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In this study, we are concerned with the asymptotic stability towards a rarefaction
wave of the solution to an outflow problem for the Navier-Stokes Korteweg equations
of a compressible fluid in the half space. We assume that the space-asymptotic states
and the boundary data satisfy some conditions so that the time-asymptotic state of
this solution is a rarefaction wave. Then we show that the rarefaction wave is
non-linearly stable, as time goes to infinity, provided that the strength of the wave is
weak and the initial perturbation is small. The proof is mainly based on L2-energy
method and some time-decay estimates in Lp-norm for the smoothed rarefaction
wave.
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1. Introduction

In this article, we are concerned with the models of compressible fluids endowed
with internal capillarity, which are supposed to govern the motion of compressible
fluids such as liquid vapour mixtures. The model (called as the compressible Navier-
Stokes-Korteweg equations) originates from the work of Van de Waals [46] and
Korteweg [29] more than one century ago, and was actually derived in its modern
form in the 1980s using the second gradient theory, see for instance [11]. The
one-dimensional isentropic compressible Navier-Stokes-Korteweg equation can be
described by the following system in the Eulerian coordinate{

ρt + (ρu)x = 0,
(ρu)x + (ρu2 + p(ρ))x = μuxx + kρρxxx.

(1.1)

Here, ρ, u are unknown functions in t and x, which stand for the density
and the velocity, respectively. The time and space variables are t, x ∈ R

+ :=
{x ∈ R : x > 0}. The function p(ρ) is the pressure defined by p(ρ) = kργ , where
k > 0 and γ � 1 are the gas constants. The positive constants μ, κ denote, respec-
tively, the viscosity and the capillary coefficient, and κ is also called Weber number.
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One can see easily that when κ = 0, system (1.1) is reduced to the classical
Navier-Stokes equations for compressible fluids.

Recently, the compressible Navier-Stokes-Korteweg equation has attracted a lot
of attention of physicists and mathematicians because of its physical importance,
complexity, rich phenomena and mathematical challenges. There are many studies
on the global existence and uniqueness of solutions to the isentropic compress-
ible Navier-Stokes-Korteweg equations, and we can refer to [2–4, 6, 10, 13–18,
21, 30] and some references therein. In what follows, let us focus on the large-
time behaviour of solutions to the isentropic compressible Navier-Stokes-Korteweg
equations, which is related to our interest. When the initial data are small pertur-
bation near the non-vacuum constant states, Wang and Tan [47], Tan et al. [43],
and Tan and Wang [42] established the optimal decay rates of the global classical
solutions and the global strong solutions for the isentropic compressible Navier-
Stokes-Korteweg equations, respectively. Tan and Zhang [44] further obtained the
decay rates of more derivatives of solutions when the initial perturbation also is in
the H−s(R3) (negative Sobolev norms) with 0 � s < 3/2. Moreover, for the initial
value problem of the isentropic compressible Navier-Stokes-Korteweg equations,
the large-time behaviour around nonlinear wave patterns such as the stationary
wave, discontinuous wave and the rarefaction wave has been studied. More precisely,
the stability of stationary states of the multi-dimensional isentropic compressible
Navier-Stokes-Korteweg equations was studied by Li [32], and Wang and Wang
[48] in the case with an external force, respectively, under the assumption that the
states at far fields ±∞ are equal. Later, Chen [5] and Li and Luo [33] discussed
asymptotic stability of the rarefaction waves for the one-dimensional compressible
fluid models of Korteweg type with different gas states at far fields, respectively.
Chen et al. [6] also showed asymptotic stability of the rarefaction waves for the one-
dimensional compressible Naviver-Stokes-Korteweg equation with large initial data.
Li and Zhu [34] further showed asymptotic stability of the rarefaction wave with
vacuum for the one-dimensional compressible Navier-Stokes-Korteweg equations.
Chen, He and Zhao [7] studied nonlinear stability of travelling wave solutions for
the one-dimensional compressible Navier-Stokes-Korteweg equations with different
gas states at far fields.

For the initial-boundary value problem, Tsyganov [45] discussed the global exis-
tence and time-asymptotic behaviour of weak solutions for an isothermal model
with the viscosity coefficient μ(ρ) ≡ 1, the capillarity coefficient κ(ρ) = ρ−5 and
large initial data on the interval [0, 1]. The global existence and exponential decay
of strong solutions with small initial data to the Korteweg system in a bounded
domain of R

n (n � 1) were also obtained by Kotschote in [31]. Another interesting
and challenging problem is to study the stability of the compressible Navier-Stokes-
Korteweg equation in the half space with different gas states at boundary and far
field. Recently, Chen, Li and Sheng [9] proved the nonlinear stability of viscous
shock wave for an impermeable wall problem of the one-dimensional compressible
Navier-Stokes-Korteweg equation with constant viscosity and capillarity coefficients
and small initial data. Chen and Li [8] discussed the time-asymptotic behaviour
of strong solutions to the initial-boundary value problem of the one-dimensional
compressible Navier-Stokes-Korteweg equation with density-dependent viscosity
and capillarity on the half-line R

+, and showed the strong solution converges to
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the rarefaction wave as t→ ∞ for the impermeable wall problem under large
initial perturbation. Hong [19] and Li and Zhu [35] showed the existence and
stability of stationary solution to an outflow problem of the one-dimensional com-
pressible Navier-Stokes-Korteweg equation with constant viscosity and capillarity
coefficients, respectively.

In this article, we shall investigate large-time behaviour of the solution to an
initial boundary value problem for the one-dimensional Navier-Stokes-Korteweg
equations (1.1) on the half space R

+, thus we add the following initial data

(ρ, u)(0, x) = (ρ0, u0)(x) for x > 0, and inf
x∈R+

ρ0(x) > 0, (1.2)

far-field states at the infinity x = +∞
lim

x→+∞(ρ, u)(t, x) = (ρ+, u+), for any t � 0, (1.3)

and also the boundary condition at x = 0

u(t, 0) = ub, ρx(t, 0) = 0, for any t � 0. (1.4)

Here ρ+, u+ and ub are constants satisfying ρ+ > 0. And ρ0(x), u0(x) are given
functions.

We are interested in the so-called outflow problem. For this case the boundary
data of u is taken as negative value, i.e.,

ub < 0.

This means physically that the outflow exits constantly through the wall. Moreover,
we also need ρx(t, 0) = 0 for the third-order capillary term in (1.1). We note that
for the case that ub > 0, the situation is different and the corresponding problem
is called an inflow problem. In that case, for the well-posedness, one must impose
one more boundary condition at x = 0, namely we must consider a set of boundary
conditions of the form

ρ(t, 0) = ρb, u(t, 0) = ub, ρx(t, 0) = 0, t � 0,

with ρb > 0 and ub > 0.

Related literature. There has been a huge number of papers in the literature on
the large-time behaviour of the solutions for the initial-boundary value problem to
the compressible Navier-Stokes equations. In this type of problems, the influence of
viscosity is expected to emerge not only in the smoothing effect on discontinuous
shock wave but also in the forming of a boundary layer. More precisely, Matsumura
and Mei [37] considered the stability of viscous shock wave to the one-dimensional
Navier-Stokes equation with a Dirichlet boundary condition. Matsumura and Nishi-
hara [38] showed global asymptotics towards rarefaction waves for the solution of
the viscous p-system with boundary effect. Matsumura [36] gave, in 2001, a classi-
fication of the large-time behaviour of the solutions in terms of the far-field state
and boundary data. Kawashima, Nishibata and Zhu [26] investigated the asymp-
totic stability of the stationary solution to an outflow problem of the compressible
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Navier-Stokes equations in the half space. Matsumura and Nishihara [39] stud-
ied nonlinear stability of the rarefaction wave and stationary solution to an inflow
problem in the half space for the isentropic compressible Navier-Stokes equations.
Huang, Matsumura and Shi [24] obtained the nonlinear stability of viscous shock
wave and boundary layer solution for an inflow problem of the isentropic com-
pressible Navier-Stokes equations. Recently, there are lots of references about the
topic for the isentropic and full Navier-Stokes equations, the interested readers are
referred to, e.g., [12, 20, 22, 23, 25, 27, 28, 40, 41] etc.

We now turn back to the outflow problem. The purpose of this paper is to inves-
tigate the large-time behaviour of the solution to the outflow problem (1.1)–(1.4).
Motivated by [1, 4] and [28, 36], we believe that as t→ ∞, the solution (ρ, u) to
the above problem (1.1)–(1.4) is asymptotically described by one of the following
waves, such as a viscous shock wave, a stationary wave, a rarefaction wave or the
superposition of a stationary wave and a rarefaction wave, which can be determined
by the space-asymptotic conditions (1.3) and the boundary data ub. The stability
of a stationary wave has been investigated in [19, 35], respectively. In this paper,
we are interested particularly in the case that the corresponding time-asymptotic
state is rarefaction wave. For this, we first introduce the corresponding compressible
equation without viscosity and capillarity{

ρt + (ρu)x = 0,
(ρu)t + (ρu2 + p(ρ))x = 0.

(1.5)

It has two eigen-values:

λ1(ρ, u) = u− C(ρ), λ2(ρ, u) = u+ C(ρ),

with C(ρ) =
√
Kγργ−1. Further, let us introduce (ρ∗, u∗) by

u∗ = −C(ρ∗), u+ − u∗ =
∫ ρ+

ρ∗
C(s)s−1ds.

Then from the complete classification of the asymptotic states of the outflow prob-
lem to the compressible Navier-Stokes equation in [27, 28, 36], we know that
when either −C(ρ+) < u+ < 0 and u∗ � ub < u+, or u+ > 0 and u∗ � ub < 0, we
can choose some ρ− > 0 such that (v−, ub) ∈ R2 (R2 is the 2-rarefaction curve,
defined by R2 : u− ub = − ∫ v

v−

√
Kγy−(γ−1/2)dy for v− > v), here v− = 1/ρ− and

v = 1/ρ. That is, there exists a 2-rarefaction wave (ρR, uR)(x/t) with (λ2(ρ, u) � 0),
which connects (ρ−, ub) and (ρ+, u+), i.e., (ρR, uR)(x/t) satisfies the corresponding
Riemann problem: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ρt + (ρu)x = 0,
(ρu)t + (ρu2 + p(ρ))x = 0,

(ρ, u)(t = 0, x) =

{
(ρ−, ub), x < 0,
(ρ+, u+), x > 0.

(1.6)

Before stating our results, let us first give some notations. Throughout this paper,
C denotes a universal positive constant which is independent of time t and may
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vary from line to line. Lp(R+)(1 � p <∞) are the spaces of measurable functions
whose p-powers are integrable on R

+, with the norm ‖ · ‖Lp = (
∫

R
| · |pdx)1/p. For

the case that p = 2, we simply denote ‖ · ‖L2 by ‖ · ‖. And L∞(R+) is the space of
bounded measurable functions on R

+, with the norm ‖ · ‖L∞ = ess supx∈R+ | · |. For
a nonnegative integer k, Hk = Hk(R+) denotes the usual L2-type Sobolev space of
order k. We write ‖ · ‖k for the standard norm of Hk(R+). In addition, we denote by
C([0, T ];Hk(R+)) (resp. L2(0, T ;Hk(R+))) the space of continuous (resp. square
integrable) functions on [0, T ] with values taken in a Banach space Hk(R+).

The main purpose of this article is to investigate the time-asymptotic stability
of the rarefaction wave (ρR, uR)(x/t), and the main results are stated as follows.

Theorem 1.1. Assume that ub, u∗ and the infinite states satisfy that ub < 0,
and that either (i) −C(ρ+) < u+ < 0 and u∗ � ub < u+, or (ii) u+ > 0 and
u∗ � ub < 0. Suppose furthermore that (ρ0 − ρ+, u0 − u+) ∈ H2(R+) ×H1(R+)
such that ε (is given by in (2.3)) and ‖ρ0 − ρ+‖2 + ‖u0 − u+‖1 are suitably small.
And the compatibility conditions u0(0) = ub and ρ0x(0) = 0 are satisfied. Then there
exists a unique global strong solution (ρ, u)(t, x) to the problem (1.1)–(1.4) such that

ρ− ρR, u− uR ∈ C([0,∞);L2(R+)), (1.7)

ρx, ρxx, ux ∈ C([0,∞);L2(R+)) ∩ L2([0,∞);L2(R+)), (1.8)

ρxxx, uxx ∈ L2([0,∞);L2(R+)). (1.9)

Moreover, we assert that as t→ ∞, the solution (ρ, u)(t, x) converges to the
rarefaction wave (ρR, uR)(x/t), that is

lim
t→∞ sup

x∈R+

∣∣∣(ρ, u)(t, x) − (ρR, uR)
(x
t

)∣∣∣ = 0. (1.10)

Remark 1.2. In the present article we consider only that the time-asymptotic state
of the out-flow problem to one-dimensional compressible Navier-Stokes-Korteweg
equations is rarefaction wave. The study of the stability of other wave pattern such
as a viscous shock wave or the superposition of a rarefaction wave and a stationary
wave will be carried out in other papers by the authors. Further, we try to give
the complete classification of the asymptotic states of the outflow problem to the
compressible Navier-Stokes-Korteweg equations as [27, 28, 36] for the compressible
Navier-Stokes equation. Moreover, we should mention that the corresponding in-
flow problem is surely more difficult, thus more interesting. Finally, we also mention
that here we only focus on small perturbation of the initial data, in fact, it is
interesting and plausible that we can consider the corresponding results for large
perturbation. These are expected to be done in the forthcoming papers.

This article is follow-up study of [8, 9, 35]. Now we give main ideas and arguments
of the proof for theorem 1.1. Applying L2-energy method and some time-decay
estimates in Lp-norm for the smoothed rarefaction wave as in [28], we prove the
asymptotic stability of the rarefaction wave in the case that the initial data are
a small perturbation of the rarefaction wave. The key ingredient in the proof of
theorem 1.1 is to deduce the a priori estimates. The main difficulties are as follows.
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The first one is the occurrence of the third order dispersion term. The second is that
it is not easy to control the boundary terms ϕxx(t, 0), ϕxxx(t, 0) and ψxx(t, 0). To
overcome the first difficulty, we need more regularities for the density and smooth
rarefaction wave. We also note that the basic energy is obtained with the help
of higher order estimates. For the second difficulty, we can introduce ϕxx(t, 0)2

by the second equation of (3.1) and integration by parts. Moreover, we can con-
trol (κϕxxx(t, 0) + μψxx(t, 0)/ρ(t, 0))2 by C‖ψx(t)‖2

1, which is derived by (3.1)2 and
lemma 2.2. These are the main novelty of the present paper.

The rest of the article is organized as follows. In § 2, we first review a smooth
approximate rarefaction wave which tends to the rarefaction wave fan uniformly
as the time t tends to infinity. Then we reformulate the original problem in terms
of the perturbation variables in § 3. § 4 is the key part of this article, in which we
will establish the a priori estimates by the elaborate energy estimates. Finally, we
complete the proof of theorem 1.1 in § 5.

2. Smooth rarefaction wave

Since the rarefaction wave (ρR, uR)(x/t) is not smooth, we need to construct a
smooth approximation of the rarefaction wave (ρr, ur)(t, x). As [38], we start with
the Riemann problem on R = (−∞,+∞) for the typical Burgers equation:

wt + wwx = 0, (2.1)

with initial data

w(0, x) = wR
0 (x) =

{
w−, x < 0
w+, x > 0,

(2.2)

where w± are given by w− = ub + C(ρ−) > 0 and w+ = u+ + C(ρ+) > 0, satisfying
w− < w+. It is well known that the Riemann problem (2.1)–(2.2) has a unique
rarefaction wave solution:

wR
(x
t

)
=

⎧⎪⎪⎨
⎪⎪⎩
w−, x < w−t,
x

t
, w−t � x � w+t,

w+, x > w+t.

Then we can define the functions ρR(t, x) and uR(t, x) by

λ2(ρR, uR) = uR + C(ρR) = wR(1 + t, x),

duR

dρR
=
C(ρR)
ρR

.

It is easy to check that ρR(t, x) and uR(t, x) satisfy{
ρt + (ρu)x = 0,
(ρu)t + (ρu2 + p(ρ))x = 0
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with

(ρ, u)(0, x) =

{
(ρ−, ub), x < 0,
(ρ+, u+), x > 0.

Now we approximate the rarefaction wave wR(x/t) by the solution of the following
Cauchy problem:⎧⎪⎨

⎪⎩
wt + wwx = 0,

w(0, x) = wr
0(x) =

{
w−, x < 0,
w− + Cqw̃

∫ εx

0
yqeydy, x � 0,

(2.3)

where w̃ = w+ − w−, Cq > 0 is a constant satisfying: Cq

∫ +∞
0

zqe−zdz = 1 with
q � 10 being a positive constant, and ε � 1 is a positive constant to be determined
later. Then the properties of w(t, x) can be summarised in the following lemma.

Lemma 2.1. (See [8, 24]) Let 0 < w− < w+, then the Cauchy problem (2.3) admits
a unique global smooth solution w(t, x) satisfying:

(i) w− < w(t, x) < w+, wx > 0, x � 0, t � 0.

(ii) For any p(1 � p � +∞), there exists a constant Cp,q > 0 such that for t � 0,

‖wx(t)‖Lp � Cp,q min
{
w̃ε1−

1
p , w̃

1
p t−1+ 1

p

}
,

‖wxx(t)‖Lp � Cp,q min
{
w̃ε2−

1
p , w̃

1
q ε1−

1
p + 1

q t−1+ 1
q

}
,

‖wxxx(t)‖Lp � Cp,q min
{
w̃ε3−

1
p , w̃

2
q ε2−

1
p + 2

q t−1+ 2
q

}
,

‖wxxxx(t)‖Lp � Cp,q min
{
w̃ε4−

1
p , w̃

3
q ε3−

1
p + 3

q t−1+ 3
q

}
.

(iii) When x � w−t, it holds that

w(t, x) − w−=wx(t, x) = wxx(t, x) = wxxx(t, x) = 0.

(iv) lim
t→+∞ sup

x∈R

∣∣w(t, x) − wR(t, x)
∣∣ = 0.

Now, we define the smooth approximate rarefaction wave (ρr, ur)(t, x) of
(ρR, uR)(x/t) as follows:

λ2(ρr, ur) = uR + C(ρr) = w(1 + t, x),

dur

dρr
=
C(ρr)
ρr

.

Therefore, from lemma 2.1, we know that (ρr, ur)(t, x) has the following properties:

Lemma 2.2. Let δ = |ρ+ − ρ−| + |u+ − ub|, the smooth approximation (ρr, ur)(t, x)
of (ρR, uR) has the following properties:
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(i) ur
x � 0, |ur

x| � Cε, ∀ t � 0, x � 0.

(ii) For any p with 1 � p � +∞, there exists a constant Cp,q > 0 such that

‖(ρr
x, u

r
x) (t)‖Lp � Cp,q min

{
δε1−

1
p , δ

1
p (1 + t)−1+ 1

p

}
,

‖(ρr
xx, u

r
xx) (t)‖Lp � Cp,q min

{
δε2−

1
p , δ

1
q ε1−

1
p + 1

q (1 + t)−1+ 1
q

}
,

‖(ρr
xxx, u

r
xxx) (t)‖Lp � Cp,q min

{
δε3−

1
p , δ

2
q ε2−

1
p + 2

q (1 + t)−1+ 2
q

}
,

‖(ρr
xxxx, u

r
xxxx) (t)‖Lp � Cp,q min

{
δε4−

1
p , δ

3
q ε3−

1
p + 3

q (1 + t)−1+ 3
q

}
.

(iii) (ρr, ur)(t, x)
∣∣∣
x�λ2(ρ−,ub)t

= (v−, u−), ∂j

∂xj (ρr, ur)(t, x)
∣∣∣
x�λ2(ρ−,ub)t

= 0,

j = 1, 2, 3.

(iv) lim
t→+∞ sup

x∈R+

∣∣∣(ρr, ur)(t, x) − (ρR, uR)
(x
t

)∣∣∣ = 0.

3. Reformulation of the problem

Since it is convenient to regard the solution (ρ, u) as the perturbation of (ρr, ur), we
are going to reformulate the original problem in terms of the perturbation variables
in this section. First, we define

ϕ(t, x) = ρ(t, x) − ρr(t, x), ψ(t, x) = u(t, x) − ur(t, x).

Then, the original problem (1.1)–(1.4) can be rewritten as

{
ϕt + ρψx + uϕx = f,
ρ(ψt + uψx) + p′(ρ)ϕx = μψxx + κρϕxxx + g

(3.1)

with the initial boundary conditions:⎧⎨
⎩

(ϕ,ψ)(0, x) = (ρ0(x) − ρr(0, x), u0(x) − ur(0, x),
ψ(t, 0) = 0,
ϕx(t, 0) = ρx(t, 0) − ρr

x(t, 0) = 0,
(3.2)

where

f = −ur
xϕ− ρr

xψ, (3.3)

and

g = μur
xx + κρρr

xxx +
p′(ρr)
pr

ρr
xϕ− [p′(ρ) − p′(ρr)]ρr

x − ρψur
x. (3.4)

Therefore, we are now in a position to restate our main results in terms of the
perturbed variable (ϕ,ψ)(t, x) as follows.
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Theorem 3.1. Suppose that all the assumptions of theorem 1.1 are met. Then there
exists a unique global solution (ϕ,ψ)(t, x) to problem (3.1)–(3.2), satisfying

ϕ,ψ ∈ C([0,∞);L2(R+)),

ϕx, ϕxx, ψx ∈ C([0,∞);L2(R+)) ∩ L2([0,∞);L2(R+)),

ϕxxx, ψxx ∈ L2([0,∞);L2(R+)),

and

lim
t→∞ sup

x∈R+
|(ϕ,ψ)(t, x)| = 0.

To prove this theorem, we shall employ the standard continuation argument based
on a local existence theorem in the following lemma and on a priori estimates stated
in the following proposition. First, the local existence of the solution (ϕ,ψ) to the
initial-boundary value problem (3.1)–(3.2) is proved by the standard method, for
example, the dual argument and iteration technique. For details, we refer [17, 18,
31, 45].

Lemma 3.2 Local existence. Assume that the conditions in theorem 1.1 hold. Then
there exists a positive constant T0 such that the initial-boundary value problem
(3.1)–(3.2) has a unique strong solution (ϕ,ψ)(t, x) that has the following properties:

ϕ(t, x) ∈ C([0, T0];H2(R+)), ψ(t, x) ∈ C([0, T0];H1(R+)),

ϕx(t, x) ∈ L2([0, T0];H2(R+)), ψx(t, x) ∈ L2([0, T0];H1(R+)),

inf
t∈[0,T0],x∈R+

ρ(t, x) > 0.

Next, we prove the following a priori estimates in Sobolev spaces, which are
stated in proposition 3.3.

Proposition 3.3. Let (ϕ,ψ) be a solution to the initial-boundary value problem
(3.1)–(3.2) in a time interval [0, T ], which has same regularities as in lemma 3.2.
Then there exist constants ε1 > 0 and C > 0 such that if

N(T ) := sup
t∈[0,T ]

[‖ϕ(t)‖2 + ‖ψ(t)‖1] � ε1, (3.5)

then the following estimate holds for any t ∈ [0, T ]

‖ϕ(t)‖2
2 + ‖ψ(t)‖2

1 +
∫ t

0

(‖ϕx(τ)‖2
2 + ‖ψx(τ)‖2

1 + |(ϕ,ϕxx)(τ, 0)|2) dτ
� C(‖ϕ0‖2

2 + ‖ψ0‖2
1 + ε

1
8 ). (3.6)

4. A priori estimate

This section is devoted to the derivation of a priori estimates for the unknown
function (ϕ,ψ)(t, x) and their derivatives, we then show that proposition 3.3 is
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valid. To derive these a priori estimates, we assume that there exists a strong
solution (ϕ,ψ)(t, x) to problem (3.1)–(3.2), such that

ϕ(t, x) ∈ C([0, T ];H2(R+)), ψ(t, x) ∈ C([0, T ];H1(R+)),

ϕx(t, x) ∈ L2([0, T ];H2(R+)), ψx(t, x) ∈ L2([0, T ];H1(R+)),

inf
(t,x)∈[0,T ]×R+

(ϕ+ ρr)(t, x) > 0

for any T > 0. Indeed, we may assume that (ϕ,ψ)(t, x) is a classical solution from
the standard mollifier arguments. From (3.5), one can see easily that there exist
two positive constants c and C such that

0 < c � ρ � C, |u| � C for t ∈ [0, T ], (4.1)

since ρr � c > 0 for a positive constant c. To this end, we introduce

Φ(ρ, ρr) =
∫ ρ

ρr

p(η) − p(ρr)
η2

dη,

combining this with (4.1) yields

cϕ2 � Φ(ρ, ρr) � Cϕ2. (4.2)

Next, from (3.1), the straightforward but tedious computations give

[
ρ
(1

2
ψ2 + Φ(ρ, ρr)

)]
t
+

[
ρu

(1
2
ψ2 + Φ(ρ, ρr)) + (p(ρ) − p(ρr)

)
ψ − μψψx

]
x

= − μψ2
x − [ρψ2 + p(ρ) − p(ρr) − p′(ρ)ϕ]ur

x + κρϕxxxψ + μur
xxψ + κρρr

xxxψ.
(4.3)

Moreover from (3.1)1, we also have

κρϕxxxψ = κ(ρϕxxψ)x − κ(ρψ)xϕxx

= κ(ρϕxxψ)x + κϕxx(ϕt + urϕx + ur
xϕ)

= κ(ρϕxxψ)x + κ(ϕxϕt)x −
(κ

2
ϕ2

x

)
t
+
κ

2
(ϕ2

xu
r)x − κ

2
ur

xϕ
2
x + κur

xϕϕxx

=
(
κρϕxxψ + κϕxϕt +

κ

2
urϕ2

x + κur
xϕϕx

)
x

− κ

2
(ϕ2

x)t − 3κ
2
ur

xϕ
2
x − κur

xxϕϕx,

which together with (4.3) implies

[
ρ
(1

2
ψ2 + Φ(ρ, ρr)

)
+
κ

2
ϕ2

x

]
t
+R1x +R2

= μur
xxψ + κρρr

xxxψ − 3κ
2
ur

xϕ
2
x − κur

xxϕϕx, (4.4)
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here

R1 = ρu

(
1
2
ψ2 + Φ(ρ, ρr)

)
+ (p(ρ) − p(ρr))ψ − μψψx

− κρϕxxψ − κϕxϕt − κ

2
urϕ2

x − κur
xϕϕx,

and

R2 = [ρψ2 + p(ρ) + p(ρr) − p′(ρ)ϕ]ur
x + μψ2

x.

Then we arrive at

Lemma 4.1. Assume that (ϕ,ψ)(t, x) is a solution to (3.1)–(3.2), satisfying the
conditions in proposition 3.3, then the following estimate holds

‖ϕ(t)‖2 + ‖ψ(t)‖2 + ‖ϕx(t)‖2 +
∫ t

0

(‖ψx(τ)‖2 + ϕ(τ, 0)2)dτ

� C(‖ϕ0‖2
1 + ‖ψ0‖2 + Cε

1
8 ) + C(ε

1
3 + ε)

∫ t

0

‖ϕx(τ)‖2dτ (4.5)

for all t ∈ [0, T ].

Proof. Integrating (4.4) with respect to x over (0,∞) yields

d
dt

∫ ∞

0

(
1
2
ρψ2 + ρΦ

)
dx+R1

∣∣∣
x=0

+
∫ ∞

0

R2dx

=
∫ ∞

0

(μur
xxψ + κρρr

xxxψ − 3κ
2
ur

xϕ
2
x − κur

xxϕϕx)dx. (4.6)

First, noting (4.1) and using (4.2), we easily obtain∫ ∞

0

(
1
2
ρψ2 + ρΦ

)
dx � c(‖ϕ‖2 + ‖ψ‖2), (4.7)

and

R1|x=0 = −ρuΦ(ρ, ρr)|x=0 � cϕ(t, 0)2 (4.8)

with the help of ψ(t, 0) = 0 = ϕx(t, 0) and ub < 0. Similarly, we have

R2 � C(‖√ur
xϕ‖2 + ‖√ur

xψ‖2 + ‖√ur
xϕx‖2 + ‖ψx‖2). (4.9)

Further, combining (4.6)–(4.9) and using (4.1), we have

d
dt

∫ ∞

0

(ϕ2 + ψ2 + ϕ2
x)dx+ ‖√ur

xϕ‖2 + ‖√ur
xψ‖2

+ ‖ψx‖2 + ‖√ur
xϕx‖2 + ϕ(t, 0)2

� C
∣∣∣ ∫ ∞

0

ur
xxψdx

∣∣∣ + C
∣∣∣ ∫ ∞

0

ρr
xxxψdx

∣∣∣ + C
∣∣∣ ∫ ∞

0

ur
xϕ

2
xdx

∣∣∣ + C
∣∣∣ ∫ ∞

0

ur
xxϕϕxdx

∣∣∣.
(4.10)
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Now let us estimate the terms on the right-hand side of (4.10). First, we employ
Hölder inequality, the Sobolev inequality

‖f‖L∞ �
√

2‖f‖ 1
2 ‖fx‖ 1

2 (4.11)

for any f ∈ H1(R+), lemma 2.2 and Young inequality to obtain

∣∣∣ ∫ ∞

0

ur
xxψdx

∣∣∣ � ‖ψ‖L∞‖ur
xx‖L1 � C‖ψ‖ 1

2 ‖ψx‖ 1
2 ‖ur

xx‖L1

� 1
4
‖ψx‖2 + C‖ψ‖ 2

3 ‖ur
xx‖

4
3
L1

� 1
4
‖ψx‖2 + C‖ψ‖ 2

3 ‖ur
xx‖

1
6
L1‖ur

xx‖
7
6
L1

� 1
4
‖ψx‖2 + Cε

1
6 (1 + t)−

21
20 ‖ψ‖ 2

3

� 1
4
‖ψx‖2 + Cε

1
4 (1 + t)−

21
20 ‖ψ‖2 + Cε

1
8 (1 + t)−

21
20 . (4.12)

Similarly, we have

∣∣∣ ∫ ∞

0

ρr
xxxψdx

∣∣∣ � C‖ψ‖ 1
2 ‖ψx‖ 1

2 ‖ρr
xxx‖L1

� 1
4
‖ψx‖2 + C‖ψ‖ 2

3 ‖ρr
xxx‖

4
3
L1

� 1
4
‖ψx‖2 + Cε

1
6 (1 + t)−

16
15 ‖ψ‖ 2

3

� 1
4
‖ψx‖2 + Cε

1
4 (1 + t)−

11
10 ‖ψ‖2 + Cε

1
8 (1 + t)−

21
20 . (4.13)

Next, from lemma 2.2, it is easy to obtain

∣∣∣ ∫ ∞

0

ur
xϕ

2
xdx

∣∣∣ � Cε‖ϕx‖2. (4.14)

Finally, using Hölder inequality, lemma 2.2 and Young inequality, we have

∣∣∣ ∫ ∞

0

ur
xxϕϕxdx

∣∣∣ � C‖ur
xx‖

1
6
L∞‖ur

xx‖
5
6
L∞‖ϕ‖‖ϕx‖

� Cε
1
3 (1 + t)−

3
4 ‖ϕ‖‖ϕx‖

� Cε
1
3 ‖ϕx‖2 + Cε

1
3 (1 + t)−

3
2 ‖ϕ‖2. (4.15)

Therefore, combining (4.10), (4.12)–(4.14) and (4.15), and integrating the resultant
inequality with respect to t, then implies (4.5) provided that Cε

1
4 < 1

4 and Cε
1
3 < 1

4 .
This completes the proof of lemma 4.1.

Next, we derive the estimate for ϕx and ϕxx.
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Lemma 4.2. Assume that (ϕ,ψ)(t, x) is a solution to (3.1)–(3.2), satisfying the
conditions in proposition 3.3, then the following estimate holds

‖ϕx‖2
1 � C(‖ϕ0‖2

1 + ‖ψ0‖2 + Cε
1
8 ) (4.16)

for all t ∈ [0, T ].

Proof. We first differentiate formally (3.1)1 in x to obtain

ϕtx + uϕxx + ρψxx = fx − ρr
xψx − ur

xϕx − 2ϕxψx. (4.17)

Then multiplying above equation by 1
ρ2ϕx, and integrating the resulting equality

with respect to x over R
+ by parts, one has

1
2

d
dt

∫ ∞

0

ϕ2
x

ρ2
dx+

∫ ∞

0

1
ρ
ψxxϕxdx =

∫ ∞

0

f1
ϕx

ρ2
dx, (4.18)

with the help of ϕx(t, 0) = 0 and (1.1)1, here

f1 = fx − ρr
xψx − 1

2
ϕxψx +

1
2
ur

xϕx.

Moreover, multiplying (3.1)2 by 1
ρϕx, and integrating the resulting equality with

respect to x over R
+ by parts, and using ψ(t, 0) = ϕx(t, 0) = 0 and (3.1)1, we have

d
dt

∫ ∞

0

ϕxψdx+
∫ ∞

0

p′(ρ)
ρ

ϕ2
xdx+ κ

∫ ∞

0

ϕ2
xxdx

=
∫ ∞

0

μ

ρ
ψxxϕxdx+

∫ ∞

0

g

ρ
ϕxdx+

∫ ∞

0

ψx(ρψx + uϕx − f)dx

which together with (4.18) yields

d
dt

∫ ∞

0

( μ

2ρ2
ϕ2

x + ψϕx

)
dx+

∫ ∞

0

p′(ρ)
ρ

ϕ2
x + κ

∫ ∞

0

ϕ2
xxdx

=
∫ ∞

0

μ

ρ2
f1ϕxdx+

∫ ∞

0

g

ρ
ϕxdx+

∫ ∞

0

ψx(ρψx + uϕx − f)dx. (4.19)

Further, using (4.1), we have

d
dt

∫ ∞

0

(ϕ2
x + ψϕx)dx+ ‖ϕx(t)‖2 + ‖ϕxx(t)‖2 � C‖ψx(t)‖2 + C

5∑
i=1

Ii, (4.20)

where

I1 =
∣∣∣ ∫ ∞

0

ϕxψxdx
∣∣∣ +

∣∣∣ ∫ ∞

0

ϕ2
xψxdx

∣∣∣,
I2 =

∣∣∣ ∫ ∞

0

ur
xϕ

2
xdx

∣∣∣ +
∣∣∣ ∫ ∞

0

ρr
xϕxψxdx

∣∣∣,
I3 =

∣∣∣ ∫ ∞

0

ur
xxϕϕxdx

∣∣∣ +
∣∣∣ ∫ ∞

0

|ρr
xxψϕxdx

∣∣∣,
I4 =

∣∣∣ ∫ ∞

0

ur
xϕψxdx

∣∣∣ +
∣∣∣ ∫ ∞

0

ρr
xψψxdx

∣∣∣ +
∣∣∣ ∫ ∞

0

ur
xψϕxdx

∣∣∣ +
∣∣∣ ∫ ∞

0

ρr
xϕϕxdx

∣∣∣,
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and

I5 =
∣∣∣ ∫ ∞

0

ur
xxϕxdx

∣∣∣ +
∣∣∣ ∫ ∞

0

ρr
xxxϕxdx

∣∣∣.
In the following, let us estimate I1 − I4 and I5. First, from Young inequality and

(3.5), it is easy to obtain

I1 � C‖ψx‖2 +
1
8
‖ϕx‖2 + C‖ϕx‖L∞(‖ϕx‖2 + ‖ψx‖2)

� C‖ψx(t)‖2 +
1
8
‖ϕx(t)‖2 + Cε1‖(ϕx, ψx)(t)‖2. (4.21)

Similar as (4.14) and (4.15), we conclude

I2 � Cε(‖ϕx(t)‖2 + ‖ψx(t)‖2), (4.22)

and

I3 � Cε
1
3 ‖ϕx‖2 + Cε

1
3 (1 + t)−

3
2 ‖(ϕ,ψ)(t)‖2. (4.23)

Finally, using lemma 2.2, Hölder inequality and Young inequality, we have

I4 � C‖ur
x‖

1
4
L∞‖ur

x‖
3
4
L∞(‖ϕ‖‖ψx‖ + ‖ψ‖‖ϕx‖)

+ C‖ρr
x‖

1
4
L∞‖ρr

x‖
3
4
L∞(‖ϕ‖‖ϕx‖ + ‖ψ‖‖ψx‖)

� Cε
1
4 (‖ϕx(t)‖2 + ‖ψx(t)‖2) + Cε

1
4 (1 + t)−

3
2 ‖(ϕ,ψ)(t)‖2, (4.24)

and

I5 � 1
8
‖ϕx‖2 + C‖ur

xx‖2 + C‖ρr
xxx‖2

� 1
8
‖ϕx(t)‖2 + Cε

1
5 (1 + t)−

9
5 + Cε

2
5 (1 + t)−

8
5 . (4.25)

Therefore, insertion of (4.21)–(4.25) into (4.20), and integrating the resultant
inequality with respect to t and using (4.5), yields (4.16) if Cε

1
4 < 1

4 and Cε
1
3 < 1

4 ,
and ε1 is assumed sufficiently small. This completes the proof of lemma 4.2.

With lemmas 4.1 and 4.2 in hand, we can show the fundamental energy estimate.

Corollary 4.3. Assume that (ϕ,ψ)(t, x) is a solution to (3.1)–(3.2), satisfying the
conditions in proposition 3.3, then it holds that

‖ϕ(t)‖2
1 + ‖ψ(t)‖2 +

∫ t

0

(‖ψx(τ)‖2 + ‖ϕx(t)‖2
1 + ϕ(τ, 0)2)dτ

� C(‖ϕ0‖2
1 + ‖ψ0‖2 + ε

1
8 ) (4.26)

for any t ∈ [0, T ].

Next, let us derive estimates for the derivatives of unknowns, i.e., ϕxx

and ψx.
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Lemma 4.4. Assume that (ϕ,ψ)(t, x) is a solution to (3.1)–(3.2), satisfying the
conditions in proposition 3.3, then it holds

‖ψx(t)‖2 + ‖ϕxx(t)‖2 +
∫ t

0

(‖ψxx(τ)‖2 + ϕxx(τ, 0)2)dτ

� C(‖ϕ0‖2
2 + ‖ψ0‖2

1 + ε
1
8 ) + C(ε

1
3 + ε1)

∫ t

0

‖ϕxxx(τ)‖2dτ (4.27)

for all t ∈ [0, T ].

Proof. Multiplying (3.1)2 by −ψxx and integrating the resultant equal over R
+

with respect to x, we have

1
2

d
dt

∫ ∞

0

ρψ2
xdx+ μ

∫ ∞

0

ψ2
xxdx

= −κ
∫ ∞

0

(ρϕxxxψxx + ρxψxϕxxx)dx+
∫ ∞

0

ρuψxψxxdx

+
∫ ∞

0

p′(ρ)ϕxψxxdx−
∫ ∞

0

gψxxdx

−
∫ ∞

0

ρxψx

[g
ρ

+
μ

ρ
ψxx − p′(ρ)

ρ
ϕx − uψx

]
dx

− 1
2

∫ ∞

0

ψ2
x(ρψx + uϕx + ρur

x + uρr
x)dx, (4.28)

here we have used

−
∫ ∞

0

ρψtψxxdx = −ρψtψx |∞0 +
1
2

d
dt

∫ ∞

0

ρψ2
xdx

− 1
2

∫ ∞

0

ρtψ
2
xdx+

∫ ∞

0

ρxψtψxdx

=
1
2

d
dt

∫ ∞

0

ρψ2
xdx− 1

2

∫ ∞

0

ρtψ
2
xdx+

∫ ∞

0

ρxψtψxdx

and ψt(t, 0) = 0, (1.1)1 and (3.1)2. On the other hand, note that

ψtϕxx = (ϕxxψ)t − (ψϕtx)x + ψxϕtx,

and

2
∫ ∞

0

ϕxxxϕxxdx = −ϕxx(t, 0)2,
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then multiplying (3.1)2 by −(2ub/ρ)ϕxx, and integrating the resulting equality over
R

+ with respect to x, and using (4.17) and ϕtx(t, 0) = 0, we have

d
dt

∫ ∞

0

−2ubψϕxxdx− κubϕxx(t, 0)2

= −2ub

∫ ∞

0

[g
ρ

+
μ

ρ
ψxx − p′(ρ)

ρ
ϕx

]
ϕxxdx

+ 2ub

∫ ∞

0

ψx(fx − ρψxx − ρr
xψx − ur

xϕx − 2ϕxψx)dx,

which together with (4.28) yields

d
dt

∫ ∞

0

(
1
2
ρψ2

x − 2ubψϕxx

)
dx+ μ

∫ ∞

0

ψ2
xxdx− κubϕxx(t, 0)2

= −κ
∫ ∞

0

(ρϕxxxψxx + ρxψxϕxxx)dx+
∫ ∞

0

[ρuψx + p′(ρ)ϕx − 2ubψx]ψxxdx

− 2ub

∫ ∞

0

[
μ

ρ
ψxx − p′(ρ)

ρ
ϕx

]
ϕxxdx− 1

2

∫ ∞

0

ψ2
x(ρψx + uϕx + ρur + uρr

x)dx

−
∫ ∞

0

gψxxdx− 2ub

∫ ∞

0

g

ρ
ϕxxdx

−
∫ ∞

0

ρxψx

[
g

ρ
+
μ

ρ
ψxx − p′(ρ)

ρ
ϕx − uψx

]
dx

+ 2ub

∫ ∞

0

ψx(fx − ρr
xψx − ur

xϕx − 2ϕxψx)dx. (4.29)

First, from (4.1) and the Young inequality, one has∫ ∞

0

[ρuψx + p′(ρ)ϕx − 2ubψx]ψxxdx � μ

8
‖ψxx(t)‖2 + C‖(ϕx, ψx)(t)‖2, (4.30)

and

−2ub

∫ ∞

0

[μ
ρ
ψxx − p′(ρ)

ρ
ϕx

]
ϕxxdx � μ

8
‖ψxx(t)‖2 + C‖(ϕx, ϕxx)(t)‖2. (4.31)

Next, using (4.1), (3.5), lemma 2.2, and the Sobolev and Young inequalities, we
have

− 1
2

∫ ∞

0

ψ2
x(ρψx + uϕx + ρur + uρr

x)dx

� C|
∫ ∞

0

ψ3
xdx| + C|

∫ ∞

0

ρr
xψ

2
xdx| + C|

∫ ∞

0

ur
xψ

2
xdx| + C|

∫ ∞

0

ϕxψ
2
xdx|

� C‖ψx‖L∞‖ψx‖2 + C(‖ρr
x‖L∞ + ‖ur

x‖L∞)‖ψx‖2 + C‖ϕx‖L∞‖ψx‖2

� C‖ψx(t)‖ 5
2 ‖ψxx‖ 1

2 + C(ε1 + ε)‖ψx(t)‖2

� μ

8
‖ψxx(t)‖2 + C(ε1 + ε)‖ψx(t)‖2. (4.32)
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Similar as (4.24) and (4.25), we have

−
∫ ∞

0

gψxxdx− 2ub

∫ ∞

0

g

ρ
ϕxxdx

� C

∫ ∞

0

|ur
xψψxx|dx+ C

∫ ∞

0

|ρr
xϕψxx|dx+ C

∫ ∞

0

|ur
xxψxx|dx

+ C

∫ ∞

0

|ρr
xxxψxx|dx+ C

∫ ∞

0

|ur
xψϕxx|dx+ C

∫ ∞

0

|ρr
xϕϕxx|dx

+ C

∫ ∞

0

|ur
xxϕxx|dx+ C

∫ ∞

0

|ρr
xxxϕxx|dx

� μ

8
‖ψxx(t)‖2 + C‖ϕxx(t)‖2 + Cε

1
4 (1 + t)−

3
2 ‖(ϕ,ψ)(t)‖2

+ Cε
1
4 ‖(ϕxx, ψxx)(t)‖2 + Cε

1
5 (1 + t)−

9
5 + Cε

2
5 (1 + t)−

8
5 . (4.33)

In a similar way, we can obtain

−
∫ ∞

0

ρxψx

[g
ρ

+
μ

ρ
ψxx − p′(ρ)

ρ
ϕx − uψx

]
dx

� C

∫ ∞

0

(|ρr
xu

r
xxψx| + |ρr

xρ
r
xxxψx|)dx+ C

∫ ∞

0

(|ρr
xρ

r
xϕψx| + |ρr

xu
r
xϕψx|)dx

+ C

∫ ∞

0

(|ρr
xψxψxx| + |ρr

xϕxψx| + |ur
xxϕxψx| + |ρr

xxxϕxψx|)dx

+ C

∫ ∞

0

(|ρr
xϕϕxψx| + |ur

xψϕxψx|)dx

+ C

∫ ∞

0

(|ϕxψxψxx| + |ϕxψ
2
x| + |ϕ2

xψx|)dx

� C(ε+ ε1)‖(ϕx, ψxx)(t)‖2 + C‖ψx(t)‖2 + Cε(1 + t)−2‖ϕ(t)‖2

+ Cε
1
5 (1 + t)−

9
5 + Cε

2
5 (1 + t)−

8
5 , (4.34)

and

2ub

∫ ∞

0

ψx

(
fx − ρr

xψx − ur
xϕx − 2ϕxψx

)
dx

� C

∫ ∞

0

(|ρr
xψ

2
x| + |ur

xϕxψx|)dx

+ C

∫ ∞

0

(|ρr
xxψϕx| + |ur

xxϕψxx|)dx+ C

∫ ∞

0

|ϕxψ
2
x|dx

� μ

8
‖ψxx(t)‖2 + C(‖ϕx(t)‖2 + ‖ψx(t)‖2) + Cε

1
3 ‖ϕx(t)‖2 + ‖ψxx(t)‖2)

+ Cε
1
3 (1 + t)−

3
2 ‖(ϕ,ψ)(t)‖2. (4.35)
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Finally, using (4.17), integration by parts and ϕtx(t, 0) = 0, we have

− κ

∫ ∞

0

ρϕxxxψxxdx− κ

∫ ∞

0

ρxψxϕxxxdx

= κ

∫ ∞

0

ϕxxx(ϕtx + uxϕx + uϕxx − fx)dx

= κϕxxϕtx|∞0 − κ
d
dt

∫ ∞

0

ϕ2
xxdx+

k

2
uϕ2

xx|∞0 − κ

2

∫ ∞

0

uxϕ
2
xxdx

+ κ

∫ ∞

0

ϕxxx(uxϕx − fx)dx

= −κ d
dt

∫ ∞

0

ϕ2
xxdx− κ

2
ubϕxx(t, 0)2

− k

2

∫ ∞

0

uxϕ
2
xxdx+ κ

∫ ∞

0

ϕxxx(uxϕx − fx)dx. (4.36)

Similar to (4.14) and (4.32), we have

−
∫ ∞

0

uxϕ
2
xxdx = −

∫ ∞

0

ψxϕ
2
xxdx−

∫ ∞

0

ur
xϕ

2
xxdx

� C‖ψx(t)‖L∞‖ϕxx(t)‖2 + Cε‖ϕxx(t)‖2

� C‖ψx(t)‖ 1
2 ‖ψxx(t)‖ 1

2 ‖ϕxx(t)‖2 + Cε‖ϕxx(t)‖2

� μ

8
‖ψxx(t)‖2 + C(ε+ ε1)‖ϕxx(t)‖2.

Moreover, similar as (4.14), (4.15) and (4.32), we get

κ

∫ ∞

0

ϕxxx(uxϕx − fx)dx

� C

∫ ∞

0

|ϕxψxϕxxx|dx+ C

∫ ∞

0

|ur
xϕxϕxxx|dx+ C

∫ ∞

0

|ρr
xψxϕxxx|dx

+ C

∫ ∞

0

|ρr
xxψϕxxx|dx+ C

∫ ∞

0

|ur
xxϕϕxxx|dx

� C(ε1 + ε)‖(ϕx, ψx, ϕxxx)(t)‖2 + Cε
1
3 ‖ϕxxx(t)‖2 + Cε

1
3 (1 + t)−

3
2 ‖(ϕ,ψ)(t)‖2.

Putting the above two inequalities into (4.36) yields

− κ

∫ ∞

0

ρϕxxxψxxdx− κ

∫ ∞

0

ρxψxϕxxxdx

� −κ d
dt

∫ ∞

0

ϕ2
xxdx− κub

2
ϕxx(t, 0)2 +

μ

8
‖ψxx(t)‖2

+ C(ε+ ε1)‖(ϕx, ψx, ϕxx)(t)‖2 + C(ε
1
3 + ε1)‖ϕxxx(t)‖2

+ Cε
1
3 (1 + t)−

3
2 ‖(ϕ,ψ)(t)‖2. (4.37)
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Further, combining (4.29), (4.30)–(4.35) and (4.37), and using (4.1), we see

d
dt

∫ ∞

0

(ψ2
x + ϕ2

xx − ψϕxx)dx+ ϕxx(t, 0)2 + ‖ψxx(t)‖2

� C(‖ϕx‖2
1 + ‖ψx‖2) + C(ε

1
3 + ε1)‖ϕxxx‖2 + Cε

1
3 (1 + t)−

3
2 ‖(ϕ,ψ)(t)‖2

+ Cε(1 + t)−2‖(ϕ,ψ)(t)‖2 + Cε
1
5 (1 + t)−

9
5 + Cε

2
5 (1 + t)−

8
5 .

Therefore, integrating the above inequality with respect to t, and using (4.26), we
obtain (4.27). This completes the proof.

Finally, we are going to establish the dissipation for ϕxxx.

Lemma 4.5. Let (ϕ,ψ) be a solution to the initial boundary value problem
(3.1)–(3.2), satisfying the conditions in proposition 3.3, then it holds that∫ t

0

‖ϕxxx(τ)‖2dτ � C(‖ϕ0‖2
2 + ‖ψ0‖2

1 + ε
1
8 ) (4.38)

for an arbitrary t ∈ [0, T ].

Proof. We first divide (3.1)2 by ρ, then differentiate formally the resultant
equality to obtain

ψtx + uψxx + uxψx +
p′(ρ)
ρ

ϕxx +
(p′(ρ)

ρ

)
x
ϕx

=
μ

ρ
ψxxx +

(μ
ρ

)
x
ψxxϕxx + κϕxxxx +

(g
ρ

)
x
,

further, multiplying the above equality by ϕxx, integrating with respect to x over
R+ and using (4.17) and ϕtx(t, 0) = 0, we have

d
dt

∫ ∞

0

ψxϕxxdx+
∫ ∞

0

p′(ϕ)
ρ

ϕ2
xxdx−

∫ ∞

0

μ

ρ
ψxxxϕxxdx− κ

∫ ∞

0

ϕxxxxϕxxdx

=
∫ ∞

0

ρψ2
xxdx+

∫ ∞

0

(μ
ρ

)
x
ψxxϕxxdx−

∫ ∞

0

(p′(ρ)
ρ

)
x
ϕxϕxxdx

−
∫ ∞

0

uxψxϕxxdx−
∫ ∞

0

ψxx(fx − uxϕx − ρxψx)dx+
∫ ∞

0

(
g

ρ

)
x

ϕxxdx.

(4.39)

First, using (4.1), (3.5), lemma 2.2 and Cauchy inequality, it is easy to obtain∫ ∞

0

(μ
ρ

)
x
ψxxϕxxdx−

∫ ∞

0

(p′(ρ)
ρ

)
x
ϕxϕxxdx

� C

∫ ∞

0

|ρxψxxϕxx|dx+ C

∫ ∞

0

|ρxϕxϕxx|dx

� C

∫ ∞

0

|(ϕx + ρr
x)ψxxϕxx|dx+ C

∫ ∞

0

|(ϕx + ρr
x)ϕxϕxx|dx

� C(ε+ ε1)(‖ϕx‖2 + ‖ϕxx‖2 + ‖ψxx‖2). (4.40)
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Next, utilizing (3.5), lemma 2.2, Sobolev inequality and Young inequality, one gets

−
∫ ∞

0

uxψxϕxxdx � C

∫ ∞

0

|ur
xψxϕxx|dx+ C

∫ ∞

0

|ψ2
xϕxx|dx

� C‖ur
x‖L∞‖ψx‖‖ϕxx‖ + C‖ϕxx‖L∞‖ψx‖2

� Cε(‖ψx‖2 + ‖ϕxx‖2) + C‖ϕxx‖ 1
2 ‖ϕxxx‖ 1

2 ‖ψx‖2

� Cε(‖ψx‖2 + ‖ϕxx‖2) + Cε1(‖ϕxx(t)‖2 + ‖ϕxxx(t)‖2). (4.41)

Similar as (4.14), (4.15) and (4.21), we have

−
∫ ∞

0

ψxx(fx − uxϕx − ρxψx)dx

� C

∫ ∞

0

|ϕxψxψxx|dx+ C

∫ ∞

0

|ur
xϕxψxx|dx+ C

∫ ∞

0

|ρr
xψxψxx|dx

+ C

∫ ∞

0

|ρr
xxψψxx|dx+ C

∫ ∞

0

|ur
xxϕψxx|dx

� Cε1‖(ψx, ψxx)(t)‖2 + Cε‖(ϕx, ψx, ψxx)(t)‖2

+ Cε
1
3 ‖ψxx(t)‖2 + Cε

1
3 (1 + t)−

3
2 ‖(ϕ,ψ)(t)‖2. (4.42)

Since

(g
ρ

)
x
∼ ur

xxx + ρr
xxxx + ρr

xu
r
xx + ur

xxϕx + ρr
xxψ + ρr

xxϕ+ ρr
xϕx + ρr

xρ
r
xϕ+ ρr

xϕxϕ

+ ur
xxψ + ur

xxψx,

similar to (4.14), (4.15), (4.21) and (4.25), we can show

∫ ∞

0

(g
ρ

)
x
ϕxxdx

� C
∣∣∣ ∫ ∞

0

(ur
xxx + ρr

xxxx + ρr
xu

r
xx)ϕxxdx

∣∣∣
+ C

∣∣∣ ∫ ∞

0

(ur
xxϕx + ρr

xϕx + ρr
xϕϕx + ur

xxψx)ϕxxdx
∣∣∣

+ C
∣∣∣ ∫ ∞

0

(ρr
xxψ + ρr

xxϕ+ ρr
xρ

r
xϕ+ ur

xxψ)ϕxxdx
∣∣∣

� C(ε+ ε1)‖(ϕx, ψx)(t)‖2 +
1
8
‖ϕxx(t)‖2 + Cε

1
3 (1 + t)−

3
2 ‖(ϕ,ψ)‖2

+ Cε
1
5 (1 + t)−

9
5 + Cε

2
5 (1 + t)−

8
5 + Cε

3
5 (1 + t)−

7
5 . (4.43)
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Finally, using integration by parts, one gets

κ

∫ ∞

0

ϕxxxxϕxxdx+
∫ ∞

0

μ

ρ
ψxxxϕxxdx

= κϕxxxϕxx|∞0 +
μ

ϕ
ψxxϕxx|∞0 − κ

∫ ∞

0

ϕ2
xxxdx−

∫ ∞

0

μ

ρ
ψxxϕxxxdx

+
∫ ∞

0

μ

ρ2
ρxψxxϕxxdx

� Cϕxx(t, 0)2 + C(κϕxxx(t, 0) +
μ

ρ(t, 0)
ψxx(t, 0))2 − κ

2
‖ϕxxx‖2

+ C‖ψxx‖2 + C(ε+ ε1)‖ϕxx‖2

� Cϕxx(t, 0)2 − κ

2
‖ϕxxx‖2 + C‖ψx‖2

1 + C(ε+ ε1)‖ϕxx‖2, (4.44)

here we have used

(
κϕxxx(t, 0) +

μ

ρ(t, 0)
ψxx(t, 0)

)2

� Cψx(t, 0)2 � C‖ψx‖2
1,

which is derived by (3.1)2, (3.2) and lemma 2.2.
Therefore, insertion of (4.40)–(4.44) into (4.39) yields

d
dt

∫ ∞

0

ψxϕxxdx+ ‖ϕxxx‖2 + ‖ϕxx‖2

� C‖ψx‖2
1 + Cϕxx(t, 0)2 + Cε

1
3 (1 + t)−

3
2 (‖ψ‖2 + ‖ϕ‖2)

+ Cε
1
5 (1 + t)−

9
5 + Cε

2
5 (1 + t)−

8
5 + Cε

3
5 (1 + t)−

7
5 ,

further, integrating the above inequality with respect to t, and using (4.26) and
(4.27), we obtain (4.38). This completes the proof.

Proof of proposition 3.3. Summing up the estimates (4.26), (4.27) and (4.38),
we immediately have (3.6).

5. The proof of theorem 1.1

This section is concerned with the proof of our main theorem. From theorem 3.1, we
know that there exists a unique classical global solution (ρ, u)(t, x) to the problem
(1.1)–(1.4), satisfying (1.7)–(1.9). Therefore, to complete the proof of theorem 1.1,
we need only to investigate the large-time behaviour of the solution (ρ, u)(t, x) to
the initial boundary value problem (1.1)–(1.4) as time tends to infinity.

The completion of the proof of theorem 1.1. Based upon the energy estimates
derived in the previous sections, we will complete the proof of theorem 1.1. To this
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end, we first prove that

sup
x∈R+

|(ρ− ρr, u− ur)(t, x)| → 0, (5.1)

namely,

sup
x∈R+

|(ϕ,ψ)(t, x)| → 0, (5.2)

as t→ ∞.
This is obvious suppose that we have proved the following assertion

lim
t→+∞ ‖(ϕx, ψx)(t)‖ = 0. (5.3)

As a matter of fact, if it were true, we infer from the Sobolev inequality that

‖(ϕ,ψ)‖L∞ → 0, as t→ +∞. (5.4)

Hence, it remains to show (5.3). To this end, from the relations (4.17) and (4.39),
and corollary 4.3, lemmas 4.4 and 4.5, one can show that∫ ∞

0

(‖ϕx‖2 + ‖ψx‖2
)
dτ < +∞, (5.5)

and that ∫ ∞

0

∣∣∣∣ d
dt

‖ϕx‖2

∣∣∣∣ dτ < +∞,

∫ ∞

0

∣∣∣∣ d
dt

‖ψx‖2

∣∣∣∣ dτ < +∞. (5.6)

Then (5.3) follows from inequalities (5.5)–(5.6). Consequently, from (5.1) and (iv)
of lemma 2.2, we prove (1.10) and complete the proof of theorem 1.1.

Acknowledgements
We are grateful to the anonymous referees for valuable comments which greatly
improved our original manuscript. Li is supported in part by the National Science
Foundation of China (Grant No. 11671134).

References

1 D.-F. Bian, L. Yao and C.-J. Zhu. Vanishing capillarity limit of the compressible fluid
models of Korteweg type to the Navier-Stokes equations. SIAM J. Math. Anal. 46 (2014),
1633–1650.

2 D. Bresch, B. Desjardins, C.-K. Lin. On some compressible fluid models: Korteweg
lubrication and shallow water systems. Comm. Partial Differ. Equ. 28 (2003), 843–868.

3 H. Cai, Z. Tan and Q.-J. Xu. Time periodic solutions to Navier-Stokes-Korteweg system
with friction. Discrete Contin. Dyn. Syst. 36 (2016), 611–629.

4 F. Charve and B. Haspot. Existence of global strong solution and vanishing capillarity-
viscosity limit in one dimension for the Korteweg system. SIMA J. Math. Anal. 45 (2014),
469–494.

5 Z.-Z. Chen. Asymptotic stability of strong rarefaction waves for the compressible fluid
models of Korteweg type. J. Math. Anal. Appl. 394 (2012), 438–448.

6 Z.-Z. Chen, X.-J. Chai, B.-Q. Dong and H.-J. Zhao. Global classical solutions to the one-
dimensional compressible fluid models of Korteweg type with large initial data. J. Diff.
Eqns. 259 (2015), 4376–4411.

https://doi.org/10.1017/prm.2021.32 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.32


778 Y. Li, J. Tang and S. Yu

7 Z.-Z. Chen, L. He and H.-J. Zhao. Nonlinear stability of traveling wave solutions for the
compressible fluid models of Korteweg type. J. Math. Anal. Appl. 422 (2015), 1213–1234.

8 Z.-Z. Chen and Y.-P. Li. Asymptotic behavior of solutions to an impermeable wall problem
of the compressible fluid models of Korteweg type with density-dependent viscosity and
capillarity. SIAM J. Math.Anal. 53 (2021), 1434–1473.

9 Z.-Z. Chen, Y.-P. Li and M.-D. Sheng. Asymptotic stability of viscous shock profiles for the
1D compressible Navier-Stokes-Korteweg system with boundary effect. Dyn. Partial Differ.
Equ. 16 (2019), 225–251.

10 R. Danchin and B. Desjardins. Existence of solutions for compressible fluid models of
Korteweg type. Ann. Inst. Henri Poincaré Anal. Non linéaire 18 (2001), 97–133.
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