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Abstract We calculate the Bieri–Neumann–Strebel–Renz invariant Σ1(G) for finitely presented resid-
ually free groups G and show that its complement in the character sphere S(G) is a finite union of
finite intersections of closed sub-spheres in S(G). Furthermore, we find some restrictions on the higher-
dimensional homological invariants Σn(G,Z) and show for the discrete points Σ2(G)dis, Σ2(G,Z)dis
and Σ2(G,Q)dis in Σ2(G), Σ2(G,Z) and Σ2(G,Q) that we have the equality Σ2(G)dis = Σ2(G,Z)dis =
Σ2(G,Q)dis.
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1. Introduction

Let D be an integral domain. Bieri [9] defined a group G to be of (homological) type
FPn(D) if there is a projective resolution

P : Pn → · · · → Pi → Pi−1 → · · · → P0 → D → 0

of the trivial DG-module D such that each projective DG-module Pi is finitely generated
for 0 ≤ i ≤ n. If D = Z, G is said to be of type FPn and, in this case, G is of type FPn(R)
for any integral domain R. A homotopical version Fn of this property was earlier defined
by Wall [41]. A group G is of homotopical type Fn if there is a classifying space Y , i.e. a
CW-complex Y = K(G, 1), with finite-dimensional n-skeleton. Obviously every group of
type Fn is of type FPn but, as shown by Bestvina and Brady [8], the converse does not
hold for n ≥ 2.

In this paper we are interested in subdirect products of groups and their Σ-invariants.
Finiteness conditions of fibre products and subdirect products of groups were studied by
Baumslag et al. [7], Baumslag and Roseblade [5], Bridson et al. [17,18] and Kuckuck [30].
The first example of a group that is finitely presented but not of type FP3 was discovered
by Stallings [40] and is a subdirect product of three copies of the free group of rank 2.
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If H is a subgroup of a direct product G1 × · · · ×Gm, we say that H is virtu-
ally surjective on n-tuples if for every 1 ≤ j1 < · · · < jn ≤ m the canonical projection
pj1,...,jn : H → Gj1 × · · · ×Gjn has the property that pj1,...,jn(H) has finite index in
Gj1 × · · · ×Gjn . If n = 2, we say that H is virtually surjective on pairs (VSP). Bridson
et al. [18] proved the following result.

VSP criterion. Let H be a subgroup of a direct product G1 × · · · ×Gm of finitely
presented groups G1, . . . , Gm. If H is VSP then H is finitely presented.

Kuckuck [30] suggested the following generalization of the VSP criterion.

Virtual surjection conjecture. Let n ≤ m be positive integers and let H be a sub-
group of a direct product G1 × · · · ×Gm, where Gi is of type Fn for 1 ≤ i ≤ m. If H is
virtually surjective on n-tuples then H is of type Fn.

The virtual surjection conjecture is still an open problem, but some cases of the con-
jecture and its homological version were proved by Kochloukova and Lima [28] and
Kuckuck [30]. The homological version of the virtual surjection conjecture is obtained
from the original virtual surjection conjecture, substituting everywhere homotopical
type Fn with homological type FPn. Kochloukova and Lima [28] proved using spec-
tral sequence techniques that the homological version of the virtual surjection conjecture
holds for n = 2.
In 1980, Bieri and Strebel classified all finitely presented metabelian groups G in terms

of their one-dimensional Σ-invariant [13]. Later on, this invariant was generalized by
Bieri, Neumann, Strebel and Renz to higher-dimensional homological and homotopical
invariants [12,14]. We will discuss the precise definition of the Σ-invariants in § 3. In all
cases these invariants are open subsets of the character sphere S(G), where by a character
of G we mean a non-zero homomorphism G→ R and S(G) is the set of equivalence classes
of characters of G with two characters falling in the same equivalence class precisely when
one is a positive real multiple of the other. The importance of the Σ-invariants lies in the
fact that they control the finiteness properties Fn and FPn of the subgroups of G above
the commutator subgroup [12,35].
In general it is not easy to calculate the Σ-invariants, but in some cases their description

or some information about them is known: these cases include right-angled Artin groups
(RAAGs) [31], some Artin groups that are not RAAGs [2,3], the Thompson group F
[15], generalized Thompson groups Fn,∞ [27,43], free-by-cyclic groups [20], Poincare
duality groups of dimension 3 [25] and limit groups [26].
Bieri and Renz [12] defined higher-dimensional invariants Σn(G,M) for Z(G)-modules

M . Again, Σn(G,M) is an open subset of the character sphere S(G). The homotopical
invariant Σn(G) is defined for groups G of homotopical type Fn. Note that Σn(G,Z) is
defined for any groupG, but if Σn(G,Z) �= ∅ thenG is of homological type FPn. In general
Σ1(G) = Σ1(G,Z) and Σn(G) = Σ2(G) ∩ Σn(G,Z) for n ≥ 2; the latter is a monoidal
version of the fact that a group is of type Fn if and only if it is finitely presented (i.e.
of type F2) and of type FPn. The description of the Σ-invariants of RAAGs by Meier,
Meinert and Van Wyk implies that the inclusion Σn(G) ⊆ Σn(G,Z) can be strict for
n ≥ 2 [31].
The main results in this paper are on the Σ-invariants of finitely presented residually

free groups. This requires the study of subdirect products of non-abelian limit groups.
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In general a subgroup H ≤ G1 × · · · ×Gm is called a subdirect product if each projec-
tion H → Gi is surjective. If, furthermore, each H ∩Gi �= 1, H is called a full subdirect
product.
The limit groups were defined by Sela and were studied independently by Kharlam-

povich and Myasnikov, who considered them as finitely generated fully residually free
groups. Sela defined a special class of limit groups, the ω-residually free towers, which
are built inductively from free groups, free abelian groups and surface groups of Euler
characteristics less than −1, and defined a limit group as a finitely generated subgroup
of a ω-residually free tower. Limit groups were used in the solution of the Tarski problem
on the elementary theory of non-abelian free groups of finite rank by Kharlampovich and
Myasnikov [24] and Sela [39]. The importance of the subdirect products of limit groups
can be seen in the result of Baumslag et al. in [6] that every finitely generated residually
free group is a subdirect product of finitely many limit groups.
Limit groups are FP∞, finitely presented and of finite cohomological dimension. Wilton

[42] proved that every finitely generated subgroup of a limit group is a virtual retract.
In the case of free groups, this is a well-known result of Hall [23]. Limit groups are
commutative transitive as this holds for fully residually free groups [4]. Bridson and
Howie [16] proved that a subgroup G of a limit group is itself a limit group if and
only if H1(G,Q) is finite dimensional. Alibegovic [1] and Dahmani [19] independently
proved that limit groups are relatively hyperbolic with respect to their maximal abelian
subgroups.
Our first result is a necessary condition for the elements of Σn(H,Q), where H is

a full subdirect product of limit groups. For a character χ : H → R we set Hχ = {h ∈
H|χ(h) ≥ 0}. [χ] is the equivalence class of χ, i.e. [χ] is the set of characters R>0χ and
S(H) = {[χ]|χ is a character of H}. By definition,

Σn(H,Q) = {[χ] ∈ S(H)|Q is of homological type FPn over QHχ},
where Hχ acts trivially on Q.

Theorem A. Let H ≤ L1 × · · · × Lm be a finitely presented full subdirect product
of non-abelian limit groups L1, . . . , Lm with m ≥ 1. Let n be a fixed integer such that
1 ≤ n ≤ m. If [χ] ∈ Σn(H,Q), then

pj1,...,jn(Hχ) = pj1,...,jn(H) for all 1 ≤ j1 < · · · < · · · < jn ≤ m,

where pj1,...,jn : H → Lj1 × · · · × Ljn is the canonical projection.

Note that whenever Σn(H,Q) �= ∅ the group H is of homological type FPn(Q), and by
[26] this implies that [Lj1 × · · · × Ljn : pj1,...,jn(H)] <∞. We will show in Lemma 5.10
that pi1,...,in(H) = pi1,...,in(Hχ) if and only if χ(∩1≤j≤nKer(pij )) �= 0.

Theorem B. Let H ≤ L1 × · · · × Lm be a finitely presented full subdirect product of
non-abelian limit groups L1, . . . , Lm with m ≥ 1. Then,

Σ1(H) = Σ1(H,Q) = {[χ] ∈ S(H) | pi(Hχ) = Li for every 1 ≤ i ≤ m}.
Theorem B shows that the converse of Theorem A holds for n = 1. It is an interesting

question whether the converse of Theorem A holds for n ≥ 2, but this is still an open
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problem. As we have explained before, the finite presentability of subdirect products
of limit groups is completely understood [17,18]; however, the higher homological and
homotopical properties in dimensions at least 3 are not well understood except in particu-
lar cases (see [28] and [30]). The proof of the VSP criterion depends on the 1-2-3 theorem
of fibre products [17]. Unfortunately, we do not see a natural monoidal version of the
1-2-3 theorem for fibre products of groups when one of the groups is a non-abelian limit
group L ( i.e. a version that calculates the homological invariants of the fibre product in
dimensions 1 and 2), as in this case Σ1(L,Q) = Σ1(L,Z) = ∅. Still, we believe that the
converse of Theorem A holds and suggest the following conjecture.

Monoidal virtual surjection conjecture. Let n and m be positive integers such
that 1 ≤ n ≤ m. Let H ≤ L1 × · · · × Lm be a full subdirect product of non-abelian limit
groups L1, . . . , Lm such that H is of type FPn and finitely presented. Then,

[χ] ∈ Σn(H,Q) = Σn(H,Z) = Σn(H)

if and only if

pj1,...,jn(Hχ) = pj1,...,jn(H) for all 1 ≤ j1 < · · · < jn ≤ m, (1.1)

where pj1,...,jn : H → Lj1 × · · · × Ljn is the canonical projection.

Remark. By [18, Thm. 5.1], ifH is FP2, thenH is finitely presented. By Theorem 2.3,
since H is FPn we have that pj1,...,jn(H) has finite index in Lj1 × · · · × Ljn for all
1 ≤ j1 < · · · < jn ≤ m.

The name of the above conjecture is derived from the fact that we view it as a monoidal
version of the virtual surjection conjecture applied to subdirect products of limit groups.
It is not clear what a more general version for subdirect products of groups of homotopical
type Fn should be. In our consideration of the special case of subdirect products of limit
groups, crucial parts are played by the structure theory of finitely presented subdirect
products of limit groups developed in [17] and the fact that for every non-abelian limit
group L we have that Σ1(L,Q) = ∅ [26]. It is plausible that for more general subdirect
products, where L1, . . . , Lm are not supposed to be non-abelian limit groups but just
groups of homotopical type Fn (respectively, homological type FPn), condition (1.1)
would imply that [χ] ∈ Σn(H) (respectively, [χ] ∈ Σn(H,Z)), but the converse is unlikely
to hold.
The case n = m of the monoidal virtual surjection conjecture is easy to establish; see

Lemma 4.1. In addition, Theorems A and B imply that the monoidal virtual surjection
conjecture holds for n = 1. As a corollary, we obtain a result for finitely presented resid-
ually free groups; see Corollary C. For a subset M of H we set S(H,M) = {[χ] ∈ S(H) |
χ(M) = 0}, called the sub-sphere in S(H), and upper index c denotes the complement
in the character sphere S(H). A character χ : H → R is discrete if Im(χ) � Z.

Corollary C. Let H be a finitely presented residually free group; hence we can realise
H as a full subdirect product H ≤ L1 × · · · × Lm of limit groups L1, . . . , Lm for some
m ≥ 1, L1 � · · · � Ls � Z, and Lj is non-abelian for j ≥ s+ 1, where Z(H) = H ∩ (L1 ×
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· · · × Ls) � Zs for some s ≥ 0. Then,

[χ] ∈ Σ1(H) = Σ1(H,Z) = Σ1(H,Q)

if and only if

either χ(Z(H)) �= 0 or χ(Z(H)) = 0 and pj(Hχ) = pj(H) = Lj for s+ 1 ≤ j ≤ m,

i.e.

Σ1(H,Q)c = Σ1(H,Z)c = Σ1(H)c = ∪s+1≤j≤m(S(H,Z(H)) ∩ S(H,Ker(pj)))

is a finite union of intersections of sub-spheres in the character sphere S(H). In particular,

Σ1(H)c = −Σ1(H)c

and {[χ] ∈ Σ1(H)c | χ is discrete} is a dense subset of Σ1(H)c.

Bieri et al. [14] constructed a finitely generated subgroup G of piecewise linear auto-
morphisms of a closed interval such that Σ1(G)c has precisely two non-discrete points; in
this case, {[χ] ∈ Σ1(G)c | χ is discrete} = ∅ is not dense in Σ1(G)c.

Note that for a finitely generated metabelian group G, Bieri and Groves [11] showed
that Σ1(G)c = S(G) \ Σ1(G) is a finite union of finite intersections of closed, rationally
defined semi-spheres of S(G), i.e. the defining vector of every such semi-sphere is a
rational vector. Obviously, every sub-sphere S(G,M), where M is a subgroup of an arbi-
trary finitely generated group G, is a finite intersection of closed rational semi-spheres
of S(G). This applied to G = H and M = Z(H) or M = Ker(pj), together with the
description of Σ1(H)c given in Corollary C, implies that Σ1(H)c is a finite union of
finite intersections of closed, rationally defined semi-spheres of S(G). The rationality
implies that {[χ] ∈ Σ1(H)c | χ is discrete} is dense in Σ1(H)c. The antipodality condi-
tion Σ1(H)c = −Σ1(H)c that appeared in Corollary C is known to hold for other classes
of groups as 3-manifold groups [14] or Artin groups; for Artin groups it is a simple conse-
quence of the fact that there is an automorphism whose restriction on the abelianization
is the antipodal map.
In the following result we show that the virtual surjection conjecture implies the discrete

case of the monoidal virtual surjection conjecture.

Theorem D. If the virtual surjection conjecture holds in dimension n and χ is a dis-
crete character then the monoidal virtual surjection conjecture holds for χ. In particular,
if n = 2 and χ is a discrete character then the monoidal virtual surjection conjecture
holds for χ. Thus,

Σ2(H)dis = Σ2(H,Z)dis = Σ2(H,Q)dis,

where for T ∈ {Σ2(H,Z),Σ2(H,Q),Σ2(H)} we write Tdis = {[χ] ∈ T |χ is discrete}.

Corollary E. Let H be a finitely presented residually free group; hence we can realise
H as a full subdirect product H ≤ L1 × · · · × Lm of limit groups L1, . . . , Lm for some
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m ≥ 1, L1 � · · · � Ls � Z, and Lj is non-abelian for j ≥ s+ 1, where Z(H) = H ∩ (L1 ×
· · · × Ls) � Zs for some s ≥ 0. Then, for a discrete character χ : H → Z, we have

[χ] ∈ Σ2(H,Z) = Σ2(H,Q) = Σ2(H)

if and only if either χ(Z(H)) �= 0 or

χ(Z(H)) = 0 and pj1,j2(Hχ) = pj1,j2(H) for all s+ 1 ≤ j1 < j2 ≤ m.

Finally, we consider the Bieri–Stallings groups Gm ⊆ Fm
2 , where F2 is the free group

of rank 2 and Gm = Ker(ρ), where ρ : Fm
2 → Z is the epimorphism that sends a fixed

free basis {xi, yi} of the ith copy of F2 to 1. By [9], Gm is FPm−1 but not FPm and is
finitely presented for m ≥ 3. The case m = 3 was first considered by Stallings [40]; this
is the first known example of a group that is finitely presented but not of type FP3.

Theorem F. Let m ≥ 3 be a natural number. The monoidal virtual surjection con-
jecture holds for the Bieri–Stallings group H = Gm and for a character χ if n ≤ m− 2
and χ is any character, or χ is a discrete character and n = m− 1.

The proof of Theorem F depends on various decompositions of Gm as the HNN exten-
sion given in Lemma 7.2. In these decompositions the base subgroup is isomorphic to
Fm−1
2 and the associated subgroups are isomorphic to Gm−1, allowing the use of induc-

tive argument on m. Theorem F still holds for any character χ in the case n = m− 1;
this will be resolved in [29] with homological techniques different from the ones used in
this paper.

2. Preliminaries on subdirect products of limit groups

Both free and orientable surface groups are limit groups. The class of limit groups coin-
cides with the class of finitely generated fully residually free groups, i.e. finitely generated
groups G such that for each finite subset X ⊆ G there is a free group F (depending on X)
and a group homomorphism ϕX : G→ F such that the restriction of ϕX to X is injective.

The starting point in the study of finitely generated residually free groups is the
following result.

Theorem 2.1 (see [6, Corollary 19]). Every finitely generated residually free group
H is a full subdirect product of a finite direct product of limit groups L1 × · · · × Lm.

Recall that in the above theorem ‘full’ means that H ∩ Li �= 1 and ‘subdirect product’
means that pi(H) = Li for each 1 ≤ i ≤ m, where pi : H → Li is the canonical projection
map.
An important result due to Bridson et al. [18] states that, in the case of finitely gen-

erated residually free groups, the class of groups of type FP2(Q) is the same as the class
of finitely presented groups.

Theorem 2.2 (see [18, Theorem 5.1]). Let H be a finitely generated residually
free group. Then, the following conditions are equivalent:
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(i) H is finitely presented;

(ii) H is of type FP2(Q);

(iii) H can be embedded as a VSP full subdirect product in L1 × · · · × Lm, where H ∩
L1 has finite index in L1, L1 is an abelian limit group and each Li is a non-abelian
limit group for i ≥ 2;

(iv) dimQH2(H0,Q) <∞ for each subgroup H0 of H such that [H : H0] <∞.

Remark. Throughout this paper, H will denote a residually free group of type
FP2(Q). By Theorem 2.2, H is finitely presented. Using Theorem 2.1 we will often con-
sider H as a finitely presented full subdirect product of a finite direct product of limit
groups L1 × · · · × Lm for some m ≥ 1. In the case where H has trivial centre, each Li is
non-abelian. Furthermore, if H is not a limit group itself, m ≥ 2.

Theorem 2.3 (see [26, Theorem 9]). Let H be a finitely generated full subdirect
product of a finite direct product of non-abelian limit groups L1 × · · · × Lm. If H is of
type FPn(Q) for some n ∈ {2, . . . ,m}, then

[Lj1 × · · · × Ljn : pj1,...,jn(H)] <∞ for 1 ≤ j1 < · · · < jn ≤ m,

where pj1,...,jn : H → Lj1 × · · · × Ljn is the canonical projection map.

3. Preliminaries on the Σ-invariants

Let G be a finitely generated group. The character sphere S(G) is defined as

S(G) =
Hom(G,R) \ {0}

∼ ,

where χ1 ∼ χ2 if there is a positive real number r such that χ1 = rχ2 with χ1, χ2 ∈
Hom(G,R)\{0}, and the equivalence class of χ1 is denoted by [χ1]. Note that S(G) is
the unit sphere in Rn, where n is the torsion-free rank of the abelianization of G. A
non-trivial group homomorphism χ ∈ Hom(G,R)\{0} is called a character of G and is
said to be discrete if Im(χ) � Z.

Let n ≥ 0, and let R be an associative ring with identity element and M a (right)
R-module. Then M is of (homological) type FPn if there is a projective resolution

P : · · · → Pn → · · · → Pi → Pi−1 → · · · → P0 →M → 0

such that each projective R-module Pi is finitely generated for 0 ≤ i ≤ n.
Throughout this paper, D is an integral domain (most of the time it will be Z or Q)

and the considered DG-modules are right DG-modules. By definition,

Σn
D(G,M) = {[χ] ∈ S(G)|M is of type FPn as DGχ-module},

where M is a (right) DG-module. When M = D is the trivial DG-module, Σn
D(G,M) =

Σn
D(G,D) is denoted by Σn(G,D), and in this case we say that the invariant has

coefficients in D.
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Let X be a finite generating set of G, and let Γ be the Cayley graph of G with respect
to this generating set, where G acts on the right. Then the vertex set V (Γ ) = G and the
edge set E(Γ ) = X ×G, where the edge (x, g) has beginning g and end xg. Let χ : G→ R

be a character and Γχ the subgraph of Γ spanned by Gχ = {g ∈ G | χ(g) ≥ 0}. Then, by
definition,

Σ1(G) = {[χ] ∈ S(G) | Γχ is connected}.
The Bieri–Neumann–Renz invariant Σ1(G) coincides with Σ1(G,Z). This follows from
[12, 1.3], where it is shown that Σ1(G,Z) coincides with the invariant defined in [14].

Theorem 3.1 (see [31, Theorem 9.3]). LetK be a subgroup of G, M a DG-module
and χ : G→ R a character of G. If [G : K] <∞ then

[χ|K ] ∈ Σn
D(K,M) ⇔ [χ] ∈ Σn

D(G,M).

In particular, if n = 0, then

M is a finitely generated DGχ-module ⇔M is a finitely generated DKχ|K -module.

Bieri and Geoghegan [10] established a formula for the calculation of the homological
invariants Σn of a direct product of groups with coefficients in an arbitrary field. A
similar result for the Σn invariants with coefficients in the trivial module Z is wrong in
both homological and homotopical settings, provided the dimension n is sufficiently big;
see [31] and [38].

Theorem 3.2 (see [10, Theorem 1.3, and Proposition 5.2]). Let be n ≥ 0 be an
integer, let G1, G2 be finitely generated groups and let F be a field. Then,

Σn(G1 ×G2, F )
c =

n⋃
p=0

Σp(G1, F )
c ∗ Σn−p(G2, F )

c,

where ∗ denotes the join of subsets of S(G1 ×G2) and c denotes the set-theoretic
complement of subsets of a suitable character sphere.

The above result translates into the following statement. If χ : G1 ×G2 → R is
a character with χi = χ|Gi

for i = 1, 2 then [χ] ∈ Σn(G1 ×G2, F )
c = S(G1 ×G2, F ) \

Σn(G1 ×G2, F ) precisely when one of the following conditions holds: both χ1 and
χ2 are non-trivial and [χ1] ∈ Σp(G1, F )

c = S(G1) \ Σp(G1, F ), [χ2] ∈ Σn−p(G2, F )
c =

S(G2) \ Σn−p(G2, F ) for some 0 ≤ p ≤ n; or one of the characters χ1, χ2 is trivial and
for the non-trivial one, say χi, we have [χi] ∈ Σn(Gi, F )

c = S(Gi) \ Σn(Gi, F ).
The following theorem follows from Gehrke’s results [21]. In addition, it can be deduced

from the description of the Σ-invariants for RAAGs [31] or for direct products of virtually
free groups [32].

Theorem 3.3 (see [21], [32] and [31]). Let n and s be natural numbers such that
0 ≤ n ≤ s− 1. If χ : F s

2 = F2 × · · · × F2 → R is a character whose restriction on n+ 1
copies of F2 is non-zero then [χ] ∈ Σn(F s

2 ). In particular, if the restrictions of χ on all s
copies of F2 are non-zero then [χ] ∈ Σs−1(F s

2 ).
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The following result follows from [33] and [37]. A slightly more general version can be
found in [31, Thm. 3.2].

Theorem 3.4 (see [33], [31] and [37]). Suppose that G is an HNN extension with
base groupB, stable letter t and associated subgroupsA1 andA2. Suppose that χ : G→ R

is a character such that μ = χ |B �= 0, ν = χ |A1
�= 0, [μ] ∈ Σs(B) and [ν] ∈ Σs−1(A1). Then

[χ] ∈ Σs(G).

As stated before, the Σ-invariants control which subgroups above the commutator have
type Fn or FPn.

Theorem 3.5 (see [35]). Let G be a group of type Fn and N a subgroup of G that
contains the commutator subgroup G′. Then N is of type Fn if and only if

S(G,N) = {[χ] ∈ S(G) | χ(N) = 0} ⊆ Σn(G).

A homological version of the above theorem was proved by Bieri and Renz [12]. Thus,
the above homotopical version follows from the case n = 2 [35], since for general n ≥ 2
we have Σn(G) = Σn(G,Z) ∩ Σ2(G).

Lemma 3.6 (see [26]). Let G be a non-abelian limit group. Then Σ1(G,Q) = ∅.

4. The case n = m of the monoidal virtual surjection conjecture

Lemma 4.1. The monoidal virtual surjection conjecture holds for n = m, i.e.
Σm(H,Q) = ∅.

Proof. Note that p1,...,m is the identity map and Hχ �= H for any character χ of H.
Thus, for n = m, the conjecture predicts that Σm(H,Q) = Σm(H,Z) = Σm(H) = ∅.

Since H has type FPm, by Theorem 2.3 H has finite index in D = L1 × · · · × Lm. By
Theorem 3.2 it is possible to calculate Σm(−,Q) for a direct product of groups; hence
Σm(D,Q) is known. In this particular case, Σm(D,Q) = ∅, since for each non-abelian limit
group Li we have that Σ

1(Li,Q) = ∅ by Lemma 3.6. Hence Σm(D,Q) = ∅ by Theorem 3.2.
Note that there are subgroups L̄i of finite index in Li such that D̄ = L̄1 × · · · × L̄m ⊆ H,
and the same argument as above shows that Σm(D̄,Q) = ∅. Since D̄ is a subgroup of finite
index in H, we deduce by Theorem 3.1 that Σm(H,Q) = ∅. Then the proof is completed
by the inclusions Σm(H) ⊆ Σm(H,Z) ⊆ Σm(H,Q) = ∅. �

5. Some technical results

In this section,

H ⊆ L1 × · · · × Lm for some m ≥ 2

is a finitely presented full subdirect product (i.e. H ∩ Li �= 1 and pi(H) = Li for every
1 ≤ i ≤ m with canonical projection pi : H → Li), where each Li is a non-abelian limit
group. We will denote

Ni,j := pj(Ker(pi))� Lj for all i, j ∈ {1, . . . ,m} with i �= j.
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Proposition 5.1. For each 1 ≤ i ≤ m, there exists a free normal subgroup Fi � Li

such that Fi ⊆ H ′ and Li/Fi is a polycyclic-by-finite group. In particular,

N := F1 × · · · × Fm ⊆ H ′ ⊆ H.

Proof. Note that without loss of generality we can substitute each L1, . . . , Lm with
subgroups of finite index. Let us define

Nj :=
⋂
i�=j

Ni,j .

By [17, Lemma 6.1, Prop. 6.4], [16, Thm. 3.1] and Theorem 2.2, we have

γm−1(Nj) ⊆ [N1,j , . . . , Nj−1,j , Nj+1,j , . . . , Nm,j ] ⊆ H and [Lj : Nj ] <∞,

where {γt(Nj)}t≥1 is the lower central series of Nj defined by γ1(Nj) = Nj and
γi+1(Nj) = [γi(Nj), Nj ]. Hence,

Lj/γm−1(Nj) is a nilpotent-by-finite group.

By [26, Cor. 3] there exists a free normal subgroup F̄j � Lj such that Lj/F̄j is a (torsion-
free nilpotent)-by-finite group. We define

F̂j := γm−1(Nj) ∩ F̄j ⊆ H (5.1)

and note that Lj/F̂j is also nilpotent-by-finite. Set

N̂ := F̂1 × · · · × F̂m ⊆ H.

Finally, we define the free groups

Fi := F̂i ∩ (N̂ ∩H ′) = F̂i ∩H ′.

Since F̂i is normal in Li and pi(H) = Li, we deduce that Fi is normal in Li. By definition,

F̂i/Fi � F̂i/(F̂i ∩H ′) and the latter is isomorphic to a subgroup of H/H ′; hence F̂i/Fi

is a finitely generated abelian group. This implies that Li/Fi is polycyclic-by-finite as
claimed. �

Recall that an associated ring R is left (respectively, right) Noetherian if every left
(respectively, right) ideal is finitely generated.

Lemma 5.2. Let G be a polycyclic-by-finite group and let χ : G→ R be a discrete
character of G. Then, ZGχ and QGχ are left and right Noetherian rings.

Proof. By [34, Thm. 2.7], ZG and QG are left and right Noetherian rings. Further-
more, since χ is a discrete character, we have G = Ker(χ)� 〈x〉, where 〈x〉 � Z and
χ(x) > 0. Then Gχ = {g ∈ G|χ(g) ≥ 0} is a disjoint union ∪k≥0Ker(χ)x

k; hence

ZGχ =
⊕

g0∈Ker(χ)
k≥0

Z(g0x
k) = ZKer(χ)[x],

where ZKer(χ)[x] is a skew polynomial ring with x acting on ZKer(χ) via its conjugation
action onKer(χ). SinceKer(χ) is a polycyclic-by-finite group, again using [34, Thm. 2.7],
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ZKer(χ) is a left and a right Noetherian ring. Then, by a version of Hilbert’s base theorem
for skew polynomial rings (see [22, Theorem 1.12]), we conclude that ZKer(χ)[x] is a left
and a right Noetherian ring, and thus ZGχ is also left and right Noetherian. Similarly,
QGχ is a left and a right Noetherian ring. �

From now on, we fix F1, . . . , Fm and N as the groups given by Proposition 5.1. For
[χ] ∈ S(H), since N ⊆ H ′ ⊆ Ker(χ) ⊆ Hχ, we set

Hχ/N := {gN ∈ H/N | g ∈ Hχ} = (H/N)χ0
,

where

χ0 : H/N → R

is the character induced by χ.

Lemma 5.3. If χ : H → R is a discrete character of H, then Z(Hχ/N) and Q(Hχ/N)
are left and right Noetherian rings.

Proof. Since L1/F1 × · · · × Lm/Fm is a polycyclic-by-finite group, it follows thatH/N
is also polycyclic-by-finite. Thus, Z(H/N)χ0

= Z(Hχ/N) and Q(H/N)χ0
= Q(Hχ/N) are

left and right Noetherian rings by Lemma 5.2. �

Proposition 5.4. Let χ : H → R be a discrete character. If [χ] ∈ Σn(H,Q), then
Hj(N,Q) is finitely generated as a right Q(Hχ/N)-module for 0 ≤ j ≤ n.

Proof. Since [χ] ∈ Σn(H,Q), there exists a free resolution of QHχ-modules

F : · · · −→ Pj
dj−→Pj−1 −→ · · · −→ Q −→ 0

of the trivial QHχ-module Q, where Pj is a finitely generated free QHχ-module for
0 ≤ j ≤ n. Furthermore, we have the following Q(Hχ/N)-module isomorphisms:

Pj ⊗QN Q ∼=
( ⊕

α∈Ij

(QHχ)α

)
⊗QN Q ∼=

⊕
α∈Ij

((QHχ)α ⊗QN Q) ∼=
⊕
α∈Ij

Q(Hχ/N)α,

where (QHχ)α := QHχ and Ij is some finite index set for j ∈ {0, . . . , n}.
Consider the complex

F ⊗QN Q : · · · −→ Pj ⊗QN Q
dj⊗idQ−→ Pj−1 ⊗QN Q −→ · · · −→ Q −→ 0 ,

and note that for j ≥ 1,

Hj(N,Q) = TorZNj (Z,Q) ∼= TorQN
j (Q,Q) = Hj(F ⊗QN Q) =

Ker(dj ⊗ idQ)

Im(dj+1 ⊗ idQ)
.

Since Q(Hχ/N) is a right Noetherian ring, we conclude that for 0 ≤ j ≤ n every
Q(Hχ/N)-submodule of Pj ⊗QN Q is finitely generated, thus Ker(dj ⊗ idQ) is a finitely
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generated Q(Hχ/N)-submodule and, consequently, Hj(N,Q) is a finitely generated
Q(Hχ/N)-module. �

Set

qj1,...,jn : H/N → (Lj1/Fj1)× · · · × (Ljn/Fjn)

as the canonical projection map, where 1 ≤ j1 < · · · < jn ≤ m.

Lemma 5.5. Let χ : H → R be a discrete character. If [χ] ∈ Σn(H,Q) for some n ∈
{1, . . . ,m}, then

Wj1,...,jn := (F ab
j1 ⊗Z Q)⊗Q (F ab

j2 ⊗Z Q)⊗Q · · · ⊗Q (F ab
jn ⊗Z Q)

is finitely generated as a right Qqj1,...,jn(Hχ/N)-module.

Proof. By the Künneth formula and the fact that Fi is a free group for 1 ≤ i ≤ m,
there is an isomorphism of Q(Hχ/N)-modules

Hn(N,Q) = Hn(F1 × · · · × Fm,Q) ∼= (5.2)⊕
j1+···+jm=n,0≤ji≤1

Hj1(F1,Q)⊗Q · · · ⊗Q Hjm(Fm,Q) ∼=
⊕

1≤j1<···<jn≤m

Wj1,...,jn .

By Lemma 5.3, Q(Hχ/N) is a right Noetherian ring, and by Proposition 5.4, Hn(N,Q)
is a finitely generated right Q(Hχ/N)-module; thus Wj1,...,jn is a finitely generated right
Q(Hχ/N)-submodule of Hn(N,Q).

Note that Ker(qj1,...,jn) ⊆
∏

j∈{1,...,m}
j �=j1,...,jn

Lj/Fj acts trivially onWj1,...,jn via conjugation.

We conclude that the action of Hχ/N factors through qj1,...,jn(Hχ/N). Thus Wj1,...,jn is
a finitely generated right Q(qj1,...,jn(Hχ/N))-submodule of Hn(N,Q). �

From now on, we fix 1 ≤ j1 < · · · < jn ≤ m and set

ψ = qj1,...,jn : H/N → (Lj1/Fj1)× · · · × (Ljn/Fjn)

as the canonical projection map.
By [34, Lemma 2.5], there exists a characteristic subgroup Q̂i of Li/Fi such that Q̂i is

a torsion-free polycyclic group of finite index in Li/Fi for 1 ≤ i ≤ m.

Lemma 5.6. Let χ : H → R be a character. Then Q[Q̂j1 × · · · × Q̂jn ] is a

right Q[ψ(Hχ/N) ∩ (Q̂j1 × · · · × Q̂jn)]-submodule of Wj1,...,jn = (F ab
j1

⊗Z Q)⊗Q · · · ⊗Q

(F ab
jn

⊗Z Q).

Proof. By the proof of [26, Proposition 7], QQ̂i is a right QQ̂i-submodule of F ab
i ⊗Z Q;

thus

Q[Q̂j1 × · · · × Q̂jn ]
∼= QQ̂j1 ⊗Q · · · ⊗Q QQ̂jn

is a right Q[Q̂j1 × · · · × Q̂jn ]-submodule of (F ab
j1

⊗Z Q)⊗Q · · · ⊗Q (F ab
jn

⊗Z Q) =Wj1,...,jn .
By Lemma 5.5 Wj1,...,jn is a right Qψ(Hχ/N)-module, thus

Wj1,...,jn is a right Q[ψ(Hχ/N) ∩ (Q̂j1 × · · · × Q̂jn)]-module. �
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5.1. More on discrete characters

Let χ : H → R be a discrete character and let χ0 : H/N → R be the character induced
by χ. Then we have disjoint unions

H/N =

•⋃
α∈Z

tαKer(χ0) and (H/N)χ0
= Hχ/N =

•⋃
α≥0

tαKer(χ0).

Applying ψ,

ψ(H/N) =
⋃
α∈Z

ψ(t)αψ(Ker(χ0)), ψ(Hχ/N) =
⋃
α≥0

ψ(t)αψ(Ker(χ0)). (5.3)

Note that the last two unions are not necessarily disjoint.

Lemma 5.7. Suppose that χ : H → R is a discrete character. If [χ] ∈ Σn(H,Q) and

[ψ(H/N) : ψ(Ker(χ0))] = ∞, then Wj1,...,jn and Q[Q̂j1 × · · · × Q̂jn ] are both finitely

generated right Q[ψ(Hχ/N) ∩ (Q̂j1 × · · · × Q̂jn)]-modules.

Proof. Since [ψ(H/N) : ψ(Ker(χ0))] = ∞, the unions in (5.3) are disjoint. Hence, we
can define a discrete character

μ : ψ(H/N) → R

by

μ(ψ(q)) := χ0(q) for all q ∈ H/N.

Note that Σn(H,Q) �= ∅ implies thatH is FPn; hence, by Theorem 2.3, ψ(H/N) has finite
index in (Lj1/Fj1)× · · · × (Ljn/Fjn). We apply Theorem 3.1 for D := Q, M :=Wj1,...,jn ,

χ := μ, G := ψ(H/N) and K := ψ(H/N) ∩ (Q̂j1 × · · · × Q̂jn) and conclude that

Wj1,...,jn is a finitely generated right Q[ψ(H/N)]μ-module

⇔
Wj1,...,jn is a finitely generated right QKμ|K -module.

Note that [G : K] <∞, since [(Lj1/Fj1)× · · · × (Ljn/Fjn) : Q̂j1 × · · · × Q̂jn ] <∞. Fur-
thermore, ψ(Hχ/N) = [ψ(H/N)]μ and

QKμ|K = Q[ψ(H/N)]μ ∩ Q[Q̂j1 × · · · × Q̂jn ] = Q[ψ(Hχ/N)] ∩ Q[Q̂j1 × · · · × Q̂jn ]

= Q[ψ(Hχ/N) ∩ (Q̂j1 × · · · × Q̂jn)].

Then

Wj1,...,jn is a finitely generated right Qψ(Hχ/N)-module (5.4)

⇔
Wj1,...,jn is a finitely generated right Q[ψ(Hχ/N) ∩ Q̂j1 × · · · × Q̂jn ]-module. (5.5)

Note that by Lemma 5.5, (5.4) holds; hence (5.5) holds.
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Since QKμ|K = Q[ψ(Hχ/N) ∩ (Q̂j1 × · · · × Q̂jn)], K is a polycyclic-by-finite group

and μ|K is a discrete character, we conclude by Lemma 5.2 that Q[ψ(Hχ/N) ∩ (Q̂j1 ×
· · · × Q̂jn)] is a right Noetherian ring. ThusWj1,...,jn is a right Noetherian Q[ψ(Hχ/N) ∩
(Q̂j1 × · · · × Q̂jn)]-module and all its Q[ψ(Hχ/N) ∩ (Q̂j1 × · · · × Q̂jn)]-submodules are

finitely generated. In particular, by Lemma 5.6, Q[Q̂j1 × · · · × Q̂jn ] is finitely generated

as a right Q[ψ(Hχ/N) ∩ (Q̂j1 × · · · × Q̂jn)]-module. �

Proposition 5.8. Suppose that χ : H → R is a discrete character and [χ] ∈ Σn(H,Q).
Then [ψ(H/N) : ψ(Ker(χ0))] <∞, where χ0 : H/N → R is the character induced by χ.

Proof. Assume that [ψ(H/N) : ψ(Ker(χ0))] = ∞. By Lemma 5.7, we conclude that

Q[Q̂j1 × · · · × Q̂jn ] is a finitely generated right QKμ|K -module, where

K = ψ(H/N) ∩ (Q̂j1 × · · · × Q̂jn)

and μ : ψ(H/N) → R is induced by χ. As we have also seen in the proof of Lemma 5.7,

QKμ0
is a right Noetherian ring, where μ0 = μ|K . Then Q[Q̂j1 × · · · × Q̂jn ] is a right

Noetherian QKμ0
-module and its QKμ0

-submodule QK is finitely generated. This is
impossible since μ0 �= 0. �

Corollary 5.9. Suppose that χ : H → R is a discrete character and [χ] ∈ Σn(H,Q).
Then ψ(Hχ/N) = ψ(H/N).

Proof. By Proposition 5.8, [ψ(H/N) : ψ(Ker(χ0))] <∞. Then there exists a non-
negative integer a such that ψ(t)a+1 ∈ ψ(Ker(χ0)). Thus, using (5.3),

ψ(H/N) =
⋃

0≤β≤a

ψ(t)βψ(Ker(χ0)) ⊆
⋃
β≥0

ψ(t)βψ(Ker(χ0)) = ψ(Hχ/N). �

5.2. More on general characters

Lemma 5.10. Let χ : H → R be a character. Then pi1,...,in(H) �= pi1,...,in(Hχ) if and
only if χ(∩1≤j≤nKer(pij )) = 0.

Proof. If χ(∩1≤j≤nKer(pij )) �= 0, choose g0 ∈ ∩1≤j≤nKer(pij ) such that χ(g0) > 0.
Then, for an arbitrary g ∈ H we have that pi1,...,in(g) = pi1,...,in(gg

k
0 ), and for k

sufficiently big we have that χ(ggk0 ) = χ(g) + kχ(g0) > 0, hence ggk0 ∈ Hχ and thus
pi1,...,in(H) ⊆ pi1,...,in(Hχ) ⊆ pi1,...,in(H).
Suppose now that χ(∩1≤j≤nKer(pij )) = 0. Suppose that g ∈ H \Hχ and pi1,...,in(g) ∈

pi1,...,in(Hχ). Then there exists g1 ∈ Hχ such that pi1,...,in(g) = pi1,...,in(g1). Then gg
−1
1 ∈

Ker(pi1,...,in) = ∩1≤j≤nKer(pij ) and χ(gg
−1
1 ) �= 0, a contradiction. �

6. The main results of the paper

6.1. Proof of Theorem A

The case where χ is a discrete character is considered in Corollary 5.9. Assume now
that χ is a non-discrete character of H that contradicts Theorem A, i.e. [χ] ∈ Σn(H,Q),
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and for some 1 ≤ i1 < i2 < · · · < in ≤ m we have that pi1,...,in(H) �= pi1,...,in(Hχ). Let
N0 = ∩1≤j≤nKer(pij ). By Lemma 5.10, χ(N0) = 0. Thus

[χ] ∈ S(H,N0) = {[μ] ∈ S(H) | μ(N0) = 0}

and S(H,N0) is a closed sub-sphere of the character sphere S(H). Let N̄0 be the image of
N0 in B = Hab/tor(Hab), where Hab = H/H ′ is the abelianization of H and tor(Hab) is
the torsion part of Hab. Since χ �= 0, there is a basis y1, . . . , yd of B as a free abelian group
such that N̄0 is a subgroup of finite index in the abelian group generated by y1, . . . , ya
for some a ≥ 0 (the case a = 0 corresponds to N̄0 = 1). Then

S(H,N0) = {[μ] ∈ S(H) | μ(y1) = · · · = μ(ya) = 0} � S(H/N0),

and the homeomorphism S(H,N0) � S(H/N0) preserves discrete characters.
By [12], Σn(H,Q) is an open subset of the character sphere S(H); hence there is

a positive real number ε such that for any [μ] ∈ S(H), where the angle between [χ]
and [μ] is at most ε, we have [μ] ∈ Σn(H,Q). Note that the discrete characters are
dense in S(H/N0); hence the same holds in S(H,N0). Thus, there is a discrete char-
acter χ̂ of H such that [χ̂] is in S(H,N0) and the angle between [χ] and [χ̂] is smaller
than ε. Then [χ̂] ∈ Σn(H,Q) and, since Theorem A holds for discrete characters, we
deduce that pi1,...,in(H) = pi1,...,in(Hχ̂); hence, by Lemma 5.10, we have that χ̂(N0) �= 0,
a contradiction.

6.2. Proof of Theorem B

Note that by Theorem A, if [χ] ∈ Σ1(H,Q) then pi(Hχ) = pi(H) = Li. Thus

Σ1(H,Q) ⊆ {[χ] ∈ S(H) | pi(Hχ) = Li for 1 ≤ i ≤ m}. (6.1)

For the converse, assume that χ : H → R is a character such that

pi(Hχ) = Li for every 1 ≤ i ≤ m. (6.2)

By [14], [χ] ∈ Σ1(H) = Σ1(H,Z) if there is a finitely generated submonoid T of Hχ such
that the commutator subgroup H ′ is finitely generated as an T -group, where T acts via
conjugation (on the right). By (6.2) and since each Li is finitely generated, we deduce that
there is a finitely generated submonoid M of Hχ such that pi(M) = Li for 1 ≤ i ≤ m.

Recall that

N = F1 × · · · × Fm ⊆ H ′ ⊆ H ⊆ L1 × · · · × Lm,

where each Li/Fi is virtually polycyclic and Fi is free. Since Li/Fi is finitely presented,
there is a finite subset Xi of Fi such that

Fi = 〈Xi〉Li = 〈Xi〉M .

Since H ′/N is a subgroup of the polycyclic-by-finite group
∏

1≤i≤m(Li/Fi), we deduce
that H ′/N is polycyclic-by-finite; hence there is a finite subset X of H ′ such that H ′/N
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is generated by the image of X. Then

H ′ = 〈(∪1≤i≤mXi) ∪X〉M ,

i.e. H ′ is finitely generated as an M -group, where M acts via conjugation on the right.
Then [χ] ∈ Σ1(H) = Σ1(H,Z). Thus, we have

{[χ] ∈ S(H) | pi(Hχ) = Li for 1 ≤ i ≤ m} ⊆ Σ1(H) = Σ1(H,Z) ⊆ Σ1(H,Q). (6.3)

Then (6.1) and (6.3) complete the proof of Theorem B.

6.3. Proof of Corollary C

If s = 0, we can apply Theorem B. If s ≥ 1 by Theorem 2.2, we can realise H as a
finitely presented full subdirect product

H ⊆ L1 × · · · × Ls × Ls+1 × · · · × Lm,

where L1 � · · · � Ls � Z, Li is a non-abelian limit group for i ≥ s+ 1 and Z(H) = H ∩
(L1 × · · · × Ls) has finite index in L1 × · · · × Ls � Zs; hence Z(H) � Zs. If χ(Z(H)) �= 0,
by [12] we have that [χ] ∈ Σ1(H,Z) ⊆ Σ1(H,Q).
Suppose now that χ : H → R is a character such that χ(Z(H)) = 0. Then

H/Z(H) ⊆ Ls+1 × · · · × Lm (6.4)

is a finitely presented full subdirect product. Since Z(H) � Zs is a group of type FP∞,
we deduce that Hχ is of type FP1(D) if and only if Hχ/Z(H) is of type FP1(D), i.e.

[χ] ∈ Σ1(H,D) if and only if [χ1] ∈ Σ1(H/Z(H), D), (6.5)

where χ1 : H/Z(H) → R is the character induced by χ. To complete the proof it suffices
to apply (6.5) for D = Z and D = Q and Theorem B for the full subdirect product (6.4).

6.4. Proof of Theorem D

By Theorem A, Theorem 2.3 and the inclusions Σn(H) ⊆ Σn(H,Z) ⊆ Σn(H,Q), it
suffices to show that for a discrete character χ : H → Z, if

pj1,...,jn(Hχ) = pj1,...,jn(H) for all 1 ≤ j1 < · · · < jn ≤ m, (6.6)

then [χ] ∈ Σn(H).
Note that by Lemma 5.10, (6.6) is equivalent to χ(Ker(pj1,...,jn)) �= 0 for all 1 ≤ j1 <

· · · < jn ≤ m. Thus, if (6.6) holds for χ then (6.6) holds for χ substituted by −χ. Then,
since χ is a discrete character, by Theorem 3.5,

S(H,Ker(χ)) = {[χ], [−χ]} ⊆ Σn(H)

if and only if N := Ker(χ) is of homotopical type Fn. Thus, to prove the result it remains
to show that N is of homotopical type Fn.
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Observe that we already know by Theorem B that N is finitely generated. Hence pi(N)
is a finitely generated normal subgroup in a non-abelian limit group Li, and thus by [16]
pi(N) has finite index in Li for every 1 ≤ i ≤ m, i.e.

N is a subdirect product of p1(N)× · · · × pm(N) (6.7)

and each pi(N) is a limit group. Note that limit groups are always finitely presented and
of type FP∞.

SupposeH = N � 〈t〉, where χ(t) > 0. Thus pj1,...,jn(H) = pj1,...,jn(Hχ) = ∪i≥0pj1,...,jn
(N)pj1,...,jn(t)

i is a group; hence pj1,...,jn(N) has finite index in pj1,...,jn(H). Since H is
of type FPn, by Theorem 2.3, pj1,...,jn(H) has finite index in Lj1 × · · · × Ljn ; hence
pj1,...,jn(N) has finite index in Lj1 × · · · × Ljn . This implies that pj1,...,jn(N) has finite
index in pj1(N)× · · · × pjn(N). Then, if the virtually surjective conjecture holds in
dimension n for the subdirect product (6.7), we deduce that N is of type Fn.

Finally, by [18], the virtual surjection conjecture holds for n = 2.

6.5. Proof of Corollary E

If s = 0, we can apply Theorem D for n = 2 and χ a discrete character. If s ≥ 1 and
χ(Z(H)) �= 0, by [12] we have that [χ] ∈ Σ2(H,Z) ⊆ Σ2(H,Q). The same holds in its
homotopical version, i.e. [χ] ∈ Σ2(H), and it follows directly by the Renz Σ2-criterion in
[36].
Suppose now that χ : H → R is a character such that χ(Z(H)) = 0. Recall that

Z(H) � Zs is a group of type FP∞. Hence we deduce that Hχ is of type FP2(D) if
and only if Hχ/Z(H) is of type FP2(D) (this is a monoidal version of the fact that for a
short exact sequence of groups N → G→ Q, where N is FP∞, G is FPn if and only if
Q is FPn [9]), i.e.

[χ] ∈ Σ2(H,D) if and only if [χ1] ∈ Σ2(H/Z(H), D), (6.8)

where χ1 : H/Z(H) → R is the character induced by χ. To complete the proof of the
homological version of the result, note that by (6.4) H/Z(H) ⊆ Ls+1 × · · · × Ln is a full
subdirect product; thus it suffices to apply (6.8) for D = Z and D = Q and Theorem D
for the subdirect product (6.4).

To complete the proof, we need the homotopical version of the above argument, i.e.

[χ] ∈ Σ2(H) if and only if [χ1] ∈ Σ2(H/Z(H)). (6.9)

This follows directly from [33, Cor. 4.2] since Z(H) is finitely presented.

7. The Bieri–Stallings groups: proof of Theorem F

Let m ≥ 3 be a natural number. The Bieri–Stallings groups are

Gm = Ker(Fm
2 → Z),

where F2 is the free group of rank 2. The original Stallings example is the case m = 3.
The group homomorphism Fm

2 → Z sends a fixed basis of F2 to 1. The group Gm is of
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type Fm−1 but not of type Fm, and Gm ⊆ Fm
2 is a full subdirect product that maps

surjectively on pairs.
We write xi, yi for the basis of the ith copy of F2 in the direct product. Then, for

pairwise different 1 ≤ i, j, t ≤ m, we have [xi, yi] = [xiy
−1
j , yix

−1
t ] ∈ G′

m; hence

(F ′
2)

m = F ′
2 × · · · × F ′

2 = G′
m. (7.1)

Then

Gab
m = Gm/G

′
m � Z2m−1 ⊆ Z2m � (F2/F

′
2)× · · · × (F2/F

′
2).

Furthermore, moving to additive notation,

Gab
m �

{ ∑
1≤i≤m

z1,ixi +
∑

1≤i≤m

z2,iyi |
∑

1≤i≤m

(z1,i + z2,i) = 0, z1,i, z2,i ∈ Z

}
.

Then, for the canonical projection pj : Gm → F2, we have

Ker(pj)G
′
m/G

′
m

�
{ ∑

1≤i�=j≤m

z1,ixi +
∑

1≤i�=j≤m

z2,iyi |
∑

1≤i�=j≤m

(z1,i + z2,i) = 0, z1,i, z2,i ∈ Z

}
.

Then Gm/Ker(pj)G
′
m � pj(Gm)/F ′

2 = F ab
2 � Z2 and, by Corollary C,

Σ1(Gm)c = ∪1≤j≤mΔj ,

where

Δj = S(Gm,Ker(pj)) = {[χ] ∈ S(Gm) | χ(Ker(pj)) = 0}.

Theorem 7.1. For H = Gm ⊆ Fm
2 = F2 × · · · × F2, the monoidal virtual surjection

conjecture holds for any discrete character χ of H and any dimension n ≤ m− 1.

Proof. Recall that H is FPm−1 but not FPm. Then, the monoidal virtual surjec-
tion conjecture for H is defined only for n ≤ m− 1, and we can assume from now that
n ≤ m− 1. Note that since H is FPm−1, by Theorem 2.3, pi1,...,in(H) has finite index in
Fn
2 . Also by Theorem A we know that if [χ] ∈ Σn(H,Q) then pi1,...,in(H) = pi1,...,in(Hχ)

for any 1 ≤ i1 < · · · < in ≤ m.
The rest of the proof follows the proof of Theorem D. Fix a discrete character

χ : H → R. To show that the monoidal virtual surjection conjecture holds for the charac-
ter χ, it suffices to show that if pi1,...,in(H) = pi1,...,in(Hχ) for any 1 ≤ i1 < · · · < in ≤ m
then N = Ker(χ) is of homotopical type Fn, hence [χ] ∈ Σn(H) ⊆ Σn(H,Z) ⊆ Σn(H,Q).
As in the proof of Theorem D, we consider N as a subgroup of p1(N)× · · · × pm(N). The
same argument from the proof of Theorem D applies here, and we deduce that pi(N) is
finitely generated; hence pi(N) has finite index in F2 for every 1 ≤ i ≤ m. By (7.1),

p1(N)′ × · · · × pm(N)′ ⊆ F ′
2 × · · · × F ′

2 = G′
m ⊆ N = Ker(χ). (7.2)

By [30], the virtual surjection conjecture holds for subdirect products N ⊆ Γ1 × · · · × Γm

that contain the commutator subgroup Γ ′
1 × · · · × Γ ′

m. Applying this for Γi = pi(N), we
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deduce that N is of homotopical type Fn if and only if pi1,...,in(N) has finite index in
Γi1 × · · · × Γin for any 1 ≤ i1 < · · · < in ≤ m. In the proof of Theorem D, it was shown
that pi1,...,in(N) has finite index in pi1,...,in(H), and we already know that pi1,...,in(H)
has finite index in Fn

2 and [Fn
2 : Γi1 × · · · × Γin ] <∞. This completes the proof. �

Note that Gm is generated by the finite set

{x̄i = xiy
−1
1 , ȳj = yjy

−1
1 }1≤i≤m,2≤j≤m.

Lemma 7.2. The group H = Gm ⊆ Fm
2 = F2 × · · · × F2 has the following decompo-

sition as an HNN-extension:

Gm = HNN(Bm, t) = 〈Bm, t | At
m = Am〉,

where

Am = 〈{x̄i = xiy
−1
1 , ȳj = yjy

−1
1 }1≤i≤m−1,2≤j≤m−1〉

= N0 � (〈x̄2, ȳ2〉 × 〈x̄3, ȳ3〉 × · · · × 〈x̄m−1, ȳm−1〉),
N0 is the normal closure of x̄1 in Gm, t = ȳm and

Bm = 〈x̄1, x̄m〉 × 〈x̄2x̄−1
m , ȳ2x̄

−1
m 〉 × 〈x̄3x̄−1

m , ȳ3x̄
−1
m 〉 × · · ·

× 〈x̄m−1x̄
−1
m , ȳm−1x̄

−1
m 〉 � Fm−1

2 .

Remark. Every automorphism of Gm applied to the above HNN decomposition gives
an HNN decomposition of Gm. Applying a permutation σ ∈ Perm({1, 2, . . . ,m}) we
obtain an automorphism σ of Fm

2 such that Gσ
m = Gm and σ sends xi to xσi = xσ(i)

and yi to y
σ
i = yσ(i). Thus, we have a HNN decomposition

Gm = HNN(Bσ
m, t

σ) = 〈Bσ
m, t

σ | (Aσ
m)t

σ

= Aσ
m〉.

Another HNN extension is obtained by fixing x1, . . . , xm−1, y1, . . . , ym−1 and swapping
xm and ym.

Proof. Note that

〈{x̄i, ȳj}2≤i≤m,2≤j≤m〉 � 〈x̄2, ȳ2〉 × 〈x̄3, ȳ3〉 × · · · × 〈x̄m, ȳm〉,
where each group 〈x̄i, ȳi〉 for 2 ≤ i ≤ m is free of rank 2 and

x̄ȳ2

1 = · · · = x̄ȳm

1 = x̄x̄2
1 = · · · = x̄x̄m

1 = x̄
y−1
1

1 .

The normal closure N0 of x̄1 in Gm is a free group of infinite rank. Thus

Gm = N0 � (〈x̄2, ȳ2〉 × 〈x̄3, ȳ3〉 × · · · × 〈x̄m, ȳm〉).
Note that

Bm = 〈Am, x̄m〉
= 〈x̄1, x̄m〉 × 〈x̄2x̄−1

m , ȳ2x̄
−1
m 〉 × 〈x̄3x̄−1

m , ȳ3x̄
−1
m 〉 × · · ·

× 〈x̄m−1x̄
−1
m , ȳm−1x̄

−1
m 〉 � Fm−1

2 , (7.3)
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and for t = ȳm we have

[〈x̄2, ȳ2〉 × 〈x̄3, ȳ3〉 × · · · × 〈x̄m−1, ȳm−1〉, t] = 1

and x̄t1 = x̄ȳm

1 = x̄x̄2
1 = · · · = x̄x̄m

1 . �

Theorem 7.3. For H = Gm ⊆ Fm
2 = F2 × · · · × F2, the monoidal surjection conjec-

ture holds for any n ≤ m− 2.

Proof. Let χ : Gm → R be a character and let n ≤ m− 2 be such that

pi1,...,in(Gm) = pi1,...,in((Gm)χ) for every 1 ≤ i1 < · · · < in ≤ m. (7.4)

This is equivalent to χ(Ker(pi1,...,in)) �= 0 for every 1 ≤ i1 < · · · < in ≤ m. We aim to
prove that [χ] ∈ Σn(Gm).
Let Bm be the base group from Lemma 7.2. By (7.3), Bm � Fm−1

2 .
Step 1. Suppose that χ(xiy

−1
i ) �= 0 for all 1 ≤ i ≤ m. Note that for 1 ≤ i ≤ m− 1, the

ith copy of F2 in Bm � Fm−1
2 contains xiy

−1
i ; indeed, xiy

−1
i = x̄iȳ

−1
i = (x̄ix̄

−1
m )(ȳix̄

−1
m )−1

for 2 ≤ i ≤ m− 1 and x1y
−1
1 = x̄1. Then for every permutation σ ∈ Perm({1, 2, . . . ,m})

the restriction of χ on Bσ
m � Fm−1

2 is a character μ such that the restriction of μ on each
copy of F2 is non-zero. Then, by Theorem 3.3 and since m− 2 ≥ n,

[μ] ∈ Σm−2(Bσ
m) ⊆ Σn(Bσ

m) for every permutation σ.

Step 2. Suppose that for some i, χ(xiy
−1
i ) = 0. Without loss of generality, χ(xmy

−1
m ) =

0, otherwise we can apply an appropriate permutation σ. We aim to show that [μ] ∈
Σn(Bm) for the restriction μ of χ on Bm � Fm−1

2 . Note that μ = (μ1, . . . , μm−1), where μi

is the restriction of μ to the ith copy of F2 in F
m−1
2 � Bm. By Theorem 3.3, [μ] ∈ Σn(Bm)

is equivalent to at least n+ 1 of the characters μ1, . . . , μm−1 being non-zero. Suppose that
this is not true, and at most n of the characters μ1, . . . , μm−1 are non-zero, i.e. at least
m− n− 1 of the characters μ1, . . . , μm−1 are zero, say μj1 , μj2 , . . . , μjm−n−1

for some
1 ≤ j1 < · · · < jm−n−1 ≤ m− 1.
Recall that

Bm = 〈x1y−1
1 , xmy

−1
1 〉 × 〈x2x−1

m , y2x
−1
m 〉 × 〈x3x−1

m , y3x
−1
m 〉 × · · · 〈xm−1x

−1
m , ym−1x

−1
m 〉.

Step 2.1. Suppose first that j1 ≥ 2. Without loss of generality, we can assume that j1 = 2,
j2 = 3, . . . , jm−n−1 = m− n, otherwise we apply an appropriate permutation σ. Then

Δ := {x2x−1
m , y2x

−1
m , x3x

−1
m , y3x

−1
m , . . . , xm−nx

−1
m , ym−nx

−1
m } ⊆ Ker(χ).

Since m− 2 ≥ n, we have that Ker(p1,m−n+1,...,m−1) � Gm−n is generated by Δ ∪
{ymx−1

m } ⊆ Ker(χ), where

p1,m−n+1,...,m−1 : Gm → 〈x1, y1〉 × 〈xm−n+1, ym−n+1〉 × · · · × 〈xm−1, ym−1〉 = Fn
2

is the canonical projection. Hence Ker(p1,m−n+1,...,m−1) ⊆ Ker(χ). Then by
Lemma 5.10, p1,m−n+1,...,m−1(Gm) �= p1,m−n+1,...,m−1((Gm)χ), a contradiction with
(7.4).
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Step 2.2. Suppose that j1 = 1. Without loss of generality we can assume that j1 = 1,
j2 = 2, . . . , jm−n−1 = m− n− 1, otherwise we apply an appropriate permutation σ. Then

E := {x1y−1
1 , xmy

−1
1 , x2x

−1
m , y2x

−1
m , . . . , xm−n−1x

−1
m , ym−n−1x

−1
m } ⊆ Ker(χ).

Since m− 2 ≥ n, we have that Ker(pm−n,...,m−1) � Gm−n is generated by E ∪
{ymx−1

m } ⊆ Ker(χ), where

pm−n,...,m−1 : Gm → 〈xm−n, ym−n〉 × · · · × 〈xm−1, ym−1〉 = Fn
2

is the canonical projection. Hence we have that Ker(pm−n,...,m−1) ⊆ Ker(χ). Then by
Lemma 5.10, pm−n,...,m−1(Gm) �= pm−n,...,m−1((Gm)χ), a contradiction with (7.4).
Thus we deduce that in both cases [μ] ∈ Σn(Bm).
Step 3. Finally, we will show for ν = χ |Am

that [ν] ∈ Σn−1(Am). Recall that

Am = 〈{x̄i = xiy
−1
1 , ȳj = yjy

−1
1 }1≤i≤m−1,2≤j≤m−1〉.

Thus

Am = (〈x1, y1〉 × · · · × 〈xm−1, ym−1〉) ∩Gm � Gm−1.

Let

qj1,...,jn−1
: Am → Lj1 × · · · × Ljn−1

be the canonical projection, where 1 ≤ j1 < · · · < jn−1 ≤ m− 1, Lj = 〈xj , yj〉 for
1 ≤ j ≤ m. Thus, if ν(Ker(qj1,...,jn−1

)) = 0, since

Ker(qj1,...,jn−1
) = Ker(pj1,...,jn−1,m),

where

pj1,...,jn−1,m : Gm → Lj1 × · · · × Ljn−1
× Lm

is the canonical projection, we deduce that χ(Ker(pj1,...,jn−1,m)) = 0. Then by
Lemma 5.10, pj1,...,jn−1,m(Gm) �= pj1,...,jn−1,m((Gm)χ), a contradiction with (7.4). Thus
we conclude that ν(Ker(qj1,...,jn−1

)) �= 0 and note that n− 1 ≤ (m− 1)− 2. Then, by
induction on m, we can assume that Theorem 7.3 holds for m substituted with m− 1,
i.e. it holds for Gm−1 � Am. Then [ν] ∈ Σn−1(Am).

Finally, Steps 1, 2 and 3 together with Theorem 3.4 applied to the HNN decomposition
of Gm given by Lemma 7.2 imply [χ] ∈ Σn(Gm). �
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38. D. Schütz, On the direct product conjecture for sigma invariants, Bull. Lond. Math. Soc.
40(4) (2008), 675–684.

39. Z. Sela, Diophantine geometry over groups I. Makanin–Razborov diagrams, Publ. Math.
Inst. Hautes Études Sci. 93 (2001), 31–105.

40. J. R. Stallings, A finitely presented group whose 3-dimensional homology group is not
finitely generated, Amer. J. Math. 85 (1963), 541–543.

41. C. T. C. Wall, Finiteness conditions for CW-complexes, Ann. of Math. 81(1) (1965),
56–69.

42. H. Wilton, Hall’s theorem for limit groups, Geom. Funct. Anal. 18 (2008), 271–303.

43. M. C. B. Zaremsky, On the Σ-invariants of generalized Thompson groups and Houghton
groups, Int. Math. Res. Not. IMRN 19 (2017), 5861–5896.

https://doi.org/10.1017/S0013091520000176 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091520000176

	1 Introduction
	2 Preliminaries on subdirect products of limit groups
	3 Preliminaries on the -invariants
	4 The case n = m of the monoidal virtual surjection conjecture
	5 Some technical results
	5.1 More on discrete characters
	5.2 More on general characters

	6 The main results of the paper
	6.1 Proof of Theorem A
	6.2 Proof of Theorem B
	6.3 Proof of Corollary C
	6.4 Proof of Theorem D
	6.5 Proof of Corollary E

	7 The Bieri--Stallings groups: proof of Theorem F
	References

