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The impact of temperature inhomogeneity, surface charge and surface mass densities
on the stability analysis of charged surface waves at the interface between dense,
incompressible, radiative, self-gravitating magnetized electron–ion plasma and vacuum is
investigated. For such an incompressible plasma system, the temperature inhomogeneity
is governed by an energy balance equation. Adopting the one-fluid magnetohydrodynamic
(MHD) approximation, a general dispersion relation is obtained for capillary surface
waves, which takes into account gravitational, radiative and magnetic field effects. The
dispersion relation is analysed to obtain the conditions under which the plasma–vacuum
interface may become unstable. In the absence of electromagnetic (EM) pressure,
astrophysical objects undergo gravitational collapse through Jeans surface oscillations
in contrast to the usual central contraction of massive objects due to enhanced gravity.
EM radiation does not affect the dispersion relation much, but actually tends to stabilize
the Jeans surface instability. In certain particular cases, pure gravitational radiation may
propagate on the plasma vacuum interface. The growth rate of radiative dissipative
instability is obtained in terms of the wavevector. Our theoretical model of the Jeans
surface instability is applicable in astrophysical environments and also in laboratory
plasmas.
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1. Introduction

The propagation of surface waves (SWs) on the interface between two media
has attracted considerable attention due to its relevance with real experimental and
astrophysical plasma dynamics (Buti 1985). Trivelpiece & Gould (1959) were the first
to report the experimental observation of surface waves in a plasma in an experimental
set-up involving a cylindrical plasma column bounded in a glass tube that was coaxial
with a circular metallic waveguide. The frequency spectrum for SWs in plasmas
has been investigated theoretically, numerically and experimentally (Cooperberg 1998;
Kartwright et al. 2000), and theoretical results were found to be in good agreement
with experimental observations (Gradov, Ramazashvili & Stenflo 1982; Gradov &
Stenflo 1982, 1983a,b; Moisan, Shivarova & Trivelpiece 1982; Ghosh & Das 1988;
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Hussein 1990; Grozev, Shivarova & Tanev 1991). The propagation of high-frequency
surface waves in collisionless or weakly collisional electron–ion plasmas has been
explored in a number of studies along with investigations in the magnetohydrodynamic
(MHD) limit (Chandrasekhar 1968; Boardman 1982; Gradov & Stenflo 1983a,b; Landau
& Lifshitz 1984; Kondratenko 1987; Zhelyazkov, Murawski & Goossens 1996; Allahyarov
et al. 1997; Tsintsadze 1998; Aliev, Schluter & Shivarova 2002). In fact surface
wave instabilities form the majority of MHD instabilities originating from inherent
non-uniformity of plasma (Hasegawa & Chen 1975).

An electromagnetic wave may propagate at the boundary between two media with
different density, such as at a plasma–conductor boundary or on a plasma–vacuum
interface; however, the pressure exerted by electromagnetic (EM) waves on the surface,
known as the radiation pressure, is quite different when radiation is considered in a plasma
medium rather than in vacuum (Tsintsadze et al. 2008). The plasma refractive index
I (= kc/ω) for transverse EM waves is given by I2 = 1 − ω2

p/ω
2 in terms of the plasma

frequency ωp = √
e2 ne/εme for electron–ion plasma), where e, ne and me denote the

electron (absolute) charge, density and mass, as usual, while ε(= 1/4π) is the dielectric
permittivity. Based on this fact, it was shown by Tsintsadze, Callebauti & Tsintsadze
(1996) that the photon energy, εr(= �ω) may read as

εr = c( p2
r + m2

r c2)1/2, (1.1)

where pr = �ωI/c, mr = �ωp/c2, � = h/2π, c is the speed of light and h is Planck’s
constant. One may notice here that, although the above equation is similar in structure to
the expression for the total relativistic energy of material particles, it differs from the latter
in that the rest mass of the photon, mr, is a function of the plasma density. The detailed
thermodynamics of EM (thermal) radiation was presented by Tsintsadze et al. (1996),
where different thermodynamic quantities were formulated based on Planck’s distribution
function

fr = 1/(e�ωk/kBT − 1) =
{

exp
[

c( p2
r + m2

r c2)1/2 − mrc2

kBT

]
− 1

}−1

, (1.2)

(where kB is the Boltzmann constant, T is the gas temperature, ωk are the radiation
eigenfrequencies corresponding to the excited states above the rest energy) and the
pressure expression (equation of state) for a photon gas, both in vacuum and in a plasma
medium. In fact, Tsintsadze et al. (1996) showed that the specific heat associated with
electromagnetic/thermal radiation becomes infinite in the case of a low-density and
high-temperature plasma, hence the Stefan–Boltzmann law is modified. The pressure for
a photon gas in a plasma, assuming �ωpα � kBTα (where α =e or i, denoting electrons or
ions respectively) was shown (Tsintsadze et al. 1996) to be

Pr,α = Ur,α

3
= β(kBTα)

4

3
, (1.3)

where Pr,α, Ur,α and Tα denote the radiation pressure, the radiation energy density and
the temperature of species α respectively, and β = π2/45(�c)3. Although, at transitive
temperature and density, the radiation pressure may be small in comparison with the
thermal pressure of the plasma particles (Zeldovich & Raizer 1966), the impact of thermal
radiation on plasma dynamics can be significant due to the fact that the radiant energy lost
by the hot plasma, i.e. via radiative heat transfer in the plasma, may exceed the energy
transferred by thermal conduction. This competition is due to the fact that photons usually
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have a much longer mean-free path than that of charged particles, so for hot plasmas
(Tsintsadze et al. 2008) the radiation pressure cannot be neglected and must be added to
the thermal pressure of species in the MHD model equations. Our aim in this article is
to investigate the impact of the radiation pressure – given by expression (1.3) – on the
dispersive properties of radiative gravitational surface waves.

Introducing a second building block in our model, gravitational forces are known to
be very weak in astronomical systems. Generally, when the gravitational field of an
object changes, this results in wrinkles in the outwards direction in space in the form
of gravitational radiation. Unlike the well-known textbook paradigm of a hydrogen atom,
where the electric force between the electron and the proton is of the order of ∼ 1039

times larger than the (attractive) gravitational force between them, self-gravitational forces
may play a significant role in stellar collapse, and in the evolution and formation of dense
astrophysical objects (Prajapati 2011). Jeans (1902) was the first to investigate gravitational
collapse of an infinite homogeneous medium due to density oscillations; their seminal
work was followed by various studies devoted to different aspects of gravitational waves
(Chandrasekhar 1939, 1984). Chandrasekhar (1968) studied the impact of magnetic fields
on the stability analysis of gravitating astrophysical objects. The impact of EM radiation
pressure on Jeans instability (JI) was studied by Tsintsadze et al. (2008) and this same
group later included anisotropic effects (Tsintsadze et al. 2018). Interestingly, most of the
work encountered in the literature addresses gravitational collapse as the main cause of
contraction of astrophysical objects due to the increased gravity among dense and massive
particles, while the mechanism of gravitational collapse due to surface oscillations was
only pointed out recently (Rozina et al. 2019; Ruby et al. 2020).

In this paper, we shall adopt the model presented by Rozina et al. (2019), considering
the dispersive properties of surface waves on the interface between gravitational radiative
plasma and vacuum, on account of the pressure relation (1.3), assuming an incompressible
plasma density and variable (inhomogeneous) temperature. As the basis for our study,
we shall use an incompressible radiative electron–ion plasma subject to gravitational
and magnetic fields in addition to temperature inhomogeneity. We will show that EM
radiation does not affect the plasma dispersive properties much, but instead it appears as
a gravitational radiation effect, which tends to stabilize the Jeans surface instability.

2. Basic model

We consider an electron–ion plasma in the presence of thermal radiation, magnetic and
gravitational fields, which is dense enough to be treated as an incompressible fluid within
the MHD model (Tsintsadze 1998). The plasma is embedded in an ambient magnetic field
directed along the z-axis, i.e. B = B0ẑ (where ẑ is the unit vector along the z-axis). Plasma
evolution is limited to the y–z plane, while vacuum is considered to extend in the direction
normal to the plane i.e. along the x-axis. In order to address surface-wave phenomena at
the interface between the plasma and vacuum, we assume that the temperature inside the
plasma is kept constant, whereas small temperature fluctuations may occur at the interface,
to be described as a function of the boundary coordinates. The MHD model equations,
neglecting the electron inertia, read

−eneE − ene

c
(ue × B) − ∇(Pg,e + Pr,e) = 0, (2.1)

mini
dui

dt
= eniE + eni

c
(ui × B) − ∇(Pg,i + Pr,i) − mini∇Ψ, (2.2)

where ne and ni denote the number density for the electron and ion fluid component(s),
ue and ui their respective fluid speed, Ψ is the gravitational potential, and Pg,e and Pg,i
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are the usual gas pressure terms for electrons and ions, respectively; similarly, Pr,e and Pr,i
(defined in (1.3) above) denote the radiation pressure terms for the respective species. The
basic set of equations involves Poisson’s law(s) for the gravitational potential Ψ and for
the electrostatic potential Φ, expressed respectively as

∇2Ψ = 4π G ρi, (2.3)

∇ · E = −∇2Φ = 4π σe, (2.4)

where ρi = mini and σe = ene are the total ion mass density and the charge density
respectively. Here, we have considered ne � ne,0 + ne,1 and ni = ni,0, i.e. assuming density
perturbations to be negligible (incompressibility assumption), yet retaining the electron
density disturbance ne,1 (� ne,0) and neglecting their ionic counterpart. The continuity
(mass conservation) equations read

∂ne,i

∂t
+ ∇.(ne,iue,i) = 0, (2.5)

Maxwell’s equations

∇ · B = 0 , (2.6)

∇ × B = 4π

c
J , (2.7)

∇ × E = −∂B
∂t

(2.8)

and the MHD equation
E + v × B = η̄ J , (2.9)

where v = (meue + miui)/(me + mi), while J = e(niui − neue) is the charge current
density and η̄ is the thermal conductivity. Note here that gravity is significant only for
the ions due to their large mass. Adding (2.1) and (2.2), we obtain

ρi
dui

dt
= e(ni − ne) E+ 1

c
(J × B) − ∇(P(total)

g + P(total)
r ) − ρi∇Ψ, (2.10)

where P(total)
r = Pr,e + Pr,i and P(total)

g = Pg,e + Pg,i. It is necessary to point out here that
both thermal and radiation pressure effects are negligible for the ions, compared with
the electrons, due to the large mass disparity between them, viz. Pr,i � Pr,e (recall that
the electron inertia has been neglected, as mentioned above). Physically speaking, the
electrons will move towards the interface more easily, thus charge separation may appear
at the interface of the order of thermal energy, i.e. eδΦ ∼ kBδTe. As a consequence, the
separation of charges at the interface is normal to the surface of plasma, instead of the
usual parallel component of electric field arising in the ordinary plasma wave description.
The associated negative pressure gradient may be inferred from (2.4) as

σe E = 1
4π

(∇ · E) E = 1
8π

∇xE2, (2.11)

where E = −∇Φ, viz. E = −(∂Φ/∂x). Using (2.7) and (2.11), (2.10) reduces to

ρi
dui

dt
= 1

8π
∇xE2 + 1

4π
B (B · ∇) −∇

(
P(total)

g + P(total)
r + B2

8π

)
− ρi∇Ψ. (2.12)

Here ρi = mini0 is the ion mass density, the first term on the right-hand side represents
the negative pressure gradient acting perpendicular to the surface between the vacuum
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and the plasma. Since the plasma under consideration is incompressible, the continuity
equation becomes ∇ · u = 0, which allows us to express u as the gradient of a scalar
function, say ϕ, i.e. u = ∇ϕ (Landau & Lifshitz 1984), or

∇2ϕ = 0. (2.13)

At equilibrium, the electrostatic field at the plasma–vacuum interface involves the surface
charge density

E0 = 4π

∫
σe dx = 4πσse, (2.14)

where σse = σex is the equilibrium surface charge density of electrons. The resulting
electrostatic potential Φ at equilibrium is

Φ = −4πσsex. (2.15)

Similarly, the gravitational potential Ψ at equilibrium can be obtained from (2.3) as

Ψ = 4πGρsix, (2.16)

where ρsi = ρix is the surface mass density of ions. For an oscillating plasma–vacuum
interface, the oscillating electrostatic and gravitational potentials may be defined from
(2.15) and (2.16) respectively as

δΦ = 4πσseχ( y, z, t), (2.17)

δΨ = −4πGρsiχ( y, z, t), (2.18)

where δΦ and δΨ are the perturbed electrostatic and gravitational potentials respectively,
and χ( y, z, t) is the spatial displacement of the surface under the action of perturbations.
(Cf. (12)–(13) in Tsintsadze (1998).) For surface waves with small amplitude, we may
represent the small variations of the potential functions as {δΦ, δΨ } ∼ exp[i(kyy + kzz −
ωt) − kx], where k > 0 is a positive quantity (representing an inverse characteristic decay
length). (Note, for clarity, that k is not the wavenumber norm (k2

y + k2
z )

1/2 (= kyz, say).)
Note that both δΦ and δΨ decay exponentially in the x−direction and actually vanish for
x → ∞.

From (2.14), (2.15) and (2.17) we can write

E2
x

8π
= 2πσ 2

se + kσseδΦ|x=0 = 2πσ 2
se + 4πσ 2

sekχ (y, z, t) , (2.19)

where δEx = kδΦ. For linear oscillations, the perpendicular component of the ion
velocity ui,x (to the surface) is given as the time derivative of the surface displacement
from the equilibrium position, viz. uix = ∂χ( y, z, t)/∂t. Also, as discussed above (2.13),
for an incompressible plasma u = ∇ϕ or, in our case, ui,x = ∂ϕ/∂x. Comparing both
definitions, we arrive at ∂ϕ/∂x|x=0 = ∂χ/∂t. The plasma–vacuum interface is subject
to two competing (oppositely directed) pressure mechanisms, namely the negative
pressure gradient due to the surface electrons i.e. ∇nE2 acting upwards and the thermal
pressure acting downwards to the surface. To describe this situation, we may follow
Laplace’s formula (Landau & Lifshitz 1984) for an incompressible radiative electron–ion
plasma,

P − P0 = −ε

(
∂2χ

∂y2
+ ∂2χ

∂z2

)
, (2.20)

where P and P0 denote the pressure terms due to the two distinct media (plasma and
vacuum respectively) and ε is the surface tension coefficient. Furthermore, we may obtain
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an evolution equation for the plasma variation on the interface by taking into account
(2.19)–(2.20) and integrating (2.12) – taking into account (1.3) – to find[

∂ϕ

∂t
− kσse

ρi

δΦ − B0

4πρi

∂

∂y

∫
δBx dx + δΨ +

(
∂Pr,e

∂Te

)
δTe

ρi
− ε

ρi

(
∂2χ

∂y2 + ∂2χ

∂z2

)]∣∣∣∣
x=0

= 0.

(2.21)

Assuming Te � Ti, we henceforth neglect radiation and thermal effects associated
with the ion component; as for the electrons, we have introduced δTe, which denotes
temperature fluctuations on the interface as a function of the surface coordinates. (The
subscript ‘e’ may later be omitted where obvious.) At the interface, the sharp boundary
conditions can be obtained from (2.17)–(2.18) as

∂(δΦ)

∂t
= 4πσse

∂χ

∂t
= 4πσse

(
∂ϕ

∂x

∣∣∣∣
x=0

= 0, (2.22)

∂(δΨ )

∂t
= −4πGρsi

∂χ

∂t
= −4πGρsi

(
∂ϕ

∂x

∣∣∣∣
x=0

= 0. (2.23)

From (2.8)–(2.9) we obtain the following MHD equation:

∂B
∂t

= ∇ × (ui × B) . (2.24)

Linearizing (2.24) and writing down the x−component, we obtain

∂Bx

∂t
= B0

∂ui,x

∂z
= B0

∂2ϕ

∂z ∂x
. (2.25)

Next, differentiating (2.21) with respect to t and making use of (2.22)–(2.25), we get[
∂2ϕ

∂t2
− V2

Ek
∂ϕ

∂x
− V2

A
∂2ϕ

∂z2 − 4πGρsi
∂ϕ

∂x
+ 1

ρi

(
∂Pr,e

∂Te

)
∂δTe

∂t
− ε

ρi

(
∂2

∂y2 + ∂2

∂z2

)
∂ϕ

∂x

]∣∣∣∣
x=0

= 0,

(2.26)

where VA = B0/
√

4πρi is the standard (magnetic-field related) Alfvén speed and VE =
E0/

√
4πρi represents an analogous characteristic (electric field related) speed for the ions.

To evaluate the (non-relativistic) temperature oscillations δT , we shall make use of the
energy equation (Tsintsadze 1995)

∂

∂t

(
3
2

kBTe + Ur,e

n

)
+ (u · ∇)

[
3
2

kBTe + Pg

n
+ 4

3
Ur,e

n

]
+ ∇ ·

(
Se

n

)
= 0, (2.27)

where Te is the (non-relativistic) electron temperature, and n (� ne,0 = ni,0) in the latter
expression is the incompressible fluid density (at quasi-equilibrium) and Ur,e denotes the
electron radiation energy density.

The Poynting vector S (= Se) is defined in terms of the electron heat flux through
radiative heat conduction (Chandrasekhar 1984; Mihalas & Mihalas 1984) as

Se = −λc
3

∇Ur,e = −L0∇(kBTe), (2.28)

where L0 = 4(λc/3)βT3
e is the coefficient of thermal radiation conductivity and λ

represents the Rosseland radiation mean free path λ = A Tκ
e , where κ = 1, 2, 3, . . . (i.e.
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a positive integer) and A is a positive quantity. (Note that Boltzmann’s constant will
henceforth be omitted for simplicity, hence the temperature symbol Te appearing in
forthcoming relations will be expressed in energy units.)

Substituting the expressions for Ur,e and for λ into (2.28), we obtain

∇ · Se = −4β c A
3

1
η
∇ · (∇Tη

e

) = −4βcA
3

[2(∇Tη−1
e,0 )∇(δTe) + (∇2Tη−1

e,0 )δTe], (2.29)

where η = κ + 4. At the interface, we may write

∇xSe,x = ∂Se,x

∂x
= −4βcA

3

(
2k

dTη−1
e,0

dx
+ d2Tη−1

e,0

dx2

)
δTe, (2.30)

where Te,0 denotes the electron temperature at equilibrium, which is a function of the
surface coordinate(s), while δTe represents small temperature variations on the interface
and is independent of the surface coordinates.

At equilibrium, (2.27) reduces to ∇ · (Se/n) = 0, hence following the procedure of
Tsintsadze et al. (2007) – cf. (1.3)–(2.2) therein – one obtains the relation

d2Tη

e,0

dx2 = 0. (2.31)

Integrating the above equation twice, with the boundary condition Te,0 = 0 at x = xs, we
get

Te,0 = θ |xs − x|1/η, (2.32)

where xs is the surface coordinate and θ is the constant temperature inside the plasma.
Equation (2.32) indicates that at equilibrium, temperature is a function of surface
coordinate x. Furthermore, it shows that at x = xs the temperature diminishes, representing
the sharp variation on the boundary, i.e. across the plasma–vacuum interface. Substituting
(2.29) into the linearized x-dimensional version of (2.27) leads to[(

3
2

+ 1
n

∂Ur,e

∂Te

)
∂δTe

∂t
+ ∂δϕ

∂x
∂

∂x

(
3
2

Te,0 + Pg

n
+ 4

3
Ur,e

n

)

−4 β c A
3n

(
2k

∂Tη−1
e,0

∂x
+ �Tη−1

e,0

)
δTe

]∣∣∣∣∣
x=0

= 0. (2.33)

Recall that the density n(� ne,0 = ni,0) is constant, i.e. time- and space-invariant. Applying
a Fourier transformation, viz. δϕ ∼ exp[i(kyy + kzz − ωt) + kx] on the above equation, we
obtain

δTe = μ

� (iω + ν)
, (2.34)

where

μ = ∂ϕ

∂x
∂

∂x

(
3
2

Te,0 + Pg

n
+ 4

3
Ur,e

n

)
,

� = 3
2

+ 1
n

∂Ur,e

∂Te
,

and ν = 4βcA

3n
(

3
2

+ 1
n

∂Ur,e

∂Te

) (2k
∂

∂x
Tη−1

e,0 + ∂2

∂x2
Tη−1

e,0

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.35)
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Substituting (2.34) in (2.26), we obtain the following dispersion relation:

ω2 − k2V2
A cos2 θ − b2k3

2
− k

(
γg − iγ ′

g
(ν/ω)

1 + (
ν2/ω2

)
)

+ k
(
kV2

E + 4πGρsi
) = 0, (2.36)

where

γg = 4βT3
e

3ρi

(
3
2

+ 1
n

∂Pg

∂Te,0
+ 4

3n
∂Ur,e

∂Te,0

)
∂Te,0

∂x(
3
2

+ 1
n

∂Ur,e

∂Te

)(
1 + v2

ω2

) = 4βT3
e

3ρi

(
3
2

+ 1
n

∂Pg

∂Te,0
+ 16

3
1
n
βT3

e

)
∂Te,0

∂x(
3
2

+ 4
n
βr,eT3

e

)(
1 + v2

ω2

)
(2.37)

and

γ ′
g = 4βT3

e

3ρi

(
3
2

+ 1
n

∂Pg

∂Te,0
+ 4

3n
∂Ur,e

∂Te,0

)
∂Te,0

∂x(
3
2

+ 1
n

∂Ue,r

∂Te

) = 4βT3
e

3ρi

(
3
2

+ 1
n

∂Pg

∂Te,0
+ 16

3
1
n
βT3

e

)
∂Te,0

∂x(
3
2

+ 4
n
βT3

e

) ,

(2.38)

where b2 = 2ε/ρi is the capillarity constant. (Note that the equation of state (1.3) was used
in the last step, to show the dependence of the coefficients on the electron temperature
Te.) Equation (2.36) represents the propagation of capillary–gravity surface waves at the
interface between a (magnetized radiative) plasma and vacuum.

Let us now explore the dispersion equation (2.36) in some special cases.

2.1. Capillary radiative Jeans surface instability
First, let us assume that the imaginary part of (2.36) is absent, hence that the dissipative
term is absent in (2.27) (viz. Se = 0), or ν = 0, to obtain the dispersion relation
describing the magnetocapillary radiative Jeans surface instability of an inhomogeneous
incompressible electron–ion plasma:

ω2 = k2V2
A cos2 θ + b2k3

2
+ kγg − k(kV2

E + 4πGρsi). (2.39)

Note, for comparison, that the dispersion relation of the Jeans instability derived by
Tsintsadze et al. (2008) was for a homogeneous compressible dusty (i.e. three-component)
plasma. The associated growth rate of the Jeans surface instability reads

Im ω =
√

k(kV2
E + 4πGρsi) −

(
kγg + k2V2

A cos2 θ + b2k3

2

)
. (2.40)

Equation (2.40) governs the fragmentation of astrophysical objects via their surface
oscillations when the electron surface charge density and the ion surface mass density
couple together to enhance the oscillation rate of these objects, whereas gravity radiation,
magnetic field and surface tension effects stabilize the Jeans surface instability.
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2.2. Gravitational radiation
We may now assume that the plasma is unmagnetized and also neglect the surface tension.
We thus obtain the simpler dispersion relation

ω2 = kγg − k(4πGρsi + kV2
E). (2.41)

We see that radiation does not modify the longitudinal dispersion relation, but it only
appears as gravitational radiation on the interface, and actually plays a stabilizing role on
the Jeans surface instability. Equation (2.41) provides us with a new definition of the Jeans
wavelength, i.e. the Jeans wavevector

kJ = γg − 4πGρsi

V2
E

(2.42)

incorporates the effect of gravitational radiation. If we substitute the numerical values,
shown below in § 3, in (2.42), we may eventually obtain the threshold value of the Jeans
wavevector, kJ = 5.53 × 10−6 cm−1. It may be noted here that for any length scale larger
than kJ(= 5.53 × 10−6 cm−1), the electromagnetic field can overcome the Jeans instability
as is evident from (2.41). Moreover, in the absence of surface charge and mass density, pure
radiative gravity waves will propagate on the interface as

ω2 = kγg (2.43)

so that the group velocity of gravity radiation becomes, in terms of the wavenumber k (and
thus the wavelength λ = 2π/k)

dω

dk
= Vg =

√
γg

4k
=
√

γg

8π
λ. (2.44)

2.3. Dissipative instability
Finally, in the presence of a dissipative surface effect, i.e. ν �= 0, there may exist, in (2.36),
values of propagation vector

k± = (1/b2)(V2
E − V2

A cos2 θ) ± (1/b2)

√
(V2

E − V2
A cos2 θ)2 − (b2)2(γ ′

g − 4πGρsi),

for which (2.36) reduces to

ω2 + iγ ′
g (ν/ω)

1 + (ν2/ω2)
= 0, (2.45)

or, assuming |ν|2 � ω2,
ω3 + ik±γ ′

g|ν| ≈ 0, (2.46)

where k± = (1/b2)(V2
E − V2

A cos2 θ) ± (1/b2)
√

(V2
E − V2

A cos2 θ)2 − (b2)2(γ ′
g − 4πGρsi).

Among the three possible complex roots of the above equation, one root leads to instability
of surface waves due to electromagnetic (thermal) radiation in the plasma medium with a
growth rate, say γ̂ , given by

γ̂ =
√

3
2

(
k±γ ′

g | ν |)1/3
, (2.47)

provided that radiation acts for a short time, say τ � ω−2 (viz. |ν|2τ 2 � 1). Equation
(2.47) shows that the growth rate of the radiative dissipative instability depends on the
temperature inhomogeneity (due to radiative heat flux) as well as the thermal radiation
pressure.
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(a) (b)

FIGURE 1. (a) The angular frequency (ω) of magnetocapillary gravity surface waves (as given
in (2.39)) is shown as a function of the wavenumber (k) for different values of the gravitational
radiation acceleration parameter, namely γg = 9.13 × 106 cm s2 (blue curve) and γg = 5.82 ×
108 cm s2 (red curve). The solid curves are for the imaginary part Im(ω) (occurring below a
certain wavenumber cutoff; cf. panel b), while the dashed curves are for Re(ω). (b) The variation
of the instability in Jeans surface waves is plotted against the electron temperature (Te,0) and the
wavenumber (k).

3. Numerical analysis

We have investigated the dispersion relation, as well as the growth rate of unstable
modes, relying on (2.39), (2.41), (2.44) and (2.47) in their respective regions of validity,
both numerically and graphically, to explore the impacts of the surface charge and
mass densities, as well as the radiation energy flux and thermal radiation pressure on
the growth rate of the surface Jeans instability in an incompressible, self-gravitating,
radiative electron–ion plasma. For this purpose, we have chosen a set of representative
values for the low-density and high-temperature plasmas (Post et al. 1977) as ni0 =
ne0 = n0 ≈ 1012 cm−3, Te,0 = (2 × 104 − 8 × 104) K and B0 = 5.88 G. By substituting
these parameters and taking the surface coordinate x = 0.12 cm and Te,0 = 2 × 104 K in
(2.41), one can easily calculate various physical parameters, such as the electric Alfvén
velocity VE(= E2

0/4πρi = 4πσ 2
se/ρi) = 1.28 × 106 cm s−1 and the gravitational radiation

acceleration γg = 2.70 × 109 cm s2; the imaginary part associated with the surface Jeans
instability turns out to be Im(ω) = 6.05 × 103 s−1. Furthermore, if γg increases to a higher
value of 9.10 × 109 cm s2 (for Te,0 = 3 × 104 K), while keeping all other parameters fixed,
the magnitude of the imaginary part reduces to Im(ω) = 8.92 × 102 s−1. This analysis
clearly depicts that inhomogeneous gravity radiations tend to stabilize gravitational
collapse as shown in (2.36), (2.39) and (2.41).

Figure 1(a) depicts the onset of instability of Jeans surface waves under the influence of
gravitational radiation acceleration, as described by (2.39). For γg = 9.13 × 106 cm s2, the
threshold value of the Jeans wavevector is kJ = 3.25 cm−1. Increasing k beyond kJ tends
to suppress the growth rate of the instability due to the competition between the surface
charge and mass densities and the gravitational acceleration along with magnetocapillary
effects in the magnetized plasma under consideration; the growth rate at the specific
value of k(= 2.5 cm−1) is 8.71 × 104 s−1 and if the wavevector increases further, this
results in a decrease in Imω = 6.06 × 104 s−1. Furthermore, by increasing the gravity
radiation (γg) through Te,0, the threshold value of kJ decreases significantly to reduce the
frequency spectrum of magnetocapillary gravity surface waves, while the stability rate
increases quickly as a function of γg, pointing out that gravitational collapse may be
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FIGURE 2. Comparison of the growth rate of the surface Jeans instability without gravity
radiation (blue curve) and with gravity radiation (red curve). The solid curves are for Im(ω),
while the dashed curves are for Re(ω).

FIGURE 3. The frequency (ω) of magnetocapillary gravity surface waves in the absence of
gravitational radiation (as described by (2.39)) is shown as a function of the wavenumber (k) for
different values of electric Alfvén velocity of ion grains, VE = 1.285 × 106 cm s−1 (red curve)
and VE = 1.284 × 106 cm s−1 (blue curve). The solid curves are for Im(ω), while the dashed
curves are for Re(ω).

stabilized through gravitational radiation acceleration. Moreover, the variation of Jeans
surface wave instability as a function of electron temperature (Te,0) and wavenumber (k)
can be inspected from figure 1(b). Similar results can be visualized in figure 2, which
shows a comparison of the growth rate of the surface Jeans instability with and without
the effect of gravity radiation.

Next, in order to visualize the impact of surface charge on the fragmentation of
astrophysical objects, (2.39) is plotted in figure 3 in the absence of γg. This shows an
increase in the value of the Alfvén velocity (VE), through equilibrium surface charge
density of electrons (σse), results in the increase of the amplitude of surface oscillation.
Furthermore, the group velocity (Vg = √

γg/4k) of pure gravity radiations (shown in
(2.41)) propagating at the plasma–vacuum interface is plotted as a function of wavenumber
(k) in figure 4 at fixed gravity radiations γg = 9.13 × 106 cm s2, to depict that the group
velocity becomes a function of wavelength (λ = 2π/k). Finally, in order to visualize
the influence of temperature inhomogeneity on the growth rate of radiative dissipative
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FIGURE 4. Group velocity (Vg) (as shown in (2.44)) as a function of the wavenumber (k) at
fixed values of γg.

FIGURE 5. The growth rate of gravitational radiation instability (γ̂ ) (as given by (2.47)) is
plotted against the wavenumber (k).

instability of self-gravitating electron–ion plasma, (2.47) is plotted in figure 5. Figure 5
suggests that the growth rate increases with an increase of the thermal radiation energy
density and the radiation heat flux via Te,0 via γ ′

g.

4. Conclusions

To conclude, a MHD fluid model has been employed to investigate the properties
of surface waves at the interface separating a radiative, dense, incompressible,
inhomogeneous, self-gravitating electron–ion plasma and vacuum. It was shown that a
negative pressure gradient is generated due to thermal motion in the plane perpendicular to
the interface, i.e. eδΦ ∼ KBδTe. We draw the conclusion that the Jeans surface instability
may be associated with (and contribute to) fragmentation of astrophysical objects through
surface oscillations of these objects. It was shown that the combination of gravitational and
radiative effects for non-uniform plasma stabilizes the Jeans-type instability of surface
waves. Furthermore, pure gravity waves may propagate at the plasma–vacuum interface
if some particular condition is satisfied. Finally, we have shown that for a particular
wavevector, the interface may undergo radiative dissipative instability.
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