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The self-excited instabilities acting on laminar separation bubbles in the absence of
external forcing are studied by means of linear stability analysis and direct numerical
simulation. Previous studies demonstrated the existence of a three-dimensional modal
instability, that becomes active for bubbles with peak reversed flow of approximately
7 % of the free-stream velocity, well below the ≈16 % required for the absolute
instability of Kelvin–Helmholtz waves. Direct numerical simulations are used to describe
the nonlinear evolution of the primary instability, which is found to correspond
to a supercritical pitchfork bifurcation and results in fully three-dimensional flows
with spanwise inhomogeneity of finite amplitude. An extension of the classic weakly
non-parallel analysis is then applied to the bifurcated flows, that have a strong dependence
on the cross-stream planes and a mild dependence on the streamwise direction. The
spanwise distortion of the separated flow induced by the primary instability is found to
strongly destabilize the Kelvin–Helmholtz waves, leading to their absolute instability and
the appearance of a global oscillator-type instability. This sequence of instabilities triggers
the laminar–turbulent transition without requiring external disturbances or actuation. The
characteristic frequency and streamwise and spanwise wavelengths of the self-excited
instability are in good agreement with those reported for low-turbulence wind-tunnel
experiments without explicit forcing. This indicates that the inherent dynamics described
by the self-excited instability can also be relevant when external disturbances are present.

Key words: boundary layer stability, absolute/convective instability, transition to turbulence

1. Introduction

Laminar flow separation is typically associated with detrimental effects on the
aerodynamics of lifting surfaces operating at relatively low Reynolds numbers. One kind
of separated flow of particular applied interest is the laminar separation bubble (LSB)
that forms near the leading edge of thin airfoils as the angle of attack is increased (Jones
1934). Separation of the laminar boundary layer takes place downstream of the suction
peak on the airfoil lee side due to the adverse pressure gradient. The resulting separated
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shear layer encloses a region of slowly moving recirculating flow known as the dead-air
region. Hydrodynamic instability dominates the dynamics of the separated layer, strongly
amplifying external disturbances and leading to laminar–turbulent transition even at very
low free-stream turbulence levels.

Leading-edge LSBs are classified as ‘short’ or ‘long’ based on their extent on
the streamwise direction, and have distinctly different impacts on the aerodynamics
(McCullough & Gault 1951). Short bubbles are characterized by a narrow plateau in the
pressure distribution, which produces a small variation on the global forces acting on the
airfoil. After small variations in the angle of attack or Reynolds number, a short bubble
may fail to reattach within a short distance from separation, giving rise to a long bubble
that extends over a substantial portion of the airfoil chord and affects substantially the
aerodynamic forces. This phenomenon is referred to as bursting; its physical causes and
the determination of an adequate criterion for its prediction are still today an active topic
of research (Gaster 1967; Pauley, Moin & Reynolds 1990; Diwan, Chetan & Ramesh 2006;
Marxen & Henningson 2011; Serna & Lázaro 2015; Mitra & Ramesh 2019, to cite a few).

The prevalence of flow instability in the separated shear layer suggests that a deeper
understanding of the instability mechanisms acting on LSBs is of crucial importance
in predicting and controlling the properties of separated flow and their impact on the
aerodynamics of near-stall and stalled airfoils. This has motivated continued research
on the instability of LSBs, both in airfoils and in simplified geometries. In particular,
different models of separation bubbles on flat-plate boundary layers have been employed
in which a deceleration or pressure gradient on the external flow field are prescribed.
Kelvin–Helmholtz instability has been documented in a multitude of experimental
(Dovgal, Kozlov & Michalke 1994; Diwan & Ramesh 2009; Michelis, Yarusevych &
Kotsonis 2017) and numerical (Rist & Maucher 1994; Rist & Augustin 2006; Marxen,
Lang & Rist 2012) investigations. Advected disturbance waves, generated by different
receptivity mechanisms in the attached boundary layer, experience growths of several
orders of magnitude when they reach the separated region, eventually leading to nonlinear
effects and vortex shedding. Then, nonlinear interactions between the spanwise-dominant
vortical structures lead to three-dimensionality and a very abrupt transition to turbulence
(Alam & Sandham 2000; Rist & Augustin 2006; Jones, Sandberg & Sandham 2008;
Marxen, Lang & Rist 2013; Robinet 2013). Alternatively, instability mechanisms
generating streamwise-aligned structures stemming from incoming free-stream turbulence
have also been identified (Marxen et al. 2009; Balzer & Fasel 2016; Hosseinverdi & Fasel
2018, 2019). These streamwise structures can interact with the Kelvin–Helmholtz rollers to
produce different transition scenarios. For high turbulence intensity levels, the streamwise
structures formed can even prevent the formation of spanwise-dominant vortices (Balzer
& Fasel 2016; Hosseinverdi & Fasel 2019).

However, the description of laminar separation bubbles as mere amplifiers of external
disturbances does not suffice to provide a comprehensive explanation of the wide variety
of phenomena observed in these flows. One such phenomenon is the occurrence of
flapping, i.e. a nearly periodic growth and reduction of the reversed flow region, which
occurs in frequencies that are one order of magnitude lower than those typical of the
inflectional instability (Zaman, McKinzie & Rumsey 1989). Another notable phenomenon
is the appearance of stationary three-dimensional patterns in experiments (Bippes & Turk
1980; Diwan & Ramesh 2009; Passaggia, Leweke & Ehrenstein 2012; Kurelek, Lambert
& Yarusevych 2016; Michelis, Yarusevych & Kotsonis 2018). A more fundamental
aspect that is not explained is the onset of unsteadiness and three-dimensionality
observed in direct numerical simulations of nominally two-dimensional LSBs in the
absence of free-stream turbulence or external forcing (e.g. Spalart & Strelets 2000;
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Hosseinverdi & Fasel 2013; Balzer & Fasel 2016). Finally, the successful criteria proposed
for the prediction of bursting, based on the assumption that it is entirely governed
by quantitative changes of the convective inflectional instability, rely on experimental
calibration (Gaster 1967; Diwan et al. 2006; Marxen & Henningson 2011; Serna & Lázaro
2015; Mitra & Ramesh 2019). This could be an indication that more involved instability
processes are at the origin of bursting, as was postulated by some authors (Gaster 1963;
Pauley et al. 1990; Diwan 2009).

This paper addresses the instability of LSBs in the absence of disturbances imposed
externally and the series of flow bifurcations that transform an idealized steady,
two-dimensional separated flow into an unsteady and three-dimensional transitional
recirculation bubble. The exclusion of external disturbances precludes the amplifier
behaviour, and only inherent (i.e. self-excited) flow instabilities can initiate the transition
process. Herein, inherent dynamics not only refers to that corresponding to ideal, unforced
LSBs, but also to that which may exist in practical externally disturbed flow, underlying
the dominant inflectional instability and yet having an impact on the evolution and
amplification of the external disturbances (e.g. Marquillie & Ehrenstein 2003; Rodríguez
& Gennaro 2019).

The self-excited instability of LSBs has been addressed in the past by means of direct
numerical simulations (Pauley et al. 1990; Fasel & Postl 2004; Embacher & Fasel 2014)
and linear stability analyses (Allen & Riley 1995; Hammond & Redekopp 1998; Rist &
Maucher 2002), under the assumption that such a self-excited mechanism is originated
by spatial regions of absolute instability. A global oscillator, as described by Huerre &
Monkewitz (1990), can then exist, leading to synchronized oscillations across the LSB
and eventually initiating the self-sustained shedding of spanwise vortices. The subsequent
secondary instabilities of the vortices would then result in three-dimensionality and
transition to turbulence, closely resembling the scenario where external disturbance waves
are continuously excited, making them difficult to be discerned. In order to quantify the
intensity of the separation bubbles, and to serve as a criterion for the prediction of absolute
instability, the peak reversed flow within the separation bubble scaled with the free-stream
velocity (urev) has been widely used in the literature. Alam & Sandham (2000), Rist &
Maucher (2002) and Diwan (2009) proposed threshold values urev ≈ 16 %–20 % for the
onset of absolute instability, while the numerical simulations of Fasel & Postl (2004) and
Embacher & Fasel (2014) reported a value urev ≈ 25 %. Avanci, Rodríguez & Alves (2019)
suggested that the occurrence of absolutely unstable Kelvin–Helmholtz waves in separated
boundary-layer velocity profiles requires that the inflection point is located within the
recirculating flow region and not necessarily a threshold on the reversed flow. They showed
that absolutely unstable velocity profiles can be found for reversed flows lower than 16 %.
In this context, it is intriguing that the numerical simulations of Spalart & Strelets (2000)
and Hosseinverdi & Fasel (2013), which recovered transitional separation bubbles in the
absence of continuous external disturbances, presented mean peak reversed flows below
8 %.

Alternative self-excited instability mechanisms have been proposed, that consider the
global nature of the LSB flow. An acoustic feedback cycle can exist in LSBs on airfoils,
in which the passage near the trailing edge of vortical structures resulting from the
convective amplification within the separated boundary layer produce acoustic emissions
that excite new instability waves (Arbey & Bataille 1983; Nash, Lowson & McAlpine
1999; Jones et al. 2008). However, the absence of a trailing edge in the vicinity
of the reattachment region rules out this instability for flat-plate geometries, like the
one considered in the present study. Different global mechanisms were proposed by
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Dallmann & Schewe (1987) and Gaster (2004), but their rigorous exploration was delayed
by the success of the local instability analysis in describing the Kelvin–Helmholtz
mechanism and its apparent ubiquity in experiments and simulations. It was not until
Theofilis, Hein & Dallmann (2000) that an approach considering global eigenmodes
was applied to a laminar separation bubble. A three-dimensional, temporally amplified
eigenmode was identified, confirming the global instability mechanism suggested by
Dallmann & Schewe (1987) a decade before. This instability, of a centrifugal nature,
is present in two-dimensional flows featuring closed regions of recirculation, and has
also been demonstrated for backward-facing steps (Barkley, Gomes & Henderson 2002;
Beaudoin et al. 2004), lid-driven cavities (Albensoeder, Kuhlmann & Rath 2001; Theofilis,
Duck & Owen 2004), open cavities (Brès & Colonius 2008; de Vicente et al. 2014),
S-shaped ducts (Marquet et al. 2009), shock-wave boundary-layer interaction (Robinet
2007), stalled airfoils at very low Reynolds numbers (Kitsios et al. 2009; Rodríguez &
Theofilis 2010a; Zhang & Samtaney 2016) and laminar separation bubbles past bumps
(Gallaire, Marquillie & Ehrenstein 2007), to cite a few.

The application of the global eigenmode analysis to laminar separation bubbles has
also contributed to shed new light on the physics stemming from the inflectional
instability. Ehrenstein & Gallaire (2008) and Cherubini, Robinet & de Palma (2010a)
suggested that the low-frequency flapping is originated by the linear superposition of
a small number of unstable two-dimensional eigenmodes associated with absolutely
unstable Kelvin–Helmholtz waves. The predicted flapping frequency was found to be
in good agreement with the experiments of Passaggia et al. (2012). In a different vein,
Alizard, Cherubini & Robinet (2009) applied a frequency-domain optimal response
analysis based on globally stable two-dimensional eigenmodes to the study of external
disturbances amplified by the LSB. The frequency corresponding to the optimal response
in their analyses is in good agreement with that of the vortex shedding recovered in
two-dimensional numerical simulations (Pauley et al. 1990).

With the aim of clarifying the relevance of the two self-excited instability mechanisms
of LSBs on flat-plate boundary layers described so far, Rodríguez, Gennaro &
Juniper (2013b) studied the two types of instability for a series of model LSBs. The
three-dimensional eigenmode was found to become unstable for two-dimensional bubbles
with peak reversed flow urev ∼ 6 %–8 %, substantially lower than the threshold of 16 %
for the absolute instability. This finding suggests that, if disturbances of external origin are
suppressed or reduced to very small amplitudes, the nominally two-dimensional separation
bubbles would become three-dimensional prior to the onset of periodic oscillations
or vortex shedding. The nature of this three-dimensionalization, a consequence of the
structural instability of the two-dimensional flow (Dallmann & Schewe 1987), was
investigated in Rodríguez & Theofilis (2010b) by means of topology reconstructions of
the perturbed flow. The instability was found to produce a spanwise-periodic modulation
of the recirculation bubble, giving rise to cellular separation patterns reminiscent of the
U-shaped separation topologies defined theoretically by Hornung & Perry (1984), and also
of the experimental observations of Bippes & Turk (1980) and Diwan & Ramesh (2009).

The objective of the present work is to show that three-dimensionalization of the
LSBs induced by the primary self-excited instability can give rise to a self-excited
secondary instability, explaining the origin of unsteadiness and triggering the transition
to turbulence in the absence of external disturbances. Some quantitative features of the
resulting transitional separation bubbles are in good agreement with those reported for
quiet wind-tunnel experiments conducted without explicit forcing (Watmuff 1999; Serna
& Lázaro 2014, 2015; Kurelek et al. 2016; Michelis et al. 2018).
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1.1. Scope and outline
The flow configuration in Rodríguez & Theofilis (2010b) and Rodríguez et al. (2013b)
is revisited here. A flat-plate boundary layer subjected to external flow deceleration is
used for the construction of a family of steady and two-dimensional baseline LSBs. The
linear analyses by Rodríguez et al. (2013b) serve as the departure point of the present
research. The first objective of this work is to study the nonlinear evolution following the
onset of the three-dimensional instability. A supercritical pitchfork bifurcation is found
to be associated with it; the disturbance growth saturates for finite amplitudes leading to
steady, fully three-dimensional separation bubbles. The secondary instability analysis of
the bifurcated flows is the second objective of this paper.

The choice of an adequate methodology for the identification, isolation and analysis
of different processes involved in the bifurcation sequence is not straightforward and
has limited the analysis of three-dimensional separated states in the past. Direct
numerical simulations, while recovering the complete flow evolution with remarkable
fidelity, do not allow for the isolation of the individual instability mechanisms and
can lead to misinterpretations of the bifurcation sequence. On the other hand, linear
instability analyses based on the solution of eigenvalue problems are conditioned
by the dimensionality of the underlying base flow, that has a tremendous impact
on the computational expense associated with their numerical solution. In the
present investigation, the three-dimensionality of the bifurcated flows would require a
three-dimensional eigenmode problem for the secondary instability analysis. The first
computations of three-dimensional linear instability eigenmodes (also referred to as
tri-global instability analysis, Theofilis 2011) in the literature, either employing matrix-free
(Tezuka & Suzuki 2006; Bagheri et al. 2009; Feldman & Gelfgat 2010; Loiseau et al.
2014) or matrix-forming (Gómez et al. 2012; Rodríguez & Gennaro 2017) approaches,
are relatively recent and still limited by the availability of computational resources.
An alternative methodology is used here for the analysis of three-dimensional flows in
which the streamwise variations take place on a scale which is large compared to that
of the cross-stream plane (Rodríguez & Gennaro 2015; Siconolfi et al. 2017), without
simplifying assumptions on the in-plane shape of the disturbances. This is a natural
extension of the classic weakly non-parallel approach that gave rise to the description
of linear global oscillators (Chomaz, Huerre & Redekopp 1988; Huerre & Monkewitz
1990), but considering local (two-dimensional) cross-planes instead of (one-dimensional)
velocity profiles.

The remainder of the paper is organized as follows. Section 2 presents the construction
of the baseline LSBs. Section 3 describes the theoretical and numerical approaches used
in the linear and nonlinear instability analyses. The primary instability is revisited in § 4,
which also addresses the nonlinear evolution by means of direct numerical simulations.
The secondary instability of the bifurcated LSBs is addressed in § 5. Section 6 illustrates
the nonlinear evolution of the secondary instability and the transition to turbulence.
Finally, the conclusions of this research and their relation with other works in the literature
are discussed in § 7.

2. Model laminar separation bubbles

An inverse formulation of the non-similar incompressible boundary-layer equations
is used to compute a family of baseline laminar separation bubbles. The computed
flows are two-dimensional and steady by construction, and the emergence of
three-dimensionalization or unsteadiness is to be recovered as flow instabilities.
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δ̄(x)

FIGURE 1. Problem geometry and computational domain.

2.1. Inverse formulation of the non-similar boundary-layer problem
Figure 1 illustrates the geometry of the model problem. The dimensional streamwise,
wall-normal and spanwise coordinates are denoted by x∗, y∗ and z∗, and their respective
velocity components by u∗, v∗ and w∗. Dimensionless magnitudes, to be defined later,
follow the same nomenclature but the superscript ∗ is dropped. The boundary-layer
edge velocity U∗

e and the kinematic viscosity ν∗ are used to define the boundary-layer
coordinates ξ = x∗/L∗ and η = y∗√U∗

e /ν
∗x∗, and the transformed streamfunction

f (ξ, η) = Ψ ∗/
√

U∗
e ν

∗x∗. (2.1)

The dimensional streamfunction is denoted by Ψ ∗ and L∗ is an arbitrary scale length.
After substitution of these variables in the streamwise momentum equation, the following
equation for f (ξ, η) is obtained:

fηηη + m + 1
2

ffηη + m(1 − f 2
η ) = ξ(Θfηfξη + fηηfξ ). (2.2)

Subscripts denote partial differentiation, and m = (ξ/U∗
e )(dU∗

e /dξ) quantifies the
free-stream pressure gradient, which only depends on ξ (Schlichting 1979). In order to
recover separated states, the so-called FLARE approximation (Reyhner & Flügge-Lotz
1968; Carter 1975) is invoked, that neglects the streamwise convective term when
reversed flow exists. The FLARE approximation appears in this equation as the function
Θ(ξ, η), which takes value unity when fη ≥ 0 and vanishes if fη < 0. Equation (2.2) is
complemented with the boundary conditions

f (ξ, 0) = 0, fη(ξ, 0) = 0, and fη(ξ, η → ∞) → 1. (2.3a–c)

The direct formulation of the non-similar boundary-layer equations prescribes a
distribution of the boundary-layer edge velocity U∗

e (ξ) or the external-flow pressure
gradient m(ξ). However, this approach fails when a point of vanishing wall shear is
reached, a phenomenon that is known as Goldstein’s singularity (Howarth 1934). An
inverse formulation is used here to circumvent the singularity; the displacement thickness
distribution δ̄(ξ ) is imposed as the missing boundary condition

f (ξ, η → ∞) → 1 − δ̄(ξ ). (2.4)

The solution algorithm marches downstream and iterates on each ξ profile until
a converged solution profile f (ξ, η) and m(ξ) are obtained. The inverse-problem

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

76
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.767


Self-excited primary and secondary instability of LSBs 906 A13-7

4 6 8 10 12

u0,rev (%)

4

6

8

10

12
δ̄

m
ax

6 7 8 9 10 11

u0,rev (%)

0

0.1

0.2

0.3

0.4

0.5

β

(a) (b)

FIGURE 2. (a) Dependence of the peak reversed flow in the baseline LSB, u0,rev , with the
maximum displacement thickness, δ̄max . (b) Neutral curve for the primary instability eigenmode
(solid line) and spanwise wavenumber of maximum growth rate (dashed line).

formulation recovers the boundary-layer edge velocity U∗
e (ξ) corresponding to the

imposed displacement thickness distribution δ̄(ξ ), accounting for the viscous–inviscid
interaction effects that cause Goldstein’s singularity. Details on the numerical solution
can be found in Rodríguez (2010).

2.2. Construction of the baseline laminar separation bubbles
An analytical displacement thickness distribution analogous to that prescribed by Carter
(1975) is imposed in (2.4). The solution of (2.2) is initiated with the velocity profile and
δ̄ value corresponding to the Blasius solution (δ̄B = 1.72078). The displacement thickness
is increased over a finite extent along the streamwise direction, following an analytical
expression that can be found in Rodríguez & Theofilis (2010b).

In what follows, lengths and velocities are scaled respectively with the displacement
thickness δ∗

in and the free-stream velocity U∗
in at a streamwise location upstream of

the increase of δ̄. This location is chosen so that the Reynolds number based on the
local displacement thickness is Re = 450, which is comparable with that in reported
direct numerical simulations (Rist & Maucher 1994; Alam & Sandham 2000; Spalart
& Strelets 2000). Setting the arbitrary length L∗ = δ∗

in leads to ξ = x . The increase of
the displacement thickness over the Blasius value starts at a coordinate x1 and returns
to the Blasius value at x2. In boundary-layer coordinates, the function δ̄(x) is symmetric
about the coordinate xδ = (x1 + x2)/2, where it reaches its peak value, δ̄max . Thus, δ̄(x) is
completely defined by the parameters x1, x2 and δ̄max . While δ̄ is symmetric, the resulting
recirculation bubble is highly asymmetric and the locations of the peak negative wall
shear and streamwise velocity are displaced towards the reattachment point. Prescribing
an increase in the displacement thickness over the Blasius value is equivalent to imposing
an adverse pressure gradient or a deceleration of the free stream, and these terms will be
employed indistinctly in the rest of the paper.

Using the same approach, Rodríguez et al. (2013b) computed a series of baseline
separation bubbles considering three different extents of the free-stream deceleration. For
each extent, the value δ̄max was varied from 3 to 10 to generate a large number of different
LSBs. In the present work, we consider only the family of model bubbles corresponding
to the longest streamwise extent, defined by x1 = 210, x2 = 320 and varying δ̄max .

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

76
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.767


906 A13-8 D. Rodríguez, E. M. Gennaro and L. F. Souza

The baseline two-dimensional LSBs in this study are constructed to be quantitatively
comparable with other separation bubbles in the literature. Three magnitudes are
computed for comparison: (i) the Reynolds number based on the momentum thickness
and edge velocity at separation Reθ,s = θ∗

s U∗
e,s/ν

∗, which lies in the range 208–212; the
Reynolds number based on the length of the recirculation region and free-stream velocity
ReL = (x∗

r − x∗
s )U

∗
in/ν

∗ (where x∗
r and x∗

s are the dimensional reattachment and separation
locations), which is between 37 600 and 40 500; and (iii) the peak reversed flow scaled
with the free-stream velocity, urev = −min(u∗)/U∗

in . Figure 2(a) shows the variation of the
peak reversed flow in the baseline LSBs, u0,rev with δ̄max (subscript 0 is used to denote the
flow fields corresponding to the baseline LSBs). The maximum reversed flow that can be
obtained with the boundary-layer formulation is u0,rev ≈ 12 %. This value corresponds to
the peak reversed flow attainable in Falkner–Skan profiles, which are asymptotic solutions
of the present formulation (Schlichting 1979).

3. Methodology

3.1. Modal linear instability analyses
Three-dimensional flows of viscous incompressible fluids are described by the continuity
and Navier–Stokes equations

∇ · v = 0,
∂v

∂t
+ v · ∇v = −∇p + 1

Re
∇2v, (3.1a,b)

where v = (u, v, w) is the velocity field, p is the reduced pressure and Re is the Reynolds
number, as defined in § 2.

Let q = (v, p) be the total flow field. Linear stability theory studies the evolution of
infinitesimally small disturbances q′ superimposed to a base flow q̄. The total flow field is
decomposed as

q(x, y, z, t) = q̄(x, y, z) + εq′(x, y, z, t), (3.2)

where ε 
 1. Substitution of (3.2) on the Navier–Stokes equations and linearization about
the steady base flow results on the linearized Navier–Stokes equations, that can be recast
in matrix form as

B
∂q′

∂t
= A3D q′. (3.3)

The linear operators A3D and B depend on the base flow components and their spatial
derivatives and on the Reynolds number, but not on time. This allows for the introduction
of the modal form

q′(x, y, z, t) = q̂(x, y, z) exp(−iωt) + c.c., (3.4)

with c.c. denoting the complex conjugate, which results in the generalized eigenvalue
problem (EVP)

− iωB q̂(x, y, z) = A3D(q̄(x, y, z), Re) q̂(x, y, z), (3.5)

where ω are the eigenvalues and q̂ the eigenfunctions.
The real part of the eigenvalues ωr corresponds to a circular frequency of oscillation

while the imaginary part ωi is the growth rate. If all the eigenmodes have ωi < 0, then any
disturbance introduced in the flow decays asymptotically for long times and the base flow
is said to be linearly stable. Conversely, if ωi > 0 for at least one eigenmode, the base flow
is unstable and the flow field evolves towards a different state.
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In the most general case, when the base flow depends explicitly on the three spatial
directions, so do the linear operators and the eigenfunctions; this EVP is known
as three-dimensional eigenmode analysis or tri-global analysis (Theofilis 2011). Many
problems of interest exist in which the base flow depends only on one or two spatial
directions, enabling the introduction of Fourier modes on these directions and reducing
substantially the complexity of the problem. Two such simplifications are relevant to the
present work.

3.1.1. Three-dimensional global eigenmodes of a two-dimensional non-parallel flow
In the analysis of the primary instability to be discussed in § 4, the base flow corresponds

to the baseline two-dimensional LSBs q0 (described in § 2), which are homogeneous on
the spanwise direction z. Spanwise-periodic eigenmodes are then introduced, of the form

q′(x, y, z, t) ∼ q̂(x, y) exp[i(βz − ωt)] + c.c., (3.6)

where β is a wavenumber associated with the spanwise periodicity length λz = 2π/β.
This modal form simplifies the EVP to a two-dimensional one, identical to the one solved
by e.g. Theofilis et al. (2000) or Barkley et al. (2002)

− iωB q̂(x, y) = A2Dz(q̄(x, y), β, Re) q̂(x, y). (3.7)

The linear operator A2Dz is obtained from A3D by imposing a base flow of the form
q̄(x, y) with w̄ = 0, and modal disturbances of the form (3.6). The resulting EVP must be
complemented with adequate homogeneous boundary conditions, that will be discussed
in § 4.

3.1.2. Global oscillator analysis based on cross-stream planes
A different simplification is used in § 5, in which the base flow corresponds to steady

three-dimensional separation bubbles. A weakly non-parallel approximation is introduced,
based on the assumption that the spatial scale L on which streamwise variations of
the base flow are significant is large compared to those on the cross-stream section
and to the instability wavelengths λx = 2π/αr. Evidence has been amassed that this
approximation is valid for instability waves developing over laminar separation bubbles
(Dovgal et al. 1994; Rist & Maucher 2002; Diwan & Ramesh 2012). Local instability
analyses based on the weakly non-parallel approximation can be used to study the
existence of self-excited instabilities consisting of synchronized oscillations across the
flow field. When such an oscillator-type instability is present, weakly non-parallel analysis
delivers results analogous to the more expensive global eigenmode computation (Pier
2002; Giannetti & Luchini 2007; Pier 2008; Juniper, Tammisola & Lundell 2011; Siconolfi
et al. 2017). The weakly non-parallel analysis proposed by Chomaz et al. (1988) and
Huerre & Monkewitz (1990), based on the Wentzel–Kramers–Brillouin–Jeffrey (WKBJ)
approximation, is extended here to three-dimensional base flows which have a strong
dependence on the two cross-stream directions. Only the main elements of the approach
are described; a more detailed explanation can be found in Huerre & Monkewitz (1990)
and Siconolfi et al. (2017).

The slow coordinate X = γ x is defined, with γ = λx/L assumed to be a small quantity.
At each X-plane, the instability waves are locally described by the modal form

q′(x, y, z, t) ∼ q̂(X, y, z) exp[i(α(X)x − ωt)] + c.c. (3.8)
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leading to a generalized EVP of the form

− iωB q̂( y, z) = A2Dx(α, q̄(X, y, z)) q̂( y, z). (3.9)

The linear operator A2Dx is obtained by substituting the disturbance form (3.8) in
A3D. Following Siconolfi et al. (2017), terms proportional to first-order streamwise
derivatives of the base flow quantities are retained. These additional O(γ ) terms
have a small effect on the local stability properties of the flow, but their inclusion
simplifies the numerical evaluation of the global frequency correction, described
below.

In the analysis of local instability waves, both the streamwise wavenumber and the
frequency can take complex values, i.e. ω = ωr + iωi and α = αr + iαi. The solution of
this EVP delivers a complete eigenspectrum, from which only a small number of discrete
eigenmodes correspond to potentially unstable waves. Successive solutions of (3.9) can be
used to map the individual eigenmodes from the complex plane α to the complex plane
ω at each X, establishing the dispersion relation D(α, ω, X) = 0. This dispersion relation
governs the evolution of packets of disturbance waves (i.e. wavepackets) locally at the
cross-stream plane X.

The analysis proceeds by determining, at each X-plane, the complex frequency
associated with disturbance waves with zero group velocity cg = ∂ω/∂α. This frequency
is known as the local absolute frequency ω0(X), and the associated wavenumber is denoted
by α0(X). A temporally amplified absolute frequency (ω0,i > 0) implies instability waves
that grow in amplitude while propagating upstream. The base flow is then said to be
absolutely unstable locally at the X-plane, as opposed to convectively unstable conditions
for which only downstream propagating waves grow in amplitude.

If the streamwise portion of the base flow being absolute unstable is sufficiently large,
a self-exciting mechanism can exist leading to synchronized oscillations, characterized by
the complex global oscillation frequency

ωg = ωs + γωγ . (3.10)

The leading-order contribution ωs is given by the saddle point of ω0(X) on the complex
X-plane, dω0/dX = 0. The complex X coordinate that satisfies this condition is referred to
as the wavemaker Xs and ωs = ω0(Xs). The correction term ωγ will be discussed shortly
below.

The spatial structure of the oscillator is calculated by investigating how the flow
responds to the saddle-point frequency, i.e. by evaluating

q′(x, y, z, t) ∼ Ψ0(X)q̂±
( y, z; X, ωs) exp

(
i
γ

∫
X
α±(X′, ωs) dX′ − iωgt

)
+ c.c. (3.11)

The results of the local EVP are used at each X-plane: α− and α+ are respectively
the upstream- and downstream-propagating local wavenumbers, which are considered
at each side of the wavemaker Xs and satisfy (3.9) for ω = ωs. Similarly, q̂± are the
corresponding local eigenfunctions associated with α±. The global oscillator structure is
computed by integrating the α− branch upstream of Xs and the α+ downstream of Xs. The
WKBJ approximation breaks down in a small region around the saddle point, for which
a different scaling of the streamwise variables and disturbance form are required (Huerre
& Monkewitz 1990). The asymptotic matching of the outer α− and α+ solutions and the
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inner WKBJ solution determines the values admitted by the correction term ωγ :

ωγ = − i
2
ωααα0,X + (ω0,XXωαα)

1/2 (n + 1/2) , (3.12)

where ωαα = ∂2ω/∂α2, α0,X = ∂α0/∂X and ω0,XX = ∂2ω0/∂X2, all of them evaluated at
the saddle point Xs. The non-negative integer n accounts for different matching solutions.
The value n = 0 is chosen for all the computations in this paper, as it corresponds to the
solution with a larger growth rate. The scalar function Ψ0(X) in (3.11) is determined from
the matching of the inner and outer solutions. However, Juniper et al. (2011) showed that
the error incurred in assuming a uniform value for Ψ0 is smaller than the influence of the
inaccuracies in α±. Consequently, Ψ0 is taken as uniform here too.

3.1.3. Numerical methods for instability analysis
The solution of the two- and three-dimensional EVPs is done using the code presented

in Rodríguez & Gennaro (2017). Variable-stencil finite differences are used to discretize
the linear operators. The stencil varies from centred 7-point finite differences in the
inner points to forward or backward differences with 4 points at the boundaries. This
discretization has the benefit of producing very sparse and banded matrix blocks,
optimizing the sparse algebra efficiency while presenting an improved resolution over
low-order discretization methods (Gennaro et al. 2013). A coordinate transformation
is introduced to concentrate the computational mesh at the flat plate. In-house
implementations of sparse storage and operation algorithms and a shift-and-invert Arnoldi
algorithm are used. The multi-frontal sparse linear algebra MUMPS (Amestoy et al. 2001)
is used for the lower-upper (LU) factorization of the sparse matrices and for performing
the required substitutions. Matrix-line reordering is previously applied using the library
METIS, and shared-memory parallelization is achieved by using OpenMP.

3.2. Direct numerical simulations
Direct numerical simulations (DNS) are performed to validate the results of the linear
analyses and to study the nonlinear regimes. The main characteristics of the code employed
are summarized here; the complete description of the methodology and validations can
be found in Petri et al. (2015). The Navier–Stokes equations in the velocity–vorticity
formulation are discretized using compact finite differences (Lele 1992). Fifth- and
sixth-order formulas are used for the x and y directions, respectively. A coordinate
transformation is applied to the y direction to increase the resolution towards the flat
plate. Fourier modes are used in the spanwise direction, and the derivatives are computed
via fast Fourier transform. The time derivatives in the vorticity transport equations
are discretized using a fourth-order, four-step Runge–Kutta integration scheme. Time
advancement requires the solution of a number of Poisson equations, which are solved
using a multigrid full approximation scheme (Strüben & Trottenberg 1981) with a V-cycle
with 4 overlapped grids. The coefficient matrices for the derivative calculation and for the
Poisson equation solution suggested by Linnick & Fasel (2005) were used.

The disturbance formulation of the equations is used in the present simulations. The
wall and far-field boundary conditions are consistent with those imposed in the stability
analyses, to be discussed later. The multigrid solution of the Poisson equation requires
vorticity to vanish at inflow and outflow boundaries, for which buffer layers are defined
following Kloker & Konzelmann (1993).
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3.2.1. Selective frequency damping
Selective frequency damping (SFD) consists in the addition of an explicit forcing term

to the governing equations solved in the DNS, that acts as a frequency low-pass filter
(Åkervik et al. 2006). This work uses SFD to isolate the nonlinear evolution associated
with the primary bifurcation from the secondary instabilities that give rise to unsteadiness
(§ 4.3). The encapsulated formulation of the SFD method proposed by Jordi, Cotter &
Sherwin (2014) has been implemented in the DNS code. Details on the methodology can
be found in the original reference.

4. Primary instability: steady three-dimensionalization

4.1. Recapitulation of the properties of the primary linear instability
The three-dimensional instability of the steady, two-dimensional baseline LSBs is
analysed using a global eigenmode problem, in which modal perturbations of the form
(3.6) are studied. Homogeneous Dirichlet boundary conditions are imposed at the inlet and
far field, and no-slip conditions are imposed at the wall. Homogeneous Neumann boundary
conditions are used at the outlet, but alternatives like linear extrapolation (Theofilis et al.
2000; Rodríguez & Theofilis 2010b) or no-stress conditions (Marquet et al. 2008) deliver
consistent results.

Following this approach, Theofilis et al. (2000) showed the existence of a self-excited
eigenmode, that has been recovered recurrently in the literature in flows with closed
recirculation regions (e.g. Barkley et al. 2002; Gallaire et al. 2007; Marquet et al. 2008;
Cherubini et al. 2010b; Rodríguez & Theofilis 2010a; Gennaro, Souza & Rodríguez
2019). Figure 2(b) shows the neutral curve corresponding to the baseline LSBs q0. The
computational domain used in the computations is x ∈ [80, 750] and y ∈ [0, 100], with
resolution Nx = 901 and Ny = 501. This mesh is used to ensure the integrity of the
results when interpolated in the DNS mesh (§ 4.2), but the convergence of the leading
eigenmode is achieved with substantially smaller domain and resolution. In the figure,
the peak reversed flow u0,rev is used to characterize the baseline LSB instead of δ̄max .
Three main characteristics define this instability: (i) the peak reversed flow required for
the instability is well below the urev ≈ 15 % threshold generally admitted for the onset
of absolute instability of two-dimensional disturbance waves; (ii) the dominance of a
finite spanwise wavenumber β, rendering the instability three-dimensional; and (iii) the
eigenmode is stationary for the range of dominant wavenumbers, ωr = 0. For the baseline
separation bubbles analysed here, critical conditions occur at δ̄max,c ≈ 6.61 (corresponding
to u0,rev ≈ 7 %) and βc = 0.166.

4.2. Set-up of direct numerical simulations
Direct numerical simulations are used to cross-validate the linear stability results (see
appendix A) and study the nonlinear evolution of the disturbed flow on account of the
self-excited modal instability. The disturbance form of the Navier–Stokes equations is
used, with the baseline LSBs q0 as base flow. The fluctuation flow variables q′ are
separated in spanwise Fourier modes

q′ =
Nk∑

k=0

q̃k(x, y, t) exp(ikβz) + c.c., (4.1)

where Nk is the maximum number of Fourier modes allowed in the computation, and β is
the fundamental wavenumber, taken as βc = 0.166.
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FIGURE 3. Temporal evolution of modal amplitudes. Baseline LSB corresponds to δ̄max = 8.5,
u0,rev = 9.37 %. The inset shows the small-amplitude oscillations that develop towards the
growth saturation of the primary instability. Horizontal lines correspond to the converged
amplitudes after the SFD is activated.

The same computational domain as in the linear stability analysis is used. The time
step is Δt = 0.78, the number of discretization points in the x and y directions used
is Nx = 401 and Ny = 241 and the number of spanwise Fourier modes is Nk = 64. The
wall-normal and spanwise resolutions are comparable to those by Marxen et al. (2013),
while the streamwise resolution is lower. This resolution allows the accurate identification
of the instability mechanisms that arise in the laminar base flow and does not intend to fully
resolve the subsequent turbulent flow. For validation purposes, some of the simulations are
repeated using the higher resolution Nx × Ny × Nk = 1201 × 241 × 128 and the time step
Δt = 0.78/8 = 0.0975. These simulations are denoted as DNSh in what follows, and have
excellent agreement with the lower resolution ones in what concerns this section, as shown
in appendix A.

The simulations are initiated with the disturbance field corresponding to the leading
global eigenmode alone; the Fourier mode q̃1 is initiated with the unstable eigenfunction
and q̃k = 0 for k /= 1. This includes k = 0, which corresponds to the spanwise-average flow
distortion. The initial condition is scaled so that the peak spanwise velocity ‖w̃1‖∞ = 10−6,
and the respective peak streamwise velocity ‖ũ1‖∞ ≈ 2.57 × 10−6.

4.3. Nonlinear evolution: supercritical pitchfork bifurcation
Figure 3 shows the temporal evolution of the first few Fourier modes for the representative
baseline LSB defined by δ̄max = 8.5, u0,rev = 9.37 %. The small amplitude of the initial
condition ensures that the flow undergoes an initial phase of linear evolution. The peak
streamwise velocity of the corresponding Fourier mode is used to monitor the modal
amplitudes. The initial transient (t ≤ 50) is related to the adaptation of the initial condition
to the outlet buffer layer used in the DNS.

The linear growth of the fundamental k = 1 mode gives rise to wavenumber harmonics
and a spanwise-average flow distortion through nonlinear interactions. As the k /= 1 modes
reach amplitudes comparable to that of the fundamental mode, the growth dictated by the
linear instability is reduced and eventually saturates. The result is a bifurcated state (with
respect to the two-dimensional baseline LSB q0) presenting a steady, three-dimensional
laminar separation bubble. For baseline LSBs sufficiently close to the neutral conditions
of the primary instability, this process can be studied by means of the weakly nonlinear
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FIGURE 4. Bifurcation diagram of the primary instability, corresponding to the saturation
of the three-dimensional instability. (a) Peak reversed flow of the baseline LSB (u0,rev ,
solid line without symbols), the saturated three-dimensional flow (u3D,rev , squares) and the
spanwise-averaged saturated flow (u2D,rev , circles). (b) Peak spanwise velocity (wmax , squares).
Large circles correspond to the DNSh simulations.

stability theory, as done by Rodríguez & Gennaro (2015). The bifurcation is found to
be a supercritical pitchfork one: two-dimensional LSBs with reversed flow below the
critical value remain two-dimensional in the absence of external sustained excitation.
Conversely, at supercritical conditions, the flow develops a three-dimensional distortion,
whose amplitude at saturation is proportional to the departure from the critical conditions.
The pitchfork bifurcation is better visualized by monitoring the peak spanwise velocity
wmax at saturated conditions (figure 4).

If the numerical simulation is marched for a long enough time, oscillations of the
amplitudes of the Fourier modes appear, as shown in the inset in figure 3. These
oscillations are not observed for all cases, but only for LSBs with u0,rev beyond a
certain value. It is anticipated here that they correspond to a self-excited secondary
instability of the three-dimensional separated flows that will be addressed in § 5. When
this happens, the spontaneous flow unsteadiness prevents the direct determination of the
steady three-dimensional bifurcated flow corresponding to the saturation of the primary
instability. In order to circumvent this and to isolate the saturation of the primary instability
from the onset of the secondary instability, the SFD is used. Simulations are marched until
the amplitudes of the first 6 Fourier modes are converged up to the eighth decimal case.
Figure 4 shows the bifurcation of the peak reversed flow and peak spanwise velocity in
the saturated flow. As a consequence of the spanwise-periodic distortion, the different
spanwise planes have an increased or reduced reversed flow. The peak reversed flow
urev,3D at saturated conditions is found to increase drastically with respect to the baseline
LSBs: e.g. urev,3D ≈ 15 % for u0,rev = 7.54 %. The spanwise average of the bifurcated
flow, obtained as the sum of the baseline LSB and the mean flow distortion mode
(q2D = q0 + q̃0), is also monitored. As opposed to u3D,rev, the peak reversed flow in the
spanwise-averaged flow u2D,rev is found to decrease with respect to the baseline LSB,
presenting values between 6 % and 7 % for the range of parameters considered.

4.4. Features of the saturated three-dimensional flow field
Rodríguez & Theofilis (2010b) showed that the linear instability induces a
spanwise-periodic modulation of the intensity and size of the recirculation region.
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FIGURE 5. (a) Baseline LSB and eigenmode corresponding to the primary instability. Nearly
horizontal grey surfaces correspond to u0 = 0.5 and to the local zero-mass-flux coordinate yd.
The surfaces correspond to u′ = ±0.5 of the eigenfunction streamwise velocity component. The
eigenfunction is normalized with ‖u′‖∞ = 1. (b) Steady three-dimensional LSB resulting from
the saturation of the primary instability. The horizontal grey surfaces correspond to ū3D = 0.5
and to the local zero-mass flux coordinate yd based on ū3D. The baseline LSB corresponds to
δ̄max = 7.4, u0,rev = 8.06 %.

The nonlinear effects leading to the saturation of the primary instability induce additional
changes in the features of the three-dimensional separated flow. The representative case
corresponding to δ̄max = 7.4, u0,rev = 8.06 % is considered in the following discussion.
Figure 5 shows three-dimensional flow fields corresponding to the linear eigenmode and
to the saturated conditions. The plane z = 0 is arbitrarily chosen to coincide with the peak
of negative velocity, and a complete spanwise period is shown. In all cases, two surfaces
are shown to depict the separation bubble. The first surface is defined by the wall-normal
coordinate yd(x, z) below which the mass flow rate in the streamwise direction is zero,∫ yd

0
u(x, y, z) dy = 0. (4.2)

In the limit of parallel flow, yd corresponds to the location of the divisory streamline
bounding the recirculating flow. The second surface is defined by u = 0.5. In the separated
flow region, this surface approximates the location of the local inflection points yi, where
the spanwise vorticity ωz ≈ ∂u/∂y is maximum. As will be discussed in § 5, these two
surfaces are especially relevant for the secondary instability.

Figure 5(a) shows the streamwise velocity component u′ corresponding to the primary
instability linear eigenmode. Positive and negative disturbance velocities localized in the
downstream part of the recirculation region are visible. Figure 5(b) shows the disturbance
streamwise velocity field u′ at the saturation conditions. The most prominent differences
are: (i) the intensity of the negative peak is increased with respect to the positive peak
in the recirculation region and (ii) two high-speed streaks are formed symmetrically
downstream of the negative peak. The interpretation of (i) must be done carefully:
figure 4(a) shows that the peak reversed flow in the bifurcated flow increases substantially
compared to the baseline LSB, but the spanwise-average reversed flow is indeed reduced.
This results in a localized pocket of very intense reversed flow centred on z = 0, while
the rest of the separated flow becomes milder in terms of reversed flow. Similar streaky
structures have been reported by Alam & Sandham (2000), Marxen & Henningson (2011)
and Cherubini et al. (2010b) in direct numerical simulations and by Watmuff (1999)
in experiments. A very similar picture is observed in the numerical simulations by
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Pauley (1994) and Marxen et al. (2009), who relate them to Görtler vortices, and in those
by Hosseinverdi & Fasel (2018) and Hosseinverdi & Fasel (2019), who identify them as
Klebanoff modes. These structures appear here in the absence of free-stream disturbances,
in a form which is incidentally consistent with the unforced simulations in Hosseinverdi
& Fasel (2013) and Balzer & Fasel (2016).

5. Secondary instability: onset of unsteadiness

The previous section shows that the self-excited primary instability of LSBs corresponds
to a supercritical bifurcation that leads to three-dimensional flow fields. This section
analyses these bifurcated flows to ascertain if a secondary self-excited instability exists,
as suggested by the oscillations appearing in figure 3.

5.1. Cross-stream plane stability analysis of separated flows
The flow fields resulting from the saturation of the primary instability are taken as the
base flow. These include the steady three-dimensional LSBs, denoted by q̄3D, and their
spanwise average q̄2D. A classic one-dimensional analysis based on the Orr–Sommerfeld
equation, that neglects the spanwise dependence of the base flow, would lead to important
errors and cannot be applied here (see appendix B). Therefore, local stability analysis is
applied to y–z cross-stream planes, as explained in § 3.1.2. The computational domain
extends up to ymax = 80 in the wall-normal direction and one wavelength of the
fundamental wavenumber in the spanwise direction (λz = 2π/0.166 ≈ 37.85). No-slip
boundary conditions are prescribed at the wall, and vanishing velocity and pressure are
imposed at the far field. Periodicity is imposed on the spanwise direction. The cross-plane
is discretized using Ny = 71 and Nz = 60 points. This resolution is enough to converge the
leading discrete eigenvalues, relevant to the subsequent analysis, to a relative error in the
fourth representative digit.

In order to illustrate the local instability properties of the cross-stream sections,
the plane X = 286 corresponding to the baseline LSB with δ̄max = 7.4, u0,rev = 8.06 %
is considered next. The complex streamwise wavenumber chosen, α = 0.42 − i0.33,
roughly approximates the α0 in the absolute/convective analysis of the three-dimensional
bifurcated flow q̄3D for this case (see figure 8). Figure 6 shows the eigenvalue spectra
corresponding to q̄3D and q̄2D. While a cheaper one-dimensional stability analysis could
be applied to q̄2D on account of its spanwise homogeneity, the cross-stream analysis is also
used to allow direct comparisons and facilitate the interpretation of the results for q̄3D.
Both eigenspectra present the same structure, with a branch of stable eigenmodes starting
at ω ≈ 0 + i0 and becoming gradually more stable as their frequency increases, and a
family of discrete eigenmodes with ωr ≈ 0.13–0.15. The leading discrete eigenmodes are
denoted as A, B and C.

Eigenmode A for q̄2D (figure 6d) presents the well-known features of a plane (β = 0)
Kelvin–Helmholtz (K–H) wave on a boundary-layer profile with reversed flow, with the
peak streamwise velocity located at the base flow inflection point (e.g. Dovgal et al. 1994).
Eigenmodes B and C are overlapped in the eigenspectrum for q̄2D and correspond to the
same oblique K–H wave with β = βc (figure 6f,h). This wavenumber is imposed here
by the choice of the spanwise extent of the computational domain. The eigenfunctions
for the two modes are phase shifted in the spanwise direction, presenting symmetric or
antisymmetric velocity components about z = 0.

Figure 6(c,e,g) shows the eigenfunctions corresponding to eigenmodes A, B and C for
the q̄3D base flow. The periodic spanwise distortion of the base flow leads to the ensuing
modification of the K–H waves. The disturbance streamwise velocity is localized around

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

76
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.767


Self-excited primary and secondary instability of LSBs 906 A13-17

z

0

5

10

15

y

C

0

5

10

15
B

0 0.05 0.10 0.15 0.20 0.25 0 0.05 0.10 0.15 0.20 0.25

ωr ωr

ωi

–0.15

–0.10

–0.05

0

–0.15

–0.10

–0.05

0A

B
C

q–3D

A
B/C

−10 0 10
0

5

10

15

y

A

−10 0 10

−10 0 10 −10 0 10

−10 0 10 −10 0 10

0

5

10

15
A

0

5

10

15

y

y

y

y

B

z

z z

z z

5

10

15
C

q–2D

(a) (b)

(c) (d)

(e) ( f )

(g) (h)

FIGURE 6. Linear stability analysis of the cross-stream plane X = 286 of q̄3D (a,c,e,g) and
q̄2D (b,d, f,h) corresponding to the baseline LSB with δ̄max = 7.4, u0,rev = 8.06 %. The axial
wavenumber is α = 0.42 − i0.33. (a,b) Eigenvalue spectra. (c–h) Eigenfunctions corresponding
to (c,d) eigenmode A, (e, f ) eigenmode B, (g,h) eigenmode C. Contours correspond to
streamwise velocity (perpendicular to figure) and the arrows to the velocities in the cross-plane.
Contour levels are evenly spaced between ±‖û‖∞, with the zero level being white. The thick
dashed-dotted, dashed and solid lines show the locations of the end of the reversed flow region
(yr), the streamwise inflection point (yi) and the local divisory streamline (yd), respectively.
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the spanwise location of the peak reversed flow (z = 0). The symmetric or anti-symmetric
characteristics and the number of phase changes on the z = 0 plane guide the identification
of the corresponding eigenmodes in q̄2D and q̄3D. Eigenmode A, corresponding to the
distorted plane K–H wave, is consistently found to be the most unstable or least stable
in all the analyses done herein. The other eigenmodes are not considered further.

These results for separated boundary-layer profiles with spanwise distortion are
consistent with inviscid analyses of spanwise-inhomogeneous shear layers (Saxena,
Leibovich & Berkooz 1999; Kawahara et al. 2003; Marant & Cossu 2018). In these
works, K–H instability waves that are symmetric (varicose) or antisymmetric (sinuous)
about the crests of the shear layer are related to the formation of streamwise streaks, and
the spanwise modulation of an unbounded shear layer is found to have a destabilizing
effect. The presence of a solid wall close to the shear layer is found here to further
promote the inflectional instability when spanwise distortion exists, as opposed to
spanwise-homogeneous shear layers (Kawahara et al. 2003).

5.2. WKBJ analysis of the global oscillator
The absolute/convective instability of K–H waves and the existence of a global oscillator
is addressed next. Following the procedure outlined in § 3.1.2, local analysis is applied
to cross-stream planes separated ΔX ≈ 1.67 from each other. The dispersion relation
D(α, ω, X) = 0 is obtained by mapping the complex α-plane to the ω-plane for each X
cross-plane. The α-plane is discretized using a constant spacing Δα = 0.005 both for the
real and imaginary parts. The cusp-point method (Huerre & Monkewitz 1990; Schmid &
Henningson 2001) is used to determine the absolute frequency ω0 and the corresponding
wavenumber α0 at each X. Figures 7 and 8 show ω0(X) and α0(X) for the base flows q̄2D
and q̄3D, respectively. In line with the analyses of the baseline LSB flows q0 (Rodríguez,
Gennaro & Juniper 2013a), the spanwise-average bifurcated flows q̄2D are found to be
only convectively unstable. In contrast, the three-dimensional flows q̄3D present regions of
absolute instability localized in the downstream part of the recirculation region. Absolute
instability appears for u0,rev � 7.29 % (δ̄max ≥ 7). These base flows satisfy the necessary
condition for the absolute instability of separated boundary-layer profiles proposed by
Avanci et al. (2019), namely that the inflection point is located below the line of zero
streamwise max flux yi < yd. This condition is visible in figure 6.

The existence of a region of absolute instability can lead to the appearance of a global
oscillator. The application of the saddle-point condition dω0/dX = 0 for the determination
of the wavemaker Xs requires the analytical continuation of the dispersion relation to
the complex X-plane. This is achieved here by fitting a polynomial to ω0(X) and α0(X),
as described by Pier (2002). The indications given by Juniper & Pier (2015) (see also
Siconolfi et al. 2017) to ensure the robust identification of Xs and ωg are also followed.
These validations are not described here for the sake of brevity.

Figure 9 shows the complex global frequency ωg, the wavenumber αg and the
wavemaker location Xs as a function of the peak reversed flow of the baseline LSB,
for the bifurcated three-dimensional flows q̄3D. The global oscillator becomes temporally
amplified for u0,rev above ≈ 8.1 %, (δ̄max ≈ 7.5). At these conditions, the peak reversed
flow u3D,rev ≈ 15.6 %, while u2D,rev ≈ 6.3 %, and the spanwise-average flow q̄2D is globally
(and absolutely) stable.

The spatial structure of the secondary instability global oscillator is shown in figure 10.
The disturbance flow field is computed by evaluating (3.11) downstream of the wavemaker,
using α+(X) and q̂+

( y, z; X) only. Figure 10(a) shows the plane z = 0 corresponding to the
peak reversed flow in the base flow q̄3D. The location of the local divisory streamline yd,
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FIGURE 7. Absolute frequency and wavenumber of spanwise-averaged bubbles q̄2D. (a,b) Real
and imaginary parts of the absolute frequency ω0. (c,d) Real and imaginary parts of the
wavenumber α0. The lines correspond to (in the direction of the arrows): δ̄max = 6.8, 7, 7.2,
7.4, 7.8, 8, 8.2, 8.5 and 8.7; respectively u0,rev = 7.29 %, 7.54 %, 7.81 %, 8.06 %, 8.31 %, 8.56 %,
8.80 %, 9.04 %, 9.37 % and 9.57 %.

u = 0.5 (which roughly approximates the location of the inflection point yi in the separated
flow region), and the zero streamwise velocity coordinate yr are also shown. The contours
of disturbance streamwise velocity are the typical ones of the K–H instability waves,
peaking at the inflection point and tilted in the direction of the base flow shear. Figure 10(b)
shows the plane y = 1.75, corresponding to approximately the u = 0.5 level downstream
of reattachment. The spatial structure is found to be strongly dependent on the spanwise
direction and localized symmetrically around the z = 0 plane.

5.3. Cross-validation of the secondary instability with direct numerical simulations
The steady base flows considered in the previous analyses of the secondary instability
were computed using direct numerical simulations. Selective frequency damping (briefly
described in § 3.2.1) was used to prevent the appearance of self-excited oscillations and
isolate the nonlinear saturation of the primary instability from the eventual secondary
instability. The solution was marched in time until the amplitudes of the first 6 spanwise
Fourier modes were converged up to the eighth decimal case; the steady flows q̄3D were
then considered to be converged. To cross-validate the results of the WKBJ analysis, the
simulations are re-started from the instant (named t0, different for each baseline LSB) in
which the steady flows q̄3D were established. The forcing term corresponding to the SFD
is switched off abruptly at t0, introducing a small disturbance of the flow field which is
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FIGURE 8. Absolute frequency and wavenumber of three-dimensional bubbles q̄3D. (a,b) Real
and imaginary parts of the absolute frequency ω0. (c,d) Real and imaginary parts of the
wavenumber α0. The lines correspond to (in the direction of the arrows): δ̄max = 6.8, 7, 7.2,
7.4, 7.8, 8, 8.2, 8.5 and 8.7; respectively u0,rev = 7.29 %, 7.54 %, 7.81 %, 8.06 %, 8.31 %, 8.56 %,
8.80 %, 9.04 %, 9.37 % and 9.57 %.

comparable in amplitude to the convergence error of the steady flows just mentioned. The
low-amplitude error ensures that any transient evolution resulting from switching off the
SFD does not contaminate the solution hiding the linear phase of growth of the secondary
instability. The time step used in the simulations in § 4 is reduced to ensure convergence
of the results: simulations with Δt = 0.78/16 ≈ 4.88 × 10−2 and Δt = 0.78/32 ≈ 2.44 ×
10−2 were carried out. Regarding this section, the results of both simulations are virtually
identical.

Figure 11(a) shows the temporal evolution of the disturbance streamwise velocity at
(x, y, z) = (310, 1.75, 0), for a case in which the secondary instability is active. This
location corresponds to a point within the recirculation region at the symmetry plane,
slightly downstream of the wavemaker predicted by the WKBJ analysis (see figure 10).
In what follows, the velocity probed at this point is denoted by u∗(t). As opposed to the
validation of the primary instability (§ 4.2), the disturbance flow field corresponding to
the secondary instability is not imposed now, and some evolution time is required until a
modal behaviour is reached. The temporal lapse in which the oscillations evolve linearly,
as well as their complex frequency, are estimated from u∗(t) as follows. First, the times
corresponding to local maxima and minima (tmax,n and tmin,n) are tracked, as denoted by
circles and squares in figure 11(a). Each oscillation period n is defined as starting at a
maximum (or minimum) and ending at the next one. The period-wise mean value of the
signal, u∗

m,n is also computed and shown by the dashed line in the figure. The mean value
remains approximately equal to u∗(t0) for a long time lapse, eventually departing from
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FIGURE 9. Properties of the secondary instability global oscillator computed using the
cross-planes WKBJ analysis. (a,b) Real and imaginary parts of the global frequency ωg.
(c,d) Real and imaginary parts of the wavenumber αg. (e, f ) Real and imaginary parts of the
wavemaker location Xs. The complex frequencies estimated from DNS is also shown in (a,b).

it, which indicates nonlinear effects and the deviation from the modal behaviour. The
oscillation frequency is estimated for each period as ωr,n = 2π/(tmax,n+1 − tmax,n), and an
analogous expression for the minima. The growth rate is estimated by assuming a linear
growth of the local maxima or minima about the period mean value u∗

m,n

ωi,n = ln
(

u∗(tmax,n+1) − u∗
m,n

u∗(tmax,n) − u∗
m,n

)/
(tmax,n+1 − tmax,n), (5.1)

and similarly for the minima.
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FIGURE 10. Spatial structure of the secondary instability global oscillator. Disturbance
streamwise velocity u′ at plane z = 0 (a), and at plane y = 1.75 (b). (c) Isocontours u′ = ±0.25.
Dashed-dotted, dashed and solid lines in (a,b) correspond to yr, yi and yd, respectively. The grey
surfaces in (c) correspond to yd and ū3D = 0.5. The thin dashed lines correspond to the real
coordinate of the wavemaker. Baseline LSB corresponding to δ̄max = 8.5, u0,rev = 9.37 %.
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FIGURE 11. Cross-validation of the secondary instability. (a) Temporal evolution of the
streamwise velocity at (x, y, z) = (310, 1.75, 0). (b) Estimation of the frequency ωr.
(c) Estimation of the growth rate ωi. Baseline LSB corresponds to δ̄max = 8.5, u0,rev = 9.37 %.
Circles and squares correspond to local maxima and minima.

The estimates of the complex frequency are shown in figure 11(b,c). The quantities are
considered converged when their relative variations over a period are lower than 10−3,
which occurs for (t − t0) ∼ 1928 for the case of the figure. Additionally, nonlinear effects
are considered here to become relevant when the relative difference of u∗

m,n and u∗(t0) is
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larger than 10−3. For the case shown in figure 11, this occurs for (t − t0) � 3580. The time
lapse of modal evolution is bounded between these two instants, represented by the vertical
lines in the figure, and hence is limited to a finite number of oscillations, which strongly
depends on the growth rate. The estimates based on maxima and minima deliver consistent
results during this time lapse, and their mean values (the dashed lines in figure 11b,c) are
taken as the modal complex frequency. The same complex frequencies are consistently
recovered analysing the velocity at other probe locations within the reversed flow, and also
considering the peak velocity of the spanwise-average Fourier mode, ‖ũ0‖∞, as shown in
figure 3.

The complex frequencies calculated from the DNS are compared to those predicted by
the linear WKBJ analysis in figure 9, showing a good agreement. Results of simulations
with the increased spatial resolution Nx × Ny × Nz = 1201 × 241 × 128 and the time
step Δt = 0.78/32 ≈ 2.44 × 10−2 (DNSh) are also shown in the figure. The simulations
recover frequencies that are consistently higher than the WKBJ ones. Similar deviations
between the predictions of a WKBJ analysis and a global eigenmode analysis were
identified by Siconolfi et al. (2017) for the wake of a circular cylinder. This quantitative
deviation might be attributed to the limitation of the weakly non-parallel analysis when
applied to flows with moderate non-parallelism. The spatial structure of the disturbances
that develop in the simulations during the initial phase of linear growth agrees with the
theoretical one (cf. figures 10b and 12b).

6. Nonlinear development and transition to turbulence

The primary and secondary self-excited instabilities described in the previous sections
give rise to the onset of three-dimensionality and unsteadiness in model laminar separation
bubbles. This section illustrates qualitatively the nonlinear development of the flow field
subsequent to the activation of the global oscillator, towards a complete laminar–turbulent
transition.

Figure 12(a) shows the spatio-temporal evolution of the disturbance streamwise velocity
u′(x, t) − u′(x, t0) for ( y, z) = (1.75, 0). The data correspond to the same simulation as
figure 11. Figures 12(b)–12( f ) show the disturbance velocity at different instants of time.
Note that the contour levels are varied from case to case, to allow for the visualization of
the structures.

As a result of the secondary instability, the flow field develops synchronized oscillations
that grow in amplitude until important nonlinear effects appear. For a relatively long time
lapse, the disturbance flow field retains the features of the linear oscillator, at least in the
vicinity of the reattachment line (figures 12b and 12c). Downstream, the spatial structure
gradually becomes more elongated on the streamwise direction, eventually becoming
reminiscent of the Λ-structures identified by Alam & Sandham (2000) or Marxen & Rist
(2010) (figure 12d). The formation and breakdown of the Λ-structures triggers a sudden
transition to the turbulent regime, as shown in figure 12(e). Afterwards, strong nonlinear
fluctuations dominate the flow field, including the aft part of the mean recirculation region.
The well-organized structure of the linear global oscillator cannot be identified visually in
the instantaneous velocity fields downstream of reattachment, but the periodic shedding
of vortices from the separation bubble is still present, as evidenced by the later times
in figure 12(a). A similar scenario was reported by Cherubini et al. (2010b), which is
described in that work as the breakdown of Görtler modes due to a convective instability.
The authors introduced an impulsive forcing upstream of the separation bubble, that
initiated the development of a wavepacket. The subsequent nonlinear evolution triggered
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FIGURE 12. (a) Temporal evolution of the disturbance streamwise velocity u′ − u′(t0) at
( y, z) = (1.75, 0). The vertical dashed line shows the location of the wavemaker Xs, as predicted
by the WKBJ analysis, while solid lines show the location of yd. (b–f ) Instantaneous disturbance
streamwise velocity u′ − u′(t0) at y = 1.75 at different times. Dashed-dotted, dashed and solid
lines correspond to yr, yi and yd, respectively. Baseline LSB corresponding to δ̄max = 8.5,
u0,rev = 9.37 %.

the laminar–turbulent transition. In the present work, the transition is initiated by a linear
global oscillator, resulting from the absolute instability of Kelvin–Helmholtz waves, and
does not require of external forcing. It is also worth noting that frequency beating or
flapping, as those reported by Ehrenstein & Gallaire (2008) and Cherubini et al. (2010a),
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is not observed here (figures 11a and 12). This is consistent with the absence of unstable
two-dimensional eigenmodes as shown in Rodríguez et al. (2013b) and appendix A.

7. Discussion and conclusions

This paper studies the linear and nonlinear instability processes that transform a steady,
two-dimensional model recirculating flow into a fully three-dimensional and unsteady
laminar separation bubble. The theoretical and numerical set-up does not introduce
explicit forcing or free-stream disturbances, and thus the origin of three-dimensionality,
unsteadiness and the eventual transition to turbulence can be associated with self-excited
instabilities of the flow. Under these conditions, the primary instability exerts a spanwise
modulation of the recirculation region. Direct numerical simulations are used to show
that this instability corresponds to a supercritical pitchfork bifurcation. The growth of
the spanwise-periodic modulation saturates at finite amplitudes, giving rise to fully
three-dimensional steady flows. These bifurcated flows present spanwise-average peak
reversed flows below 7 % in all cases considered, lower than those of their respective
baseline flows. Simultaneously, localized pockets with reversed flow exceeding 15 % also
appear. In the vicinity of these pockets, the local inflection point is located below the zero
streamwise mass-flux line, satisfying the necessary condition for the absolute instability
of Kelvin–Helmholtz waves suggested by Avanci et al. (2019).

A weakly non-parallel analysis based on cross-stream planes is applied to the
bifurcated flows. As anticipated by the topological changes induced by the primary
instability, the spanwise distortion of the separated shear layer is found to destabilize
the varicose (symmetric) K–H waves, in line with the analyses by Saxena et al. (1999),
Kawahara et al. (2003) and Marant & Cossu (2018). Absolute instability appears for
baseline LSBs with reversed flow u0,rev ≥ 7.29 %, which is marginally larger than the
critical u0,rev ≥ 7.01 % for the primary instability, and a global oscillator becomes
self-sustained for u0,rev ≥ 8.1 %. In practice, it can be expected that once the separated flow
becomes three-dimensional, the spanwise modulation is sufficient to trigger the secondary
instability. While in the present case the three-dimensionality is caused by the self-excited
primary instability, similar scenarios can appear when external disturbances are allowed.
For instance, if streamwise streaks of sufficient amplitude are present (e.g. Marxen & Rist
2010; Balzer & Fasel 2016; Karaca & Gungor 2016; Hosseinverdi & Fasel 2019; Li &
Yang 2019), the spanwise distortion of the separated flow induced by them can lead to
an absolute instability. This instability and the vortical structures resulting from it would
appear in an unsteady and chaotic manner, following the nature of the streaks. Similarly,
the absolute instability can appear in recirculation bubbles that are three-dimensional due
to the geometry, as in indented boundary layers (Xu et al. 2017) or downstream of large
roughness elements (Loiseau et al. 2014).

The present results may help to explain why unforced laminar separation bubbles with
relatively low peak reversed flows exhibit dynamics that is expected only for ‘stronger’
LSBs, such as self-sustained shedding of three-dimensional vortical structures. The
baseline LSBs subject of analysis here are inherently unstable for u0,rev ≥ 7.01 %; beyond
this value, the sequence of self-excited instabilities presented leads to a separation bubble
with turbulent reattachment and with a substantially lower time- and spanwise-average
reversed flow. In general, numerical simulations or wind-tunnel experiments only allow
the observation of the ‘final state’, resulting from the sequence of bifurcations. Applying
stability analyses to these flows would deliver misleading results regarding the instability
processes at play.
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Reθ,s ReL urev Tu

Watmuff (1999) 387 94 160 ≥7 % <0.1 %
Serna & Lázaro (2014) 200–400 40 000–60 000 2 %–15 % <0.1 %
Kurelek et al. (2016) 204 28 000 ∼7.5 % < 0.2 %
Simoni et al. (2017) 90–116 11 700–20 250 <15 % 0.65 %–1.2 %
Michelis et al. (2018) 532 64 000 ∼2 % <0.2 %
Kurelek et al. (2018, 2019) 180 26 600 ∼4 % <0.1 %

Present (baseline q0) 208–212 37 600–40 500 <12 %

λx/θs λz/θs λz/λx Stθ

Watmuff (1999) 50.8* 123* 2.42* 0.008654
Serna & Lázaro (2014, 2015) 25–35 — — 0.01–0.012
Kurelek et al. (2016) 35.1 71.4 2.00 0.017
Simoni et al. (2017) 59–63 — — 0.013–0.016
Michelis et al. (2018) 34.8 67.4 1.94 0.01
Kurelek et al. (2018, 2019) 32 72 2.25 0.016

Present 31.0–37.9 76.3–76.9 2.06–2.41 0.01–0.012

TABLE 1. Comparison of various parameters characterizing the laminar separation bubbles in
wind-tunnel experiments and present results: Reynolds number based on momentum thickness
at separation Reθ,s; Reynolds number based on streamwise length of the recirculation region ReL;
peak reversed flow urev; free-stream turbulence intensity Tu; dominant streamwise and spanwise
wavelengths λx/θs, λz/θs of coherent structures and Strouhal number Stθ .

Some salient features of the resulting LSBs are in good agreement with those reported
for quiet wind-tunnel experiments in which no forcing is applied externally, as shown
in table 1. The quantities characterizing the mean LSB are also shown. The global
oscillator frequency is compared to the reported vortex shedding frequencies in terms
of the Strouhal number defined with the momentum thickness θ∗

s and free-stream velocity
U∗

e,s at separation, as defined by Pauley et al. (1990)

Stθ = f ∗θ∗
s

U∗
e,s

, (7.1)

where f ∗ is the frequency in cycles per second. Streamwise and spanwise periodicity
lengths scaled with θ∗

s , and the ratio between them, λz/λx , are also compared when
possible. Note that some of the original references do not report the quantities using
the same scaling used here. In some cases, the authors of the original references
kindly provided the necessary information. In others, the quantities in table 1 have been
determined based on the available data. In the case of Watmuff (1999), the quantities in
the three first columns were roughly estimated from figures in the original paper and may
have significant errors. Also note that the experiments by Kurelek et al. (2016, 2018, 2019)
consider a NACA 0018 airfoil instead of a flat plate, which may originate the consistent
difference in Stθ . It is stressed that the table only includes experimental results without
explicit forcing like spanwise spacers, vibrating ribbons or unsteady suction–blowing. For
those references in which disturbances are forced, the quantities shown here correspond to
the reported natural conditions, before the introduction of the disturbances.
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The frequency predicted for the global oscillator, Stθ = 0.01–0.012, is in good
agreement with the dominant vortex shedding frequency reported for experiments in a flat
plate by Serna & Lázaro (2014, 2015) and Michelis et al. (2018). The flat-plate experiments
by Simoni et al. (2017) and on the airfoil by Kurelek et al. (2016, 2018, 2019) present
slightly higher frequencies (Stθ = 0.013–0.017), which could be related to the relatively
smaller Reynolds number. Conversely, Watmuff (1999) presents a lower Stθ = 0.008654,
and higher ReL. The global oscillator frequency is also in good agreement with the vortex
shedding frequency (Stθ = 0.0134–0.0136) recovered in the three-dimensional unforced
numerical simulations by Pauley (1994). Noticeably, this frequency is approximately twice
the ‘universal’ Stθ = 0.0069 frequency that was proposed by Pauley et al. (1990) for
two-dimensional simulations and was also recovered by Alizard et al. (2009).

The characteristic wavelengths are also found to depend mildly on the Reynolds number.
The aspect ratio is found to lie consistently in the range λz/λx ∼ 2–2.4, either predicted
for the global oscillator and in the unforced experiments. Incidentally, this aspect ratio is
also in good agreement with the values reported by Rist & Augustin (2006) and Marxen &
Henningson (2011). In these works, oblique Tollmien–Schlichting waves were introduced
upstream of the separation bubbles. The relation between the streamwise and spanwise
wavelengths for the largest spatial amplification was found to be 1.9 and 2.4, respectively.
The reasons for this agreement with the present results are not clear.

Further work is required to shed light on the role of the primary and secondary
self-excited instabilities discussed herein when environmental disturbances and/or explicit
forcing are present. The plethora of possibilities span from the constructive interaction of
disturbance waves existing in the pre-separated boundary layer with the inherent spanwise
distortion of the LSB (as studied in Rodríguez & Gennaro 2019), to the formation of
strongly coherent two-dimensional vortices by high-amplitude forcing (e.g. Embacher &
Fasel 2014; Hosseinverdi & Fasel 2018), completely precluding the self-excited scenario.
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Appendix A. Cross-validation of the primary instability results

The growth or decay rate of the fundamental k = 1 modes recovered in the simulations
is compared in figure 13(b) to the ones predicted by the eigenmode analysis. The excellent
agreement between the results of two independent approaches with different spatial
resolutions ensures the quality of the results.

A second validation test considers the behaviour of the k /= 1 modes. As the unstable
fundamental mode gradually attains higher amplitudes, nonlinear interactions excite
the harmonics and the spanwise-average flow distortion. At a certain evolution time
the nonlinear terms are switched off in the simulation allowing for the subsequent

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

76
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.767


906 A13-28 D. Rodríguez, E. M. Gennaro and L. F. Souza

0 2 4 6 8

t (×104)

10–6

10–4

10–2

100

6 7 8 9 10 11
–2

0

2

4

6

8

ωi

(×10–4)

LST
DNS
DNSh

u0, rev (%)

u0, rev= 7.54 %
u0, rev= 8.06 %
u0, rev= 9.37 %

‖ũ
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FIGURE 13. Cross-validation of linear growth rates in the primary instability. (a) Temporal
evolution of the fundamental mode for different baseline LSBs. (b) Linear growth rates extracted
from simulations (×) and predicted by linear stability analysis (+). Squares correspond to the
DNSh simulations.
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FIGURE 14. Temporal evolution of modal amplitudes during the initial development phase.
Baseline LSB corresponds to δ̄max = 7.4, u0,rev = 8.06 %. Nonlinear terms are switched off at
t = 2.96 × 104.

linear evolution of all modes (figure 14). All modes evolve following the growth rate
predicted by the eigenmode analysis. The k = 0 mode decays monotonically, confirming
that the baseline LSB is linearly stable with respect to two-dimensional disturbances.
Consequently, shedding of two-dimensional vortices is not triggered by a self-sustained,
linear oscillator-type instability for these flows, confirming the results of Rodríguez et al.
(2013b).

Appendix B. On the need for a cross-stream plane analysis

Could a simpler one-dimensional eigenmode problem like the Orr–Sommerfeld
equation be used to study the instability waves once the primary instability has exerted
a finite-amplitude three-dimensionalization of the LSB? One difficulty would be the
choice of a suitable base flow profile. The usual practice in the literature, stemming
from neglecting the spanwise inhomogeneity of separation bubbles, is to consider the
spanwise-average flow. This has been shown to deliver excellent predictions for forced
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ωr ωi

q̄3D, cross-plane 0.14192584 4.8876421 × 10−3

q̄3D, z = 0 profile 0.15391356 3.9755198 × 10−2

q̄2D, β = 0 0.14994544 −3.6978316 × 10−2

Baseline q0 0.14041469 −4.6087438 × 10−2

TABLE 2. Leading eigenmodes corresponding to the cross-plane of q̄3D and different
spanwise-homogeneous approximations. The base flows used correspond to the X = 286 plane
of the baseline LSB with δ̄max = 7.4, u0,rev = 8.06 %, the respective bifurcated flows. The axial
wavenumber is α = 0.42 − i0.33.

convective waves (Gaster 1967; Dovgal et al. 1994; Diwan & Ramesh 2009; Marxen et al.
2012; Embacher & Fasel 2014; Michelis et al. 2017). In terms of the analysis, either the
baseline undisturbed flow field q0 or the spanwise average of the bifurcated flow q̄2D can be
used. On the other hand, the spanwise modulation of the bifurcated flow leads to spanwise
planes (z = 0 in q̄3D) with a peak reversed flow substantially higher than the spanwise
average, and with the inflection point located within the recirculation region (yi < yd, see
figure 6c,e,g) As the K–H instability is dominated by the properties of the base flow at
the inflection point and becomes more unstable with increasing spanwise vorticity, the
mechanism driving the disturbance growth is expected to be localized in this section;
taking the profile q̄3D( y; X, z = 0) is thus another reasonable possibility.

The latter three possible choices for the base velocity profile are tried and compared
to the result of considering the complete cross-stream plane. The results are shown in
table 2 for an illustrative case. While the frequency ωr is predicted using spanwise-average
analysis within a 5 % relative error, important differences appear in the growth rate. The
results for base profiles q0 and q̄2D have ωi < 0. Conversely, the use of q̄3D( y; X, z = 0)
overestimates the growth rate by an order of magnitude. These results demonstrate that the
cross-stream plane analysis is required on account of the spanwise inhomogeneity of the
separated flow. Simplified analyses that assume the base flow spanwise homogeneity can
underpredict the instability significantly.
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