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In this study, we are concerned with the asymptotic stability towards a rarefaction
wave of the solution to an outflow problem for the Navier-Stokes Korteweg equations
of a compressible fluid in the half space. We assume that the space-asymptotic states
and the boundary data satisfy some conditions so that the time-asymptotic state of
this solution is a rarefaction wave. Then we show that the rarefaction wave is
non-linearly stable, as time goes to infinity, provided that the strength of the wave is
weak and the initial perturbation is small. The proof is mainly based on LZ2-energy
method and some time-decay estimates in LP-norm for the smoothed rarefaction
wave.
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1. Introduction

In this article, we are concerned with the models of compressible fluids endowed
with internal capillarity, which are supposed to govern the motion of compressible
fluids such as liquid vapour mixtures. The model (called as the compressible Navier-
Stokes-Korteweg equations) originates from the work of Van de Waals [46] and
Korteweg [29] more than one century ago, and was actually derived in its modern
form in the 1980s using the second gradient theory, see for instance [11]. The
one-dimensional isentropic compressible Navier-Stokes-Korteweg equation can be
described by the following system in the Eulerian coordinate

pe + (pu)e = 0,

(1.1)

Here, p,u are unknown functions in ¢ and x, which stand for the density
and the velocity, respectively. The time and space variables are ¢,z € RT :=
{z € R: x> 0}. The function p(p) is the pressure defined by p(p) = kp”, where
k> 0 and v > 1 are the gas constants. The positive constants u, x denote, respec-
tively, the viscosity and the capillary coefficient, and & is also called Weber number.
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One can see easily that when k=0, system (1.1) is reduced to the classical
Navier-Stokes equations for compressible fluids.

Recently, the compressible Navier-Stokes-Korteweg equation has attracted a lot
of attention of physicists and mathematicians because of its physical importance,
complexity, rich phenomena and mathematical challenges. There are many studies
on the global existence and uniqueness of solutions to the isentropic compress-
ible Navier-Stokes-Korteweg equations, and we can refer to [2-4, 6, 10, 13-18,
21, 30] and some references therein. In what follows, let us focus on the large-
time behaviour of solutions to the isentropic compressible Navier-Stokes-Korteweg
equations, which is related to our interest. When the initial data are small pertur-
bation near the non-vacuum constant states, Wang and Tan [47], Tan et al. [43],
and Tan and Wang [42] established the optimal decay rates of the global classical
solutions and the global strong solutions for the isentropic compressible Navier-
Stokes-Korteweg equations, respectively. Tan and Zhang [44] further obtained the
decay rates of more derivatives of solutions when the initial perturbation also is in
the H=*(R?) (negative Sobolev norms) with 0 < s < 3/2. Moreover, for the initial
value problem of the isentropic compressible Navier-Stokes-Korteweg equations,
the large-time behaviour around nonlinear wave patterns such as the stationary
wave, discontinuous wave and the rarefaction wave has been studied. More precisely,
the stability of stationary states of the multi-dimensional isentropic compressible
Navier-Stokes-Korteweg equations was studied by Li [32], and Wang and Wang
[48] in the case with an external force, respectively, under the assumption that the
states at far fields +oo are equal. Later, Chen [5] and Li and Luo [33] discussed
asymptotic stability of the rarefaction waves for the one-dimensional compressible
fluid models of Korteweg type with different gas states at far fields, respectively.
Chen et al. [6] also showed asymptotic stability of the rarefaction waves for the one-
dimensional compressible Naviver-Stokes-Korteweg equation with large initial data.
Li and Zhu [34] further showed asymptotic stability of the rarefaction wave with
vacuum for the one-dimensional compressible Navier-Stokes-Korteweg equations.
Chen, He and Zhao [7] studied nonlinear stability of travelling wave solutions for
the one-dimensional compressible Navier-Stokes-Korteweg equations with different
gas states at far fields.

For the initial-boundary value problem, Tsyganov [45] discussed the global exis-
tence and time-asymptotic behaviour of weak solutions for an isothermal model
with the viscosity coefficient u(p) =1, the capillarity coefficient x(p) = p~> and
large initial data on the interval [0, 1]. The global existence and exponential decay
of strong solutions with small initial data to the Korteweg system in a bounded
domain of R™ (n > 1) were also obtained by Kotschote in [31]. Another interesting
and challenging problem is to study the stability of the compressible Navier-Stokes-
Korteweg equation in the half space with different gas states at boundary and far
field. Recently, Chen, Li and Sheng [9] proved the nonlinear stability of viscous
shock wave for an impermeable wall problem of the one-dimensional compressible
Navier-Stokes-Korteweg equation with constant viscosity and capillarity coefficients
and small initial data. Chen and Li [8] discussed the time-asymptotic behaviour
of strong solutions to the initial-boundary value problem of the one-dimensional
compressible Navier-Stokes-Korteweg equation with density-dependent viscosity
and capillarity on the half-line R*, and showed the strong solution converges to
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the rarefaction wave as t — oo for the impermeable wall problem under large
initial perturbation. Hong [19] and Li and Zhu [35] showed the existence and
stability of stationary solution to an outflow problem of the one-dimensional com-
pressible Navier-Stokes-Korteweg equation with constant viscosity and capillarity
coeflicients, respectively.

In this article, we shall investigate large-time behaviour of the solution to an
initial boundary value problem for the one-dimensional Navier-Stokes-Korteweg
equations (1.1) on the half space RT, thus we add the following initial data

(p,u)(0,z) = (po,up)(z) for z > 0, and irng po(z) >0, (1.2)
EaS

far-field states at the infinity z = +oo

lim (pa ’U,)(t,.’E) = (P+,U+), for any ¢ = Oa (13)

r——+00

and also the boundary condition at x = 0
u(t,0) = up, p(t,0) =0, for any ¢t > 0. (1.4)

Here py, uy and u;, are constants satisfying p; > 0. And po(z), ug(z) are given
functions.

We are interested in the so-called outflow problem. For this case the boundary
data of u is taken as negative value, i.e.,

up < 0.

This means physically that the outflow exits constantly through the wall. Moreover,
we also need p,(t,0) = 0 for the third-order capillary term in (1.1). We note that
for the case that u, > 0, the situation is different and the corresponding problem
is called an inflow problem. In that case, for the well-posedness, one must impose
one more boundary condition at = 0, namely we must consider a set of boundary
conditions of the form

,O(t,O) = Pb, U(t,O) = Up, pm(t70) = 0; t 2 0;

with pp > 0 and u, > 0.

Related literature. There has been a huge number of papers in the literature on
the large-time behaviour of the solutions for the initial-boundary value problem to
the compressible Navier-Stokes equations. In this type of problems, the influence of
viscosity is expected to emerge not only in the smoothing effect on discontinuous
shock wave but also in the forming of a boundary layer. More precisely, Matsumura
and Mei [37] considered the stability of viscous shock wave to the one-dimensional
Navier-Stokes equation with a Dirichlet boundary condition. Matsumura and Nishi-
hara [38] showed global asymptotics towards rarefaction waves for the solution of
the viscous p-system with boundary effect. Matsumura [36] gave, in 2001, a classi-
fication of the large-time behaviour of the solutions in terms of the far-field state
and boundary data. Kawashima, Nishibata and Zhu [26] investigated the asymp-
totic stability of the stationary solution to an outflow problem of the compressible
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Navier-Stokes equations in the half space. Matsumura and Nishihara [39] stud-
ied nonlinear stability of the rarefaction wave and stationary solution to an inflow
problem in the half space for the isentropic compressible Navier-Stokes equations.
Huang, Matsumura and Shi [24] obtained the nonlinear stability of viscous shock
wave and boundary layer solution for an inflow problem of the isentropic com-
pressible Navier-Stokes equations. Recently, there are lots of references about the
topic for the isentropic and full Navier-Stokes equations, the interested readers are
referred to, e.g., [12, 20, 22, 23, 25, 27, 28, 40, 41] etc.

We now turn back to the outflow problem. The purpose of this paper is to inves-
tigate the large-time behaviour of the solution to the outflow problem (1.1)—(1.4).
Motivated by [1, 4] and [28, 36], we believe that as t — oo, the solution (p,u) to
the above problem (1.1)—(1.4) is asymptotically described by one of the following
waves, such as a viscous shock wave, a stationary wave, a rarefaction wave or the
superposition of a stationary wave and a rarefaction wave, which can be determined
by the space-asymptotic conditions (1.3) and the boundary data u,. The stability
of a stationary wave has been investigated in [19, 35], respectively. In this paper,
we are interested particularly in the case that the corresponding time-asymptotic
state is rarefaction wave. For this, we first introduce the corresponding compressible
equation without viscosity and capillarity

pe+ (pu), =0,
{(p“)t + (pu® +p(p))s = 0. (1.5)

It has two eigen-values:

A(p,u) =u—C(p), Azp,u) =u+Cl(p),

with C'(p) = v/ K~yp¥~!. Further, let us introduce (ps,u.) by
P+
Ue = —C(ps), Up — Uy = / C(s)s tds.

Then from the complete classification of the asymptotic states of the outflow prob-
lem to the compressible Navier-Stokes equation in [27, 28, 36], we know that
when either —C'(p1) < uy <0 and u, < up < ug, or up >0 and u, < up < 0, we
can choose some p_ > 0 such that (v_,up) € Ry (Rz is the 2-rarefaction curve,
defined by Ry :u—up = — [ VEyy~ (=12 dy for v_ > v), here v_ = 1/p_ and
v = 1/p. That is, there exists a 2-rarefaction wave (p%, u?)(z/t) with (A\2(p,u) > 0),
which connects (p_, up) and (p4,uy ), i.e., (pft, u’?)(2/t) satisfies the corresponding
Riemann problem:

Pt + (pu)z = 0,
(pu)s + (pu? +p(p)). = 0, "
(pau)(t:(),I): (pi’ub)’ $<07

(p+,ug), x>0.

Before stating our results, let us first give some notations. Throughout this paper,
C denotes a universal positive constant which is independent of time ¢ and may
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vary from line to line. LP(RT)(1 < p < c0) are the spaces of measurable functions

whose p-powers are integrable on RT, with the norm | - ||z» = ([ | - [Pdz)!/?. For
the case that p = 2, we simply denote || - |2 by || - ||. And L>®(RT) is the space of
bounded measurable functions on R*, with the norm || - ||« = ess sup,cp+ |- |. For

a nonnegative integer k, H* = H*(R") denotes the usual L2-type Sobolev space of
order k. We write || - ||, for the standard norm of H*(R*). In addition, we denote by
C([0,T); H*(R*)) (resp. L?(0,T; H*(R*))) the space of continuous (resp. square
integrable) functions on [0, 7] with values taken in a Banach space H*(R™).

The main purpose of this article is to investigate the time-asymptotic stability
of the rarefaction wave (p%,uf*)(x/t), and the main results are stated as follows.

THEOREM 1.1. Assume that uy,, u, and the infinite states satisfy that up <0,
and that either (i) —C(ps+) <uy <0 and u, <up < ug, or (it) ugp >0 and
us < up < 0. Suppose furthermore that (po — py,ug —uy) € H*(RT) x HY(RT)
such that € (is given by in (2.3)) and ||po — p+ |2 + ||uo — |1 are suitably small.
And the compatibility conditions ug(0) = up and po,(0) = 0 are satisfied. Then there
exists a unique global strong solution (p,u)(t,xz) to the problem (1.1)—(1.4) such that

p—pfu—u € C([0,00); L*(RT)), (1.7)
Pas Pas Us € C([0, 00); LQ(R+)) N LQ([O» 00); LQ(R+))7 (1.8)
Przzs Uzz € L2([0,00); L2(RT)). (1.9)

Moreover, we assert that as t — oo, the solution (p,u)(t,x) converges to the
rarefaction wave (p®,uf?)(x/t), that is

lim sup [(p,u)(t,z) — (pR,uR)(§>‘ =0. (1.10)

t—o0 zeR+

REMARK 1.2. In the present article we consider only that the time-asymptotic state
of the out-flow problem to one-dimensional compressible Navier-Stokes-Korteweg
equations is rarefaction wave. The study of the stability of other wave pattern such
as a viscous shock wave or the superposition of a rarefaction wave and a stationary
wave will be carried out in other papers by the authors. Further, we try to give
the complete classification of the asymptotic states of the outflow problem to the
compressible Navier-Stokes-Korteweg equations as [27, 28, 36] for the compressible
Navier-Stokes equation. Moreover, we should mention that the corresponding in-
flow problem is surely more difficult, thus more interesting. Finally, we also mention
that here we only focus on small perturbation of the initial data, in fact, it is
interesting and plausible that we can consider the corresponding results for large
perturbation. These are expected to be done in the forthcoming papers.

This article is follow-up study of [8, 9, 35]. Now we give main ideas and arguments
of the proof for theorem 1.1. Applying L?-energy method and some time-decay
estimates in LP-norm for the smoothed rarefaction wave as in [28], we prove the
asymptotic stability of the rarefaction wave in the case that the initial data are
a small perturbation of the rarefaction wave. The key ingredient in the proof of
theorem 1.1 is to deduce the a priori estimates. The main difficulties are as follows.
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The first one is the occurrence of the third order dispersion term. The second is that
it is not easy to control the boundary terms ¢.,.(¢,0), Qrez(t,0) and 1, (¢,0). To
overcome the first difficulty, we need more regularities for the density and smooth
rarefaction wave. We also note that the basic energy is obtained with the help
of higher order estimates. For the second difficulty, we can introduce ¢, (t,0)?
by the second equation of (3.1) and integration by parts. Moreover, we can con-
trol (K@gze(t,0) + utbez(t,0)/p(t,0))? by C||v.(t)]|?, which is derived by (3.1)2 and
lemma 2.2. These are the main novelty of the present paper.

The rest of the article is organized as follows. In §2, we first review a smooth
approximate rarefaction wave which tends to the rarefaction wave fan uniformly
as the time t tends to infinity. Then we reformulate the original problem in terms
of the perturbation variables in § 3. §4 is the key part of this article, in which we
will establish the a priori estimates by the elaborate energy estimates. Finally, we
complete the proof of theorem 1.1 in § 5.

2. Smooth rarefaction wave

Since the rarefaction wave (pf,u®)(x/t) is not smooth, we need to construct a
smooth approximation of the rarefaction wave (p”,u")(t,z). As [38], we start with
the Riemann problem on R = (—oo, +00) for the typical Burgers equation:

wy + ww, = 0, (2.1)

with initial data

- <0
W= (2.2)
wy, x>0,

w(0,x) = wy(z) = {
where wy are given by w_ = up + C(p—) > 0 and wy = uy + C(p4) > 0, satisfying
w_ < wy. It is well known that the Riemann problem (2.1)-(2.2) has a unique
rarefaction wave solution:

w_, x<w-_t,
T T
wR(;) = 7 w_t < x < wit,

w4, T > w+t.

Then we can define the functions p(¢, z) and uf(t, z) by

NP ult) = uf 4 C(pR) = wi(1 +1,2),
du®  C(p")

dpR o pR

It is easy to check that pf(¢,z) and uf(t, ) satisfy

{pt + (pu)z =0,
(pu): + (pu* +p(p))e =0
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with

(p,u)(0,z) = {(P,ub), z <0,

(p+au+)7 x > 0.

Now we approximate the rarefaction wave w’t(z/t) by the solution of the following
Cauchy problem:

w + ww, =0,

0(0,2) = w (@) = {w z <0, (2.3)

w_ + Cyw fo*” ylevdy, = >0,

where W =wy —w_, C; >0 is a constant satisfying: C|, f0+°° 29e7?dz = 1 with
q = 10 being a positive constant, and € < 1 is a positive constant to be determined
later. Then the properties of w(t, ) can be summarised in the following lemma.

LEMMA 2.1. (See [8, 24]) Let 0 < w_ < w.., then the Cauchy problem (2.3) admits
a unique global smooth solution w(t,x) satisfying:

(i) w <w(t,z) <wy, wy >0, x=0,t=0.
(i) For any p(1 < p < +00), there exists a constant Cp, 4 > 0 such that fort > 0,

. 1
lwe ()| 1» < Cp,qmin el=n,

||wwzx (t)HLp < Cp’q min

{@ w
\\wm<t>||Lp<cp,qmin{ 0¥, e —%+%t—1+%},
{@e*5, @

||wxx$$(t)||[/l) g Cp,q min 6 % % 7%4’%2{.71«#%}.

(#9i) When x < w_t, it holds that
w(t,x) — w_=wy(t, ) = Wer(t, &) = Wgape(t,x) = 0.

(iv) lim sup‘w (t,x) — wh(t, x)’ = 0.

t——+oo zER

Now, we define the smooth approximate rarefaction wave (p",u")(t,z) of
(p®,uft)(x/t) as follows:
Ao(p" u") = uft + C(p") = w(l + t,z),
du” _ C(p")

dpr - pr

Therefore, from lemma 2.1, we know that (p",u")(¢, z) has the following properties:

LEMMA 2.2. Let § = |p+ — p—| + |uy — upl, the smooth approzimation (p™,u")(t, x)
of (p%,uf) has the following properties:
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() ul 20, |ul|<Ce, Vt=0,22>0.

(#) For any p with 1 < p < +o0, there exists a constant Cp g > 0 such that

165 15) (D)l o < Cg min{éel—%, 5F(L+1)
. —1,41 +1
1P ) ()l < Cpgmin {35, 3" 340 (1 4+1) 7140 |,

|| (p;rzzv u;zmm) (t) ||L17 < CP»‘I min

e
1P ) () o < Cpgmin {055, 5722 H(Ht) Hih
(o<

(@1) (p",u")(t,z)
j=1,2,3.

= ('U*7u ),ay (p U )(t.’L‘)

T<A2(p—up)t T<A2(p—,up)t

(0" u)(t,2) = (o™ ) ()] = 0.

; li
@) tm_op

3. Reformulation of the problem

Since it is convenient to regard the solution (p, u) as the perturbation of (p”,u"), we
are going to reformulate the original problem in terms of the perturbation variables
in this section. First, we define

Qﬁ(t, .’ﬂ) = p(t’x) - pr(t,:L')7 ¢(ta$) = u(ta (E) - ur(t’$)'

Then, the original problem (1.1)—(1.4) can be rewritten as

{@H‘P%-FU%Zﬂ (3 1)
p(he +uthe) + ' (p) 0o = thzz + KPpPrae + g ‘

with the initial boundary conditions:

((p,’(/J)(O,LL‘) = (p0($> - pr(07 J:),uo(a:) - ur(()’x),

¥(t,0) =0, (3.2)
(pm(t, O) = Pz (tv O) - p;(t O) =0,
where
f=—uzp—pyo, (3:3)
and
T r ) ., T () o (TN T r 4
9= Ml KPP + = P00 ' (p) — P (p")]pr — prous. (3.4)

Therefore, we are now in a position to restate our main results in terms of the
perturbed variable (¢, %)(t, x) as follows.
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THEOREM 3.1. Suppose that all the assumptions of theorem 1.1 are met. Then there
exists a unique global solution (p,1)(t,z) to problem (3.1)—(3.2), satisfying

@,1 € C([0,00); L*(RY)),
P, Paz, Uz € C([0,00); L*(RT)) N L2([0, 00); L*(RT)),
(szmql}mm S Lz([oa OO);Lz(R+))7

and

lim sup (¢, ¢)(t,2)| = 0.

t—00 peR+

To prove this theorem, we shall employ the standard continuation argument based
on a local existence theorem in the following lemma and on a priori estimates stated
in the following proposition. First, the local existence of the solution (¢, 1) to the
initial-boundary value problem (3.1)—(3.2) is proved by the standard method, for
example, the dual argument and iteration technique. For details, we refer [17, 18,
31, 45].

LEMMA 3.2 Local existence. Assume that the conditions in theorem 1.1 hold. Then
there exists a positive constant Ty such that the initial-boundary value problem
(3.1)—(3.2) has a unique strong solution (p,¥)(t, ) that has the following properties:

¢(t,z) € C([0, To]; H*(RY)), 4 (t, ) € C([0, To]; H' (RY)),
wu(t ) € L2([0, Tol; H*(RY)), u(t,x) € L*([0,To]; H' (RT)),

inf t,xz) > 0.
te[o,zl“ﬁ,xeR+p( x)

Next, we prove the following a priori estimates in Sobolev spaces, which are
stated in proposition 3.3.

PROPOSITION 3.3. Let (p,1) be a solution to the initial-boundary value problem
(3.1)—(3.2) in a time interval [0,T], which has same regularities as in lemma 3.2.
Then there exist constants €1 > 0 and C' > 0 such that if

N(T) := sup [[lo(t)ll2 + l@)[l1] < e, (3.5)
t€[0,T]

then the following estimate holds for any t € [0,T]
t
le@)3 + ||¢(t)H?+/O (lpa (D13 + 192 (DI + (2, 002)(7,0)[?) dr
< Olllwoll3 + lbollf + &) (3.6)

4. A priori estimate

This section is devoted to the derivation of a priori estimates for the unknown
function (p,9)(t,z) and their derivatives, we then show that proposition 3.3 is
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valid. To derive these a priori estimates, we assume that there exists a strong
solution (¢, v)(t, z) to problem (3.1)—(3.2), such that

o(t,z) € C([0,T); H*(RT)), (t,x) € C([0,T]; H(RT)),
(Pa:(t,$) € LQ([O7T];H2(R+))7’¢$(?§,$) c L2<[07T};H1(R+))7
(tam)é%él,g“]xk+(<‘0 +p")(t,z) >0

for any T > 0. Indeed, we may assume that (p,1)(t, z) is a classical solution from
the standard mollifier arguments. From (3.5), one can see easily that there exist
two positive constants ¢ and C' such that

0<e<p<C, |u<C fortel0T], (4.1)

since p” > ¢ > 0 for a positive constant c. To this end, we introduce

q)(p7 pr) _ /f) p(n) ;zp(pr)dn’

combining this with (4.1) yields
cp? < @(p,p") < O, (4.2)
Next, from (3.1), the straightforward but tedious computations give
1 2 T 1 2 T T
[p(iw +®(p,p ))L + [pU(iw +®(p,p") + (p(p) — p(p ))w - W%L

= — b2 — [p? +p(p) — p(p") — D' (pP)luly + KpPaaath + puul, 1 + ffppimw(- |
43

Moreover from (3.1);, we also have

Hp%m¢ = H(p(pzww)x - H(pw)ﬂpa:w
K(pPrath)e + KPza (Pt +u @z + uip)

K

K K
H(ﬂ@ww"b)z + K((pa:(pt)m - ( @i)t + 7(90?01[)30 - 7“’;()03: + ’W;SOSDM

2 2 2
K
= (F»wmw + K@zt + §ur<p§ + muQ@%)
xT
K 3K
= (P2 = SULPE — KU,

which together with (4.3) implies

1 . K
[p(§w2 + ®(p,p )) + 590?0L + Riy + Ry
T (s 3K r, 2 T
= iuuawi + K‘ppwa:ww - 7ua:<pa: — KUy PP (44)
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here
1 ‘s ‘s
Ry = pu (2¢2 + @(p, p )) + (p(p) — p(p"))Y — pabas
K r 2 r
— KPpPrat) — Kpzpy — U Pr KUz PPa,
and

Ry = [p0® + p(p) + p(p") — P (p)plus, + pap?.

Then we arrive at

LEMMA 4.1. Assume that (@,v)(t,x) is a solution to (3.1)—(3.2), satisfying the
conditions in proposition 3.3, then the following estimate holds

le@OI? + I @1 + lea ()] +/0 (oo (DII? + (7,0)*)dr

t
< Clleollf + llvoll® + Ces) + Cle + 5)/0 la (T)II2dr (4.5)
for allt €10,T7.

Proof. Integrating (4.4) with respect to = over (0, 00) yields

d [~/1 , o
— — P |d d
dt/o (zpw +p> x+R1z:0+/0 Rydx

> T a 3I<;/ T T
0
First, noting (4.1) and using (4.2), we easily obtain
* /1
[ (o0 +0) ao > cllel? + 117, (4.7
0
and
Rilsmo = —pu®(p, p")lo=o > cio(t,0)? (4.8)
with the help of ¥(¢,0) = 0 = . (t,0) and up < 0. Similarly, we have
Ry < C(IW/uzell® + IV |* + 1/ uh o + 1) (4.9)
Further, combining (4.6)—(4.9) and using (4.1), we have
d oo
@/, (¢* + 9% + gR)da + |V urel® + (1 ure®

+ [9all® + |/ uheall® + ¢(t,0)?

< C’ / u;mwdx’ + C’ / p;mﬂ/}dx’ + C’ / u;goid:c’ + C’ / ur opgde|.
0 0 0 0
(4.10)
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Now let us estimate the terms on the right-hand side of (4.10). First, we employ
Holder inequality, the Sobolev inequality

Il < V2IFIENfNE (4.11)

for any f € HY(R"), lemma 2.2 and Young inequality to obtain
o0 1 1
| [ tewaa] < Il s < CIOIE Il o
1 2 2 r %
< 1l + ClIIIE lluge I 2,

1 2 2 r é r %
< 1l + CllE luge || 1zl 24

N

1 1 _z 2
Jel® + Ces (L4172 g5

N

1 1 21 1 21
FI0el? + CeT(L+ )7 [y + Ce5(1+ )70, (4.12)
Similarly, we have
>~ T 1 1 T
| [ practida] < Ol 10 e
0
1 2 20 r %
< g1l + Cll1E [l prall 7
1 1 _16 2
< sl + Ces (L4153
1
< gl + CAQ+ 00 > + Cex (1475, (4.13)
Next, from lemma 2.2, it is easy to obtain
| [ utas < celeal (414)
0
Finally, using Holder inequality, lemma 2.2 and Young inequality, we have

> 1 5
|| tppuda] < Ozl e |

1 _3
< O3 (1+0) 74|l el
< Ce3 |lpu|? + Ce5 (1+ )2 o] %, (4.15)

Therefore, combining (4.10), (4.12)—(4.14) and (4.15), and integrating the resultant
inequality with respect to ¢, then implies (4.5) provided that Cet < % and Ces < i.
This completes the proof of lemma 4.1.

Next, we derive the estimate for ¢, and @,,.
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LEMMA 4.2. Assume that (o,v)(t, ) is a solution to (3.1)—(3.2), satisfying the
conditions in proposition 3.3, then the following estimate holds

1
ezl < Cllipolld + llol® + Ce¥) (4.16)
for all t € [0,T].
Proof. We first differentiate formally (3.1); in z to obtain
Gto + Uz + PUoz = fo — Ppthe — UpPe — 20505 (4~17)

Then multiplying above equation by p%gom, and integrating the resulting equality
with respect to x over RT by parts, one has

rd [ @i *1 <, e
-— —d - dzx = —d 4.18
2t ), m+/0 pwm% z /O fi 2 (4.18)

with the help of ¢,(¢,0) = 0 and (1.1)1, here
T 1 1 T
fl = fz - Pz% - 5%:%: + 5“x@z~

Moreover, multiplying (3.1)2 by %(pw, and integrating the resulting equality with
respect to x over RT by parts, and using 1(¢,0) = ¢, (¢,0) = 0 and (3.1)1, we have

o0

d (o) / o0
— Prpda +/ M@idx + f%/ @5, da
dt Jy 0 p 0

- / e + / 9 puda + / (0t + upe — f)da
o P o P 0

which together with (4.18) yields

d o0 oo / o0
G| (et rve)ans [ p(p)soim/ #2pda
dt Jo \2p o P 0

=/ %fl@wdx‘i'/ g%dwr/ Vo (P + upy — f)da. (4.19)
o P o P 0

Further, using (4.1), we have

d [ o
5/0 (2 + o)z + [loa (D7 + [ ar(DI* < Clla®)> +C > L, (4.20)
=1

where

L = / %%df‘ + ‘/ Sﬁi%dx‘,
0 0

I, = / u;goida:‘—&—’/ Prprp b de
0 0

)

13:/ UZszdx‘Jr’/ Ipéxwxdx‘,
0 0

L= [ wevda| | [ prwvada] | [ wivgada|+ | [ pppads
0 0 0 0

9
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and
I = ’/ u;wgawdm‘ + ‘/ pgmgoxdx‘.
0 0

In the following, let us estimate I; — Iy and I5. First, from Young inequality and
(3.5), it is easy to obtain

1
L < Ol + glleall® + Cllewlos(leal” + e ]?)

1
< Cl® + gllea @I + Cenll(pa, va) )1 (4.21)
Similar as (4.14) and (4.15), we conclude

I < Ce(lea @I + 1211, (4.22)

and
Iy < Ce5lipg || + Ce5 (14 1) 3| (10, 9) ()| (4.23)
Finally, using lemma 2.2, Holder inequality and Young inequality, we have
1 3
T4 < Cllug || poo uz ] Lo (el ¢zl + 11122 )

+ Cllonll o lln 2o (lellllonl + o111
< Ot ([loa ()1 + I (B)]2) + Ce (1 + )2 | (0, 9) (1) %, (4.24)

and

]' T T
1 9 1 9 2 _8
< gl + Ce5(1+8)75 + Ced(1+14)75. (4.25)

Therefore, insertion of (4.21)-(4.25) into (4.20), and integrating the resultant
inequality with respect to t and using (4.5), yields (4.16) if Cei < % and Ce3 < i,
and €1 is assumed sufficiently small. This completes the proof of lemma 4.2.

With lemmas 4.1 and 4.2 in hand, we can show the fundamental energy estimate.

COROLLARY 4.3. Assume that (o, 1) (t, z) is a solution to (3.1)—(3.2), satisfying the
conditions in proposition 3.3, then it holds that

le®1F + v )2 +/O (1 (M + leaOIF + @(7,0)*)dr

< C(lleol? + [0l + %) (4.26)
for any t € [0, 7).

Next, let us derive estimates for the derivatives of unknowns, i.e., .,
and .
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LEMMA 4.4. Assume that (o,v)(t, ) is a solution to (3.1)—(3.2), satisfying the
conditions 1 proposition 3.3, then it holds

”wz(t)||2 + ”‘Pzz(t)”2 + /0 (||¢M(T)||2 + Paa (T, 0)2)dT

t
Clllpoll + Il +4) + O(ed +20) [ Nipama(mlPar — (42)
0

for allt €10,T7.

Proof. Multiplying (3.1)2 by —,, and integrating the resultant equal over R
with respect to x, we have

1d

* 2 > 2

= 7’%/ (P%mlbm + pxd’m@xzz)dx + / puwxwxwdx
0 0
00 00
+ / P (P)putzadr — / Gud
0 0
00 /
g H pp
- / PaVz |:7 + — Yoz — ( )S% - u"/}m:| dx
0 P P P

1 o0
~5 | ORevs s il (1.25)

here we have used

o0 d o0
—/ PUethaadr = —pipihy |67 +2dt pvadx

0

1

: | pvzass / Y

o0 5 o0
=22 / putde =5 [ putat [ pibda

and 1¢(t,0) = 0, (1.1); and (3.1)2. On the other hand, note that

thD.L.L = (@xlw)t - (w(ptz)w + %;%m

and

o0
2/ PrzePredT = _<pxw(ta0)2>
0
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then multiplying (3.1)2 by —(2up/p)@ze, and integrating the resulting equality over
R* with respect to z, and using (4.17) and ¢, (¢,0) = 0, we have

d oo
dt Jo

o0 /
= —2ub/ [g + ﬁwm _ P soz} Pradr
p P p

—2upt) P dr — KUpPs (T, 0)2

0
+ 2uy, %(fr — Pz — p;d’?" - u;Sﬁr - 2‘Pm1/)m)dxa
0
which together with (4.28) yields

d [>*/1 >
= (pﬁ—mw%gmwu/¢@M—wwmmw

00 00
= _'%/ (p(pzxmwmw + pwww@azww)dx + / [pu"/]w + p/(P)S% - 2ub¢w]¢mazdx
0 0
00 / 1 o
- 2ub/ |:uwwa: - p(p)(Pa::| (pa:wdx - 7/ 1/’5([”% + ULy + pur + up;)dl‘
o LP P 2 Jo
oo 00 g
- / GYuadr — 2uy, / =pzpde
0 o P
> g, n P(p
- / p:v"/}:c |: + *'(/)wac - ( )9090 - U%} dx
0 P P P

+ 2“1)/0 '@/Jz(f:r — Pyt — Uppr — 2@m"/}x)dx‘ (4-29)

First, from (4.1) and the Young inequality, one has

| e+ 501 er = 2ot < Kliaa 01 + Cllrn )OI, (430)
and

Next, using (4.1), (3.5), lemma 2.2, and the Sobolev and Young inequalities, we
have

1 oo
-3 / U2 (P + ups + pu” + upl)da
0

<cl [ wtdalecl [ phutdal el [ uutas w0 [ pavial
0 0 0 0
< Ol 2 + Clllpilooe + =)Wl + Cllpa oo 112
< Ol s 2 + Cler + &) t)?
< glas O + Cler + )= 0] (4.32)
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Similar as (4.24) and (4.25), we have

o0 o0 g
- / 9Veadr — 2wy / = Ppede
0 o P

o0 o0 o0
<c / s + C / P pthanlda + C / U thande
0 0 0

oo

e / Pl + C / i ppseldz + C / P ppselda
0 0 0

o] o]
0 0

< GlIas I + Cllpas (I + C=1 (14672 (0, 0) (D)

+ CeT || (Pap Yaa)O)||2 + Ced (1 +8)75 + Ced(1+¢)75. (4.33)

In a similar way, we can obtain

o0 g p/
0 pop P
<cC / (o atbe 4 P Pmtba] )+ C / (ot o] + |Phul o)
0 0
e / (obtbe] + 100 0tls] + [l atbal + [Phaapatbul)da
e / (10 0pathal + [Wltbpatial)de
0

e / (petbatbuel + lpat?] + P20 ])de

< Ol +e)l(@as Yua) DI + Cllvs()]* + Ce(L + 1) 7o)
+Ce5(141)"5 +Ces(141)75, (4.34)

and
2ub/ Yy (fa: - p;d}x - UQ% - 2(,03;1/13;>d56
0
o0
<C [ (il + oo
0

e / (hatba] + lulapns)dz + C / loet2]da
0 0

< %me(tW + Clllea (@)1 + e (DI) + Ce3 lloa (I + 2a ()]7)

+CeF(L+1) 72 (0, ) (D). (4.35)
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Finally, using (4.17), integration by parts and ¢ (t,0) = 0, we have
- H/ Pﬁpmaﬂ/}mdflf - H/ wazsﬁxmdflf
0 0
0
o d [ k w Kk [T
= /ﬁPm‘Ptﬂo - H& 0 Sﬁizdx + §u¢iz|0 - 5/0 ’U,x@ixdl’

+ "i/ mex(ux@$ - fw)dx
0

d [~ , K 2
= — R de — - T tv
wap ), $aads = guee (t,0)
k oo 9 oo
- 5 uCL’(paZ:de + K @www(uw%pw - fac)dx (436)
0 0

Similar to (4.14) and (4.32), we have

0 0 0

< Olfth ()| o= | 0wa ()12 + Cell @ (t)|>
< Ol a1 1w ()12 [l@aa ()1 + Cellpas (1)1
e (8)]2 + Cle + 1) [l paa (£)]1

=

<

=~ 00

Moreover, similar as (4.14), (4.15) and (4.32), we get

0
<C / |Patbapansldz + C / o pasald 4+ C / 1P e Graald
0 0 0

+ C/ |p;$7711cpmm|dx + C/ \u;mgocpmm\dx
0 0
< Cler + )| (D Vs Paaa) O + Ce3 [|@aaa (B)]|? + C3 (1 4+ )72 || (10, 4) (£)]|.

Putting the above two inequalities into (4.36) yields

o0 oo
- H/ p@zzxwmwdx - H/ Pz%:%;mdl"
0 0

d [ Ky 1
< _ = 2 _ Ry 2 | K 2
X Hdt o @zmdx 9 ‘Pmm(t70) + 3 ”wzm(t)”
+ (e + ) (00 Yar 02a) )|+ Ce3 + 1) |aaa (1)
+CeF (1+1)7%|(, ) ()] (4.37)
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Further, combining (4.29), (4.30)—(4.35) and (4.37), and using (4.1), we see
d o
dt Jo
2 2 1 2 1 _3 2
S CO(lealli + [[9217) + C(e5 + 1) lpaza|” + Ce3 (1 +1) 72 (@, ) D) |
+Ce(1+ )2 (g, )]+ Ce3 (L + 1)~ + Ced(1+1) 7%,

("/1325 + ‘Pix — PPue)dT + Pra(t, 0)2 + ”wzm(t)HQ

Therefore, integrating the above inequality with respect to ¢, and using (4.26), we
obtain (4.27). This completes the proof.
Finally, we are going to establish the dissipation for ¢,.

LEMMA 4.5. Let (p,%) be a solution to the initial boundary value problem
(3.1)—(3.2), satisfying the conditions in proposition 3.3, then it holds that

t
/0 | pans()Pdr < Clllgol3 + loll? + &%) (4.38)

for an arbitrary t € [0,T].

Proof. We first divide (3.1)y by p, then differentiate formally the resultant
equality to obtain

?'(p)

p’;p) )m o

g
= E¢xmm + (E) 'l/)ﬂcx@wc + Kzaaa + (7) ;
p p/a p/a

further, multiplying the above equality by ¢,., integrating with respect to = over
R and using (4.17) and ¢ (t,0) = 0, we have

d [eS) oo/ 0o )
dt Jo o P o P 0

= /Ooo p3,de + /ODO (%)Iwmtpmdx — /OOO (plﬁ)p))wsowsomdx

00 =) o) g
- za:zxd_ T z_:v:v_wwd N wmd
/Ouw<p T /0 Vaa(fo — Uzp pz/))er/O (p)zso T
(4.39)

som+(

First, using (4.1), (3.5), lemma 2.2 and Cauchy inequality, it is easy to obtain

/OOO (%)xwmwmdx - /OOO (p/g)))x%somdx

<C/ Ipzwm@m\dHC/ |2 Pz Paz|da
0 0

< C/ |(pz + P;)¢xx¢xx|dm + C/ |(pz + p;)‘Pw@xﬂdx
0 0

< Ce+e)(lleall? + lpaall? + 14aall?)- (4.40)

https://doi.org/10.1017/prm.2021.32 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2021.32

Asymptotic stability of rarefaction wave for the compressible 775

Next, utilizing (3.5), lemma 2.2, Sobolev inequality and Young inequality, one gets

_/ Uz Yz Pradr < C/ U2 Pra |dr + C/ |¢3:90mr|dx
0 0 0

< Cllu || L 19l ezl + Cllas | oe |9
< Ce([[al® + 1 @wall®) + Cllwall | Paae I 2 ¢
< CE(HZ/JJCHQ + ||‘PM||2) + CEI(H‘PM(t)HQ + H‘PMI(t)HQ) (4.41)

Similar as (4.14), (4.15) and (4.21), we have

- / wwa:(fw - U:c@w - p$w1)dx
0
<c/|%mmMm+c/|%%mwm+c/\%%%ﬁm
0 0 0

e / Psbtbasldz + C / e pthanda
0 0

< Ce| (Y, Yuz) (O + Cell(0, Y, V) ()12

1 1 _3
+Ce¥ [Pua (D* + Ce3 (L + 1) 72| (0, ) (). (4.42)
Since
g r T T r T T T ror T

similar to (4.14), (4.15), (4.21) and (4.25), we can show

/0(X> (%)w%mdx

S| [ s+ P + P orad]
0
o0
+ C’ / (ugx@x + pg@m + p;‘P‘Pz + u;z"/}z)@mzdx‘
0
+ C’ / Pz + Pru® + Prpup + uw)wmdw‘
0

1 1 3
< Cle + 1) [l(¢a, ) O] + gllsﬁm(t)ll2 +Cei(1+4)72 (0, ¥)II?

+Ces(1+1)" 8 +Cef(1+1)"3 +CeB(1+1)5. (4.43)
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Finally, using integration by parts, one gets

o] 00 L
0 o P

oo

_ [e%) % %) >~ 2 1%
= ’f@zmm@mrlo + ;rwrrﬁprrh) — K @xrtdx - ;wxzsﬁzzrdx
0 0

o P

< y 2 _H 2 K 2
X O‘me(ta O) + C(’ﬁpxmf(tvo) + p(t, 0) (L (t70)) ) H@xzxn
+ Cllthaz|l® + Cle + 1) llpae |I?
K
< Cogelt, 0)2 - 5”9090””2 + CHQ/’IH% +C(e + 81)||<,0m\|2, (4.44)

here we have used

2
(mpzmv(ta 0) + p(zo) ’(/)Iw(ta 0)) < wa(tvO)Q < Cll%”i

which is derived by (3.1)2, (3.2) and lemma 2.2.
Therefore, insertion of (4.40)—(4.44) into (4.39) yields

d [* 2 2
G [ e + lomaal + o]
0

< Ol + Cpua(t,0)% + Ced (1 + )2 (|[9[* + [lol)
FCeF(141)75 +Ce3(14+1)"5 +Ce3(14+14)7F,

further, integrating the above inequality with respect to ¢, and using (4.26) and
(4.27), we obtain (4.38). This completes the proof.

Proof of proposition 3.3. Summing up the estimates (4.26), (4.27) and (4.38),
we immediately have (3.6).

5. The proof of theorem 1.1

This section is concerned with the proof of our main theorem. From theorem 3.1, we
know that there exists a unique classical global solution (p,u)(¢, x) to the problem
(1.1)—(1.4), satisfying (1.7)—(1.9). Therefore, to complete the proof of theorem 1.1,
we need only to investigate the large-time behaviour of the solution (p,u)(t,z) to
the initial boundary value problem (1.1)—(1.4) as time tends to infinity.

The completion of the proof of theorem 1.1. Based upon the energy estimates
derived in the previous sections, we will complete the proof of theorem 1.1. To this
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end, we first prove that

sup |(p— p",u—u")(t, )| =0, (5.1)
zeRT
namely,
sup [(, ¥)(t, )| — 0, (5.2)
z€RT
as t — o0.
This is obvious suppose that we have proved the following assertion
Jim (e, ) ()] = 0. (5.3)
— T 00

As a matter of fact, if it were true, we infer from the Sobolev inequality that
(o, )||Le — 0, as t — +o0. (5.4)

Hence, it remains to show (5.3). To this end, from the relations (4.17) and (4.39),
and corollary 4.3, lemmas 4.4 and 4.5, one can show that

/0 (s ll? + 192]?) dr < +oo, (5.5)

oo
d
— lleall?
||

Then (5.3) follows from inequalities (5.5)—(5.6). Consequently, from (5.1) and (iv)
of lemma 2.2, we prove (1.10) and complete the proof of theorem 1.1.

and that

dr < +o0. (5.6)

oo d 5
dr < , T 1Y
retoo [] G
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