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Abstract
In this paper, control of a suspended cable-driven parallel robot has been experimentally investigated based on the
dynamic model of the robot for object tracking purpose. In order to improve the tracking ability of the robot, three
control approaches, namely kinematic PID, dynamic PD, and a kinematic sliding mode control (SMC), have been
implemented, both on the Simscape and on the robot constructed at the Human and Robot Interaction Laboratory.
Neural network controller and dynamic SMC have been implemented on the Simscape model. Afterward, the effec-
tiveness of each approach has been investigated by employing the root mean square error (RMSE) index. Simulation
and experimental results reveal the ability of each controller for precise and smooth control. For precise and real-
time object tracking, YOLOv5-s and YOLOv4-tiny model are trained. By comparing the obtained index values,
the kinematic PID demonstrates the best performance with the maximum RMSE value of 0.018 compared to other
methods.

1. Introduction
Cable-driven parallel robot (CDPR) is a parallel robot in which rigid links are substituted by cables in
order to control the end-effector (EE) position and orientation, called pose. This substitution leads to
advantages such as reconfigurability [1], high payload to weight ratio, and large workspace besides ease
of assembly, which are very useful for capturing videos or images in large zones with high precision [2].
A CDPR is completely constrained when the pose of its EE can be entirely determined if actuators are
locked, and thus, all cable lengths are known. On the contrary, a CDPR is under-constrained when the
number of actuators is less than the degrees of freedom. In an under-constrained CDPR, EE’s pose is
usually determined in the state in which the gravitational potential energy of the EE is minimized [3];
however, other solutions are possible. The inverse kinematic problem (IKP) consists of determining a
vector of a joint variable for a prescribed pose of the EE. Determining the pose of EE from cable lengths
is carried out by using the forward kinematics problem (FKP), in which its computation can be regarded
as a troublesome drawback of under-constrained CDPRs. Several methods for calculating the FKP of
parallel robots have been suggested, including numerical and analytical approaches. The problem can be
simplified in several cases by identifying a set of algebraic equations which can be solved symbolically
[4, 5]. Some algebraic formulations are obtained in some specific cases, resulting in polynomials of
high degree which are extremely difficult to solve while also raising the computational cost. The direct
geometric-static problem (DGP) is solved numerically for any kind of under-constrained CDPR, yielding
all EE equilibrium configurations with a given geometry [6].
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Solving the latter problem is a time-consuming process and needs a high-performance computer for
such a specific configuration of CDPRs. In ref. [7], a specific method for under-constrained CDPRs
based on combining neural networks (NNs) with the DGP is introduced which facilitates the real-time
control of the robot. There are several different categories of NNs, each with its own set of use cases and
degrees of complexity. The feed-forward structure is the simplest kind of NN, in which data flow from
input to output along one unique direction. The back propagation NN, which is trained with supervision
and uses the gradient-descent approach to minimize the squared error between the network output and
the target one, is the most significant NN used in the literature [8]. Multilayer perceptron (MLP), the most
popular network architecture, can be trained using specific input and output data, but even those which
have not been trained can respond appropriately to a wide range of outputs. The first step in training
a backpropagation MLP NN consists in choosing an appropriate NN architecture, which includes the
hidden layers and the number of nodes for each layer. Cross-validation methods focused on the evaluation
of error indices on various validation sets are used in particular to optimize the number of neurons while
still preventing overfitting [9].

PD controllers usually are implemented to control CDPR [10]. In order to improve the performance
of these types of controllers, feed-forward terms are used to predict the dynamic behavior of EE [11,
12]. Recently, sliding mode control (SMC) has been considered for control of CDPR for different pur-
poses [13, 14]. This type of controller has a good performance against perturbations, but due to the use
of the sign function, there are some discontinuities in the control input which cause the chattering phe-
nomenon [15]. To reduce chattering, higher-order and gain adaptive SMC methods have been developed
and implemented on a CDPR [16]. Finally, a sliding mode/linear (SML) controller is developed that not
only reduces chattering but also compensates energy [17]. In ref. [18], the SML, a simple PD controller,
and PD controller with a feed-forward term compensating the EE mass were experimentally compared.
In ref. [19], a vision-based position control of planar CDPRs was experimentally implemented, and
an online image processing procedure is developed for tracking the EE position. In ref. [20], an adap-
tive NN-based controller for a passive planar robot was investigated to drive serial robot links to track
the desired reference model by the EE. In recent years, CDPRs have been used for rehabilitation pur-
poses [21, 22]. In ref. [23], for rehabilitation purposes, especially arm disability, a feedback linearization
approach is developed for maintaining tension in all the cables of the understudy CDPR. In ref. [24],
a CDPR is used for surgical applications where recurrent NNs are used to increase the precision of
tracking the path.

The main contribution of this paper consists in simulating the under-constrained CDPR in
MATLAB R© simulation environment [25], called Simscape. The Simscape model has been verified
with the constructed robot for control purposes. Thereafter, the controllers consisting of kinematic PID,
dynamic PID, and a kinematic SMC have been implemented, both on the Simscape and on the robot
constructed at the Human and Robot Interaction Laboratory for object tracking purpose. Also, the NN
controller and dynamic SMC have been implemented on the Simscape model.

The rest of the paper is organized as follows. In the next section, the configuration of the CDPR
and formulation of each controller are summarized. Afterward, two models with two different ver-
sions were used for object tracking purpose. The mentioned controllers are implemented and compared
through simulations and experiments. Finally, in the last section, the paper concludes with some hints
and remarks as ongoing works.

2. The suspended CDPR
This section deals with the configuration of the 4-cable under-constrained CDPR and the relation to
solve the IKP. Afterward, the dynamic model and control system of the robot are addressed.

2.1. Configuration of the 4-cable CDPR
Figure 1 illustrates the schematic of the CDPR constructed at the Human and Robot Interaction
Laboratory, University of Tehran. Figure 2 depicts the schematic of the experimental setup. The
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Figure 1. The schematic of a cable-driven parallel robot with i cables.

Figure 2. The schematic of the experimental setup.

functional workspace of the robot is a rectangular cube with dimensions of 405 cm × 285 cm × 300 cm
[26]. It should be mentioned that the understudy robot is an improved and extended version of the robot
presented in ref. [27]. The EE structure is built with 3D-printed legs and a special mechanism that not
only keeps the stabilizer and camera in place but also protects them from unexpected jeopardy. Each
actuator is coupled to a rolling mechanism and a 7.578 cm diameter winch, which is used to wind up
and wind out each of the four cables. The initial length of each cable is 350 cm when it is placed in
its home position. The kinematics equation of the robot can be written by the sum of the vectors as
below [28]:

li = c + Rbi − ai (1)

where R is the rotation matrix of the EE:

R =
⎡
⎢⎣

cψcφ cψsφsθ − sψcθ cψsφcθ + sψsθ
sψcφ sψsφsθ + cψcθ sψsφcθ − cψsθ
−sφ cφsθ cφcθ

⎤
⎥⎦ (2)

where c and s stand for the cosine and sine of the indexed argument, respectively. Furthermore, θ , φ,
and ψ signify as angles of rotation about x, y, and z-axis, respectively. In this case, ‖b‖ is 5 cm. Since
‖b‖ � ‖li‖, it was assumed that the cables were connected to the middle of the plate of the EE. Therefore,
Eq. (1) would be simplified as:

li + ai = c (3)
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whereby calculating li from the rotation of motors, the position of the EE can be determined:

‖li‖ = l0.i − rθi (4)

where l0.i is the initial length of the ith cable, r is the radius of the winch, and θi is the rotation of
the ith motor, read from the encoder of each AC servo motor. The AC servo motor model is Kinco
SME80S-0075. From ref. [29], the dynamic equation of mobile platform can be expressed as follows:

M(x)ẍ + C(x, ẋ)ẋ + g = Jt (5)

where x is the vector of the pose of EE, and J, M, C, and g are the Jacobian matrix, inertia matrix,
Coriolis matrix, and gravity vector, respectively. Also, t denotes cable tension. The dynamic equation
of winches can be written as follows:

Imtθ̈ + Fvt θ̇ + Fct sign (θ̇) + Nt = u (6)

where Imt, Fvt, and Fct denote inertia matrix, viscous-friction coefficient, Coulomb friction, respectively.
u represents the actuator torque. N denotes transmission ratio and can be defined as the relationship
between cable length velocity q̇ and actuator angle velocity θ̇ as follows:

q̇ = Nθ̇ (7)

where the relation between the initial length, q0 = [
q1

0 q2
0 q3

0 q4
0
]T , and the actuator angle, θ =

[θ1 θ2 θ3 θ4]T , can be expressed as:

q = q0 + Nθ (8)

The goal of controller consists in minimizing the error between the actuator angle θ and the desired one,
which is calculated from the IKP.

2.2. Control of the understudy CDPR
In this paper, three controllers, namely PID, sliding mode, and NNs controllers, are proposed which

are applied to both kinematics and dynamics of the robot. In the kinematic control, the desired position
of the EE is applied as the reference trajectory and the desired angles of rotation of the motors are
calculated by the IKP. The velocity applied to the motor is the control signal, in which this type of
controller is referred to as a kinematic-based controller [30]. In turn, when the torque applied to the
motor is the control signal, a dynamic-based controller should be applied. Both types of controllers are
implemented to minimize the error between the desired path and the actual path of the EE for a precise
path tracking purpose.

2.2.1. PID controller
The PID controller can be formulated as:

um = Kpem + Kd

dem

dt
+ Ki

∫ t

0

emdt m = 1, 2, 3, 4 (9)

where m denotes the actuator’s number, and em is defined as the difference between the desired and the
actual position of actuator m. Kp, Kd, and Ki are the proportional, derivative, and integral gains, respec-
tively. The goal of this controller consists in minimizing the tracking error, e, which is the difference
between the actual and the desired path. These parameters have been tuned in the simulation environ-
ment using the standard method proposed in ref. [31], and due to the precision of the simulation, the
same values have been used in the experiment. The obtained gains are given in Table I.

The dynamic PD controller is defined as in ref. [18], and the controller loop is shown in Fig. 3. The
output signal of the controller is defined as follows:

τ c = Kpeθ + Kdeθ̇ (10)
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Table I. Kinematic PID controller gains.

Gains Kp Kd Ki

Values 3 0.05 0.5

Table II. Dynamic PD controller gains.

Gains Kp Kd Fc Fv

Values 10 1 0.4 0.15

Figure 3. The controller loop of dynamic PD.

The eθ , eθ̇ are the difference between the desired and actual actuator positions and velocities, respec-
tively. Since each actuator is independently controlled, and the matrices Kp and Kd are diagonal, thus for
ease of tuning, they have been tuned similarly for all actuators, which they can be written as follows:

Kp = Kp,1 = Kp,2 = Kp,3 = Kp,4 (11)

Kd = Kd,1 = Kd,2 = Kd,3 = Kd,4 (12)

The τ d is the feed-forward torque, and the τ fc, the friction compensation, is considered to compensate
the friction and defined as follows:

τ fc = Fc sign (eθ̇ ) + Fveθ̇ (13)

The Fc and Fv are considered static and viscous coefficients of each motor, respectively. As each
motor is independently controlled, these two matrices are diagonal and are evaluated particularly for
the designed EE. These parameters are determined for each motor to compensate static friction at the
beginning of the motion, which leads to a smooth motion in tracking the path. As there was no significant
difference between the two parameters for four motors, these two parameters are chosen the same for all
motors as follows:

Fc = Fc,1 = Fc,2 = Fc,3 = Fc,4 (14)

Fv = Fv,1 = Fv,2 = Fv,3 = Fv,4 (15)

The controller gains have been tuned to achieve accuracy and stability with the mentioned method in
tuning the previous kinematic PID controller, and the gains are given in Table II.
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Table III. Kinematic SMC controller gains.

Gains K1 K2 η

Values 80 12 2.4

2.2.2. SMC
For the kinematics approach, the error and sliding surface and the controller are expressed as:{

ei = θi − θ ∗
i

ėi = θ̇i − θ̇ ∗
i

i = 1, 2, 3, 4 (16)

S = k1ei + k2ėi = k1x1 + k2x2 (17)

where θ , θ ∗ are the desired position and velocity of the actuators, respectively. According to the sliding
surface, if the condition k1k2 > 0 is satisfied, the system would be exponentially stable. The following is
the state space of the system, which includes modeling uncertainties:{

x1 = ei

x2 = ėi

⇒
{

ẋ1 = x2 + α1

ẋ2 = u + α2

(18)

The above model takes into account model uncertainties and noises in α1 and α2. Furthermore, the
desired time derivative of the sliding surface has been chosen as:

Ṡ = −η∗ sign (S) (19)

which by some substitution and simplification, the control effort signal is derived as follows:

u = −K1

K2

x2 − η∗

K2

sign (S) (20)

where the following inequality has been obtained using α1 and α2 as the bounds for α̃1 and ã2,
respectively; η is a positive scalar:

|k1α1 + k2α2| ≤ k1α̃1 + k2α̃2 = α∗ (21)

η∗ = η+ α∗ (22)

The Lyapunov candidate function is chosen as:

V = 1

2
S2 (23)

The following results were obtained by differentiating the proposed Lyapunov function with respect
to time:

V̇ = SṠ ≤ −S × η sign (S) = −η|S| (24)

As a result, the SMC’s ability to asymptotically stabilize the system has been proven. To prevent
chattering, the implemented control signal is as follows:

u = −K1

K2

ė − η∗

K2

tanh (S) (25)

The gains have been tuned with the same method of the PID controllers, and the obtained gains are
given in Table III.

In the dynamic control, the desired position of the EE is applied as the reference trajectory and the
desired angles of rotation of the motors are calculated by the IKP. For the dynamics approach, the sliding
surface and the controller can be expressed as [18]:

τ̇m.i = −K1 [σi]
α

2−α − K2 [σ̇i]
α (26)
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Table IV. Dynamic SMC controller gains.

Gains K1 K2 β εσ ε̇σ

Values −30 −15 1.05 40 100

Figure 4. The schematic of the neural network controller.

where K1, K2 are the controller gains and τ̇m.i is τ̇m for the ith motor and [σi]
α can be derived as:

�σi	α = |σi|α sign (σi) (27)

α = max

(
1 − β

( |σi|
|σi| + εσ

+ |σ̇i|
|σ̇i| + εσ̇

)
, 0

)
(28)

where σ , β, εσ , and ε̇σ are constant parameters presented in ref. [18]. The torque applied to the motor
was the control signal which was the time integral of Eq. (26). The gains have been tuned with the same
method of the previous controllers, and the obtained gains are given in Table IV.

2.2.3. NN controller
For the MLP NN, the optimal design with the minimal local root mean square error (RMSE) is discov-
ered by grid search. The MLP NNs in which the architecture with hidden layers is 64 × 32 × 16 × 8 × 4
have been chosen and trained by the collected data. The schematic of the NN controller is shown in
Fig. 4. The error between the desired location and the actual one and its derivative are chosen as the
input of the NN, and the torque which has to be exerted to each motor is the output. These data have been
obtained by different trajectories, including helix, snail, circle, straight line, with the different equations,
and also different points. SGD, Adam, Momentum, L-BFGS, and Levenberg–Marquardt are among the
well-known optimization approaches and have been chosen. Levenberg–Marquardt, a second-order opti-
mization which correctly considers the nonlinearity of equations, leads to the least RMSE. Also, the
hyperbolic tangent activation function produced the least RMSE in comparison with the linear and the
sigmoid activation functions.

3. Object tracking
For finding object coordinates in soccer pitch, a four-point homography parameterization which maps
the four corners from one image into the second image was used. After detecting four corners of the pitch,
a homography matrix was computed, and then, the pitch image was transformed by the foregoing matrix
in order to display the image in the form of the birds-eye view. This transformation makes distortion in
the image and also makes some difficulties for detecting objects in the image with traditional methods.
Moreover, using color for object detection was not as precise as it should be, and also, the EE of the
robot could be confused in the case of observing two objects with the same color. Another challenging
issue is that the ball can move fast and cause motion blur or even partially occluded by players [32]. For
these reasons, the YOLO algorithm was used for object detection in the transformed image. After the
region-based convolutional neural network [33], the YOLO [34] algorithm was developed to speed up
the object detection process. YOLO algorithm, which has improved in many aspects such as accuracy
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Figure 5. The constructed and Simscape model of the CDPR.

and speed, is an extremely fast, one-stage, and end-to-end algorithm for object detection. Two models
with two different versions were used for detecting the object, which EE had to follow. The YOLOv5-s
model was run in PyTorch and YOLOv4-tiny [35], which was compiled on Darknet. Both models are
fast and do not use much amount of memory which makes them suitable for real-time object detection
tasks which need pace in detection. Since only one object was desired to be tracked, two light models
were utilized for object detection on the provided dataset, in which a comparison is performed in terms
of speed and accuracy between the two models. The dataset used for training models has contained
823 training images and 175 testing images in which all the images were transformed to birds-eye view
with a resolution of 486 × 342. This dataset was collected with different variations containing different
balls concerning sizes, colors, static, and blurred due to a motion. All of the images were manually
annotated with bounding boxes for YOLO for only detecting one specific object (static and blurred due
to a motion). In order to avoid training the model from scratch, transfer learning [36] was applied for
training both models, and they were fine-tuned using pre-trained checkpoints on the COCO dataset [37].
The hyperparameters of the models are as follows: For training the YOLOv4-tiny model, the batch size,
momentum, and weight decay were set to 16, 0.9, and 0.0005, respectively. Training of YOLOv4-tiny
was performed in 2000 iterations from which the one with the smallest loss was selected, and the initial
learning rate was set equal to 0.002. Also, the YOLOv5-s model was trained in 50 epochs with batch
size 64, momentum 0.937, weight decay 0.0005, and an initial learning rate 0.01. Precision, recall, mean
average precision, F1 score, and inference time were selected as indicators. The processing speed should
exceed 30 frames per second for real-time object detection purposes.

4. Results
4.1. Simulation
Figure 5 depicts the 4-cable CDPR constructed at Human and Robot Interaction Laboratory, University
of Tehran and Simscape model, which is built in MATLAB R© Simulink to enforce and validate the
derived analytical formulas and designed controllers in this section. This section investigates the robot’s
ability to track a nonlinear path using the suggested controllers’ effort signal. For proper monitoring,
the suggested trajectory is a three-dimensional direction that necessitates different torque values from
each actuator. The path’s parametric formulation, which was used both in simulation and in practice, is
shown in Fig. 6 and is as follows:

x = 0.05t sin t

y = 0.05t cos t

z = 0.05t

(29)
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Figure 6. The three-dimensional presentation of the path under study.
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Figure 7. The performance of the trained neural network.

In order to examine the ability of the controller and make the simulation more realistic to the built
CDPR, stiffness, friction of the winch, and the friction of the pulley have been determined and modeled.
The Simscape model also determined the angle of the cable with respect to the winch for each motor.
Furthermore, angles of rotation of EE about the x, y, and z-axis also have been simulated and can be
monitored during the simulation. Figure 7 demonstrates the performance of the trained NN for the NN
controller. If the model receives insufficient training, it will underfit the train and test sets. If the model
receives too much training, it will overfit the training dataset and perform poorly on the test set. A
reasonable compromise is to train on the training dataset but stop when performance on the validation
dataset begins to deteriorate. In order to prevent overfitting and improve NN ability to predict on non-
training data, validation stopping is implemented, and the training stops after four consecutive increases
in validation error, and the best performance is taken from the epoch with the lowest validation error
[38]. The results of the simulation and the RMSE index for each controller are shown in Fig. 8 and
Table V, respectively. According to the results provided from the RMSE index, all of the controllers
track the path properly with a maximum RMSE of 0.072, which occurred in kinematics SMC. Due to
the inherent robustness of the SMC algorithm, it tracked the path more smoothly but less precisely. Also,
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Table V. The RMSE index for controlling method in simulation.

Controller X Y Z
Kinematic PID 0.035 0.058 0.010
Dynamic PD 0.007 0.037 0.012
Kinematic SMC 0.049 0.072 0.012
Dynamic SMC 0.006 0.038 0.011
Dynamic NN 0.007 0.037 0.012

5 10 15
–0.5

0

0.5

PID Kinematics

5 10 15
–0.5

0

0.5

PID Dynamics

5 10 15
–0.5

0

0.5

SMC Kinematics

5 10 15
–0.5

0

0.5

SMC Dynamics

2 4 6 8 10 12 14
–0.5
0

0.5

NN Dynamics

Figure 8. Simulation results of the five controllers for tracking the path along the x, y, and z axes.

the RMSE index demonstrates that all dynamic controllers similarly tracked the path and had a better
performance than the kinematic controllers.

4.2. Experimental
Figure 9 depicts the results of each controller implemented on the built CDPR. From the result provided
by the RMSE index in Table VI, it can be concluded that all of the controllers tracked the path properly
with the maximum RMSE of 0.029, which occurred in dynamic PID. The kinematic PID, which was
selected for object tracking, had a better performance than other controllers. It should be mentioned that
in the Simscape model, a revolute joint was used for simulating the angle of cable with respect to the
winch, which decreases the accuracy of the controller. Due to mentioned reason, the accuracy of the
simulation is slightly less than practical.

Figure 10 represents the training results for both YOLO models for detecting the big red ball.
According to the obtained results, both models detected the defined object precisely. The small value of
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Table VI. The RMSE index for controlling method in practical.

Controller X Y Z
Kinematic PID 0.018 0.017 0.008
Dynamic PD 0.020 0.029 0.016
Kinematic SMC 0.021 0.022 0.005

2 4 6 8 10 12 14
–0.5

0

0.5

PID Kinematics

2 4 6 8 10 12 14
–0.5

0

0.5

PID Dynamics

2 4 6 8 10 12 14
–0.5

0

0.5

SMC Kinematics

Figure 9. Practical results of the three controllers for tracking the path along the x, y, and z axes.
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Figure 10. The training results of the YOLO models.
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Table VII. The RMSE index of each encoders for object tracking.

Index θ1 θ 2 θ 3 θ 4

RMSE 0.0166 0.0014 0.0708 0.0049

(a)

(b)

Figure 11. YOLO detection results.

loss shows that the model is well trained. On the other hand, the high mAP value indicates that the model
has a good performance. However, YOLOv4-tiny has a higher confidence in detecting the object and is
more robust. On the other hand, YOLOv5-s has higher FPS on CPU, but not on GPU; therefore, for run-
ning on CPU, YOLOv5-s is a better choice according to its detection speed, but for running on a GPU,
YOLOv4-tiny overtakes YOLOv5-s. From the mAP and F1 score, it can be inferred that YOLOv5-s has
slightly better performance than YOLOv4-tiny. The best mAP values of YOLOv5-s and YOLOv4-tiny
are 99.5% and 98.5%, respectively.

From this result, it can be concluded that both models approximately have the same training capability
on the provided small dataset for detecting one object. The sample of detection results of both YOLO
models is shown in Fig. 11. As aforementioned, the kinematic PID has been chosen as the controller
for object tracking. The rotation angle of the four motors, taken from the encoders, is shown in Fig. 12.
The RMSE index errors are given in Table VII for the motors of one to four, respectively, which confirm
the ability of the controller for tracking the path precisely. It should be mentioned that during the object
tracking, while the camera has been covered, the location of EE is the last location for determining object
location. Once the camera determines the object’s new location, the EE tries to track it as fast as it can.
Some jumps in Fig. 12 are occurred due to the latter reason.
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Figure 12. The output of each encoder for object tracking.

5. Conclusion
This paper investigated the evaluation of different controllers in both simulation and practice in which
two methods for tracking objects were proposed. In the simulation, the model of the robot was verified,
which made possible the validation of the proposed controllers or other studies in simulation. Moreover,
a novel NN controller based on the dynamic model of an under-constrained CDPR was proposed. The
results showed that the proposed controllers exhibited satisfactory performance on the predefined tra-
jectory in simulation and experiment. Furthermore, for tracking purpose we resorted to the so-called
YOLOv5-s as it was faster than YOLOv4-tiny in object detection on CPU. Future works aim at using
deep reinforcement learning strategies for controlling an under-constrained CDPR.
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