine-scale features are
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Figure 16. Evolution of velocity of the fluid phase for fine-scale, coarse-scale and ML-assisted cases;
(a) average, (b) median.

not reproduced. On the other hand, when such modelling is used with a small-scale
mesh, even though it results in significantly more accurate results, the computational time
becomes prohibitive. One widely used approach to increase the size of the mesh while still
retaining the accuracy of the modelling is to conduct a mesh-independence analysis, where
scientists and engineers determine how much they can increase the size of the mesh and
still obtain results that are still acceptably accurate. This method, however, usually results
only in minor improvements in computational speeds. Therefore, it is still a challenge in
the scientific community to find a way to be able to have both accurate and fast modelling
using larger meshes.

In this paper, we proposed a coupled and assisted ML approach, where one of the
major forces responsible for fluid–solid coupling is replaced with a ML model, which
was previously trained on a ground truth fine-scale simulation. This framework ultimately
allows more accurate modelling, while still using a coarse mesh. To test the capabilities
of the new method, we conducted seven simulations, where the first case was fine-scale
modelling (ground truth), the second, third and fourth were coarse-scale simulations
(considerably less accurate, with mesh sizes of 8, 16 and 32 cm, respectively) and the final
three cases were coarse-scale ML-assisted modelling on the same mesh sizes. The results
of this research have demonstrated large improvements in 9 metrics, the most significant
of which are run-off distance and height of the granular system, fine-scale features and the
computation speedup. However, it should be noted that the effectiveness of this method
was considerably diminished when used with a 32 cm mesh. One possible avenue for
future research might be to reduce the computational cost using pruning operations of the
ML model (Fukami et al. 2021; Mitra et al. 2021).
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