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1. Introduction
In this paper we solve a problem that has been open for more than 50 years about a
characterization of a single bonding map on an interval whose inverse limit is an arc.
Although at first glance the problem seems purely topological, it is also important in
dynamical systems since, by Barge and Martin [BM1], every inverse limit space of an
interval map can be realized as a global attractor for a homeomorphism of the plane.
Therefore, our result sheds light on homeomorphisms of the plane whose attractors are
arcs. In addition, on our way to proving the main result, we give dynamical properties,
interesting in their own right, of a map on an interval whose inverse limit is an arc.

In 1968, Rogers [R] considered the class of single bonding maps on [0, 1] that are
nowhere strictly monotone and showed that the inverse limit of such a function can be an
arc. In the same paper Rogers asked a very natural question: what kind of maps will yield
an arc, or more specifically, what kind of single bonding map will yield an arc?

The question turned out to be very hard and has been studied by a number of authors. In
1995, Block and Schumann [BS] characterized a unimodal map whose inverse limit is an
arc. They showed that if f is a unimodal map then its inverse limit is an arc if and only if
either f has more than one fixed point and no points of other periods, or f has a single fixed
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point, a point of period 2, and no points of other periods. They also gave an example which
shows that their characterization for the unimodal maps cannot be extended to piecewise
monotone maps. In addition, they proved that if the inverse limit of a continuous map f on
the interval is an arc, then all periodic points of f either are fixed points or have period 2.

In 2004, Mo et al [MSZM] considered functions of type N on [0, 1] and gave a
characterization of a single type N bonding map whose inverse limit is an arc. A continuous
function f : [0, 1]→ [0, 1] is called of type N if there are a, b ∈ (0, 1), a < b, such that f

is strictly increasing on [0, a] and on [b, 1], and strictly decreasing on [a, b]. The necessary
and sufficient conditions are given in terms of mutual positions of points a, b, f (a) and
f (b). Existence of periodic points under given conditions is also discussed.

Very recently (2020), Anušić and Činč [AC] obtained a characterization of a continuous
surjective piecewise monotone function f : [0, 1]→ [0, 1] (with finitely many monotone
pieces) whose inverse limit is an arc. They consider (connected) components of the unit
interval without any fixed points of f 2. The necessary and sufficient condition is that for
every such component C there exists a fixed point y of f 2 such that for every x ∈ C the
sequence 〈f 2n(x) : n ∈ N〉 converges to y.

We introduce the very simple notion of a tight sequence (Definition 3.1) and study a
subclass of tight sequences that we call splitting sequences (Definition 3.4). We prove
that the inverse limit of a continuous surjective function f on an interval is an arc if and
only if f does not admit a splitting sequence (Theorem 4.7). We also prove that f admits
a splitting sequence if there are two disjoint intervals whose images coincide and one
of them, A, has a subinterval D ⊂ A such that f k(D) = A for some positive integer k

(Lemma 3.9). This criterion is easy to check for a large class of continuous functions
(especially if k is small). Additionally, we show that if f has a periodic point of period
greater than 2, then f has a splitting sequence (Lemma 3.8). This, together with our main
theorem, implies the above-mentioned result from [BS] about a continuous map whose
inverse limit is an arc (that all of its periodic points are either fixed points or have period 2).

As shown in [BS], an inverse limit may not be an arc even if its periodic points have
period no greater than 2. There are maps that have only fixed points, but yield complex
inverse limit spaces. As we show in this paper, the reason is a splitting sequence. In the
Block–Schumann example a splitting sequence is easily recognized using the criterion
from Lemma 3.9, as we show in Example 3.10.

The other very interesting example is the Henderson map [H]. It has only two fixed
points and no points of other periods, but its inverse limit space is the pseudo-arc. The
Henderson map is not piecewise monotone, so the criterion from [AC] does not work for
it. But the existence of a splitting sequence for the Henderson map is not hard to prove, as
we show in Example 3.7.

On our way towards the main result we also prove that a continuous function f which
has at least two different periodic orbits of period 2, and has an arc as its inverse limit,
also has the following very interesting property. If {s, t} and {u, v} are two 2-cycles with
s < t and u < v, then s < u implies v < t (Lemma 3.13). Moreover, f has exactly one
fixed point (Lemma 3.18).

The paper is organized as follows. In §2 we give definitions and define notation required
in the sequel. In §3 we define tight sequences, introduce splitting sequences and discuss
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properties of functions on an interval that do not admit a splitting sequence, and which are
the basis for the proof of our main theorem. In §4 we prove our main theorem.

2. Preliminaries
A continuum is a non-empty compact connected metric space. Let X be a continuum and
p ∈ X a point. Then p is a separating point if X \ {p} is disconnected. A continuum X is
an arc if X has exactly two non-separating points called endpoints.

For each n ∈ N, let Xn be a closed interval and fn+1 : Xn+1 → Xn a continuous
function. The inverse limit of (fn)n∈N is the space

lim←−(Xn, fn) =
{
(x0, x1, . . .) ∈

∏
n∈N

Xn : for all n ∈ N, xn = f (xn+1)

}

with the topology inherited from the product space
∏

n∈N Xn. The functions fn are called
bonding functions. An inverse limit of continua is a continuum [N]. We are concerned
with inverse limits of functions f : [0, 1]→ [0, 1]. Denote the inverse limit of a single
bonding function f by lim←− f . Bold symbols represent members of [0, 1]N, for example
x = (x0, x1, . . .). Denote the graph of a function f by �(f ).

Barge and Martin give the following characterization of an endpoint of an inverse limit
lim←− f for a function f : [0, 1]→ [0, 1].

THEOREM 2.1. [BM2, Theorem 1.4] Let f : [0, 1]→ [0, 1] be a continuous function.
Then p is an endpoint of lim←− f if and only if for each integer n, each closed interval

Jn = [an, bn] with pn ∈ (an, bn), and each ε > 0, there is a positive integer k such that if
pn+k ∈ Jn+k and f k(Jn+k) = Jn, then pn+k does not separate

(f k � Jn+k)
−1([an, an + ε]) and (f k � Jn+k)

−1([bn − ε, bn])

in [an+k , bn+k] (f k is ε-crooked with respect to pn+k).

We also require the following result by Block and Schumann.

PROPOSITION 2.2. [BS, Proposition 3.1] Let f : [0, 1]→ [0, 1] be a continuous function.
Then lim←− f is a point if and only if f admits exactly one fixed point and no periodic points.

In order to show that the Henderson map admits a splitting sequence in Example 3.7,
we will require the following lemma.

LEMMA 2.3. [H, Lemma 1] There is a map f : [0, 1]→ [0, 1] such that if [a, b, c, d] is an
increasing 4-tuple of rational numbers in (0, 1) (that is, 0 < a < b <

c < d < 1), then there exists an integer m such that if n > m and [u, w] is an interval
such that f n([u, w]) = [a, d], then f n � [u, w] is crooked on [a, b, c, d].

By crooked it is meant that f n([u, w]) contains [a, d] and there is in [u, w] either an
inverse of c under f n between two inverses of b or an inverse of b under f n between two
inverses of c. The Henderson map satisfies the above lemma.
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For each m, n ∈ N, m < n, denote the sequence of natural numbers from m to n

(inclusive) by [m, n], and the sequence of natural numbers greater than or equal to m

by [m,∞). Let

Gm,n(f ) = {(xm, . . . , xn) ∈ [0, 1][m,n] : for all i ∈ [m, n− 1], f (xi+1) = xi},
and

Gm,∞(f ) = {(xm, xm+1, . . .) ∈ [0, 1][m,∞) : for all i ∈ N, i ≥ m, f (xi+1) = xi}.
We define projection functions

πn : lim←− f → [0, 1] by πn(x) = xn,

πn+1,n : lim←− f → �(f ) by πn+1,n(x) = (xn+1, xn),

if m < n, and define

π[m,n] : lim←− f → Gm,n(f ) by π[m,n](x) = (xj )j∈[m,n]

and

π[m,∞) : lim←− f → Gm,∞(f ) by π[m,∞)(x) = (xj )j∈[m,∞).

If f is surjective, each of these projection functions is onto.
A basic open subset of lim←− f is a set of the form

U =
⋂
{π−1

nj
(Uj ) : j ≤ k} ∩ lim←− f ,

where {k} ∪ {nj : j ≤ k} ⊂ N and each Uj is an open subinterval of [0, 1].

3. Splitting sequences
In this section we define tight sequences, and splitting sequences which are a subclass of
tight sequences. We prove a number of lemmas that give properties of splitting sequences
required to prove our main theorem.

Definition 3.1. Let f : [0, 1]→ [0, 1] be a continuous surjective function and

σ = 〈Tn � [0, 1] : n ∈ N〉
a sequence of closed intervals. If for each n ∈ N, f (Tn+1) = Tn and there exists m ∈
N such that for each n > m, Tn is non-degenerate, then σ is a tight sequence. The
subcontinuum lim←−(Tn, f � Tn) is denoted by L(σ).

Definition 3.2. Let f : [0, 1]→ [0, 1] be a surjective continuous function. Let p ∈ lim←− f ,
m ∈ N and [a, b] ⊂ [0, 1] be a non-degenerate closed interval such that pm ∈ (a, b). Let
C ⊂ lim←− f be the component of π−1

m ([a, b]) containing p. Then σ = 〈πn(C) : n ∈ N〉 is
a generated sequence, or more specifically, the sequence generated by p, m and [a, b].

LEMMA 3.3. Let f : [0, 1]→ [0, 1] be a continuous surjective function. If p ∈ lim←− f ,

m ∈ N, [a, b] ⊂ [0, 1] is non-degenerate, pm ∈ (a, b) and σ is the sequence generated by
p, m and [a, b], then σ is tight.
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FIGURE 1. Graph of a tent map.

Proof. Let C ⊂ lim←− f be the component of π−1
m ([a, b]) containing p. First observe that C

is non-degenerate since p ∈ Intlim←− f (π−1
m ([a, b])), where Intlim←− f (π−1

m ([a, b])) denotes the

interior of π−1
m ([a, b]) in the (relative) topology of lim←− f . As a component of π−1

m ([a, b]),

C must also meet the boundary of π−1
m ([a, b]).

Since C is non-degenerate, for some m ∈ N, πm(C) is non-degenerate. Thus if n ≥
m and πn(C) is non-degenerate, then it follows that πn+1(C) is non-degenerate since
fn+1(πn+1(C)) = πn(C), and so by induction σ is tight.

Definition 3.4. Let f : [0, 1]→ [0, 1] be a surjective continuous function. If

σ = 〈Tn = [ln, rn] : n ∈ N〉
is a tight sequence admitted by f , N ⊆ N an infinite set, and

{Sn ⊂ [0, 1] : n ∈ N}
is a collection of non-degenerate closed intervals such that for each n ∈ N , Sn ∩ Tn ⊂
{ln, rn}, and f (Sn) = f (Tn), then σ is a splitting sequence admitted by f and witnessed
by {Sn : n ∈ N}.
Example 3.5. If f : [0, 1]→ [0, 1] is the tent map illustrated in Figure 1, then f admits
a splitting sequence. Let T0 = [ 1

4 , 7
8 ]. If Tn has been defined let Tn+1 be the component of

f−1(Tn) contained in [ 1
2 , 1] and Sn+1 be the component of f−1(Tn) contained in [0, 1

2 ].
Then 〈Tn : n ∈ N〉 is a splitting sequence witnessed by the sets Sn.

Example 3.6. The function f : [0, 1]→ [0, 1] whose graph is shown in Figure 2 does
not admit a splitting sequence. If x ∈ lim←− f and x0 �= 5

6 , a fixed point of f , then xn→
0. Hence for any tight sequence 〈Tn = [ln, rn] : n ∈ N〉 there exists m ∈ N such that
f−1(rn) < 3

4 for every n > m and so there does not exist an interval Sn ⊂ [0, 1] such
that |Sn ∩ Tn| ≤ 1 and f (Sn) = f (Tn), where |A| denotes the cardinality of a set A.

Example 3.7. Let f : [0, 1]→ [0, 1] be the Henderson map [H]. Recall that f has exactly
two fixed points, 0 and 1, and for every x ∈ (0, 1), f (x) < x. Its construction is rather
complex, but may be described roughly as starting with g(x) = x2 and notching its graph
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FIGURE 2. Graph of a function whose inverse limit is an arc.

with an infinite set of non-intersecting V-shaped notches which accumulate at (1, 1). The
map f is continuous and lim←− f is the pseudo-arc.

We will show that f has a splitting sequence. Let [a0, b0, c0, d0] be an increasing
4-tuple of rational numbers in (0, 1). Let T0 = [b0, c0]. By Lemma 2.3, there exist
increasing sequences 〈nk ∈ N : k ∈ N〉, nk < nk+1, and 〈[uk , wk] ⊂ (0, 1) : k ∈ N〉, wk <

uk+1, such that f nk ([uk , wk]) = [a0, d0] and is crooked on [a0, b0, c0, d0]. Note that
f nk−nk−1([uk , wk]) = [uk−1, wk−1]. For every k ∈ N choose closed intervals Tnk

and Snk

in [uk , wk] such that

f nk−nk−1(Tnk
) = f nk−nk−1(Snk

) = Tnk−1 ,

and |Tnk
∩ Snk

| ≤ 1, and observe that f nk (Tnk
) = [b0, c0]. Such a choice is possible since

f nk � [uk , wk] is crooked on [a0, b0, c0, d0], meaning that there is in [uk , wk] either
an inverse of c0 under f nk between two inverses of b0 or an inverse of b0 under f nk

between two inverses of c0. Hence for each k, f−nk ((b0, c0)) has three components, and
so f−(nk−nk−1)(Int(Tnk−1)) has three components.

For each k ∈ N and j , 0 < j < nk − nk−1, let Tnk−j = f j (Tnk
). Then 〈Tn : n ∈ N〉 is

a splitting sequence witnessed by 〈Snk
: k ∈ N〉.

LEMMA 3.8. Let f : [0, 1]→ [0, 1] be a surjective continuous function. If f admits a
periodic point with period m for any m > 2 then f admits a splitting sequence.

Proof. In this proof we may write a closed interval [a, b] if we do not know whether a < b

or b < a and it is assumed to be the appropriate non-empty closed interval.
Suppose x0 is a periodic point with period m > 2 and for each i < m, f i(x0) = xi .

Without loss of generality suppose that x0 = min{xn : n < m}. Then x1 = f (x0) > x0 and
f (xm−1) = x0 < x1.

Suppose f (x1) > x1. If x0 < xm−1 < x1, since f (xm−1) < f (x0) < f (x1) there
are closed intervals A ⊆ [x0, xm−1] and B ⊂ [xm−1, x1] such that f (A) = f (B) =
[f (xm−1), f (x0)]; see Figure 3. Moreover, for each i < m there is a closed subinterval Ai

of [xi , xi−1] such that f (Ai) = [f (xi), f (xi−1)].
Let T0 = [f (xm−1), f (x0)] and T1 = A. If n ≥ 1 and Tn has been defined such

that for some i < m, Tn ⊆ [xi , xi+1], let Tn+1 be a subinterval of [xi−1, xi] such that
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x0 xm 1 x1

FIGURE 3. Graph showing f (x0), f (x1) and f (xm−1) for the first case of Lemma 3.8.

f (Tn+1) = Tn. Then σ = 〈Tn : n ∈ N〉 is tight. For each n ∈ N there is a set Smn+1 ⊂ B

such that f (Smn+1) = f (Tmn+1) and Smn+1 ∩ Tmn+1 ⊆ {xm−1}. Hence τ is a splitting
sequence.

The proof in all cases is analogous. We need only show that in each case there are three
points xi , xj , xk in the cycle such that xi < xj < xk and f (xj ) is either greater than or less
than both f (xi) and f (xk). If [f (xi), f (xj )] ⊂ [f (xj ), f (xk)] then take the sets A and B,
used to define the sets Tn and Sn, to be subintervals of [xi , xj ] and [xj , xk] respectively,
such that f (A) = f (B) = [f (xi), f (xj )], and vice versa.

We show that we can always find three points xi , xj , xk as required. If f (x1) > x1

and x1 < xm−1 then we can take xi = x0, xj = x1 and xk = xm−1. If x1 > f (x1) and
xm−1 < x1 then we can choose xi = x0, xj = xm−1 and xk = x1.

Suppose x1 < xm−1. Then f (xm−2) = xm−1 > x1, so if x0 < xm−2 < x1, let xi = x0,
xj = xm−2 and xk = x1. If x0 < x1 < xm−1 < xm−2, let xi = x0, xj = xm−1 and xk =
xm−2. Finally, if x0 < x1 < xm−2 < xm−1, let xi = x0, xj = xm−2 and xk = xm−1.

In the preceding proof we used a certain technique in our construction of splitting
sequences. As we will frequently require it, the technique is captured in the following
lemma.

LEMMA 3.9. Let f : [0, 1]→ [0, 1] be a surjective continuous function. If there exist k >

0, closed subintervals A and B of [0, 1], such that f (A) = f (B), |A ∩ B| ≤ 1, and there
is a non-degenerate component of f−k(A) in A, then f admits a splitting sequence.

Proof. Let T1 = A (and T0 = f (A)). Since there is a non-degenerate component of
f−k(A) in A, we can choose Tk+1 to be a subinterval of A such that f k(Tk+1) = T1. For
k ≥ i ≥ 2 let Ti = f (Ti+1). Obviously T1 = f (T2) = f k(Tk+1). Analogously, if n > k,
n = 0 mod k and Tn−k+1 has been defined, let Tn+1 be a subinterval of A such that
f k(Tn+1) = Tn−k+1. For n ≥ i ≥ n− k + 1 let Ti = f (Ti+1). Then σ = 〈Ti : i ∈ N〉 is
a tight sequence. Since, for every n > 0, Tnk+1 ⊆ A and f (A) = f (B) = T0, for every
n > 0 we can choose an interval Snk+1 ⊆ B such that f (Snk+1) = f (Tnk+1). Thus σ is a
splitting sequence.

If A and B are intervals and k ∈ N as in Lemma 3.9, we say that the pair (A, B)

generates a splitting sequence of order k.
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FIGURE 4. Graphs of functions f (left) and g = f 2 (right) whose inverse limits are the sin(1/x)-continuum.

Example 3.10. We give an example from [BS] which shows that there exists a piecewise
monotone map which has more than one fixed point and no points of other periods, but its
inverse limit is not an arc.

Let f , g : [0, 1]→ [0, 1] be maps whose graphs are shown in Figure 4. Obviously, the
map g = f 2 has more than one fixed point and no points of other periods. Also, it is well
known that lim←− f = lim←− g and is homeomorphic to a sin(1/x)-continuum [N].

By using the above criterion it is easy to determine that both maps admit a split-
ting sequence as follows. Let A = [ 1

2 , 1] and B = [ 1
4 , 1

2 ]. Then A ∩ B = { 12 }, f (A) =
g(A) = A and f (B) = g(B) = A. Therefore, (A, B) generates a splitting sequence of
order 1.

LEMMA 3.11. Let f : [0, 1]→ [0, 1] be a continuous function such that f does not admit
a splitting sequence. If 0 ≤ d < e ≤ 1 and either d and e are fixed points or {d , e} is a
2-cycle, then there is exactly one component C of f−1((d, e)) such that f (C) = (d, e).

Proof. Since either d and e are fixed points or {d , e} is a 2-cycle, there exists a
component C ⊆ [d , e] of f−1((d, e)) such that f (C) = (d, e). Suppose that (for either
case), f−1((d, e)) has a second component D such that f (D) = (d, e). Then f (C) =
f (D) = [d , e], |C ∩D| ≤ 1 and there is a non-degenerate component of f−1(C) in C.
Thus the pair (C, D) generates a splitting sequence of order 1.

COROLLARY 3.12. Let f : [0, 1]→ [0, 1] be a surjective continuous function such that f

does not admit a splitting sequence. If F is the set of fixed points admitted by f and d is
an accumulation point of F , then

lim←− f = lim←−([0, d], f � [0, d]) ∪ lim←−([d , 1], f � [d , 1])

and

lim←−([0, d], f � [0, d]) ∩ lim←−([d , 1], f � [d , 1]) = {(d , d , . . .)}.

Proof. Let 〈dn ∈ [0, 1] : n ∈ N〉 be a sequence of fixed points that limits to d . We can
assume that either dn < d for each n, or dn > d for each n. Assume the former (the proof
is symmetrical if the latter holds), and assume that the sequence is strictly increasing.
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We first show that f ([0, d]) = [0, d] and f ([d , 1]) = [d , 1]), and hence the first
statement holds. Observe that, by the preceding lemma, for each n ∈ N, f ([dn, dn+1]) ⊂
(dn−1, dn+2), and f ([0, d0]) ⊂ [0, d1). Thus f ([0, d]) = [0, d].

Suppose that x > d and f (x) < d. Then for some m ∈ N, [dm, dm+1] ⊂ f ([d , x]),
which gives a contradiction with Lemma 3.11. Thus f ([d , 1]) = [d , 1].

To complete the proof observe that f ([0, d)) = [0, d), and hence the second statement
holds.

LEMMA 3.13. Let f : [0, 1]→ [0, 1] be a surjective continuous function such that f does
not admit a splitting sequence. If f admits two 2-cycles {s, t} and {u, v} with s < t and
u < v, then either s < u < v < t or u < s < t < v.

Proof. Suppose s < u < t < v. Then there are closed intervals A ⊆ [s, u] and B ⊂ [u, t]
such that f (A) = f (B) = [t , v]. Also, there is an interval A′ ⊂ [t , v] such that f (A′) =
[s, u]. Thus (A, B) generates a splitting sequence of order 2. Similarly if s < t < u < v,
u < s < v < t , or u < v < s < t .

LEMMA 3.14. Let f : [0, 1]→ [0, 1] be a surjective continuous function such that f does
not admit a splitting sequence. If f admits two 2-cycles {s, t} and {u, v} with s < u, then
there is exactly one component C of f−1([s, u]) such that f (C) = [s, u], and there is
exactly one component C′ of f−1([v, t]) such that f (C′) = [v, t].

Proof. Let C ⊆ [v, t] be a component of f−1([s, u]) such that f (C) = [s, u]. Since
f ([s, u]) ⊇ [v, t], we can choose a non-degenerate component of f−2(C) in C. If
f−1([s, u]) has a second component D such that f (D) = [s, u] and |C ∩D| ≤ 1, the
pair (C, D) generates a splitting sequence of order 2. The proof of the second statement is
analogous.

LEMMA 3.15. Let f : [0, 1]→ [0, 1] be a surjective continuous function. Then f admits
a splitting sequence if and only if f 2 admits a splitting sequence.

Proof. Let N ⊂ N be an infinite set, 〈Tn : n ∈ N〉 a splitting sequence admitted by f and
witnessed by {Sn : n ∈ N}. Let σ = 〈T2n : n ∈ N〉 and let τ = 〈T2n+1 : n ∈ N〉. Observe
that either the set of even values in N is infinite, or the set of odd values is. If the even
values are infinite then σ is a splitting sequence admitted by f 2 and witnessed by {Sn :
n ∈ N , n is even}. If the set of odd values of N is infinite then τ is a splitting sequence
admitted by f 2 and witnessed by {Sn : n ∈ N , n is odd}.

Suppose 〈Rn : n ∈ N〉 is a splitting sequence admitted by f 2 and witnessed by {Sn :
n ∈ N} for some infinite set N . For each n let T2n = Rn and T2n+1 = f (Rn+1). For each
n ∈ N let S′2n = Sn. Then 〈Tn : n ∈ N〉 is a splitting sequence admitted by f and witnessed
by {S′2n : n ∈ N}.

For the remainder of this paper, given a function f : [0, 1]→ [0, 1], let a =
max(f−1(0)) and b = min(f−1(1)).
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LEMMA 3.16. Let f : [0, 1]→ [0, 1] be a surjective continuous function that does not
admit a splitting sequence. Let d be the maximum fixed point of f . Suppose a < b. Then
the following assertions hold:

(i) d is the only fixed point in [b, 1];
(ii) f ([b, 1]) ⊂ (b, 1];
(iii) f � [b, 1] does not admit a 2-cycle; and
(iv) lim←−([b, 1], f � [b, 1]) = {(d, d , . . .)}.

Proof. Observe that if f (1) = 1 then d = 1.
(i) Suppose d ′ ∈ [b, 1], d ′ is a fixed point and d ′ < d. Then there are intervals A ⊆

[d ′, d] and B ⊂ [0, b] such that f (A) = f (B) = [d ′, d], contradicting Lemma 3.11.
(ii) If b ∈ f ([b, 1]) then there exist A ⊆ [b, 1] and B ⊆ [a, b] such that f (A) =

f (B) = [b, 1]. Since f−1([b, 1]) ⊇ [b, 1], by Lemma 3.9 f admits a splitting
sequence, a contradiction.

(iii) The statement follows from Lemma 3.11 since if {p, q} is a 2-cycle admitted by f �
[b, 1], p < q, then there are intervals A ⊆ [p, q] and B ⊂ [0, b] such that f (A) =
f (B) = [p, q].

(iv) By (i), (iii), Proposition 2.2 and Lemma 3.8, lim←−([b, 1], f � [b, 1]) is a singleton,
and as d is a fixed point, lim←−([b, 1], f � [b, 1]) = {(d, d , . . .)}.

Analogously to Lemma 3.16 we can show the next lemma.

LEMMA 3.17. Let f : [0, 1]→ [0, 1] be a surjective continuous function that does not
admit a splitting sequence. Let e be the minimum fixed point of f . Suppose a < b. Then
the following assertions hold:

(i) e is the only fixed point in [0, a];
(ii) f ([0, a]) ⊂ [0, a);
(iii) f � [0, a] does not admit a 2-cycle; and
(iv) lim←−([0, a], f � [0, a]) = {(e, e, . . .)}.

LEMMA 3.18. Let f : [0, 1]→ [0, 1] be a surjective continuous function that does not
admit a splitting sequence. Suppose b < a. Let a′ = min(f−1(0)), b′ = max(f−1(1)),
and let

r = max{x ∈ (a′, b′) : f (x) ∈ (a′, b′) and x is periodic with Per(x) ≤ 2}.
Then the following assertions hold:

(i) for every x ∈ [0, b′], f (x) > r , and for every x ∈ [a′, 1], f (x) < f (r);
(ii) the function f admits exactly one fixed point; and
(iii) f admits a unique 2-cycle {s, t} such that s < t , and either 0 ≤ s < b′ or

a′ < t ≤ 1.

Proof. (i) If there exists x ∈ [0, b′] such that f (x) ≤ r , then there are closed intervals
A ⊆ [b′, f (r)] and B ⊂ [x, b′] such that f (A) = f (B) = [r , 1]. There is an interval
A′ ⊂ [r , 1] such that f (A′) = [b′, f (r)]. Thus (A, B) generates a splitting sequence of
order 2.
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Analogously, if there exists x ∈ [a′, 1] such that f (x) ≥ f (r), then we can obtain a
splitting sequence of order 2.

(ii) Let d be a fixed point between b and a (by the definition of a and b, there exists such
a fixed point). Suppose f admits a second fixed point e and d < e. Then by (i), b′ < d <

e < a′, and f−1([d , e]) has a component C ⊂ [b′, d] and a component D ⊆ [d , e] such
that f (C) = f (D) = [d , e], contradicting Lemma 3.11.

(iii) Since f ([b′, a′]) = [0, 1], the claim follows from Lemmas 3.11, 3.13 and 3.14.

PROPOSITION 3.19. If f : [0, 1]→ [0, 1] is a surjective continuous function that does not
admit a splitting sequence, then either
(a) f admits at least two fixed points and if d is the maximum and e the minimum fixed

point, then (d, d , d , . . .) and (e, e, e, . . .) are endpoints of lim←− f ; or
(b) f admits a 2-cycle and if {s, t} is a 2-cycle such that for any other 2-cycle {u, v},

s < u, then (s, t , s, t , . . .) and (t , s, t , s, . . .) are endpoints of lim←− f .

Proof. We consider two cases:
(1) a < b;
(2) b < a.

Case 1. We first show that (d , d , . . .) is an endpoint of lim←− f , which we do by applying
Lemma 3.16 and Theorem 2.1.

Let ε > 0 and let J0 = [α0, β0] be an interval such that d ∈ (α0, β0). By Lemma 3.16
(iv), for every x ∈ lim←− f with x0 ∈ [b, 1] \ {d}, there exists j such that xj < b, and
so by Lemma 3.16 (ii), xn < b for every n > j . Hence there exists k such that
f−k(α0) ⊂ [0, b) and f−k(β0) ⊂ [0, b), and therefore f−k([α0, α0 + ε]) ∩ [0, b] �= ∅
and f−k([β0 − ε, β0]) ∩ [0, b] �= ∅. Thus, as [0, b] ⊂ [0, d), f k is ε-crooked with respect
to (d, d , . . .).

By applying Lemma 3.17 and Theorem 2.1 we can analogously establish that (e, e, . . .)

is an endpoint of lim←− f .
Case 2. Let d be a fixed point between b and a. We now show that (s, t , s, t , . . .) and

(t , s, t , s, . . .) are endpoints.
Let g = f 2. By Lemma 3.15, g does not admit a splitting sequence. Since f admits a

2-cycle, g admits at least two fixed points, and hence by Lemma 3.18 (ii), g must satisfy
the condition of case (1). Thus g admits at least three fixed points d , s′ and t ′, such that d

is the fixed point guaranteed by Lemma 3.18 (ii), s′ is the minimum and t ′ the maximum
fixed point admitted by g. Hence s′ < d < t ′. It follows from Lemma 3.18 (ii) and (iii) and
Lemma 3.13 that 2-cycles {s′, t ′} and {s, t} coincide, {s′, t ′} = {s, t}.

Now the function h : lim←− f → lim←− g defined by

h((x0, x1, x3, . . .)) = (x0, x2, x4, . . .)

is a homeomorphism, so

(s, t , s, t , . . .) = h−1((s, s, . . .)) and (t , s, t , s, . . .) = h−1((t , t , . . .))

are endpoints of lim←− f .
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Thus, if case (1) holds we have two fixed points that determine two endpoints of lim←− f ,
and if case (2) holds we have a 2-cycle that determines two endpoints as required.

LEMMA 3.20. Let f : [0, 1]→ [0, 1] be a continuous surjective function that does
not admit a splitting sequence. If f admits a 2-cycle {s, t} such that s ∈ {0, 1}, then
(s, t , s, t , . . .) and (t , s, t , s, . . .) are endpoints of lim←− f .

Proof. Suppose s = 1; the proof is similar if s = 0. Observe that t ≥ b = min(f−1(1)),
and hence f does not satisfy Lemma 3.16 (iii) which states that the function f � [b, 1]
does not admit a 2-cycle. Hence f satisfies the condition b < a (case (2) in the proof of
Proposition 3.19). Since s = 1, by Lemma 3.13, {s, t} is the 2-cycle determining the two
endpoints of Proposition 3.19 (b).

LEMMA 3.21. Let f : [0, 1]→ [0, 1] be a continuous surjective function such that f

does not admit a splitting sequence, and f admits at least two fixed points. If σ = 〈Tn =
[ln, rn] : n ∈ N〉 is the sequence generated by a point p, m ∈ N and interval [c, d], and
[c, d] does not contain the maximum or minimum fixed point, then there exists k ∈ N such
that for every n ≥ k, pn �∈ {ln, rn}.
Proof. By Lemma 3.18 (ii), f satisfies the requirement of case (1) in the proof of
Proposition 3.19. Thus a = max f−1(0) < b = min(f−1(1)) and, by Lemma 3.16 (iv) and
Lemma 3.17 (iv), there exists j ∈ N such that for each n > j , Tn ⊂ [a, b].

By Lemma 3.3, σ is tight so there exists r > j such that for every n > r , Tn is
non-degenerate. Let

N = {n > r : pn ∈ {ln, rn}},
and suppose that N is infinite. For every n ∈ N, let [l′n+1, r ′n+1] be the component of
f−1(Tn) containing pn+1. Since pm ∈ (c, d) = Int Tm, for every n > m we have that
pn �∈ {l′n, r ′n}. If n ∈ N then either

f ([l′n+1, r ′n+1]) = [l′n, pn] = Tn

or

f ([l′n+1, r ′n+1]) = [pn, r ′n] = Tn.

Then for n ∈ N we have that Tn ⊂ [a, b] and pn ∈ {ln, rn}, and hence we can choose
two sets An+1 ⊂ [l′n+1, pn+1] and Bn+1 ⊂ [pn+1, r ′n+1] such that f (An+1) = f (Bn+1) =
Tn and An+1 ∩ Bn+1 ⊆ {pn+1}.

Let R0 = T0. If n ≥ 0 and Rn has been defined, let Rn+1 be a subinterval of either
Tn+1 ∩ An+1 or Tn+1 ∩ Bn+1 if n ∈ N , otherwise let Rn+1 be any subinterval of Tn+1,
and in each case such that f (Rn+1) = Rn. For each n ∈ N , if Tn+1 ⊂ An+1 let Sn+1 be
a subinterval of Bn+1, and if Tn+1 ⊂ Bn+1 let Sn+1 be a subinterval of An+1, such that
f (Sn+1) = Rn. Thus 〈Rn : n ∈ N〉 is a splitting sequence, a contradiction.

The benefits of the lemmas proved so far will be reaped in the section that follows.
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4. Arcs
LEMMA 4.1. If f : [0, 1]→ [0, 1] is a continuous surjective function with exactly two
fixed points, and f does not admit a splitting sequence, then lim←− f is an arc.

Proof. Suppose d and e are the only fixed points, e < d. Since f is surjective and does
not admit a splitting sequence, we have e = 0 or d = 1. Suppose that e = 0 and d �= 1 (the
proof is analogous if e �= 0 and d = 1, or if e = 0 and d = 1). Since f is surjective, for
every x ∈ (0, d), f (x) > x. The conditions of case (1) in the proof of Proposition 3.19 are
satisfied, so (0, 0, . . .) and (d, d , . . .) are endpoints.

Let

p ∈ lim←− f \ {(0, 0, . . .), (d, d , . . .)}.
We show that p is a separating point. Recall that b = min{x ∈ [0, 1] : f (x) = 1}. By
Lemma 3.16 (iv) it follows that for some m ∈ N, pn < b for every n > m. Let

N = {n > 0 : |f−1(pn−1)| > 1}.
(a) Suppose N is finite. Choose some m ≥ max(N) such that pm < b. Then for every

n > m, pn < b and f−1(pn) = {pn+1}, so

f−1([0, pn]) = [0, pn+1] and f−1([pn, 1]) = [pn+1, 1].

For each n ∈ N let Xn = [0, pm+n], Yn = [pm+n, 1], gn = f � Xn and hn = f � Yn, and
let X = lim←−(Xn, gn) and Y = lim←−(Yn, hn). Then clearly

π[m,∞)(lim←− f ) = X ∪ Y and X ∩ Y = {p}.

Let X′ = π−1
[m,∞)(X) and Y ′ = π−1

[m,∞)(Y ). Since π−1
[m,∞) is the bijection defined by

(xm, xm+1, . . .) �→ (f m(xm), . . . , f (xm), xm, xm+1, . . .),

it follows that lim←− f = X′ ∪ Y ′ and X′ ∩ Y ′ = {p}. Thus p is a separating point of lim←− f .
(b) Suppose N is infinite. For all ε > 0 and i ∈ N let

σε,i = 〈T ε,i
n = [aε,i

n , bε,i
n ] : n ∈ N〉

be the tight sequence generated by p, i and [pi − ε, pi + ε]. Suppose that for some i

and ε, there is an infinite set M ⊆ N such that for every n ∈ M , f−1(T
ε,i
n ) \ Int (T

ε,i
n+1)

has a component Cn+1 with pn ∈ f (Cn+1). By Lemma 3.21 we can assume that for each
n ∈ M , pn �∈ {aε,i

n , b
ε,i
n }. Let k ∈ M and let Lk = [aε,i

k , pk] and Rk = [pk , b
ε,i
k ]. If j ≥

k and Lj , Rj have been defined, let Lj+1 and Rj+1 be components of T
ε,i
j+1 such that

f (Lj+1) = Lj and f (Rj+1) = Rj . Clearly each of the sets Lk+1 and Rk+1 contains a
different endpoint of T

ε,i
k+1. If j ≤ k and Lj , Rj have been defined, let Lj−1 = f (Lj ) and

Rj−1 = f (Rj ).
Then τ1 = 〈Ln : n ∈ N〉 and τ2 = 〈Rn : n ∈ N〉 are tight sequences. Observe that for

each n ∈ M there is a subinterval Dn+1 of Cn+1 such that either f (Dn+1) = Ln or
f (Dn+1) = Rn. Then one of the sequences τ1 or τ2 is a splitting sequence.
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Thus we have that for every ε and i, f−1(pn) ⊂ T
ε,i
n+1 for all but finitely many n ∈ N .

For every ε > 0 and i ∈ N such that

0, d , 1 �∈ [pi − ε, pi + ε],

choose mε,i such that f−1(pn) ⊂ T
ε,i
n+1 for all n ≥ mε,i . Thus [0, 1] \ T

ε,i
mε,i has two

components, A′ε,i and B ′ε,i . Let

Aε,i = π−1
mε,i

(A′ε,i ), Bε,i = π−1
mε,i

(B ′ε,i ),

A =
⋃
{Aε,i : ε > 0, i ∈ N and 0, d , 1 �∈ [pi − ε, pi + ε]},

and

B =
⋃
{Bε,i : ε > 0, i ∈ N and 0, d , 1 �∈ [pi − ε, pi + ε]}.

Then p �∈ A ∪ B, A ∩ B = ∅ and, since
⋂{L(σε,i ) : ε > 0, i ∈ N} = {p}, A ∪ B ∪

{p} = lim←− f . Thus p is a separating point and so lim←− f is an arc.

The next three lemmas reference the behaviour of a function on either side of a fixed
point. We define four types of fixed point in the following definition in order to simplify
the discussions.

Definition 4.2. Suppose that f : [0, 1]→ [0, 1] is a continuous surjective function and
c, d , e ∈ [0, 1], c < d < e. If d is a fixed point of f , d is the only fixed point in the interval
(c, e), either c = 0 or c is a fixed point, and either e = 1 or e is a fixed point, then d is:
• an S-type fixed point if for each x ∈ [c, d], f (x) ≤ x, and for each x ∈ [d , e],

f (x) ≥ x;
• an N-type fixed point if for each x ∈ [c, d], f (x) ≥ x, and for each x ∈ [d , e],

f (x) ≤ x;
• an M-type fixed point if for each x ∈ [c, e], f (x) ≥ x;
• a W-type fixed point if for each x ∈ [c, e], f (x) ≤ x.
In each case the type is witnessed by (c, e).

LEMMA 4.3. Suppose that f : [0, 1]→ [0, 1] is a continuous surjective function that does
not admit a splitting sequence. If f admits a fixed point d that is S-type, M-type or W-type,
then

lim←− f = lim←−([0, d], f � [0, d]) ∪ lim←−([d , 1], f � [d , 1])

and

lim←−([0, d], f � [0, d]) ∩ lim←−([d , 1], f � [d , 1]) = {(d , d , . . .)}.

Proof. Suppose d is an S-type fixed point witnessed by (c, e). Then by the definition
of S-type, c and e are fixed points. By Lemma 3.11, f−1(d) = {d} and hence the result
follows.

Suppose that d is an M-type fixed point witnessed by (c, e); the proof for a W-type fixed
point is analogous. Observe that, by the surjectivity of f and Lemma 3.11, c and e are fixed
points.
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Let p′ = max(f ([0, d]) and let p = max{x ∈ [0, d] : f (x) = p′}. By Lemma 3.11,
p′ < e. Let q = min{x ∈ [d , 1] : f (x) = p′}. If p′ = d then the result follows from
Lemma 3.11. Suppose that p′ > d. Let A ⊆ [p, d] be an interval such that f (A) = [d , p′].
Then ([d , q], A) generates a splitting sequence of order 1, and hence p′ = d . The result
follows.

LEMMA 4.4. Suppose that f : [0, 1]→ [0, 1] is a continuous surjective function that does
not admit a splitting sequence. If f admits an N-type fixed point d witnessed by (c, e),
then lim←−([c, e], f � [c, e]) is an arc, and if c and e are fixed points, then (d, d , . . .) is a

separating point of lim←− f .

Proof. Suppose c and e are fixed points. Let p = max(f ([c, d]) and q = min(f ([d , e]).
By Lemma 3.11, c < q and p < e. Then the functions f � [c, p] and f � [q, e] satisfy the
conditions of Proposition 3.19, case (1). Each function has exactly two fixed points and
so by Lemma 4.1, each of the sets A1 := lim←−([c, d], f � [c, d]) and A2 := lim←−([d , e], f �
[d , e]) is an arc, and by Lemma 3.16 (iv), A1 ∩ A2 = {(d, d , . . .)}.

Suppose x ∈ lim←−([c, e], f � [c, e]) \ {(d, d , . . .)}. If x0 ∈ [c, q), then for each n ∈ N,
xn ∈ [c, q). Hence x ∈ A1, and similarly if x0 ∈ (p, e] then x ∈ A2. Suppose x0 ∈ [q, p].
Since x �= (d, d , . . .) there exists n ∈ N such that xn �∈ [q, p]. Let m = min{n ∈ N : xn �∈
[q, p]}. If xm ∈ [c, q), then xn ∈ [c, q) for each n > m, and hence x ∈ A1. Otherwise
x ∈ A2.

Thus lim←−([c, e], f � [c, e]) = A1 ∪ A2 and (d, d , . . .) is a separating point of

lim←−([c, e], f � [c, e]) and hence of lim←− f .
If e is not a fixed point, then e = 1, and by the surjectivity of f and Lemma 3.11,

f � [c, 1] satisfies the condition of Proposition 3.19, case (1). Since d is an N-type fixed
point, if c �= 0, c is either an S-type or an M-type fixed point, or an accumulation point of
the set of fixed points. Hence by Corollary 3.12 and Lemma 4.3,

lim←− f = lim←−([0, c], f � [0, c]) ∪ lim←−([c, 1], f � [c, 1]),

lim←−([0, c], f � [0, c]) ∩ lim←−([c, 1], f � [c, 1]) = {(c, c, . . .)},
and lim←−([c, 1], f � [c, 1]) is an arc since f � [c, 1] admits exactly two fixed points.

Similarly if c is not a fixed point.

LEMMA 4.5. If f : [0, 1]→ [0, 1] is a continuous surjective function that does not admit
a splitting sequence, then lim←− f is an arc.

Proof. Since lim←− f is an arc if and only if lim←− f 2 is an arc, and if f satisfies the condition

of case (2) of the proof of Proposition 3.19, then f 2 satisfies the condition of case (1), and
we can assume that f satisfies the condition of case (1) and hence admits more than one
fixed point.

Let E be the set containing the two endpoints admitted by f as in Proposition 3.19, and
let d and e, d < e, be the two fixed points that determine the members of E. It remains to
show that if x ∈ lim←− f \ E, then x is a separating point. So let x ∈ lim←− f \ E.
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By Lemma 4.1 we can assume that f admits more than two fixed points. Let F be the
set of fixed points admitted by f and let

F = {(p, p, . . .) : p ∈ F }.
If x ∈ F , then by Lemma 3.11, Corollary 3.12, Proposition 3.19, and Lemmas 4.3 and 4.4,
x is a separating point of lim←− f .

Suppose x �∈ F . By Lemma 3.16 (iv) and Lemma 3.17 (iv), there exists n ∈ N such
that min(F ) < xn < max(F ). Then there are fixed points c, c′ such that c < xn < c′ and
(c, c′) ∩ F = ∅. We consider three cases.

(a) c = 0 or c′ = 1. Suppose c′ = 1. If c is an S-type, M-type or W-type fixed point, or
an accumulation point of F , then

lim←− f = lim←−([0, c], f � [0, c]) ∪ lim←−([c, 1], f � [c, 1])

and x ∈ lim←−([c, 1], f � [c, 1]). Since lim←−([c, 1], f � [c, 1]) has exactly two fixed points
and x is not one of them, lim←−([c, 1], f � [c, 1]) is an arc and x is a separating point of
lim←−([c, 1], f � [c, 1]) and hence of lim←− f .

If c is an N-type fixed point, witnessed by (e, c′), then e is a fixed point and e is not an
N-type fixed point, so

lim←− f = lim←−([0, e], f � [0, e]) ∪ lim←−([e, 1], f � [e, 1]),

x ∈ lim←−([e, 1], f � [e, 1]), lim←−([e, 1], f � [e, 1]) is an arc and x is not an endpoint of

lim←−([e, 1], f � [e, 1]). So again, x is a separating point of lim←− f .
Similarly if c = 0.
(b) c = min(F ) �= 0 or c′ = max(F ) �= 1. Suppose c′ = max(F ) �= 1. Then c′ is an

N-type fixed point and c is either an S-type or an M-type fixed point, or an accumulation
point of F . In any case

lim←− f = lim←−([0, c], f � [0, c]) ∪ lim←−([c, 1], f � [c, 1]),

lim←−([0, c], f � [0, c]) ∩ lim←−([c, 1], f � [c, 1]) = {(c, c, . . .)},
x ∈ lim←−([c, 1], f � [c, 1]), and by Lemma 4.1, lim←−([c, 1], f � [c, 1]) is an arc. Thus x is a

separating point of lim←− f .
Similarly if c = min(F ) �= 0.
(c) c �= 0, c′ �= 1, c �= min(F ), c′ �= max(F ). Either c or c′ is not an N-type fixed point.

Suppose c′ is not. Then

lim←− f = lim←−([0, c′], f � [0, c′]) ∪ lim←−([c
′, 1], f � [c′, 1]),

x ∈ lim←−([0, c′], f � [0, c′]), c′ is the maximum fixed point admitted by f � [0, c′], and so
the result follows as in case (b) above.

Similarly if c is not an N-type fixed point

We now show that if f does admit a splitting sequence then lim←− f is not an arc.
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LEMMA 4.6. Let f : [0, 1]→ [0, 1] be a surjective continuous function. If f admits a
splitting sequence then there is a non-degenerate continuum C ⊂ lim←− f and a sequence of
non-degenerate continua

〈Cn ⊂ lim←− f : n ∈ N〉,
Cn �= C, such that Cn→ C in the Hausdorff metric.

Proof. Suppose σ = 〈Tn = [ln, rn] : n ∈ N〉 is a splitting sequence and let N be an infinite
subset of N such that for each n ∈ N there is a non-degenerate interval Sn ⊂ [0, 1], Sn ∩
Tn ⊂ {ln, rn} and f (Sn) = f (Tn).

For each n ∈ N let Sn
n = Tn. If j ≥ n and S

j
n ⊂ [0, 1] has been defined, choose an

interval S
j+1
n ⊂ [0, 1] such that f (S

j+1
n ) = S

j
n . Since f is surjective, S

j+1
n exists as

�(f ) ∩ ([0, 1]× S
j
n) must have a component C such that πj (C) = S

j
n , and so we can

let S
j+1
n = πj+1(C).

For each j < n let S
j
n = Tj . It follows that S

j
n is non-degenerate for each n ∈ N ,

j ≤ n.
For each n ∈ N let Sn = lim←−(S

m
n , f � Sm

n ). Then {L(σ)} ∪ {Sn : n ∈ N} is a collection

of non-degenerate continua in lim←− f . If t ∈ L(σ) then for each n ∈ N there is a point sn ∈
Sn such that sn

j = tj for every j ≤ n and hence any neighbourhood of t meets infinitely
many sets Sn. Furthermore, any sequence {sn ∈ Sn : n ∈ N} has a limit point in L(σ).
It follows that Sn→ L(σ) in the Hausdorff metric.

THEOREM 4.7. Suppose f : [0, 1]→ [0, 1] is a continuous surjective function. Then
lim←− f is an arc if and only if lim←− f does not admit a splitting sequence.

Proof. By Lemmas 4.5 and 4.6.
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