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The propagation of radio-frequency (RF) waves in tokamaks can be affected by
filamentary structures, or blobs, that are present in the edge plasma and the scrape-off
layer. The difference in the permittivity between the surrounding plasma and interior of
a filament leads to reflection, refraction and diffraction of the waves. This, in turn, can
affect the power flow into the core of the plasma and reduce the efficiency of heating
and/or current generation. The scattering of RF waves, lower hybrid, helicon and ion
cyclotron waves, by a single cylindrical filament, embedded in a background plasma,
is studied using a full-wave analytical theory developed previously (Ram & Hizanidis,
Phys. Plasmas, vol. 23, 2016, 022504). The theory assumes that the plasma in and around
a filament is homogeneous and cold. A detailed scattering analysis reveals a variety of
common features that exist among the three distinctly different RF waves. These common
attributes can be inferred intuitively based on an examination of the cold plasma dispersion
relation. The physical intuition is a useful step to understanding experimental observations
on scattering, as well as results from simulations that include general forms of edge plasma
turbulence. While a filament can affect the propagation of RF waves, the radiation force
exerted by the waves can influence the filament. The force on a filament is determined
using the Maxwell stress tensor. In 1905, Poynting was the first to evaluate and measure the
radiation force on an interface separating two different dielectric media (Poynting, London
Edinburgh Dublin Philos. Mag. J. Sci., vol. 9, 1905, pp. 393–406). For ordinary light
propagating in vacuum and incident on a glass surface, Poynting noted that the surface
is ‘pulled’ towards the vacuum. In a magnetized cold plasma, there are two independent
wave modes. Even if only one of these modes is excited by an RF antenna, a filament will
couple power to the other mode: a consequence of electromagnetic boundary conditions.
This facet of scattering has consequences on the radiation force that go beyond Poynting’s
seminal contribution. The direction of the force depends on the polarization of the incident
wave and on the mode structure of the waves inside and in the vicinity of a filament. It can
either pull the filament toward the RF source or push it away. For slow lower hybrid waves,
filaments with densities greater than the ambient density are pulled in, while filaments
with lower densities are pushed out, thereby enhancing the density in front of the antenna.
In the case of fast helicon and ion cyclotron waves, the direction of the force depends
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on the plasma and wave parameters; in particular, on the ambient density. The radiation
force, in all three frequency ranges, is large enough to affect the motion of a filament and
could be measured experimentally. This also suggests the possibility of modifying the
edge turbulence using RF waves.

Key words: fusion plasma, plasma waves

1. Introduction

The occurrence of blobs and filaments in the edge region of a tokamak plasma has been
observed in experiments and discussed in theories (Krasheninnikov 2001; Grulke et al.
2006; Maqueda et al. 2010; Grulke et al. 2014). The propagation of radio-frequency (RF)
waves can be affected by the presence of these structures (Ram & Hizanidis 2013, 2016;
Ram, Hizanidis & Kominis 2013). Over the years, there have been a number of studies,
theoretical, computational and experimental, on the propagation of RF waves through the
turbulent edge region of a fusion device (Köhn et al. 2016; Chellaï et al. 2018; Snicker
et al. 2018; Valvis et al. 2018; Martin et al. 2019; Papadopoulos et al. 2019; Biswas et al.
2020; Lau et al. 2020; Chellaï et al. 2021). The premise of these studies is to quantify
the role of turbulence in scattering of RF power and in modifying wave properties such
as their direction of propagation. Various forms of RF waves play an important role in
heating and in generating non-inductive current in fusion plasmas. Any modifications to
the waves in the edge region can reduce the RF power available in the core plasma for
heating and current drive.

In this paper we investigate the scattering of waves with frequencies below the electron
cyclotron frequency, in particular, the lower hybrid (LH), helicon and ion cyclotron (IC)
waves, by a single cylindrical filament aligned along the magnetic field. The wavelengths
of these waves span a broad spatial scale ranging from being comparable to the radial
dimension of the filament to being many times longer. The theoretical analysis is based
on the analytical model discussed in Ram & Hizanidis (2016). We assume that the plasma
is homogeneous and cold inside the filament and in the region surrounding it. There is
a discontinuity in the plasma density and in its permittivity across the interface of the
filament. The Maxwell equations for a homogeneous plasma take on the form of a vector
Helmholtz equation which can be solved inside and outside the filament. The continuity of
the electromagnetic fields across the interface, consistent with Maxwell equations, gives a
complete analytical solution for the scattering of an incident plane wave. The magnitude
of the discontinuity in plasma density at the interface is not restricted in this analysis. The
domain of validity of the analytical theory has been examined numerically (Ioannidis et al.
2017).

The first part of the paper describes the influence of a filament on the propagation
of LH, helicon and IC waves. We relate the physics of scattering with the dispersion
characteristics of the cold plasma waves. Even a cursory examination of these
characteristics can provide a good physical insight into the scattering process. An added
advantage is that a detailed analysis of every scattering configuration is not necessary.
The phase space of plasma parameters, both inside and outside the filament, that needs
further examination can be constrained. Furthermore, a physical insight is useful for
understanding simulation results from more complicated scattering processes where
multiple filaments are involved (Ioannidis et al. 2017).

In the second part of the paper we analyse the effect of RF waves on a filament;
in particular, the RF-induced radiation forces exerted on a filament. In 1905, Poynting
reported on his theoretical and experimental research on the radiation force exerted on

https://doi.org/10.1017/S0022377821001100 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821001100


RF waves and filaments interaction: scattering and radiation pressure 3

a planar interface separating two dielectrics (Poynting 1905). By imposing conservation
of momentum, Poynting deduced that the force exerted on a vacuum–glass interface by
ordinary light points towards the vacuum (Poynting 1905; Loudon & Baxter 2012). In
combination with the analytical model for scattering, we use the Maxwell stress tensor
(Stratton 1941; Griffiths 1999) to evaluate the radiation force on a filament due to the
different RF waves. Incidentally, Poynting’s conclusion can also be derived using the
Maxwell stress tensor (Hirose & Dick 2009; Loudon & Baxter 2012). We find that
the direction of the force induced by RF waves does not necessarily follow Poynting’s
conclusion. The propagation of waves in a magnetized plasma, represented by a tensor
permittivity, is different from wave propagation in a scalar dielectric. In particular, for a
given frequency, there are two waves with disparate wavelengths and polarizations that
coexist in a cold plasma. For a particular choice of an incident wave, the scattering off
a filament couples power to the second wave. Thus, the contrast with Poynting’s results
is not surprising. Moreover, in the frequency domain of interest, evanescent waves are
present in the edge region. These waves, whether excited by an RF source or generated
through the scattering process, affect the radiation forces in ways that are different
from propagating electromagnetic waves. In ordinary dielectrics, evanescent waves are
of practical importance, e.g., in near-field scanning optical microscopy (Pawlink & Yedlin
2014).

2. Description of the geometry and the plasma

We consider a cylindrical plasma filament, with spatially homogeneous density,
embedded in a uniform background plasma. The filament has a circular cross-section with
its axis aligned along the ambient magnetic field line (figure 1). The axial extent of the
filament is taken to be infinite, which allows us to neglect the effects of the end caps.
Inherent in this assumption is that the RF fields are axially confined to a spatial region that
is smaller than the length of the filament. The magnetic field in the scattering region is
uniform and the plasma is presumed to be cold.

The relationship between the cylindrical coordinate system (ρ̂, φ̂, ẑ), used as a basis
in the theory, and the Cartesian coordinate system (x̂, ŷ, ẑ) can be expressed in the form
taken by the position vector r,

r = x x̂ + y ŷ + z ẑ = ρ ρ̂ + z ẑ, (2.1)

where ρ = √
x2 + y2, and z is along the axial direction. The origin of the coordinate system

is the centre of the cylindrical filament.

3. Propagation of electromagnetic waves in a plasma

The mathematical description of the propagation and scattering of RF waves in a cold
plasma is based on the linearized set of continuity and momentum fluid equations for
electrons and ions. These are combined with Faraday’s and Ampere’s equations (Stix
1992; Ram & Hizanidis 2016) to obtain the spatial variation of the RF electric field,

∇ × {∇ × E (r)} − ω2

c2
K (r) · E (r) = 0, (3.1)

where ω is the angular frequency of the electromagnetic fields, c is the speed of light
and K(r) is the plasma permittivity tensor. We have assumed that the plasma equilibrium
is time independent, while the linearized perturbed electromagnetic fields have a time
dependence of the form e−iωt, where t is the time. In the cylindrical coordinate system
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FIGURE 1. The cylindrical coordinate system: the ambient magnetic field is along the axial
direction ẑ; ρ̂ and φ̂ are the unit vectors along the radial and azimuthal directions, respectively.

where the ambient magnetic field is B0 = B0 ẑ, and K(r) has the form (Stix 1992),

K =

⎛
⎜⎜⎜⎜⎝

Kρ −iKφ 0

iKφ Kρ 0

0 0 Kz

⎞
⎟⎟⎟⎟⎠ , (3.2)

where

Kρ = 1 − ω2
pe

ω2 − ω2
ce

−
∑

i

ω2
pi

ω2 − ω2
ci
,

Kφ = −ωce

ω

ω2
pe

ω2 − ω2
ce

+
∑

i

ωci

ω

ω2
pi

ω2 − ω2
ci
,

Kz = 1 − ω2
pe

ω2
−

∑
i

ω2
pi

ω2
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

ωpe (ωpi) and ωce (ωci) are the angular electron (ion) plasma frequency and cyclotron
frequency, respectively, and the index i represents all the ion species in the plasma. The
plasma and cyclotron frequencies can, in general, be functions of space. The permittivity
tensor of the background plasma and of the filament are expressed in terms of their
respective ion compositions and constant, but different, densities. Subsequently, the
elements of K are constants in each region inside and outside the filament.

For a spatially independent K , (3.1) has the form of a vector Helmholtz equation
and can be solved analytically in the cylindrical coordinate system using vector cylinder
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functions (Ram & Hizanidis 2016). We assume that the incoming RF wave launched by
an antenna is a plane electromagnetic wave of fixed frequency. In addition, we assume
that the component of the wave vector along the direction of the ambient magnetic field
kz is prescribed ab initio. As the axis of the cylindrical filament is also aligned along the
magnetic field, boundary conditions imposed by Maxwell’s equations require that kz be
the same for all waves: those inside the filament and those that are scattered. This property
leads to some simplification when solving (3.1) (Ram & Hizanidis 2016).

In § 4 we derive, in cylindrical coordinates, the necessary properties of the plane wave
that are consistent with (3.1). A description of the scattered waves and the waves inside
the filament is outlined in § 4.

4. Dispersion characteristics and polarization of a plane plasma wave

In cylindrical coordinates, the spatial variation of a plane wave is (Stratton 1941),

eik·r = exp(ikρρ cos (φ − φk) + ikzz) =
∞∑

m=−∞
im Jm

(
kρρ

)
exp(im (φ − φk)) exp(ikzz), (4.1)

where Jm is the Bessel function of the first kind of order m, φ and φk are the azimuthal
angles between the x-axis and r and k, respectively, and kρ =

√
k2

x + k2
y with k = kx x̂ +

ky ŷ + kz ẑ.
In the cylindrical coordinate system (Ram & Hizanidis 2016),⎛

⎝ ρ̂

φ̂
ẑ

⎞
⎠ exp(ik · r) =

∞∑
m=−∞

im exp(−imφk) (alm + bmm + cnm) . (4.2)

The right-hand side is a sum of three dyadics, with

a = i
k2

⎛
⎝ −kρ cos (φ − φk)

kρ sin (φ − φk)
−kz

⎞
⎠ ,

b = i
kρ

⎛
⎝ sin (φ − φk)

cos (φ − φk)
0

⎞
⎠ ,

c = 1
kkρ

⎛
⎝ −kz cos (φ − φk)

kz sin (φ − φk)
kρ

⎞
⎠ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)

The vector cylinder functions lm, mm and nm are (Stratton 1941)

lm
(
ρ, φ, z; kρ, kz

) =
[(

∂

∂ρ
Jm

)
ρ̂ +

{
im
ρ

φ̂ + ikz ẑ
}

Jm

]
exp(ikzz + imφ),

mm
(
ρ, φ, z; kρ, kz

) =
[

im
ρ

Jm ρ̂ −
(

∂

∂ρ
Jm

)
φ̂

]
exp(ikzz + imφ),

nm
(
ρ, φ, z; kρ, kz

) =
[

ikz

k

(
∂

∂ρ
Jm

)
ρ̂ −

{
kz

k
m
ρ

φ̂ − k2
ρ

k
ẑ

}
Jm

]
exp(ikzz + imφ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.4)

where the argument of Jm is kρρ.
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For a plane wave the electric field is

EP (r) = E0 (k, ω) exp(ik · r), (4.5)

where E0 is the electric field vector which is independent of space and time. Substituting
this form into (3.1) yields

D (k, ω) · E0 (k, ω) = 0, (4.6)

where

D (k, ω) = c2

ω2

(
kk − k2I

) + K . (4.7)

Here kk is a dyadic and I is the identity tensor. For a non-zero electric field of the RF
wave, we require that

det (D (k, ω)) = 0, (4.8)

where det denotes the determinant of the tensor. Using (4.7) in (4.8) leads to the following
algebraic equation:

n4
ρKρ + n2

ρ[K2
φ − (

Kρ + Kz
) (

Kρ − n2
z

)
] + Kz[

(
Kρ − n2

z

)2 − K2
φ] = 0, (4.9)

where the index of refraction n = ck/ω.
For a prescribed nz, the two solutions of the bi-quadratic equation are

n2
ρ± = 1

2Kρ

(
Kρ + Kz

) (
Kρ − n2

z

) − 1
2Kρ

K2
φ

± 1
2Kρ

√[{(
Kρ − Kz

) (
Kρ − n2

z

) − K2
φ

}2 + 4n2
z K2

φKz

]
. (4.10)

We associate one of the roots to a slow wave and the other to a fast wave depending
on their relative phase velocities. The association will become clear when we consider
specific examples.

4.1. Electric field polarizations
The electric field E0 in (4.5) can be written as

E0(k, ω) = E0(Ekρ ρ̂k + Ekφ φ̂k + Ekz ẑ), (4.11)

where E0 is the amplitude of the electric field, and (Ekρ, Ekφ, Ekz) are the components of the
polarization vector along (ρ̂k, φ̂k, ẑ). The directional vector (ρ̂k, φ̂k, ẑ) is in the cylindrical
coordinate system defined in the wave vector space.

The polarization of the wave electric field follows from (4.6). Depending on whether
the wave is a slow wave or a fast wave, we will make use of one of the following two
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representations for the polarization:

ekρ = − nρnz
(
Kρ − n2

ρ − n2
z

)
(
Kρ − n2

z

) (
Kρ − n2

ρ − n2
z

) − K2
φ

,

ekφ = − inρnzKφ(
Kρ − n2

z

) (
Kρ − n2

ρ − n2
z

) − K2
φ

,

ekz = 1,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.12)

or
ekρ = 1,

ekφ = − iKφ

Kρ − n2
ρ − n2

z

,

ekz = − nρnz

Kz − n2
ρ

,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.13)

where nρ is one of the roots given in (4.10). For the slow wave (4.12) is a useful form
for the polarization vectors, while (4.13) is appropriate for the fast wave. The components
(Ekρ, Ekφ, Ekz) in (4.11) are defined as

(
Ekρ, Ekφ, Ekz

) = 1√∣∣ekρ

∣∣2 + ∣∣ekφ

∣∣2 + |ekz|2
(
ekρ, ekφ, ekz

)
. (4.14)

4.2. Electric field representation of a plane wave in cylindrical coordinates
In the wave vector space,⎛

⎝ρ̂k

φ̂k
ẑ

⎞
⎠ exp(ik · r) =

∞∑
m=−∞

im exp(−imφk) (aklm + bkmm + cknm) , (4.15)

where

ak = i
k2

⎛
⎝−kρ

0
−kz

⎞
⎠ , bk = i

kρ

⎛
⎝0

1
0

⎞
⎠ , ck = 1

kkρ

⎛
⎝−kz

0
kρ

⎞
⎠ , (4.16a–c)

and k is the magnitude of k. The explicit form of the wave electric field is obtained by
substituting the expressions in (4.11), (4.15) and (4.16a–c) into (4.5),

EP (r) = E0

∞∑
m=−∞

im

[{
−iEkρJ′

m

(
kρρ

) − m
ρkρ

EkφJm
(
kρρ

)}
ρ̂

+
{
−iEkφJ′

m

(
kρρ

) + m
ρkρ

EkρJm
(
kρρ

)}
φ̂

+ EkzJm
(
kρρ

)
ẑ
]

exp(im (φ − φk)) exp(ikzz), (4.17)

where ′ denotes derivative with respect to the argument.
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5. Electromagnetic fields of the scattered waves and waves inside the filament

As K is a function of ω only, the general solution of (3.1) is obtained using the Fourier
representation of the electric field,

E (r) =
∫

d3k E (k) exp(ik · r) =
∫ ∞

0
dkρ kρ

∫ 2π

0
dφk

∫ ∞

−∞
dkz E (k)

× exp
(
ikρρ cos (φ − φk)

)
exp(ikzz). (5.1)

Substituting this form in (3.1) yields

∫
d3k D (k, ω) · Ek (k) exp

(
ikρρ cos (φ − φk)

)
exp(ikzz) = 0, (5.2)

where

D (k, ω) = c2

ω2

(
kk − k2I

) + K (ω) . (5.3)

In general, (5.2) is satisfied if and only if

D (k, ω) · Ek (k) = 0. (5.4)

A non-trivial solution for the Ek requires that detD(k, ω) = 0. This requirement, as in § 4,
leads to a dispersion relation connecting kρ , kz and ω. The dispersion relation is of the
same form as in (4.9).

As kz for the scattered waves and for waves inside the filament is the same as that of the
incident plane wave, we find that (Ram & Hizanidis 2016)

E (r) =
2∑

�=1

∞∑
m=−∞

im E�m

[{
−iEkρ�Z ′

m

(
kρ�ρ

) − m
ρkρ�

Ekφ�Zm
(
kρ�ρ

)}
ρ̂

+
{
−iEkφ�Z ′

m

(
kρ�ρ

) + m
ρkρ�

Ekρ�Zm
(
kρ�ρ

)}
φ̂

+Ekz�Zm
(
kρ�ρ

)
ẑ
]

exp(imφ) exp(ik0zz). (5.5)

In this equation, Z is the Bessel function of the first kind for waves inside the filament, and
Hankel function of the first kind for the scattered waves (Abramowitz & Stegun 1972). The
former ensures that the wave fields are non-singular inside the filament, while the latter
ensures that the scattered waves are propagating away from the filament. The summation in
� is for the two roots of nρ that are obtained from the dispersion relation for the waves either
inside the filament or in the background plasma (nρ1 = nρ+, nρ2 = nρ−). This indicates that
the wave fields inside the filament and the scattered waves have to include both natural
modes of the cold plasma. The incoming plane wave, that is excited by an antenna with its
propagation characteristics described by one particular root of the dispersion relation, can
couple power to the other plasma wave in the presence of a density filament. Here E�m is
the amplitude of the mth Fourier mode of the �th plasma wave.
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6. Boundary conditions

At the interface separating the filament from the background plasma, Maxwell’s
equations lead to the following boundary conditions (Griffiths 1999):

ρ̂ · (DI + DS)
∣∣
ρ=a = ρ̂ · DF

∣∣
ρ=a , (6.1)

ρ̂ · (BI + BS)
∣∣
ρ=a = ρ̂ · BF

∣∣
ρ=a , (6.2)

ρ̂ × (EI + ES)
∣∣
ρ=a = ρ̂ × EF

∣∣
ρ=a , (6.3)

ρ̂ × (BI + BS)
∣∣
ρ=a = ρ̂ × BF

∣∣
ρ=a . (6.4)

The subscripts I, S and F refer to the incident, scattered and filamentary wave fields,
respectively, D = ε0 K · E is the wave electric displacement field, ε0 is the free-space
permeability and E and B are the wave electric and magnetic fields, respectively. The four
sets of boundary conditions follow from Gauss’ law, Gauss’ magnetism law, Faraday’s law
and Ampere’s law, respectively. The left- and right-hand sides of (6.1)–(6.4) are evaluated
at the boundary of the filament ρ = a. The magnetic fields associated with all the waves
are obtained from Faraday’s equation,

B (r) = − i
ω

∇ × E (r) . (6.5)

It can be shown that, for a cold plasma dielectric, only four of the six boundary conditions
(6.1)–(6.4) are independent (Ram & Hizanidis 2016). These four boundary conditions
uniquely determine the scattered wave fields and the fields inside the filament for a
prescribed incident plane wave.

The boundary conditions (6.1)–(6.4) have to be satisfied for all φ and z, and for all
times t. Consequently, the (φ, z, t) variations of all the fields must be the same at ρ = a. It
follows that kz is preserved in the scattering process. This validates our earlier assumption
that all waves have the same component of the wave vector along the direction of the
magnetic field.

7. Maxwell’s stress tensor and the force on a filament

Apart from the scattering of RF waves by the filament, the RF waves can themselves
exert a radiation force on the filament. In this section, we determine the force on a filament
using the Maxwell stress tensor.

The dyadic form of the Maxwell stress tensor in a dielectric medium is (Stratton 1941;
Griffiths 1999)

T = ERDR + H RH R − 1
2

I (ERDR + H RBR) , (7.1)

where the subscript R indicates the real component of the corresponding field, B = μ0H ,
and μ0 is the permeability of free space. In terms of our complex field representation,

T = ε0

4
(EK · E exp(−2iωt) + E∗K ∗ · E∗ exp(2iωt) + E∗K · E + EK ∗ · E∗)

+ μ0

4
(HH exp(−2iωt) + H ∗H ∗ exp(2iωt) + H ∗H + HH ∗)

− 1
8

I
[
ε0 (E · K · E exp(−2iωt) + E∗ · K ∗E∗ exp(2iωt) + E∗ · K · E + E · K ∗ · E∗)

+ μ0 (H · H exp(−2iωt) + H ∗ · H ∗ exp(2iωt) + H ∗ · H + H · H ∗)
]
, (7.2)
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where ∗ indicates complex conjugate. The time average of (7.2) over one period of the
wave cycle leads to

〈T 〉 = 1
2

Re[ε0EK ∗ · E∗ + μ0HH ∗ − 1
2 I

(
ε0E · K ∗ · E∗ + μ0 |H |2)], (7.3)

where Re indicates the real part of the bracketed quantity. The time-averaged force on a
filament of axial length Lz is

F =
∫

〈T 〉 · dA = a
∫ Lz

0
dz

∫ 2π

0
dφ 〈T 〉 · ρ̂, (7.4)

where A is the surface surrounding the cylindrical filament. The normal to the surface of
the filament is along ρ̂. The projection of the time-averaged stress tensor along ρ̂ is

〈T 〉 · ρ̂ = 1
2

Re[ε0E(KρE∗
ρ + iKφE∗

φ) + μ0HH∗
ρ]

− ε0

4
[Kρ|Eρ |2 + Kρ|Eφ|2 + Kz|Ez|2 + 2KφIm(E∗

ρEφ)]ρ̂ − μ0

4
|H |2ρ̂, (7.5)

where Im is the imaginary part of the expression within the parentheses. This is the force,
per unit area, exerted on the surface of the filament by the RF waves inside and outside the
filament. On the surface of the filament,

〈T (ρ = a)〉 · ρ̂ = 〈T (ρ = a)〉b · ρ̂ − 〈T (ρ = a)〉f · ρ̂, (7.6)

where 〈T 〉b and 〈T 〉f are the stress tensors corresponding to the total RF fields in
the background plasma and inside the filament, respectively. The negative sign on the
right-hand side of (7.6) follows from the convention that the outward-pointing normal at
the surface of the filament is positive. Explicitly, for the background plasma,

〈T (ρ = a)〉b · ρ̂ = 1
2

Re
[
ε0 (EI + ES)

{
KB

ρ

(
E∗

Iρ + E∗
Sρ

) + iKB
φ

(
E∗

Iφ + E∗
Sφ

)}
+ μ0 (H I + H S)

(
H∗

Iρ + H∗
Sρ

)]
ρ=a

− ε0

4

[
KB

ρ

∣∣(EIρ + ESρ

)∣∣2 + KB
ρ

∣∣(EIφ + ESφ

)∣∣2

+KB
z |(EIz + ESz)|2 + 2KB

φ Im
(
E∗

IρEIφ + E∗
SρESφ

) ]
ρ=a

ρ̂

− μ0

4

[|(H I + H S)|2
]
ρ=a ρ̂, (7.7)

where the right-hand side is to be evaluated at ρ = a, and KB
ρ , KB

φ and KB
z are components

of the plasma permittivity tensor evaluated for the parameters of the background plasma.
Analogously, for the filament,

〈T (ρ = a)〉f · ρ̂ = 1
2

Re
[
ε0EF

(
KF

ρ E∗
Fρ + iKF

φ E∗
Fφ

) + μ0H FH∗
Fρ

]
ρ=a

− ε0

4

[
KF

ρ

∣∣EFρ

∣∣2 + KF
ρ

∣∣EFφ

∣∣2 + KF
z |EFz|2

+ 2KF
φ Im

(
E∗

FρEFφ

) ]
ρ=a

ρ̂ − μ0

4

[|H F|2]
ρ=a ρ̂. (7.8)
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The four independent boundary conditions, which follow from (6.1)–(6.4), lead to the
following relations:

[
KB

ρ

(
EIρ + ESρ

) − iKB
φ

(
EIφ + ESφ

)]
ρ=a

= [
KF

ρ EFρ − iKF
φ EFφ

]
ρ=a

,

[H I + H S]ρ=a = H F|ρ=a ,[
EIφ + ESφ

]
ρ=a = EFφ

∣∣
ρ=a ,[

EIz + ESz
]
ρ=a = EFz|ρ=a .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7.9)

It follows that the three components of 〈T 〉 · ρ̂ are

ρ̂ · 〈T (ρ = a)〉 · ρ̂ = ε0

4
[KB

ρ

∣∣EIρ + ESρ

∣∣2 − KF
ρ

∣∣EFρ

∣∣2

+ (
KF

ρ − KB
ρ

) ∣∣EFφ

∣∣2 + (
KF

z − KB
z

) |EFz|2]ρ=a, (7.10)

φ̂ · 〈T (ρ = a)〉 · ρ̂ = 0, (7.11)

ẑ · 〈T (ρ = a)〉 · ρ̂ = 0. (7.12)

Thus, the net force on the surface of the filament is only in the radial direction. There are
no forces in the azimuthal and axial directions.

As all the wave fields have the same dependence exp(ikzz) on the z-coordinate, (7.10)
is independent of the axial length of the filament. From (7.4), the force along the radial
direction, per unit axial length, is

Fρ = a
∫ 2π

0
dφ ρ̂ · 〈T (ρ = a)〉 · ρ̂. (7.13)

The dimensions of Fρ are Newtons per meter. The Cartesian x and y components of the
force are, respectively,

(Fx
Fy

)
= a

∫ 2π

0
dφ

(
cos φ

sin φ

)
ρ̂ · 〈T (ρ = a)〉 · ρ̂. (7.14)

8. Cartesian coordinate representation and normalizations

We display our numerical results in the Cartesian coordinate system. The relevant
rotation matrix for the transformation from cylindrical coordinates (ρ̂, φ̂, ẑ) to the
Cartesian system (x̂, ŷ, ẑ) is

R (φ) =
⎛
⎝cos φ − sin φ 0

sin φ cos φ 0
0 0 1

⎞
⎠ . (8.1)

For the space spanned by the wave vector k, the transformation tensor is R(φk) with φ
replaced by φk in (8.1). Thus, the electric field polarizations in (4.11) transform to the
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Cartesian system according to ⎛
⎝Ekx

Eky
Ekz

⎞
⎠ = R (φk) ·

⎛
⎝Ekρ

Ekφ
Ekz

⎞
⎠ . (8.2)

The time-averaged Poynting vector for the wave fields is

〈S (t)〉 = 1
2 Re (E × H ∗) . (8.3)

The normalized Poynting vector is defined as

P = 〈S (t)〉
1
2

√
ε0

μ0

∣∣E2
0

∣∣ = 〈S (t)〉
SI

, (8.4)

where |E0| is the amplitude of the incident wave field given in (4.11), and SI is the
magnitude of the Poynting vector for the incident field.

The normalized radial force on the surface of the filament by the wave fields is defined
as

Fρ (φ) = c
ρ̂ · 〈T (ρ = a)〉 · ρ̂

SI
. (8.5)

9. Scattering of LH waves
9.1. Dispersion characteristics

In figures 2–4, we illustrate various properties of the dispersion relation (4.10) in the LH
range of frequencies. These figures are useful in limiting the parameter space for exploring
the scattering of LH waves by a density filament. If we define the complex ‘wavelength’
with the following notation:

Λρ =
(
λρ, λ̃ρ

)
, (9.1)

where the two terms in the parenthesis on the right-hand side are the real and imaginary
parts, respectively, with

λρ = Re
(

c
νnρ

)
, λ̃ρ = Im

(
c

νnρ

)
, (9.2a,b)

then the figures show the variation in 1/λρ as a function of local density, for different
B0 (figure 2), nz (figure 3) and wave frequency ν = ω/2π (figure 4). In each figure, the
two roots of (4.10) are indicated by the letter S for the slow wave root and F for the fast
wave root. The paired dispersion curves (S1, F1) in each figure correspond to the same
set of parameters: B0 = 4.5 T, ν = 4.6 GHz and nz = 2. The plasma is assumed to be
composed of electrons and deuterons: we assume this to be the plasma composition for
all our numerical calculations. The paired dispersion curves (S2, F2), (S3, F3) differ from
figure to figure.

For the density range shown in the figures, the fast wave is cutoff below a certain
density that depends on B0 and wave parameters. Below the cutoff density, Re(nρ) = 0 and
Im(nρ) �= 0, indicating the wave is an evanescent mode. The slow wave is a propagating
LH wave with Im(nρ) = 0. The exception is for the pair (S2, F2). At ne ≈ 7 × 1019 m−3,
the roots merge and become complex conjugate pairs with |Im(nρ)| �= 0 and Re(nρ) > 0.
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FIGURE 2. Variation of the cold plasma dispersion roots, obtained from (4.10), as a function of
density, for different strengths of the magnetic field. In this semi-log plot, the abscissa is electron
density (per cubic meter) and the ordinate is 1/λρ = Re(nρν/c) (per centimeter). These results
are for a plasma composed of deuterons and electrons, with ν = 4.6 GHz and nz = 2. The labels
S and F indicate the slow wave and fast wave roots of (4.10), respectively; (S1, F1) are the roots
for B0 = 4.5 T, (S2, F2) for B0 = 3.5 T and (S3, F3) for B0 = 5.5 T.

The accessibility of LH waves to higher densities is limited due to the occurrence of this
confluence point (Stix 1992).

Figures 2–4 show that, over a significant range of electron densities (≤ 5 × 1019 m−3)
expected in the scrape-off layer, there is not much difference in the radial index of
refraction for the LH waves as nz, B0 and ν are varied. Consequently, in our numerical
studies on the scattering of LH waves, we use the parameters corresponding to the
dispersion branches (S1, F1) unless stated otherwise; thus, B0 = 4.5 T, ν = 4.6 GHz and
nz = 2. A useful feature of plotting 1/λρ is that it is easy to compare the wavelength of the
wave to the radial extent of the filament.

9.2. Excitation of plasma waves by the filament
The physics aspects of wave scattering by a filament can be illustrated by the following
example. We assume that the background plasma density is 2.25 × 1019 m−3 and the
density inside the filament is 2 × 1019 m−3, that is, the filament has depleted density. From
the curves for (S1, F1) in figure 2, the slow and fast waves are propagating normal modes
in the background plasma. However, inside the filament, the slow wave is a propagating
normal mode and the fast mode is evanescent. In table 1, we list nρ , Λρ , electric field
polarizations and the real Poynting vector for the two normal modes in the background
plasma and in the filament plasma.
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FIGURE 3. Variation of the cold plasma dispersion roots as a function of electron density, for
different nz. Using the same convention as in figure 2, these roots are for ν = 4.6 GHz, B0 =
4.5 T; (S1, F1) are the roots for nz = 2, (S2, F2) for nz = 2.2 and (S3, F3) for nz = 1.8.

In the studies that follow, we assume, without loss of generality, that the incident plane
wave is propagating in the x–z plane in the background plasma. Then, in (4.1), φk = 0,
and the relationship between the Cartesian components and the cylindrical components
of the wave vector, and of the polarization fields, are trivially connected through the
transformation (8.2),

n0x = n0ρ, E0x = E0ρ, E0y = E0φ. (9.3a–c)

From (4.5) and (4.11), the incident plane wave has the following form in Cartesian
coordinates:

EI = E0
(
E0x x̂ + E0y ŷ + E0z ẑ

)
exp(i (k0xx + k0zz))

≡ E0
(
E0x x̂ + E0y ŷ + E0z ẑ

)
, (9.4)

where, in the second expression, the exponential phase factor has been included in E. As
the incoming wave is planar, the physics of scattering is more transparent if the numerical
results are displayed in the Cartesian coordinate system.

In the ensuing sections, we use the following notation. The subscripts (x, y) indicate
components in the Cartesian system, whereas (ρ, φ) are components in the cylindrical
system. The subscripts S and F are used for slow and fast waves, respectively, and
superscripts b and f indicate background and filament plasmas, respectively. The subscript
0 is used for the incoming plane wave which is initially set up in the background plasma.
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FIGURE 4. Variation of the cold plasma dispersion roots as a function of electron density, for
two different wave frequencies. Using the same convention as in figure 2, these roots are for
nz = 2 and B0 = 4.5 T; (S1, F1) are the roots for ν = 4.6 GHz and (S2, F2) for ν = 2.45 GHz.

9.2.1. Scattering of a slow LH plane wave
Consider a slow LH wave with n0z = 2 incident on a filament of radius a = 1 cm. From

table 1, nb
0x = 14.612 or λb

0x = 0.45 cm. The normalized electric field components are

Re (E0x) = 0.995 cos (k0xx + k0zz) ,

Re
(
E0y

) = −0.014 sin (k0xx + k0zz) ,

Re (E0z) = 0.098 cos (k0xx + k0zz) .

⎫⎪⎬
⎪⎭ (9.5)

The components of the Poynting vector are

P0x = −0.092, P0y = 0, P0z = 0.996. (9.6a–c)

The negative sign in P0x affirms that the slow LH wave is a backward wave (Stix 1992).
From table 1, we note that the slow wave properties inside and outside the filament

are approximately the same. For this reason, it is to be expected that the incident plasma
wave will couple effectively to the slow wave inside the filament. Meanwhile, the fast
wave inside the filament is evanescent with λ̃ f

ρF = −12.5, so that in the expression for
the electric fields inside the filament (5.5), the argument of the Bessel functions k f

ρFρ =
2πiρ/12.5 is imaginary (ρ ≤ a). The Bessel function Jm of an imaginary argument is
related to the modified Bessel function of the first kind Im (Abramowitz & Stegun 1972):
Jm(k f

ρFρ) = imIm(|k f
ρF|ρ). As Im increases monotonically as a function of ρ, achieving its

maximum value at ρ = a, we expect an enhancement of the electric field near the interface
if the incident slow wave couples power to the fast wave inside the filament. While the
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Wave characteristics in the plasma

Background plasma Filament plasma
ne = 2.25 × 1019 m−3 ne = 2 × 1019 m−3

nβ
ρα (14.612, 0) (0.705, 0) (13.902, 0) (0, 0.522)

Λ
β
ρα (cm) (0.45, 0) (9.25, 0) (0.47, 0) (0, −12.5)

Eβ
kρα (0.995, 0) (0, −0.736) (0.995, 0) (0, −0.689)

Eβ
kφα (0, 0.014) (0.677, 0) (0, 0.014) (0.725, 0)

Eβ
kzα (0.098, 0) (0, −0.012) (0.103, 0) (0.01, 0)

Pβ
α (−0.092, 0, 0.996) (0.151, 0, 0.998) (−0.097, 0, 0.995) (0, 0.122, 0.992)

TABLE 1. LH waves with B0 = 4.5 T, ν = 4.6 GHz and nz = 2. The indices of refraction nβ
ρα

are obtained from (4.10). The subscript α can be either S or F for the slow and fast LH waves,
respectively; the superscript β is either b or f representing the background and the filament
plasmas, respectively. The complex Λ are defined in (9.1) and (9.2a,b) and E are components
of the polarization vector defined in § 4.1. Inside each set of parentheses, the first number is the
real part and the second number is the imaginary part. The components of the Poynting vector
P, defined in 9.4, are listed in the last row.

slow wave has P f
Sφ = 0 inside the filament, for the fast wave P f

Fφ �= 0. Thus, any coupling
to the fast wave should result in P f

Fφ �= 0 inside the filament and, as a consequence of the
boundary conditions (6.1)–(6.4), in the surrounding plasma.

The numerical solutions resulting from the analytical theory support this simple
reasoning. Figure 5 shows the real part of the Cartesian components of the total electric
field ET = EI + ES + EF normalized to |E0|. Figures 5(a) and 5(c) show the planar
wavefronts that are slightly distorted by the presence of the filament. As mentioned
previously, this is to be expected because the properties of the slow wave inside and outside
the filament are approximately the same. Furthermore, because the incoming slow wave
has P0y = 0 while (P0x, P0y) �= 0, the planar wave fronts exist for Re(ETx) and Re(ETz)
only. From (9.5), for the incident wave, the maximum amplitudes of Re(E0x) and Re(E0z)

are 0.995 and 0.098, respectively.
The maximum amplitudes of Re(ETx) and Re(ETz) are approximately the same as shown

in figures 5(a) and 5(c). The wavefronts in figure 5(b) for the y-component of the electric
field are, definitely, not planar. This is an effect of the evanescent fast wave, generated
inside the filament, which retains some spatial aspects of the cylindrical geometry. The
figure shows an enhancement of the electric field near the boundary of the filament in
agreement with the discussion in the previous paragraph. In addition, the maximum value
of Re(ETy) is much larger than the maximum value of Re(E0y): the larger value of Re(E f

kφF)

(table 1) being the contributing factor. The enhanced fields of the evanescent fast wave near
the boundary generate a propagating fast wave in the background plasma.

The coupling to the fast wave has consequences on the flow of wave energy. Figure 6
shows the three Cartesian components of the Poynting vector P for the complete set of
electromagnetic fields. The power flow in the y-direction inside and outside the filament
is a direct result of coupling to the fast mode since only the fast wave inside the filament
has a non-zero power flow in the y-direction. Figures 6(a) and 6(c) show the diffraction
pattern due to scattering in the wake of the filament.
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(a)

(c)

(b)

FIGURE 5. Contours of the Cartesian components of the total electric field ET in the x–y plane,
when the incident plane wave is a slow LH wave; ET = EI + ES + EF is the vector sum of the
incident and scattered fields and fields inside the filament. The wave is incident from the left,
and the cross-sectional outline of the cylindrical filament (radius a = 1 cm) is shown in white.
The plasma and wave parameters are given in table 1. (a) Contours of Re(ETx). (b) Contours of
Re(ETy). (c) Contours of Re(ETz) .

9.2.2. Scattering of a fast LH plane wave
The scattering is interestingly different if, instead of the slow LH wave, the incident

plane wave is the fast LH wave. From table 1, we note that λ0x/a = 9.25 � 1, that is, the
wavelength of the incident wave is much longer than the radial dimension of the filament.
Consequently, the electric field of the incident plane wave will have a very small spatial
variation across the filament. As the fast wave is evanescent inside the filament and its
polarization, especially the z-component, is quite different from the incident wave, we do
not expect a coupling between the fast waves inside and outside the filament. The boundary
conditions (6.1)–(6.4) can only be satisfied if we account for the slow wave inside the
filament. Given that λ f

ρS/a ≈ 0.5, we expect two radial wavelengths of the slow wave to
fit inside the filament. The contribution to (5.5) from the propagating slow wave depends
on Jm(k f

ρSρ) and J′
m(k f

ρSρ) with k f
ρS being real and 0 ≤ ρ ≤ a. We find that only for m =

0, 1, and 2, do the Bessel functions have two ‘wavelengths’ inside the filament (figure 7).
With this limitation on the azimuthal mode number, we expect the wave fields inside
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(a)

(c)

(b)

FIGURE 6. Contours of the three Cartesian components of the Poynting vector associated with
the fields in figure 5. (a) Contours of Px. (b) Contours of Py. (c) Contours of Pz.

the filament to be radially structured having a wavelength of 0.47 cm, and an azimuthal
variation corresponding to m = 1 and 2.

Figures 8 and 9 show the scattering of the incident fast wave by the filament. The
generation of the slow wave inside the filament is evident. The radial variation is as
expected as are the m = 1 and 2 azimuthal structures.

The physics of the generation of the slow wave inside the filament is simple. The
electric field of the incident plane wave induces dipole oscillations at the interface of
the filament. These oscillations, in turn, generate a propagating wave inside the filament
that is consistent with the geometry and with the electromagnetic boundary conditions.
The filament behaves like an antenna and excites cylindrical slow waves in the background
plasma. While the incident plane wave has P0y = 0, the scattering leads to Poynting flux in
the y-direction. Unlike the case of an incident slow wave where P0y �= 0 due to the presence
of an evanescent fast wave inside the filament, here it is the propagating slow wave inside
the filament that leads to P0y �= 0. The incident plane wave has k0y = 0. The cylindrical
wavefronts of the slow wave lead to k f

yS �= 0 which, in turn, leads to Py �= 0. It is worth
noting that, over the spatial scales shown in the figures, there is no obvious presence of
the incident plane wave, its wavelength being over 9 cm. In figure 10(a), we display results
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(a) (b)

FIGURE 7. Variation of the Bessel functions (and derivatives) as a function of ρ inside the
filament: (a) Jm as a function of ρ for m = 0, 1, and 2; (b) J′

m as a function of ρ for m =
0, 1, and 2. The argument of the Bessel function is k f

ρSρ, with k f
ρS = ωn f

ρS/c ≈ 13.403 cm−1

being the ρ̂ component of the LH fast wave vector inside the filament. The parameters are as in
table 1.

(a)

(c)

(b)

FIGURE 8. Contours of the Cartesian components of ET when a fast LH wave is incident from
the left. The parameters are the same as for figure 5. (a) Contours of Re(ETx). (b) Contours of
Re(ETy). (c) Contours of Re(ETz).
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(a)

(c)

(b)

FIGURE 9. Contours of the three Cartesian components of the Poynting vector associated with
the fields in figure 8. (a) Contours of Px. (b) Contours of Py. (c) Contours of Pz.

over an extended range. The planar phase front of the incident wave is clearly discernable,
as is the uniformity of the incident wave field over the filament cross-section. Figure 10(b)
shows that the filament affects the spatial variation of power flow over a much wider region
compared with its cross-section.

9.2.3. Scattering of a fast LH plane wave by a filament with smaller radius
If the radius of the filament is smaller than the radial wavelength of the slow wave, the

electric field structure inside the filament changes. Even so, the effect on the surrounding
plasma is the same as in figure 8. The real part of the x and z components of the total
electric field in the presence of a filament of radius a = 0.4 cm are shown in figure 11.
From the radiation patterns we note that the filament behaves like a dipole antenna (Lai
et al. 2010). Inside the filament, the m = 1 pattern is seen in figure 11(b) for the Re(ETz);
the radial structure follows from the Bessel function of order 1, J1(k

f
ρSρ), with 0 ≥ ρ ≥

0.4 cm (see figure 7a). The azimuthal variation of Re(ETx) in figure 11(a) has the structure
of a m = 2 mode: the x-component of the field having an extra sin(φ) multiplier when
converting from a cylindrical coordinate system to the Cartesian system.

If we reduce the radius of the filament to 0.25 cm, the radiation patterns are similar to
those shown in figure 11. This leads to a compelling observation. Even if the wavelength
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(a) (b)

FIGURE 10. Same as figures 8(a) and 9(a), respectively, except that the display is over a wider
region of space. The fast wave with its wavelength of 9.25 cm is clearly discernable, as is the
effect of the slow wave on the power flow in the x-direction. The cross-section of the filament is
in black. (a) Contours of Re(ETx). (b) Contours of Px.

(a) (b)

FIGURE 11. Results for the same conditions and parameters as in figure 8 except that a =
0.4 cm. The wavelength of the incoming fast LH wave is 9.25 cm (see figure 10a). (a) Contours
of Re(ETx). (b) Contours of Re(ETz).

of the incident RF wave is much longer than the radial extent of the filament, in this case
the ratio is greater than 10, the scattered fields are significantly modified by the presence
of the filament. Consequently, even if the spatial scale length of the turbulence is much
shorter than the RF wavelength and the density variation is small, the effect of turbulence
on RF waves cannot be neglected.

9.3. Scattering of an evanescent LH wave
So far we have studied the scattering of waves that propagate in the background plasma.
However, evanescent waves can exist in the low-density plasma in the vicinity of an
RF source. This is evident from the dispersion relation in figure 2. For scattering of
an evanescent wave, we interchange the plasma parameters for the background and the
filament in table 1. In this case, the filament density 2.25 × 1019 m−3 is larger than the
background density 2 × 1019 m−3. An incident fast wave is an evanescent mode for which
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(a)

(c)

(b)

FIGURE 12. Contours of the Cartesian components of ET when an evanescent LH fast wave,
incident from the left, is scattered by a filament with a = 1 cm. The parameters are the same
as in table 1 except that the background and filament densities are interchanged, that is, nb

e =
2 × 1019 m−3 and n f

e = 2.25 × 1019 m−3. (a) Contours of Re(ETx). (b) Contours of Re(ETy). (c)
Contours of Re(ETz).

the electric field amplitude decays with distance. Inside the filament, both the slow and
fast waves are propagating modes with λ f

ρS/a < 1 and λ f
ρF/a � 1 for a = 1 cm. From our

discussions, it is reasonable to expect that an incident (evanescent) fast wave will excite
the slow wave inside the filament; essentially no power being coupled to the fast mode
as its wave characteristics do not match those of the incident wave. Indeed, as shown
in figures 12 and 13, that is exactly what we observe in the simulations. The excitation
of the cylindrical slow wave inside the filament generates a cylindrical slow wave in the
surrounding plasma. The filament, in effect, is instrumental in coupling power from an
evanescent wave to a propagating wave in the background plasma. The incident wave has
P0x = 0. The propagating wave excited by the filament has a Px �= 0 which carries some
of the incident power in towards the core plasma.

9.4. Scattering when the density differential is large
An analysis of experimental data shows that the density fluctuations in the edge region
can be significantly larger than the background density (Zweben et al. 2006, 2007). We
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(a)

(c)

(b)

FIGURE 13. Contours of the three Cartesian components of the Poynting vector associated
with the fields in figure 12. (a) Contours of Px. (b) Contours of Py. (c) Contours of Pz.

consider such a case and show that the physics of RF scattering follows along the same
path discussed above. In the following, we assume that the electron density inside the
filament is 4 × 1019 m−3, while the background density is 2 × 1019 m−3. From figure 2, we
note that both the slow and fast LH waves are propagating modes inside the filament, while
only the slow LH wave propagates in the background plasma. The dispersion equation
(4.10) yields

Λb
ρS = (0.47, 0) cm, Λb

ρF = (0, −12.5) cm, (9.7a,b)

Λ
f
ρS = (0.358, 0) cm, Λ

f
ρF = (2.165, 0) cm. (9.8a,b)

If the incoming wave is the slow LH wave, then λb
ρS is comparable to λ f

ρS but much
shorter than λ f

ρF. This situation is similar to that discussed in § 9.2.1. Figures 14(a)
and 14(b) show the contours of Re(ETx) and Re(ETy), respectively. These results bear
remarkable resemblance to the corresponding plots in figure 5 even though the parameters
are very different.
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(a) (b)

FIGURE 14. Contours of Re(ETx) and Re(ETy), respectively, when a propagating slow LH wave
is incident from the left. Here, a = 1 cm, nb

e = 2 × 1019 m−3, n f
e = 4 × 1019 m−3, B0 = 4.5 T,

ν = 4.6 GHz and nz = 2. (a) Contours of Re(ETx). (b) Contours of Re(ETy).

(a) (b)

FIGURE 15. Contours of Re(ETx) and Re(ETy), respectively, when an evanescent fast plane LH
wave is incident from the left. The plasma and wave parameters are as for figure 14. (a) Contours
of Re(ETx). (b) Contours of Re(ETy).

If the incoming LH wave is the evanescent fast wave, we expect both the fast and slow
LH waves to be excited inside the filament. However, from (9.8a,b), for a = 1 cm, λ f

ρF/a >

1 while λ f
ρS/a < 1, so that the field structure inside the filament will be dominated by the

slow wave. This, in turn, will couple power to the slow propagating wave in the background
plasma with a radial wavelength of 0.47 cm. The contours of Re(ETx) and Re(ETy) in
figures 15(a) and 15(b), respectively, clearly illustrate this scattering process. Whereas
the incident wave has no power flow in the x-direction, the scattered wave carries power in
this direction. The similarity with figures 12(a) and 12(b) indicates that the physics of the
scattering process is analogous to that in § 9.3.
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9.5. Scattering of LH waves with a different frequency
For comparison, we assume that all the parameters are the same as in § 9.4 except for the
wave frequency. For ν = 2.45 GHz, we find that

Λb
ρS = (0.451, 0) cm, Λb

ρF = (4.789, 0) cm, (9.9a,b)

Λ
f
ρS = (0.333, 0) cm, Λ

f
ρF = (1.989, 0) cm. (9.10a,b)

The main difference, when comparing with (9.7a,b) and (9.8a,b), is that the fast wave is a
propagating wave at this lower frequency (figure 4). Consequently, if the incident wave is
the slow LH wave, we do not expect much difference in the scattering due to the frequency
change. We find that the results are similar to those shown in figures 14(a) and 14(b). When
the incident wave is the fast LH wave, we can deduce the effect of the filament from these
two conditions: λb

ρF/a > 4 and λ f
ρF/a ≈ 2. The first condition implies that the electric field

of the incoming wave is essentially uniform over the cross-section of the filament. The
second conditions implies that it will be difficult to set up a fast wave eigenmode inside
the filament. As λ f

ρS/a < 1, the incident wave will excite the short-wavelength slow wave
inside the filament that couples power to the scattered slow wave outside the filament. It
follows that the total field should look essentially the same as in figures 15(a) and 15(b).
Not surprisingly, numerical simulations support this intuitive argument. The details of the
cylindrical wave patterns are different between the two frequencies, but the global structure
of the scattering is essentially the same.

10. Scattering of helicon waves

The scattering of LH waves provides a useful base for studying the scattering of
lower-frequency waves. Toward this end, we first consider the scattering of helicon waves
and, in the subsequent section, scattering of IC waves.

Helicon waves exist in a frequency range that is below the LH frequency, but well
above the IC frequency (Stix 1992; Bers 2016). It is believed that helicon waves can
efficiently induce plasma currents in toroidal fusion devices, and experiments in DIII-D
are being planned to test this premise (Pinsker et al. 2018). The roots of the cold plasma
dispersion relation (4.10) are plotted in figure 16 for DIII-D type parameters that will be
used in our study. The slow helicon wave has a resonance, the LH resonance, at nLHR

e ≈
2.25 × 1019 m−3. For electron densities higher than nLHR

e , the slow wave is evanescent.
The fast helicon wave, experimentally favoured as it can access high plasma densities,
has a cutoff which is a function of nz (Bers 2016). The density at which the cutoff
occurs can be deduced from (4.10). For our choice of parameters, the cutoff density is
nC

e ≈ 3.5 × 1018 m−3 (figure 16).
The density range covered in figure 16 can be divided into four distinct regions. In

each region the wave physics and wave scattering are different. Even though we have
carried out detailed numerical simulations for parameters corresponding to a specific
region, the narrative follows the following rule. For situations that bear similarities to LH
scattering, we discuss the physics without showing any figures. Otherwise, we supplement
the discussion with graphs. In all cases we assume that the incident plane wave is the fast
helicon wave.

Case 1: ne ≤ nC
e For densities below nC

e , the incident fast wave is evanescent. The
propagating slow wave has λb,f

ρS � 0.424 cm in the density range [1017, 3.5 × 1018] m−3. In
the filament and the background plasma, the slow wave will be excited by coupling of
waves at the boundary. The wave field structure inside the filament will depend on the
argument 2πρ/λ

f
ρS of the Bessel functions. If a/λ

f
ρS > 1, the field patterns will be similar
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FIGURE 16. Variation of the cold plasma dispersion roots for helicon waves, obtained from
(4.10), as a function of the electron density. SW and FW indicate the slow and fast waves,
respectively, and LHR marks the density location of the LH resonance. The parameters are
B0 = 1.4 T, ν = 476 MHz and nz = 4.

to those in figures 8 and 12, otherwise the fields will be of the form shown in figure 11. In
either case, there will be an outflow of power due to the scattered slow cylindrical waves
propagating in the background plasma.

Case 2: nC
e < ne < nLHR

e For these densities the fast and the slow helicon waves are
propagating modes with λb,f

ρF > 2.53 cm while 0 < λ
b,f
rhoS � 0.424 cm. It should be noted

that, in the vicinity of the LH resonance, the cold plasma model for the dispersion relation
breaks down: thermal effects need to be included in the wave description (Bers 2016). For
filaments with a � 1 cm, λb,f

ρF > a while for the slow waves λb,f
ρS � a. The electric fields

inside the filament are primarily those of the slow wave, and the total fields are similar
to those in figures 8 and 10. The number of cylindrical wavelengths inside the filament
depends on the density. For example, for n f

e = 1.5 × 1019 m−3, 1/λ
f
ρS ≈ 7.74 cm−1, and the

argument of the Bessel functions is ≈ 48.63a. For a = 1 cm, the number of oscillations of
the Bessel functions of low order is approximately seven. The results from full numerical
simulations confirm this estimate.

Case 3: densities in the vicinity of the LH resonance If the background density is
between nC

e and nLHR
e and the density inside the filament is > nLHR

e , then the fast and slow
waves are propagating modes in the background plasma, while only the fast wave is a
propagating mode inside the filament, with the slow wave being an evanescent mode. For
an incident fast wave, we do not expect any slow cylindrical waves being generated inside
the filament. However, the evanescent wave can still couple power to the propagating slow
wave outside the filament. Consider the following example where the background plasma

https://doi.org/10.1017/S0022377821001100 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821001100


RF waves and filaments interaction: scattering and radiation pressure 27

FIGURE 17. Contours of Re(ETx) in the x–y plane for the scattering of a fast helicon wave when
the plasma density is greater than the cutoff density of the fast wave. The parameters are the
same as in figure 16 along with a = 1 cm, nb

e = 1019 m−3 and n f
e = 3 × 1019 m−3.

density is 1019 m−3 and the density inside the filament is 3 × 1019 m−3. Then,

Λb
ρF = (6.02, 0) cm, Λb

ρS = (0.204, 0) cm, (10.1a,b)

Λ
f
ρF = (1.88, 0) cm, Λ

f
ρS = (0, −0.09) cm. (10.2a,b)

Inside the filament, the evanescent slow mode is localized close to the surface since the
real (imaginary) part of even order (odd order) Bessel functions for imaginary Λ

f
ρS in

(10.2a,b) peak near ρ ≈ a. For a = 1 cm, the wavelength of the fast wave, inside and
outside the filament, is longer than the radius of the filament. Thus, the fast wave fields
inside the filament will have very weak spatial variation. These expectations, based on the
previous results for LH waves, are borne out by numerical simulations. The contours of
Re(ETx) in figure 17 show the uniformity of fields inside the filament, the narrow region of
enhanced fields near the boundary, and the cylindrical slow wave propagating away from
the filament. The scattered slow wave leads to side scattering of the incoming fast wave
and affects the power flow into the core.

Case 4: ne > nLHR
e The only propagating mode is the fast wave with λb,f

ρF < 2.53 cm.
The electric field due to the evanescent slow wave will be localized near the surface of the
filament given by the maxima of the Bessel functions and the Hankel functions of the first
kind for complex argument. We expect that there will be some resemblance to the results
shown in figure 5. For illustrative purposes, we assume the background plasma density
and the density inside the filament to be 3 × 1019 m−3 and 5 × 1019 m−3, respectively. The
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FIGURE 18. Contours of Re(ETx) in the x–y plane for the scattering of a fast helicon wave when
the plasma density is greater than the density at which the LH resonance occurs. The parameters
are the same as in figure 16 along with a = 1 cm, nb

e = 3 × 1019 m−3 and n f
e = 5 × 1019 m−3.

The maximum amplitude of the evanescent slow wave field at the filament boundary has been
truncated so as to enhance the contrast of the field in other regions.

corresponding (complex) wavelengths are

Λb
ρF = (1.88, 0) cm, Λb

ρS = (0, −0.09) cm, (10.3a,b)

Λ
f
ρF = (1.12, 0) cm, Λ

f
ρS = (0, −0.14) cm. (10.4a,b)

Figure 18 shows contours of Re(ETx) with a = 1 cm, comparable to the wavelength of
the fast wave. The planar phase front of the incoming wave gets distorted by the filament,
with a shadow in its wake. The presence of large-amplitude slow wave fields near the
boundary is evident even though we have suppressed the maximum amplitude in order to
display the rest of the field pattern.

11. Scattering of IC waves

A preferred means of heating toroidal plasma is by RF waves in the IC range of
frequencies; in particular, the fast Alfvén wave (FAW). The cold plasma dispersion
characteristics of these waves are plotted in figure 19 in the density range appropriate for
the edge plasma in a SPARC-like, high-magnetic-field tokamak (Lin, Wright & Wukitch
2020). Just like helicon waves, the slow IC wave propagates for densities less than
nLHR

e ≈ 4.27 × 1017 m−3 (figure 19). For larger densities, the slow wave is evanescent.
The fast wave is evanescent until its cutoff density nC

e ≈ 2.16 × 1019 m−3, after which it
becomes a propagating wave. Unlike helicon waves, the slow and fast waves propagate
in distinctly different density regimes. In the discussion that follows, we assume that the
incoming plane wave is the FAW.

From the result for helicon waves, we can deduce that, for densities below nLHR
e , the FAW

will couple to the slow wave inside the filament; thereby exciting slow cylindrical waves in
the background plasma. In the density range [nLHR

e , nC
e ] both wave modes are evanescent.

The Bessel functions of imaginary argument, for the two modes inside the filament, peak
near ρ ≈ a. The Hankel functions of the first kind of an imaginary argument ensure that
the scattered wave fields decay away for ρ > a. Consequently, the wave fields will peak in
the vicinity of the boundary of the filament.
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FIGURE 19. The cold plasma dispersion roots in the IC range of frequencies, obtained from
(4.10), as a function of the electron density. SW and FW indicate the slow and fast Alfvén waves,
respectively, and LHR marks the density location of the LHresonance. The ordinate scale on the
left is for the slow wave and that on the right is for the fast wave. The parameters are B0 = 9.3 T,
ν = 120 MHz and nz = 6.

For densities greater than nC
e , the FAW is a long-wavelength mode with a/λ

b,f
ρF  1

for any reasonable value of a. Accordingly, we do not expect any wave-like features,
associated with the slow wave, inside the filament. The electromagnetic fields will
essentially be uniform over the cross-section except in the vicinity of the boundary where
the fields have to match on to the incident and scattered fields. In this density regime,
there is no analogous situation for LH and helicon waves. As an example, consider a
filament with density 7 × 1019 m−3 surrounded by a plasma with density 4 × 1019 m−3.
The corresponding wavelengths are

Λb
ρF = (30.6, 0) cm, Λb

ρS = (0, −0.45) cm, (11.1a,b)

Λ
f
ρF = (18.2, 0) cm, Λ

f
ρS = (0, −0.36) cm. (11.2a,b)

For a FAW incident on a filament with a = 1 cm, a/λ
b,f
ρF  1 and the fields inside the

filament can be expected to be uniform over the cross-section. As the FAW is a propagating
mode inside the filament, it cannot screen out the fields of the incident FAW. Thus, in the
vicinity of ρ ≈ 0 we expect the field amplitudes to be non-zero. In (5.5) for wave fields
inside the filament, only the m = ±1 azimuthal modes, corresponding to J′

±1(k
f
ρFa), are

non-zero. The m = ±1 feature is evident in the result from numerical simulations shown
in figure 20(a).

For helicon waves, the presence of a similar feature is discernable in figure 17. The
large-amplitude electric fields inside the filament are responsible for an enhanced flow of
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(a) (b)

FIGURE 20. Contours of (a) Re(ETx) and (b) Pz when a FAW, incident from the left, scatters
off a filament with a = 1 cm. The parameters are, B0 = 9.3 T, ν = 120 MHz, nz = 6, nb

e = 4 ×
1019 m−3 and n f

e = 7 × 1019 m−3. (a) Contours of Re(ETx). (b) Contours of Pz.

Poynting flux in the z-direction as shown in figure 20(b). For comparison, the Poynting flux
in z-direction for the incoming FAW is 0.88. Intuitively, one would expect the filament to
play an insignificant role in the scattering process because the wavelength of the incoming
wave is much larger than the radial extent of the filament. However, the results show
otherwise. A fraction of the incident wave power will be converted to flow down the axis
of the filament along the magnetic field line.

12. Maxwell stress tensor: radial force on a filament

In 1905, Poynting studied the radiation pressure of light at an interface separating two
different dielectric media described by scalar permittivities (Poynting 1905; Loudon &
Baxter 2012). He came to an interesting conclusion, which he followed up with supporting
experiments. Poynting stated the following:

‘In any real refraction with ordinary light, there will be reflexion as well as refraction. The
reflexion always produces a normal pressure, and the refraction a normal pull. But with
unpolarized light, a calculation shows that the refraction pull, for glass at any rate, is always
greater than the reflexion push, even at grazing incidence.’

The ‘pull’ and ‘push’ are defined with respect to the direction of propagation of the
incident light: the pull being opposite to this direction and the push being along this
direction. Thus, according to Poynting, the incident light will pull the glass along
the outward pointing normal to the interface. Poynting’s research was a contributing
factor to the Minkowski–Abraham controversy regarding the definition of electromagnetic
momentum within dielectric media (Loudon & Baxter 2012). The permittivity of a
magnetized plasma is a tensor rather than a scalar. Consequently, as we have already noted,
not only is there a wider variety of waves that can exist in a plasma, compared with a scalar
dielectric, but also the filament induces coupling between these different waves. Following
the Maxwell stress tensor formulation in § 7, we examine the radiation force on a filament
by different plasma waves, discussed in §§ 9, 10 and 11, and compare with Poynting’s
observations.

In order to have a meaningful quantitative measure, we calculate the acceleration of a
representative filament due to the radiation force. From (7.14) and (8.5), the force on a
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(a) (b)

FIGURE 21. The normalized stress force as a function of the azimuthal angle. The parameters
for the slow and fast LH waves are the same as for figures 5 and 8, respectively. (a) Incident plane
wave is the slow LH wave. (b) Incident plane wave is the fast LH wave.

filament per unit incident power flux is defined as

(F̃x

F̃y

)
= 1

SI

(Fx
Fy

)
= a

c

∫ 2π

0
dφ

(
cos φ

sin φ

)
Fρ (φ)

N m−1

W m−2 , (12.1)

where we have assumed that the filament has an axial length of 1 m. It turns out that, for
all the scattering events we have studied, Fy = 0. Various attempts at proving this result
analytically have not been successful; so we leave this as an exercise for the future. For
Fx < 0 the force is towards the RF source (‘pull’), while for Fx > 0 the force is away from
the source (‘push’). The acceleration of the filament in the x-direction is

ax = F̃x

m
, (12.2)

where m is the mass of the filament. As in the scattering studies, a filament will have
deuterons and electrons only, so that m = 1.05 × 10−26 a2 n f

e kg. Unless stated otherwise,
in all the subsequent calculations we assume that a = 1 cm, and the input RF power flux
is 1 kW m−2. The primary plasma parameters, magnetic field, wave frequency and nz, for
the LH, helicon and IC waves are as in figures 2 (S1, F1), 16 and 19, respectively.

12.1. Radiation force due to LH waves: variation with filament radius
In §§ 9.2.1 and 9.2.2 we discussed the scattering of slow and fast LH waves, respectively,
by a filament. The radial force on the filament Fρ , given in (8.5), is plotted as a function of
the azimuthal angle φ for the slow wave in figure 21(a) and for the fast wave in figure 21(b).

The difference between the two results can be traced to the corresponding field plots in
figures 5 and 8. For the slow wave, the fields at the surface of the filament have a wide
range of variations in the azimuthal direction. The incoming wave is distorted around the
surface of the filament due to geometrical mismatch between the planar wave and the
cylindrical filament. For the fast wave the variation is almost sinusoidal as cylindrical
waves generated within the filament dominate the field pattern. The integration of these
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profiles over φ yields the force on the filament per unit power flow of the incident wave,

F̃x

∣∣∣
S,LH

= 4.23
nN m−1

kW m−2 , F̃x

∣∣∣
F,LH

= −56.13
nN m−1

kW m−2 , (12.3a,b)

for the slow and fast waves, respectively. The slow wave is ‘pushing’ away the filament
while the fast wave is ‘pulling’ it in towards the RF source. The filament density assumed
in the simulations n f

e = 2 × 1019 m−3 yields m = 2.1 × 10−11 kg. The corresponding
accelerations are

ax|S,LH = 2.0 × 102 m s−2, ax|F,LH = −2.7 × 103 m s−2. (12.4a,b)

Even though the dynamics of a filament through a background plasma requires more
physics, the acceleration gives a measure of the effect of RF waves on the filament. Clearly,
the direction of the force will play a role in the motion of the filament.

The scattering by a filament of smaller radius, a < 1 cm, was discussed in §9.2.3. For
two different radii, the acceleration due to the slow and fast LH waves is

for a = 0.4 cm : ax|S,LH = 4.7 × 102 m s−2, ax|F,LH = −5.5 × 103 m s−2,

for a = 0.25 cm : ax|S,LH = 7.5 × 102 m s−2, ax|F,LH = −1.3 × 104 m s−2.

}
(12.5)

Comparing with (12.4a,b), we note that the acceleration increases as the radial dimension
of the filament decreases while preserving the direction of the force.

12.2. Radiation force due to propagating slow waves: the push–pull effect
In this subsection, we compare the radiation force due to the slow wave on a filament with
density n f

e < nb
e with that when n f

e > nb
e , for the LH, helicon and IC waves. For LH waves

the slow wave is preferred in experiments, whereas for helicon and IC waves it is the fast
wave. Nonetheless, we consider the slow wave in all three frequency ranges to determine
whether there is any dependence of the radiation force on frequency.

12.2.1. Lower hybrid waves
In § 12.1, the densities were such that n f

e < nb
e . If we only change the filament density to

n f
e = 2.5 × 1019 m−3, then n f

e > nb
e and the acceleration due to the slow wave is

ax|S,LH = −1.6 × 102 m s−2. (12.6)

Comparing with the results in (12.4a,b), there is a change in sign of the force. This reversal
of the ‘push–pull’ effect was initially recognized by Poynting (Loudon & Baxter 2012).
In his formulation, for normal incidence on a planar surface separating two different
dielectric media, the direction of the force depended on the relative refractive indices of
the media. For light incident from a region of lower refractive index, the force was towards
the region of lower refractive index. For light incident from a region of higher refractive
index, the force was still towards the region of lower refractive index. While the scattering
from a filament is different from a planar interface, the reversal in sign is intriguing. For
the results in (12.4a,b), the wave is propagating from a region of higher refractive index
(higher plasma density) to a filament with lower refractive index (lower plasma density).
For (12.6) the incident wave is in a region with lower refractive index. The direction of
the radiation force due to an incident slow wave follows Poynting’s observations. The
force due to the slow wave is such that higher-density (relative to the background density)
filaments are pulled in towards the RF source, while the lower-density filaments are pushed
away. The effect of the radiation force is to create a density inversion in the vicinity of the
source.
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12.2.2. Helicon waves
For helicon waves, the slow mode is a propagating wave for nb,f

e < nLHR
e ≈ 2.25 ×

1019 m−3 (figure 16). For an ambient density nb
e = 5 × 1017 m−3, assume two different

filaments with densities nf 1
e = 7 × 1017 m−3 and nf 2

e = 3.75 × 1017 m−3, so that nf 1
e > nb

e
and nf 2

e < nb
e . These densities are also below the cutoff density of the fast wave. The

respective accelerations are

for nf 1
e > nb

e : ax|S,H = −1.2 × 104 m s−2,

for nf 2
e < nb

e : ax|S,H = 1.4 × 104 m s−2.

}
(12.7)

The radiation force due to slow helicon waves has a push–pull behaviour similar to that
due to slow LH waves.

12.2.3. IC waves
The slow wave in the IC frequency range propagates for densities ne < nLHR

e ≈ 4.27 ×
1017 m−3 (figure 19). For nb

e = 2 × 1017 m−3, nf 1
e = 3 × 1017 m−3 and nf 2

e = 1.5 × 1017 m−3,
we have that nf 1

e > nb
e and nf 2

e < nb
e . The acceleration in each case is

for nf 1
e > nb

e : ax|S,IC = −4.1 × 104 m s−2,

for nf 2
e < nb

e : ax|S,IC = 1.2 × 104 m s−2.

}
(12.8)

The acceleration due to slow IC waves is comparable to that due to the slow helicon waves.
These results indicate that the tendency of the slow wave, for all three frequencies, is to
pull in the higher-density filaments towards the RF source and push away the lower-density
filaments.

12.3. Radiation force due to fast waves
For helicon and IC waves, the preferred mode of propagation is the fast wave as it can
access higher plasma densities. In the low-density region in the vicinity of an antenna,
the fast wave is evanescent as seen in figures 16 and 19. The scattering studies have
shown that the evanescent and the propagating fast waves are affected by the presence
of the shorter-wavelength slow wave excited inside the filament. In this subsection, we
examine, and compare, the radiation forces induced by the fast helicon wave and the FAW
in different density regimes defined by nLHR

e and nc
e.

12.3.1. Low-density region: nb,f
e < nLHR

e , nC
e

The fast helicon wave (figure 16) and the FAW (figure 19) are evanescent waves in
this density regime. Only the slow waves are propagating modes. For helicon waves,
we assume nb

e = 5 × 1017 m−3 and two different filament densities, nf 1
e = 7 × 1017 m−3

and nf 2
e = 3.75 × 1017 m−3. The acceleration resulting from the radiation force of the fast

helicon wave is
for nf 1

e > nb
e : ax|F,H = 8.6 × 104 m s−2,

for nf 2
e < nb

e : ax|F,H = −1.6 × 105 m s−2.

}
(12.9)

The higher-density filament is being pushed away from the RF source by the evanescent
fast helicon wave while the lower-density filament is being pulled in. The radiation force is
acting in such a way as to reduce the density in front of the RF source. It is noteworthy that,
in this case, the effect of the radiation force is opposite to Poynting’s observations. The
contrast reinforces the differences between electromagnetic wave propagation in scalar
dielectrics and in plasmas.
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For IC waves, we assume nb
e = 2 × 1017 m−3 and two different filament densities, nf 1

e =
3 × 1017 m−3 and nf 2

e = 1.5 × 1017 m−3. The acceleration induced by the FAW is

for nf 1
e > nb

e : ax|F,IC = −4.3 × 105 m s−2,

for nf 2
e < nb

e : ax|F,IC = 6.9 × 105 m s−2.

}
(12.10)

Comparing with (12.9), the radiation force due to the FAW has the opposite effect. The
waves tend to increase the density in the vicinity of the RF source which, in turn, could
affect the coupling of the FAW to the core plasma.

12.3.2. Medium-density region: nC
e < nb,f

e < nLHR
e

This density regime, in which both the slow and fast waves are propagating modes,
is applicable to helicon waves only. For nb

e = 9 × 1018 m−3, we consider the filament
densities, nf 1

e = 1.2 × 1019 m−3 and nf 2
e = 6.0 × 1018 m−3. The resulting acceleration due

to the fast helicon wave is

for nf 1
e > nb

e : ax|F,H = −3.9 × 106 m s−2,

for nf 2
e < nb

e : ax|F,H = −1.0 × 106 m s−2.

}
(12.11)

This result is quite different from all the previous cases we have considered; the radiation
pressure, regardless of the density of the filament relative to background, pulls in the
filament towards the RF source. The force on either filament is comparably large. The
presence of a propagating slow wave has a definite role in the direction of the force as well
as its magnitude.

12.3.3. Medium-density region: nLHR
e < nb,f

e < nC
e

In this density regime, which applies to IC waves only, the slow and the fast waves
are evanescent. Choosing nb

e = 3 × 1018 m−3, we consider two different filament densities,
nf 1

e = 3.9 × 1019 m−3 and nf 2
e = 2.1 × 1018 m−3. The radiation force due to the FAW is

for nf 1
e > nb

e : ax|F,IC = −1.6 × 104 m s−2,

for nf 2
e < nb

e : ax|F,IC = −1.3 × 105 m s−2.

}
(12.12)

The radiation force has the same characteristics as for the helicon wave in (12.11), although
the magnitude of the acceleration is smaller.

12.3.4. High-density region: nb,f
e > nC

e , nLHR
e

For these densities, the fast wave is a propagating mode for the helicon and IC waves;
the slow wave is evanescent. For nb

e = 3 × 1019 m−3, and two different filament densities,
nf 1

e = 3.6 × 1019 m−3 and nf 2
e = 2.4 × 1018 m−3, the acceleration due to the helicon wave

is
for nf 1

e > nb
e : ax|F,H = −2.3 × 105 m s−2,

for nf 2
e < nb

e : ax|F,H = −9.9 × 105 m s−2,

}
(12.13)

and the acceleration induced by the FAW is

for nf 1
e > nb

e : ax|F,IC = 1.9 × 105 m s−2,

for nf 2
e < nb

e : ax|F,IC = −2.4 × 105 m s−2.

}
(12.14)

The fast helicon wave pulls in lower- and higher-density filaments similar to the way it did
in the medium-density regime (12.11). However, the FAW pushes out the higher-density
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filament while pulling in the lower-density filament. Again, this will affect the coupling of
FAWs to a fusion plasma.

13. Conclusions

There are two major parts of this paper. The first part was on the effect of a filament,
present in an ambient plasma, on the propagation of RF waves. The second part was on
the effect of RF waves on the filament.

In the first part of this paper, we have developed a physical intuition for scattering of
RF waves by a filament present in the edge plasma of a fusion device. In the frequency
regime below the electron cyclotron frequency, the characteristics of RF waves do not
vary significantly as a function of density and magnetic field. A rudimentary analysis of
the dispersion relation provides ample information about the scattering process. For cold
plasma, there are two modes of propagation: a slow wave and a fast wave. In densities
typical of edge plasmas, either one or both of these waves can be evanescent over a range
of densities. The evanescent waves lead to an enhancement of the electric field amplitude
in the vicinity of the surface of the filament. For propagating waves, a relevant parameter to
consider is the ratio of the radius of the filament to the wavelength of the electromagnetic
wave. Let this parameter be Γ . A wave with Γ > 1 inside and outside the filament, is
slightly modified by the scattering process. There is some side scattering along with spatial
fragmentation of the scattered power in the forward direction. If an incident wave has Γ 
1, but the filament allows for a mode with Γ > 1, then the filament behaves like a dipole
antenna and excites this mode within and outside the filament. This occurs, for example,
when a long-wavelength fast wave is incident on a filament in which the short-wavelength
slow wave can propagate. However, if inside the filament the slow wave is evanescent, then
the fields amplify near the surface and direct some of the incident power along the axis.
Thus, the effect of scattering can be inferred by two elements:whether the cold plasma
modes are propagating or evanescent inside and outside the filament; and whether Γ > 1
or Γ < 1 inside and outside the filament.

The second part of the paper is on the radiation force due to RF waves. We have
evaluated the acceleration induced by the radiation force on a filament using the Maxwell
stress tensor. The evaluation of the stress tensor makes use of the same theory developed
in the first section on scattering. In the Cartesian coordinate system where the wave
vector of the incident wave is in the x–z plane, the net radiation force on the filament
in the y-direction is zero for all the cases we have considered. The radiation force is in
the x-direction only: a positive force, or acceleration, pushing the filament towards the
core, while a negative force pulling the filament towards the RF source. We find that the
slow LH wave pulls in higher-density filaments and pushes away lower-density filaments;
higher and lower densities being relative to the background density. Thus, the density
tends to decrease as a function of the radial distance from the antenna. The radiation force
due to the fast helicon wave and the FAW varies as a function of the plasma density in
the edge region. For low densities, below the densities for LH resonance and fast wave
cutoff, the helicon wave pushes away higher-density filaments and pulls in lower-density
filaments. The tendency of the helicon wave is to lower the density in front of the source.
The radiation force of the FAW has the opposite behaviour; it increases the density in
front of the source. For high densities, above the densities for the LH resonance and fast
wave cutoff, the helicon wave pulls in the lower- and higher-density filaments, thereby
increasing the density in front of the source. The FAW pulls in lower-density filaments
and pushes away higher-density filaments leading to a decrease in density in front of the
source. For intermediate densities, the helicon wave and the FAWtend to pull in the lower-
and higher-density filaments leading to an increase in density in front of the RF source.
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The stress tensor calculations have covered a broad range of plasma densities for all
the three RF waves under consideration. They illustrate the complicated effect of the
radiation force in each frequency range. An analytical understanding is beyond the present
scope and is part of future research. The theoretical task is difficult as the radiation
force includes all five waves, the incident wave, the two scattered waves and the two
waves inside the filament, regardless of whether they are propagating or evanescent.
Furthermore, the radiation force has a quadratic dependence on the electromagnetic fields.
Nonetheless, the calculations reveal intriguing properties about the radiation force; in
particular, modifications to the plasma density in front of the RF source which could affect
the coupling of waves to the plasma.
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