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Abstract

Rumours have become part of our daily lives, and their spread has a negative impact
on a variety of human affairs. Therefore, how to control the spread of rumours is
an important topic. In this paper, we extend the classic Maki–Thompson model from
a deterministic framework to a stochastic framework with a forgetting mechanism,
because real-world person-to-person communications are inevitably affected by random
factors. By constructing suitable stochastic Lyapunov functions, we show that the
asymptotic behaviour of the stochastic rumour model is governed by the basic reproduc-
tive number. If this number is less than one, then the solution of the stochastic rumour
model oscillates around the rumour-free equilibrium under extra mild conditions,
indicating the extinction of the rumour with a probability of one. Otherwise, the solution
always fluctuates around the endemic equilibrium under certain parametric restrictions,
implying that the rumour will continually persist. In addition, we discuss a possible
intervention strategy that stops the spread of rumours by strengthening the intensity of
white noise, which is very different from the deterministic rumour model without white
noise. Also, numerical simulations are conducted to support our analytical results.
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1. Introduction

Rumour is defined as a type of social phenomenon in which a remark with questionable
veracity is spread over a large scale within a short amount of time via different
channels of communication [7]. Owing to a lack of accuracy, rumours have strong
negative effects on social life, including reputation damage, economic losses, political
consequences, and social panic and instabilities [23]. Compared with traditional
face-to-face communications, the use of internet-based media such as Facebook,
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Twitter and Microblog enables rumours to spread more quickly and widely around
the world. For example, after the nuclear leak that resulted from the 2011 Tohoku
earthquake, the Chinese overwhelmingly purchased large amounts of iodised salt from
supermarkets as a result of an explosively spread rumour that stated the benefits of
iodised salt for guarding people against radiation exposure [35]. Subsequently, with
the use of the aforementioned media, rumour spreading can incur social panic and
affect the economy at different levels within only a few days. Therefore, to combat
social and economic concerns, there is a more urgent need than ever to investigate how
to effectively impede rumour propagation.

The investigation of rumour propagation has greatly benefited from the established
research on epidemics of infectious diseases, owing to their similarities, as noted by
Daley and Kendall [3]. For example, both cases involve transmission processes from
individuals to subpopulations (ignorants in the case of rumours) via similar contacts,
namely, infective–susceptible contacts for epidemics and spreader–ignorant contacts
for rumours. There are some differences between epidemic infections and rumour
spreading. Susceptibles become immune through death, isolation or recovery at a
rate proportional to their number in the epidemic model, whereas the production of
stiflers occurs either through the common encounters of spreaders or through the
encounter of a spreader with a stifler in the rumour-mongering process [22]. However,
the differences are so insignificant that Daley and Kendall commented on the relation
between epidemics and rumours: “Investigation soon showed the parallel to be a
misleading one, and in fact the two phenomena could hardly be more different”.
Therefore, epidemiological models are generally used to study the spread of rumours
both deterministically and stochastically.

By modifying the Daley–Kendall model [3], Maki and Thompson [17] proposed
that rumours are disseminated through direct contacts of spreaders with other indi-
viduals, and that spreader–spreader contact would convert the initiating spreader to
a stifler. Belen and Pearce [2] extended the Daley–Kendall and Maki–Thompson
rumour models, and studied the proportion of the population starting from a general
initial condition. Belen et al. [1] further envisaged a rumour model with impulsive
control. Thompson et al. [29] considered both active and passive personalities in
the ignorant and spreader classes, respectively, and reported the existence of a
rumour-free equilibrium. Huo and Song [11] studied the stability of the equilibria
and persistence of the rumour spreading system by considering the effect of the
dissemination of scientific knowledge on preventing rumour transition. Furthermore,
a rumour transmission model with Holling type II functional response was proposed
by Huo et al. [10] to explain the impact of scientific knowledge on rumour spread-
ing. The phenomenon of rumour-mongering repeatedly on social media was also
explored by Yao et al. [33] using a susceptible-dangerous-infective-latent-recovered
(SDILR) rumour spreading model, and analyses of the local and global asymptotic
stabilities were presented. Although the existing models may adequately describe
the rumour spreading process, they have yet to consider the impact of uncer-
tain environmental factors on rumour spreading. Hence, a study that incorporates
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random fluctuations into population dynamics models of rumours could provide new
practical insights.

The rumour spreading process can be affected by many uncertainty factors (con-
sidered as noise in the rumour model) in real life. For example, both educational
background and legal consciousness can affect public attitudes and responses to
rumours and affect rumour spreading. A rumour spreads faster if its subject is an
event that is believed to be important and attractive. Moreover, emergence of other
public events related to the rumour may attract more attention and lead to faster
spreading of the rumour, whereas unrelated events shift public attention and impede
rumour spreading. Several studies on the effects of uncertainty factors on rumour
spreading have been conducted to provide guidelines for social network analysis.
Dauhoo et al. [4] studied a random effect that incubators exert on ignorants using a
stochastic model, and established the uniqueness of the solution and the conditions
for rumour extinction. Jia and Lv [14] formulated a stochastic rumour propagation
model with Gaussian white noise and investigated the sufficient conditions related
to extinction and persistence of rumour. They also explored a stochastic rumour
model with Levy noise [15]. On the other hand, recent studies have revealed the
impact of stochastic factors on complex social networks [13, 38]. Given the scarcity
of relevant studies, research on how a rumour spreads in a noisy environment
using a realistic model would both enrich the current literature and offer theoretical
insight.

In this paper, we propose a stochastic rumour spreading model based on the widely
used Maki–Thompson model [17] for open populations, and a forgetting mechanism
that has been considered in the scientific literature is also introduced into the stochastic
model to conform it to realistic situations. Compared with previous studies on the
deterministic models of rumour spreading without considering white noise, this study
investigates the asymptotic behaviour of the stochastic rumour propagation model, by
establishing the corresponding stochastic Lyapunov functions. First, the model has a
unique positive global solution for any given positive initial value, and the solution is
stochastically ultimately bounded. Second, the asymptotic behaviour of the stochastic
rumour propagation model can be determined based on the threshold value. If the
value is less than one, the model is asymptotically stable under extra mild conditions,
resulting in extinction of a rumour with a probability of one. Meanwhile, a threshold
value greater than one indicates that the solution of the stochastic propagation
model always fluctuates around the endemic equilibrium under complex parametric
restrictions, leading to the stochastic persistence of a rumour. Finally, we present a
sufficient condition for the extinction of a rumour by intensifying the perturbation
of the spreading rate between ignorants and spreaders, whereas the rumour always
persists without the perturbation. These results may be useful for researchers in applied
sciences interested in modelling information propagation phenomena and related
processes.

This paper is organised as follows. Section 2 is devoted to proving a unique positive
global solution of the stochastic rumour model which has a stochastically ultimately

https://doi.org/10.1017/S1446181120000176 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181120000176


188 H. Li and K. Yang [4]

bounded solution. The asymptotic behaviours around the rumour-free equilibrium and
the rumour endemic equilibrium are shown in Sections 3 and 4, respectively. Section 5
focuses on numerical simulations to illustrate the theoretical results, and the paper
concludes with a brief discussion in Section 6.

2. The stochastic rumour model

As in the Maki–Thompson model [17], which is a variant of the Daley–Kendall
model, we consider a population consisting of ignorants, spreaders and stiflers,
represented by X, Y and Z, respectively. The rumour spreads by “directed” contact
between spreaders and the rest of the population, following the law of mass action:

• when a spreader successfully contacts an ignorant, the ignorant becomes a spreader
with probability β, namely, the “spreading rate”;

• when a spreader contacts another spreader or a stifler, the initiating spreader
becomes a stifler with probability α, which is defined as the “stifling rate”.

In addition, we reasonably assume that inflows into the ignorant class and outflows
from each rumour class occur at constant rates Λ and μ, respectively. In reality, during
the course of rumour propagation, a spreader may cease further transmission as a
result of losing interest in the rumour or forgetting to tell others. Similar to the work
by Nekovee et al. [21], we incorporate this important mechanism into the model by
assuming that spreaders may spontaneously cease spreading a rumour with probability
δ. In light of the rumour spreading process elaborated above, a general flow diagram
of the rumour spreading model is presented in Figure 1. Accordingly, the deterministic
rumour model can be described by the following ordinary differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX(t)
dt
= Λ − βX(t)Y(t) − μX(t),

dY(t)
dt
= βX(t)Y(t) − αY(t)(Y(t) + Z(t)) − (δ + μ)Y(t),

dZ(t)
dt
= αY(t)(Y(t) + Z(t)) + δY(t) − μZ(t).

(2.1)

FIGURE 1. Structure of the rumour spreading process: X, Y and Z represent the number of ignorants,
spreaders and stiflers, respectively.
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The state space is the first quadrant,

R3
+ = {(X, Y , Z) ∈ R3 | X > 0, Y > 0, Z > 0},

and all the parameters are positive. Applying the formula presented by Driessche and
Watmough [5], we calculate the basic reproductive number

R0 =
Λβ

μ(μ + δ)
,

which is the average number of secondary transmissions of a rumour, when a spreader
is introduced into a population full of ignorants. The dynamics of model (2.1) are
completely determined by the threshold value R0 [9]. If R0 < 1, then model (2.1) has
a unique rumour-free equilibrium E0 = (Λ/μ, 0, 0), which is globally asymptotically
stable in the positively invariant set

D = {(X, Y , Z) ∈ R3
+ | 0 ≤ X + Y + Z ≤ Λ/μ}. (2.2)

This implies that the rumour will become extinct, and that the entire population
contains only the ignorant class. If R0 > 1, E0 is unstable, and the global asymptotical
stability of the endemic equilibrium E∗ = (X∗, Y∗, Z∗), where

X∗ =
αΛ + μ(δ + μ)
μ(β + α)

, Y∗ =
μ2(μ + δ)(R0 − 1)
αβΛ + μβ(δ + μ)

,

Z∗ =
(μ + δ)(R0 − 1)(αβΛ + δμβ − μ2α)
μ(β + α){αβΛ + μβ(δ + μ)} ,

is established, then the rumour always exists at an endemic level. From the above, we
can conclude that reducing the key threshold parameter R0 to less than one is a useful
way to stop the spread of rumours.

Collective behaviour on online social networks is conducted by rational individuals,
who make strategic choices influenced by the amount of information and emotion
passed with the messages [27]. However, owing to the existence of uncertainty in
the utility selection of the individuals as a result of their incomplete knowledge
about others and the stochastic properties of individual behaviour [31], the contact
behaviour between individuals also experiences some fluctuations. Similar to inclusion
of the fluctuation in epidemic models, fluctuation of the spreading rate needs to be
incorporated into rumour models, to enable a more realistic estimation of the rumour
transmission behaviour [20]. In practice, the fluctuation of the spreading rate between
ignorants and spreaders is usually estimated by an error term added to an averaged
value. A commonly employed assumption is that the error term can be treated as a
Gaussian white noise process [25]. From a mathematical perspective, Gaussian white
noise is the formal derivative of the Wiener process (or Brownian motion). Thus, the
spreading rate of the rumour is expressed as

β→ β + σ4 ˙B4(t),
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where B4(t) is the Brownian motion and σ4 is the intensity of the white noise that
measures the amplitude of fluctuations. Therefore, the following stochastic differential
equations (SDE) are obtained:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dX(t) = {Λ − βX(t)Y(t) − μX(t)} dt − σ4X(t)Y(t) dB4(t),
dY(t) = {βX(t)Y(t) − αY(t){Y(t) + Z(t)} − (δ + μ)Y(t)} dt

+ σ4X(t)Y(t) dB4(t),
dZ(t) = {αY(t){Y(t) + Z(t)} + δY(t) − μZ(t)} dt.

(2.3)

In addition to parameter perturbation, another approach was proposed by Jia and Lv
[14] to include stochastic perturbations in a rumour model by following similar ideas
to those used in biological models, as discussed by Imhof and Walcher [12] and Jiang
et al. [16]. Thus, we consider a white noise type of stochastic perturbations that are
directly proportional to X(t), Y(t) and Z(t), and that influence ˙X(t), ˙Y(t) and ˙Z(t) in
the rumour model (2.3). Then, the stochastic rumour model (2.3) can be written in the
form:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dX(t) = {Λ − βX(t)Y(t) − μX(t)} dt + σ1X(t) dB1(t) − σ4X(t)Y(t) dB4(t),
dY(t) = {βX(t)Y(t) − αY(t){Y(t) + Z(t)} − (δ + μ)Y(t)} dt + σ2Y(t) dB2(t)

+ σ4X(t)Y(t) dB4(t),
dZ(t) = {αY(t){Y(t) + Z(t)} + δY(t) − μZ(t)} dt + σ3Z(t) dB3(t),

(2.4)

where Bi(t) (i = 1, 2, 3, 4), defined on a complete probability space (Ω,F ,P) with
filtration {F }t≥0 satisfying the basic conditions (that is, it is increasing and right
continuous, while F0 contains all P-null sets), is a mutually independent standard
Brownian motion with Bi(0) = 0 (i = 1, 2, 3, 4) [18, page 15]. The parameter σi

(i = 1, 2, 3, 4) represents the intensity of the white noise.
For SDE with Gaussian white noise, the Itô [6] and Stratonovich integrations

[26] are the two most studied interpretations. Stratonovich integration is preferable
in physical kinetics [32] owing to its interpretation as a Wong–Zakai small correlation
time limit of solutions of differential equations. The Itô interpretation is preferable
in population biology [30], where the SDE is obtained as a continuous time limit
of a discrete time problem. Furthermore, the Itô formulation has martingale close
connections with diffusion processes and the advantage of preserving the property of
Brownian motion; this provides many theoretical advantages, including the existence
and uniqueness of solutions and stability in probability [18]. Considering that the
spreading of rumours is in many ways similar to the spreading of epidemic infections
[3], the Itô formula is used to investigate the spread of rumour in this work.

Here, we present several auxiliary statements, which were introduced by Mao [18,
page 109]. Consider the d-dimensional SDE

dx(t) = f (x(t), t) dt + g(x(t), t) dB(t) on t ≥ t0 (2.5)

https://doi.org/10.1017/S1446181120000176 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181120000176


[7] Asymptotic behaviour of stochastic Maki–Thompson model 191

with initial value x(t0) = x0 ∈ Rd
+. Note that B(t) denotes the m-dimensional standard

Brownian motion defined on the above probability space. We define the differential
operator L associated with equation (2.5) for a function V ∈ C2,1(Rd

+ × [t0,+∞);
R+), by

LV(x, t) = Vt(x, t) + Vx(x, t)f (x, t) + 1
2 trac[gT (x, t)Vxx(x, t)g(x, t)],

where trac(A) denotes the trace of a square matrix A = (aij)dxd, that is, traceA =∑
1�i�d aii. By the Itô formula [6],

dV(x, t) = LV(x(t), t) dt + Vx(x(t), t)g(x(t), t) dB(t).

In order to have a unique global (that is, no explosion in a finite time) solution
for model (2.4) with any given initial data, the coefficients of the equation generally
must satisfy the linear growth condition and local Lipschitz condition [18, page 69].
However, the coefficients of model (2.4) do not satisfy the linear growth condition,
although they are locally Lipschitz continuous. Thus, the solution of model (2.4) may
explode within a finite time. It is therefore useful to establish that the solution to model
(2.4) not only is positive but also will not explode to infinity in any finite time [19,
Theorem 2.1].

THEOREM 2.1. For any given initial conditions (X(0), Y(0), Z(0)) ∈ R3
+, there is a

unique solution (X(t), Y(t), Z(t)) for model (2.4) on t ≥ 0, and the solution remains
in R3

+ with probability one, namely, (X(t), Y(t), Z(t)) ∈ R3
+ for all t ≥ 0 almost surely

(a.s).

PROOF. Since the coefficients of model (2.4) are locally Lipschitz continuous,
for given initial conditions (X(0), Y(0), Z(0)) ∈ R3

+, there is a unique local solution
(X(t), Y(t), Z(t)) on t ∈ [0, τe), where τe is the explosion time. To justify that this
solution is global, we need to show that τe = ∞ a.s. Let n0 > 0 be sufficiently large
such that X(0), Y(0) and Z(0) lie within the interval [1/n0, n0]. For each integer n ≥ n0,
define the stopping time

τn = inf{t ∈ [0, τe) | min{X(t), Y(t), Z(t)} ≤ 1/n or max{X(t), Y(t), Z(t)} ≥ n},

where, unless otherwise noted, inf ∅ = ∞ (as usual, ∅ denotes the empty set). Clearly,
τn increases as n→ ∞. Set τ∞ = limn→∞ τn, whence τ∞ ≤ τe a.s. If we can show
that τ∞ = ∞ a.s., then τe = ∞ a.s. and (X(t), Y(t), Z(t)) ∈ R3

+ a.s. for all t ≥ 0. If the
statement is violated, we assume that there exists a constant T > 0 for any ε ∈ (0, 1)
such that P{τ∞ ≤ T} > ε. Consequently, there is a positive integer n1 ≥ n0 such that

P{τn ≤ T} ≥ ε for all n ≥ n1. (2.6)

We define a nonnegative function V1 : R3
+ → R+ as

V1(X, Y , Z) =
(
X − A − A log

X
A

)
+

(
Y − C − C log

Y
C

)
+ (Z − 1 − log Z),
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where A and C are positive constants, which will be defined later. Note that for
any fixed constant y, we have f (x) = x − y − y log(x/y) ≥ 0 for all x > 0. Hence, the
nonnegativity of the function V1 is ensured. By the Itô formula,

dV1 =

(
1 − A

X

)
dX +

A
2X2 (dX)2 +

(
1 − C

Y

)
dY +

C
2Y2 (dY)2

+

(
1 − 1

Z

)
dZ +

1
2Z2 (dZ)2

= LV1 dt + (X − A)(σ1 dB1(t) − σ4Y dB4(t))
+ (Y − C)(σ2 dB2(t)σ4X dB4(t)) + (Z − 1)σ3 dB3(t), (2.7)

where

LV1 =

(
1 − A

X

)
(Λ − βXY − μX) +

(
1 − C

Y

)
(βXY − αY(Y + Z) − (δ + μ)Y)

+

(
1 − 1

Z

)
(αY(Y + Z) + δY − μZ) +

A
2

(σ2
1 + σ

2
4Y2) +

C
2

(σ2
2 + σ

2
4X2) +

σ2
3

2

= Λ + Aμ + C(δ + μ) + μ +
A
2

(σ2
1 + σ

2
4Y2) +

C
2

(σ2
2 + σ

2
4X2) +

σ2
3

2

+ (−μ − Cβ)X + (−μ + Aβ − α + Cα)Y + (−μ + Cα)Z − ΛA
X
− αY2

Z
− δY

Z
.

Let A = α/β and C = μ/α. Direct computation yields

LV1(X, Y , Z)≤Λ + αμ
β
+
μ(μ + δ)
α

+ μ +
α

2β
(σ2

1 + σ
2
4Y2) +

μ

2α
(σ2

2 + σ
2
4X2) +

σ2
3

2
:= K.

Therefore, it follows from (2.7) that

dV1 ≤ K dt +
(
X − α
β

)
(σ1 dB1(t) − σ4Y dB4(t)) +

(
Y − μ
α

)
(σ2 dB2(t)

+ σ4X dB4(t)) + (Z − 1)σ3 dB3(t). (2.8)

Integrating both sides of (2.8) from 0 to τn ∧ T yields∫ τn∧T

0
dV1(X(u), Y(u), Z(u))

≤
∫ τn∧T

0

(
X(u) − α

β

)
{σ1 dB1(u) − σ4Y(u) dB4(u)}

+

(
Y(u) − μ

α

)
{σ2 dB2(u) + σ4X(u) dB4(u)}

+ (Z(u) − 1)σ3 dB3(u) +
∫ τn∧T

0
K du, (2.9)

where τn ∧ T = min{τn, T}. Taking the expectation of both sides of (2.9) yields

E[V1(X(τn ∧ T), Y(τn ∧ T), Z(τn ∧ T))] ≤ V1(X(0), Y(0), Z(0)) + KT .
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Let Ωn = {τn ≤ T} for all n ≥ n1. Then, P(Ωn) ≥ ε according to (2.6). Note that there
exists at least X(τn ∧ T), Y(τn ∧ T) and Z(τn ∧ T), which are equal to either n or 1/n
for every ω ∈ Ωn. Consequently,

V1(X(0), Y(0), Z(0)) + KT ≥ E[χΩn (ω)V1(X(τn ∧ T), Y(τn ∧ T), Z(τn ∧ T))]

≥ ε
{
(n − 1 − log n) ∧

(1
n
− 1 − log

1
n

)}
,

where χΩn is the indicator function of Ωn. Letting n→ ∞ yields

∞ > V1(X(0), Y(0), Z(0)) + KT = ∞,

which is a contradiction. Thus, τ∞ = ∞. This implies that X(t), Y(t) and Z(t) will not
explode in a finite time a.s., which completes the proof. �

Theorem 2.1 signifies not only that model (2.4) has a unique global solution, but
also that the solution remains within R3

+ with a probability of one, whenever it starts
from there, although we still do not know whether the population will grow to infinity
in the long term. The following theorem shows that this situation can be prevented. We
use the definition of a stochastically ultimately bounded solution to extend our result
further [19, Definition 5.1].

DEFINITION 2.2. The solution U(t)=(X(t), Y(t), Z(t)) of model (2.4) is stochastically
ultimately bounded if for any ε ∈ (0, 1) there is a positive constant η = η(ε) such that
for any initial value U(0) ∈ R3

+, the solution U(t) of model (2.4) has the property

lim sup
t→∞

P(‖U(t)‖ > η) ≤ ε.

Now, we obtain the following theorem.

THEOREM 2.3. For the given initial value U(0) = (X(0), Y(0), Z(0)) ∈ R3
+, the solution

to model (2.4) is stochastically ultimately bounded.

PROOF. It follows from Theorem 2.1 that the solution of model (2.4) stays in R3
+ with

probability one for all t ≥ 0. Similar to Theorem 2.1, the stopping time is defined as

τn = inf{t ∈ [0,∞) | min{X(t), Y(t), Z(t)} ≤ 1/n or max{X(t), Y(t), Z(t)} ≥ n},

because τe = ∞. Then, τn → ∞ a.s. as n→ ∞. Denote the total population by

N(t) = X(t) + Y(t) + Z(t).

Applying the Itô formula to eμtN yields

deμtN = Λeμt dt + eμt{σ1X dB1(t) + σ2Y dB2(t) + σ3Z dB3(t)}. (2.10)

Integrating both sides of (2.10) from 0 to t ∧ τn and then taking the expectation of both
sides yields

E[eμ(t∧τn)N(t ∧ τn)] = N(0) +
∫ t∧τn

0
Λeμt dt ≤ N(0) +

Λ

μ
(eμt − 1).
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Let n→ ∞, which means that

E[N(t)] ≤ N(0)e−μt +
Λ

μ
(1 − e−μt).

Consequently,

lim sup
t→∞

E[N(t)] ≤ Λ
μ

.

Here, we use the fact that ‖ U ‖=
√

X2 + Y2 + Z2 ≤ N; thus,

lim sup
t→∞

E[‖ U ‖] ≤ Λ
μ

.

According to Markov’s inequality, we choose η = Λ/με for any given ε > 0; then,

lim sup
t→∞

P(‖ U ‖> η) ≤ lim sup
t→∞

E[‖ U ‖]
η

≤ Λ
μη
= ε,

which is the required assertion. �

Both Theorems 2.1 and 2.3 show that model (2.4) has a positive solution that will
not explode to infinity in a finite time and, in fact, will be stochastically ultimately
bounded. In other words, we show that the noise will not spoil these good properties.

3. Asymptotic behaviour around the rumour-free equilibrium

As shown in model (2.1), the rumour-free equilibrium E0 = (Λ/μ, 0, 0) is globally
asymptotically stable when R0 < 1. From the perspective of rumour spreading, a
rumour will vanish over time. However, E0 is no longer an equilibrium of the stochastic
rumour model (2.4), namely, the unique solution is not ultimately convergent to E0
owing to the existence of random effects. Therefore, it is quite interesting to consider
how white noise affects the stochastic dynamic behaviour of the model (2.4); this
matter is explored in this section.

THEOREM 3.1. We assume that

R0 =
Λβ

μ(μ + δ)
< 1, σ2

1 < μ, σ2
2 < 2μ, σ2

3 < 2(μ − μ2).

Then, the solution (X(t), Y(t), Z(t)) to model (2.4) for any given initial value
(X(0), Y(0), Z(0)) ∈ R3

+ has the property

lim sup
t→∞

1
t

E
[ ∫ t

0

(
X(u) − Λ

μ

)2
+ Y2(u) + Z2(u) du

]
≤
Λ2(1 + σ2

1)
m1μ2 ,

where m1 = min{μ − σ2
1, μ − σ2

2/2, μ − μ2 − σ2
3/2}.
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PROOF. Define the C3 function

V2(X, Y , Z) =
1
2

(
X − Λ
μ
+ Y + Z

)2
+ aY ,

where a is a positive constant to be determined later. According to the Itô formula, we
can compute

dV2(X, Y , Z) =
(
X − Λ
μ
+ Y + Z

)
(dX + dY + dZ) +

1
2

(dX + dY + dZ)2 + a dY

= LV2 dt +
(
X − Λ
μ
+ Y + Z

)
{σ1X dB1(t) + σ2Y dB2(t) + σ3Z dB3(t)}

+ aσ2Y dB2(t) + aσ4XY dB4(t), (3.1)

where

LV2 = −μ
(
X − Λ
μ

)2
−
(
μ −
σ2

2

2

)
Y2 −

(
μ −
σ2

3

2

)
Z2 − (2μ − aβ)

(
X − Λ
μ

)
Y

− 2μXZ − 2μYZ + 2ΛZ +
1
2
σ2

1X2 + a
{
βΛ

μ
− (δ + μ)

}
Y − aαY(Y + Z)

≤ −μ
(
X − Λ
μ

)2
−
(
μ −
σ2

2

2

)
Y2 −

(
μ −
σ2

3

2

)
Z2 − (2μ − aβ)

(
X − Λ
μ

)
Y

+ 2ΛZ +
1
2
σ2

1X2 + a
{
βΛ

μ
− (δ + μ)

}
Y .

Actually, we can obtain some inequalities as follows:

(1) 1
2σ

2
1X2 ≤ σ2

1(X − Λ/μ)2 + σ2
1(Λ/μ)2, since (x + y)2 ≤ 2x2 + 2y2 for any x, y ∈

R+.
(2) (βΛ)/μ < δ + μ, under R0 < 1.
(3) 2ΛZ ≤ (Λ/μ)2 + μ2Z2.

Using inequalities (1), (2) and (3), we obtain

LV2 ≤ −(μ − σ2
1)
(
X − Λ
μ

)2
−
(
μ −
σ2

2

2

)
Y2 −

(
μ − μ2 −

σ2
3

2

)
Z2

+

(
Λ

μ

)2
(1 + σ2

1) − (2μ − aβ)
(
X − Λ
μ

)
Y .

Taking a = 2μ/β leads to

LV2 ≤ −(μ − σ2
1)
(
X − Λ
μ

)2
−
(
μ −
σ2

2

2

)
Y2 −

(
μ − μ2 −

σ2
3

2

)
Z2 +

(
Λ

μ

)2
(1 + σ2

1).

https://doi.org/10.1017/S1446181120000176 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181120000176


196 H. Li and K. Yang [12]

Integrating both sides of (3.1) from 0 to t and then taking the expectation yields

lim sup
t→∞

1
t

E
[ ∫ t

0
(μ − σ2

1)
(
X(u) − Λ

μ

)2
+

(
μ −
σ2

2

2

)
Y2(u) +

(
μ − μ2 −

σ2
3

2

)
Z2(u) du

]

≤
(
Λ

μ

)2
(1 + σ2

1).

Then,

lim sup
t→∞

1
t

E
[ ∫ t

0

{(
X(u) − Λ

μ

)2
+ Y(u)2 + Z(u)2

}
du
]
≤
Λ2(1 + σ2

1)
m1μ2 ,

where m1 = min{μ − σ2
1, μ − σ2

2/2, μ − μ2 − σ2
3/2}. This completes the proof. �

Theorem 3.1 reveals that the solution to model (2.4) always oscillates around
the rumour-free equilibrium E0, and that the amplitude of oscillation is directly
proportional to the intensity of the white noise σ1. That is, a smaller σ1 will be closer
to E0 and will have a much greater positive impact on the extinction of a rumour
under other parametric restrictions. On the other hand, a threshold R0 less than one
necessarily contributes to weakening the rumour propagation, similar to model (2.1).
Thus, we conclude that rumour propagation should be controlled by suitable protection
measures in society to reduce the spreading rate β, at which ignorant individuals
interact with spreader individuals. Every individual in society needs to develop the
habit of sensible discussion such that they can determine the veracity or falsity of
a rumour via common sense and evidence analysis. In addition, improving rational
analysis abilities is also necessary to prevent rumour mongering. Rumour spreading
can also be kept under control by increasing the forgetting rate δ. We recommend
using other more interesting information to distract individuals and cause them to
ignore a rumour. For instance, the collision of two high-speed trains running along the
Yongtaiwen railway line on a bridge in the suburbs of Wenzhou, Zhejiang Province, on
July 23, 2011, distracted public attention from the Meimei Guo event, where a Chinese
woman named Meimei Guo showed off her luxurious life online and announced that
she was the general manager of the Chinese Red Cross Society, causing a great stir on
June 20, 2011. The public soon forgot the Meimei Guo event [36].

However, Theorem 3.1 has some limitations: when R0 < 1, a conclusion regarding
the stochastically asymptotic stability cannot be drawn. Next, we consider the
simplified case of a negligible forgetting rate δ. This assumption is relaxed via
a numerical study, and we show that the numerical results are consistent with
the analytical findings of the case of the negligible forgetting rate summarised in
Theorem 3.3. First, we present a lemma [18, page 112].

LEMMA 3.2. If there exists a positive-definite, radially unbounded function V(x, t) ∈
C2,1(Rd × [t0,+∞); R+) such that LV(x, t) is negative definite, then the solution of model
(2.4) is stochastically asymptotically stable.
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THEOREM 3.3. IfΛβ ≤ μ2,σ1 = 0 and max{σ2
2,σ2

3} < 2μ, then the solution (Λ/μ, 0, 0)
of model (2.4) is stochastically asymptotically stable for any given initial value
(X(0), Y(0), Z(0)) ∈ R3

+.

PROOF. Similar to the proof of Theorem 3.1, define a C3 function

V3(X, Y , Z) =
1
2

(
X − Λ
μ
+ Y + Z

)2
+ b(Y + Z),

where b is a positive constant to be determined later. Then,

dV3(X, Y , Z) = LV3 dt +
(
X − Λ
μ
+ Y + Z

)
{σ1X dB1(t) + σ2Y dB2(t) + σ3Z dB3(t)}

+ b{σ2Y dB2(t) + σ4XY dB4(t) + σ3Z dB3(t)},

where

LV3 = −μ
(
X − Λ
μ

)2
−
(
μ −
σ2

2

2

)
Y2 −

(
μ −
σ2

3

2

)
Z2 − (2μ − bβ)

(
X − Λ
μ

)
Y

− (ub − 2Λ)Z + b
(
βΛ

μ
− μ
)
Y − 2μXZ − 2μYZ

≤ −μ
(
X − Λ
μ

)2
−
(
μ −
σ2

2

2

)
Y2 −

(
μ −
σ2

3

2

)
Z2 − (2μ − bβ)

(
X − Λ
μ

)
Y

− (ub − 2Λ)Z + b
(
βΛ

μ
− μ
)
Y .

We choose b = 2μ/β such that (2μ − bβ)(X − Λ/μ)Y = 0. In addition, βΛ ≤ μ2 implies
ub − 2Λ = 2(μ2 − Λβ)/β > 0. Hence, we obtain

LV3 ≤ −μ
(
X − Λ
μ

)2
−
(
μ −
σ2

2

2

)
Y2 −

(
μ −
σ2

3

2

)
Z2 ≤ 0.

Then, the solution (Λ/μ, 0, 0) to model (2.4) is stochastically asymptotically stable,
based on Lemma 3.2. �

4. Asymptotic behaviour around the rumour endemic equilibrium

In the previous section, we showed that the endemic equilibrium E∗ = (X∗, Y∗, Z∗)
of the deterministic rumour model (2.1) is globally attractive when the basic reproduc-
tive number R0 is greater than one, which signifies that a rumour will persist in the
population. Similar to the discussion on the asymptotic behaviour of the rumour-free
equilibrium, E∗ is not the endemic equilibrium for the stochastic rumour model (2.4) as
a result of stochastic perturbation. However, we can still estimate the average number
of oscillations around E∗ over time to determine whether a rumour persists in the
absence of white noise σ1,σ2 and σ3. Therefore, the stochastic rumour model (2.4)
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can be reduced to the form of model (2.3), that is,
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dX(t) = {Λ − βX(t)Y(t) − μX(t)} dt − σ4X(t)Y(t) dB4(t),
dY(t) = {βX(t)Y(t) − αY(t){Y(t) + Z(t)} − (δ + μ)Y(t)} dt

+ σ4X(t)Y(t) dB4(t),
dZ(t) = {αY(t){Y(t) + Z(t)} + δY(t) − μZ(t)} dt.

(4.1)

From Theorem 2.1, it is tempting to conclude that there is a unique global solution
(X(t), Y(t), Z(t)) ∈ R3

+ a.s. to model (4.1) on t ≥ 0 for any given initial condition
(X(0), Y(0), Z(0)) ∈ D, where

D = {(X, Y , Z) ∈ R3
+ | 0 ≤ X + Y + Z ≤ Λ/μ}

defined in (2.2) is a positive invariant set of the deterministic rumour model (2.1). Fur-
thermore, we ascertain that the set D is an a.s. positively invariant set of the stochastic
rumour model (4.1), namely, if (X(0), Y(0), Z(0)) ∈ D, then P((X(t), Y(t), Z(t)) ∈ D) =
1 for all t ≥ 0. We use this definition to establish the following result.

THEOREM 4.1. For any given initial value (X(0), Y(0), Z(0)) ∈ D, there is a unique
global solution (X(t), Y(t), Z(t)) of model (4.1) on t ≥ 0, and the solution remains in D
with a probability of one.

PROOF. Let (X(0), Y(0), Z(0)) ∈ D. Summing up the three equations in model (4.1)
and denoting N(t) = X(t) + Y(t) + Z(t), we have dN(t) = (Λ − μN) dt. Then, by inte-
gration,

N(t) =
Λ

μ
+

(
N(0) − Λ

μ

)
e−μt ≤ Λ

μ
.

Hence, when (X(0), Y(0), Z(0)) ∈ D, we obtain 0 < N(t) = X(t) + Y(t) + Z(t) ≤ Λ/μ,
which completes the proof. �

The next step is devoted to determining what impact the noise interference of the
spreading rate has on the asymptotic behaviour of model (4.1) around the rumour
endemic equilibrium E∗ = (X∗, Y∗, Z∗).

THEOREM 4.2. Let (X(t), Y(t), Z(t)) be the solution to model (4.1) for any given initial
value (X(0), Y(0), Z(0)) ∈ D. If R0 > 1, u2 > αΛ and σ2

4 < α/X
∗ are satisfied, we have

lim sup
t→∞

1
t

E
[ ∫ t

0
{(X(u) − X∗)2 + (Y(u) − Y∗)2 + (Z(u) − Z∗)2} du

]
≤ ρ

m2
,

where (X∗, Y∗, Z∗) is the unique endemic equilibrium of the deterministic model (2.1),
and

ρ = σ2
4(X∗Y∗2 + X∗2Y∗) + (αZ∗ + δ)

{(
Λ

μ

)3
+ Y∗2Z∗

}
,

m2 = min
{
μ

X∗
− Y∗σ2

4, α − X∗σ2
4,

α

αZ∗ + δ

(
μ − αΛ

μ

)}
.
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PROOF. When R0 > 1, there exists an endemic equilibrium E∗ = (X∗, Y∗, Z∗) of model
(2.1). Then,

Λ − βX∗Y∗ − μX∗ = 0,

βX∗Y∗ − αY∗(Y∗ + Z∗) − (δ + μ)Y∗ = 0, (4.2)

αY∗(Y∗ + Z∗) + δY∗ − μZ∗ = 0.

Consider the following C3 function:

V4(X, Y , Z) =
(
X − X∗ − X∗ log

X
X∗

)
+ e
(
Y − Y∗ − Y∗ log

Y
Y∗

)
+

f
2

(Z − Z∗)2

= V4a + eV4b + fV4c,

where e and f are positive constants to be defined later. Applying the Itô formula,

dV4(X, Y , Z) = LV4a dt + eLV4b dt + fLV4c dt − (X − X∗)σ4Y dB4(t)

+ e(Y − Y∗)σ4X dB4(t), (4.3)

where

LV4a = (X − X∗)
(
Λ

X
− βY − μ

)
+

X∗σ2
4

2
Y2,

LV4b = (Y − Y∗){βX − α(Y + Z) − (δ + μ)} +
Y∗σ2

4

2
X2,

LV4c = (Z − Z∗){αY(Y + Z) + δY − μZ}.

Using (4.2), Theorem 4.1 and the inequality (x + y)2 ≤ 2x2 + 2y2, we obtain

LV4a = (X − X∗)
[
Λ

X
− Λ

X∗
− β(Y − Y∗)

]
+

X∗σ2
4

2
Y2,

= − Λ

X · X∗ (X − X∗)2 − β(X − X∗)(Y − Y∗) +
X∗σ2

4

2
(Y − Y∗ + Y∗)2,

≤ − μ
X∗

(X − X∗)2 − β(X − X∗)(Y − Y∗) + X∗σ2
4(Y − Y∗)2 + X∗σ2

4Y∗2,

LV4b = (Y − Y∗)[β(X − X∗) − α(Y − Y∗) − α(Z − Z∗)] +
Y∗σ2

4

2
(X − X∗ + X∗)2

≤ β(X − X∗)(Y − Y∗) − α(Y − Y∗)2 − α(Y − Y∗)(Z − Z∗)

+ Y∗σ2
4(X − X∗)2 + Y∗σ2

4X∗2,

LV4c = (Z − Z∗)[α(Y2 − Y∗2) + α(YZ − Y∗Z∗) + δ(Y − Y∗) − μ(Z − Z∗)]

= α(Y2 − Y∗2)(Z − Z∗) + α(Z − Z∗)(YZ − YZ∗ + YZ∗ − Y∗Z∗)

+ δ(Y − Y∗)(Z − Z∗) − μ(Z − Z∗)2
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≤ α(Y2Z + Y∗2Z∗) + αY(Z − Z∗)2 + αZ∗(Y − Y∗)(Z − Z∗)

+ δ(Y − Y∗)(Z − Z∗) − μ(Z − Z∗)2

≤ α
[(
Λ

μ

)3
+ Y∗2Z∗

]
+

(
αΛ

μ
− μ
)
(Z − Z∗)2 + (αZ∗ + δ)(Y − Y∗)(Z − Z∗).

Therefore,

LV4 = LV4a + eLV4b + fLV4c

≤ −
(
μ

X∗
− eY∗σ2

4

)
(X − X∗)2 − (eα − X∗σ2

4)(Y − Y∗)2 − f
(
μ − αΛ

μ

)
(Z − Z∗)2

+ (−β + eβ)(X − X∗)(Y − Y∗) + {−eα + f (αZ∗ + δ)}(Y − Y∗)(Z − Z∗)

+ σ2
4(X∗Y∗2 + eX∗2Y∗) + fα

[(
Λ

μ

)3
+ Y∗2Z∗

]
.

Taking e = 1 and f = α/(αZ∗ + δ) yields

LV4 ≤ −
(
μ

X∗
− Y∗σ2

4

)
(X − X∗)2 − (α − X∗σ2

4)(Y − Y∗)2

− α

αZ∗ + δ

(
μ − αΛ

μ

)
(Z − Z∗)2 + σ2

4(X∗Y∗2 + X∗2Y∗)

+
α2

αZ∗ + δ

[(
Λ

μ

)3
+ Y∗2Z∗

]

= −k1(X − X∗)2 − k2(Y − Y∗)2 − k3(Z − Z∗)2 + ρ,

where

k1 =
μ

X∗
− Y∗σ2

4, k2 = α − X∗σ2
4, k3 =

α

αZ∗ + δ

(
μ − μ
αΛ

)
,

ρ = σ2
4(X∗Y∗2 + X∗2Y∗) + (αZ∗ + δ)

{(
Λ

μ

)3
+ Y∗2Z∗

}
.

To satisfy k1, k2, k3 > 0, we must also assume that

μ2 > αΛ, and σ2
4 <

1
X∗

min
{
μ

Y∗
,α
}
=
α

X∗
owing to R0 > 1.

Hence, from (4.3), we obtain

dV4 = LV4 dt − (X − X∗)σ4Y dB4(t) + (Y − Y∗)σ4X dB4(t)

≤ [−k1(X − X∗)2 − k2(Y − Y∗)2 − k3(Z − Z∗)2 + ρ] dt

− (X − X∗)σ4Y dB4(t) + (Y − Y∗)σ4X dB4(t). (4.4)
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Integrating both sides of (4.4) from 0 to t and taking the expectation yields

E
[ ∫ t

0
k1(X(u) − X∗)2 + k2(Y(u) − Y∗)2 + k3(Z(u) − Z∗)2 du

]

≤ E[V(X(0), Y(0), Z(0))] + ρt.

Therefore,

lim sup
t→∞

1
t

E
[ ∫ t

0
k1(X(u) − X∗)2 + k2(Y(u) − Y∗)2 + k3(Z(u) − Z∗)2 du

]
≤ ρ.

When m2 = min{k1, k2, k3}, we can obtain

lim sup
t→∞

1
t

E
[ ∫ t

0
(X(u) − X∗)2 + (Y(u) − Y∗)2 + (Z(u) − Z∗)2 du

]
≤ ρ

m2
.

This completes the proof of the theorem. �

Theorem 4.2 indicates that the unique stochastic solution to model (4.1) fluctuates
around E∗ = (X∗, Y∗, Z∗) for a long time under some extra parametric conditions,
implying that the rumour always persists and becomes endemic to a certain extent, that
is, the stochastic perturbation of the spreading rate strongly drives rumour propagation.
In addition, the following numerical experiments relax the assumption, namely, σ1,σ2
and σ3 are nonnegative, to illustrate that the rumour still prevails in the population.

The above discussion shows that the basic reproductive number R0 has a vital role
in determining the extinction or persistence of a rumour regardless of whether white
noise is introduced. Specifically, when R0 > 1, a rumour does not vanish from the
population, and there is a negative influence on attempts to stop the propagation of
rumours. Therefore, the following theorem shows that if the noise is sufficiently large,
the solution of the associated model (4.1) will be extinct with a probability of one,
even though the solution of the original model (2.1) may be persistent. Before proving
this theorem, we first present a known lemma [18, page 12].

LEMMA 4.3 (Strong law of large numbers). Let M = Mt≥0 be a real-valued continuous
local martingale vanishing at t=0. Then,

lim
t→∞
〈M, M〉t = ∞ a.s. ⇒ lim

t→∞

Mt

〈M, M〉 t
= 0 a.s.

and

lim sup
t→∞

〈M, M〉t
t

< ∞ a.s. ⇒ lim
t→∞

Mt

t
= 0 a.s.

THEOREM 4.4. For any given initial value (X(0), Y(0), Z(0)) ∈ R3
+, we can obtain:

(1) lim supt→∞(lnY(t)/t) < β2/2σ2
4 − (δ + μ) a.s.

(2) if β2/2σ2
4 < δ + μ, then Y(t) approaches zero exponentially with probability one.
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PROOF. Define a function V6(Y(t)) = ln Y(t). By the Itô formula, we have

dV6 =

[
βX − α(Y + Z) − (δ + μ) −

σ2
4X2

2

]
dt + σ4X dB4(t).

Integrating both sides from 0 to t yields

ln Y(t) = ln Y(0) +
∫ t

0

[
βX(u) − α{Y(u) + Z(u)} − (δ + μ) −

σ2
4X2(u)

2

]
du

+

∫ t

0
σ4X(u) dB4(u)

≤ ln Y(0) +
∫ t

0

(
βX(u) −

σ2
4X2(u)

2

)
− (δ + μ) du +

∫ t

0
σ4X(u) dB4(u)

≤ ln Y(0) +
[
β2

2σ2
4

− (δ + μ)
]
t +
∫ t

0
σ4X(u) dB4(u). (4.5)

Setting M(t) =
∫ t

0 σ4X(u) dB4(u) yields

〈M, M〉t
t

=
1
t

∫ t

0
σ2

4X2(u) du ≤ σ2
4

(
Λ

μ

)2
< ∞ a.s.

From Lemma 4.3, we obtain lim supt→∞Mt/t = 0 a.s. Dividing both sides of (4.5) by
t and letting t → ∞,

lim sup
t→∞

ln Y(t)
t
≤ β

2

2σ2
4

− (δ + μ) a.s.,

which completes the proof. �

Theorem 4.4 shows that the rumour will vanish regardless of the size of the basic
reproductive number R0, given that σ4 is sufficiently large such that β2/2σ2

4 < (δ + μ).
We can outline strategies to strengthen random fluctuations between the ignorant class
and spreader class. For instance, the event in which individuals suddenly went out
to purchase salt, mentioned in the previous section, was subdued after authorities
confirmed the scientific knowledge, stating that salt is almost useless in countering
radiation and that eating too much salt is harmful to one’s health. Meanwhile,
technicians can eliminate the source of rumours on the web to prevent further rumour
transmission.

5. Numerical simulation

To understand the above analytical results, we present some numerical simulations
to illustrate the different dynamic consequences of both the deterministic rumour
model (2.1) and the stochastic rumour model (2.4) under the same set of parameters.
For model (2.4), the numerical simulations are obtained by following Milstein’s
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higher-order method [8]; hence, the discretisation equations can be rewritten as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xk+1 = Xk + Δt(Λ − βXkYk − μXk) + Xk(σ1ξ1k
√
Δt + 1

2σ
2
1(ξ21k − 1)Δt)

− XkYk(σ4ξ4k
√
Δt + 1

2σ
2
4(ξ24k − 1)Δt),

Yk+1 = Yk + Δt(βXkYk − αYk(Yk + Zk) − (δ + μ)Y(t)) + Yk(σ2ξ2k
√
Δt

+ 1
2σ

2
2(ξ22k − 1)Δt) + XkYk(σ4ξ4k

√
Δt + 1

2σ
2
4(ξ24k − 1)Δt),

Zk+1 = Zk + Δt(αYk(Yk + Zk) + δYk − μZk) + Zk(σ3ξ3k
√
Δt + 1

2σ
2
3(ξ23k − 1)Δt),

where Δt is the time increment and ξ1k, ξ2k, ξ3k and ξ4k (k = 1, 2, . . . , n) are independent
Gaussian random variables, with N(0, 1) [24]. The initial value and the parameters in
this section are as follows:

X(0) = 0.6, Y(0) = 0.1, Z(0) = 0.4, Λ = 0.9, μ = 0.7, δ = 0.4, α = 0.5.

Using MATLAB R2014a, the main goal was to show, via some numerical examples,
how the intensities of the white noise influence rumour transmission, that is, the
asymptotic behaviour of the stochastic solution, which has been analysed in previous
theoretical works. Moreover, the size of the basic reproductive number R0 can be
controlled by adjusting the size of the spreading rate β.

First, Theorem 3.1 is simulated by setting the spreading rate β = 0.4 such that R0 < 1
and by choosing the white noise σ1 = σ2 = σ3 = σ4 = 0.2, as shown in Figure 2.
These values of the parameters satisfy all conditions of Theorem 3.1. We see that
the solution to the stochastic rumour model (2.4) oscillates around the rumour-free
equilibrium of the deterministic rumour model (2.1) as t goes to infinity. In addition,
the parameters chosen in Figure 3 are the same as those in Figure 2, except for
σ1 = 0. We can conclude from Figures 2 and 3 that decreasing the intensities of
the white noise weakens the fluctuation around the rumour-free equilibrium. From
the rumour spreading point of view, this implies that a rumour will vanish when the
noise interference impact and the spreading rate are simultaneously reduced, which is
a useful strategy for controlling the spread of rumours.

Second, we choose β = 0.9 and σ1 = σ2 = σ3 = σ4 = 0.1, which satisfy the com-
plex conditions of Theorem 4.2. Figure 4 reveals that the numbers of ignorants,
spreaders and stiflers are always distributed around the endemic equilibrium of model
(2.1), which is in agreement with the result of Theorem 4.2. This result means that
under the conditions of Theorem 4.2, a rumour always prevails in the population,
which is detrimental to stopping rumour transmission. Hence, we must find ways to
mitigate this situation.

Finally, β = 0.9, σ1 = 0.1,σ2 = 0.2,σ3 = 0.1 and σ4 = 0.6 are chosen in Figure 5
to validate Theorem 4.4. From Figure 5, we see that the population of spreaders will
become extinct despite a threshold value R0 > 1, in contrast to the corresponding
model (2.1) without noise. As a result, when the spreading rate becomes large, we
can still fully utilise external interference to prevent the spread of a rumour. These
effective methods are widely used by us.
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FIGURE 2. The solutions of model (2.1) without noise and model (2.4) with noise are represented by
blue dashed lines and red solid lines, respectively. The initial condition and parameter values are X(0) =
0.6, Y(0) = 0.1, Z(0) = 0.4, Λ = 0.9, μ = 0.7, δ = 0.4, α = 0.5, β = 0.4 and σ1 = σ2 = σ3 = σ4 = 0.2.
(Colour is available online).

FIGURE 3. The solutions of model (2.1) without noise and model (2.4) with noise are represented by
blue dashed lines and red solid lines, respectively. The initial condition and parameter values are X(0) =
0.6, Y(0) = 0.1, Z(0) = 0.4, Λ = 0.9, μ = 0.7, δ = 0.4, α = 0.5, β = 0.4, σ1 = 0 and σ2 = σ3 = σ4 = 0.2.
(Colour is available online).
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FIGURE 4. The solutions of model (2.1) without noise and model (2.4) with noise are represented by blue
dashed lines and red solid lines, respectively. The initial condition and parameter values are X(0) = 0.6,
Y(0) = 0.1, Z(0) = 0.4,Λ = 0.9, μ = 0.7, δ = 0.4, α = 0.5, β = 0.9 andσ1 = σ2 = σ3 = σ4 = 0.1. (Colour
is available online).
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FIGURE 5. The solutions of model (2.1) without noise and model (2.4) with noise are represented by
blue dashed lines and red solid lines, respectively. The initial condition and parameter values are X(0) =
0.6, Y(0) = 0.1, Z(0) = 0.4, Λ = 0.9, μ = 0.7, δ = 0.4, α = 0.5, β = 0.9, σ1 = 0.1, σ2 = 0.2, σ3 = 0.1 and
σ4 = 0.6. (Colour is available online).
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6. Conclusions

In this paper, by incorporating random effects, we extend the classic Maki–
Thompson model to a stochastic rumour model with a forgetting mechanism. The
random effects are divided into two types: the case in which the spreading rate
between ignorants and spreaders is subject to white noise; and the case in which the
stochastic perturbations are a type of white noise that is directly proportional to the
numbers of ignorants, spreaders and stiflers. This paper focuses on the asymptotic
behaviour of a stochastic rumour model by formulating the corresponding stochastic
Lyapunov functions. First, a basic property is established, that is, a unique solution
which is stochastically ultimately bounded exists for any given positive initial value.
Then, when R0 < 1 and the additional conditions regarding the intensity of the
white noise are satisfied, the solution oscillates around the rumour-free equilibrium
of the deterministic rumour model without noise. In addition, white noise with a
low intensity results in smaller fluctuations of the solution. From the perspective
of rumour spreading, this implies that a rumour will go extinct, similar to the case
of the deterministic rumour model. Furthermore, when the intensity of the white
noise is sufficiently small, the solution of the stochastic rumour model will approach
the solution of the deterministic one. Once again, the asymptotic behaviour around
the endemic equilibrium is ascertained under R0 > 1 and some complex conditions,
which suggests that spreaders cannot be completely eliminated from the population,
that is, the rumour always persists. Finally, although the rumour will prevail in the
deterministic situation without noise when R0 > 1, we can still cause the rumour to go
extinct by strengthening the white noise. Thus, this work contributes to the analysis
of rumour propagation models and to measures for controlling rumour dissemination.
In practice, we can take actions to intensify environmental interference factors such
as government propaganda, official confirmation, and arousing mass consciousness
to change individuals’ behaviours and to reduce the effective interactions between
ignorants and spreaders.

The proposed model provides a framework for further research. Here, we consider a
simplified stochastic rumour model based on the Maki–Thompson model. As a result,
there are a number of possible extensions to this work. The rumour dynamics can
be subject to random environmental perturbations from other related processes such
as the inflow rate, outflow rate, forgetting rate and stifling rate. In future, we will
introduce these relative processes into the stochastic rumour model, and consider the
incubator class that can determine the validity of a rumour [4]. In the current work, the
asymptotic behaviour around the endemic equilibrium is not a general result because
of the absence of white noise σ1, σ2 and σ3. Therefore, we may further demonstrate a
more general practice when σ1, σ2 and σ3 are not equal to zero, and study whether the
stationary distribution of model (2.4) can be obtained by the method of Zhou et al. [37].
Our results are illustrated through some numerical simulations. As a result, we can
investigate the link between our findings and empirical data from several cases, which
will be beneficial for the government to mitigate rumour propagation. In addition, the
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methodologies proposed by Yuan and Ao [34] and Tang et al. [28] can be applied to
systems with arbitrary noise intensities through A-type stochastic integration. It could
be worthwhile to further investigate the stochastic rumour spreading model using these
methodologies in comparison with the current investigation in future research. We
leave these investigations for our future work.
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