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A librating cylinder consists of a rotating cylinder whose rate of rotation is modulated.
When the mean rotation rate is large compared with the viscous damping rate, the flow may
support inertial waves, depending on the frequency of the modulation. The modulation
also produces time-dependent boundary layers on the cylinder endwalls and sidewall,
and the sidewall boundary layer flow in particular is susceptible to instabilities which
can introduce additional forcing on the interior flow with time scales different from the
modulation period. These instabilities may also drive and/or modify the inertial waves. In
this paper, we explore such flows numerically using a spectral-collocation code solving
the Navier–Stokes equations in order to capture the dynamics involved in the interactions
between the inertial waves and the viscous boundary layer flows.
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1. Introduction
Longitudinal librations refer to torsional oscillations about the axis of a rotating

axisymmetric fluid-filled cavity. There has been, and continues to be, much interest
in these flows motivated by issues in planetology (Aldridge & Lumb 1987; Zatman
& Bloxham 1997; Noir et al. 2009; Calkins et al. 2010; Noir et al. 2010). The
scales involved in planetary hydrodynamics present grand challenges to theoretical and
numerical modelling, and the need for compromises in laboratory-scale experiments
designed to investigate such flows. The rapid background rotation leads to an
interior flow very close to solid-body rotation that is capable of sustaining inertial
waves (Aldridge & Toomre 1969; Aldridge & Lumb 1987), and at the same time
the differential rotation due to the torsional oscillations lead to the formation of
thin boundary layers on the container walls. Based on their experimental study of
librations of rotating spherical shells, Noir et al. (2009) argue that the observed
instabilities near the equator in the outer sphere’s boundary layer are primarily driven
by a local centrifugal instability during the retrograde phase of the outer sphere’s
oscillation. Busse (2010a) presents an asymptotic analysis of the librating spherical
cavity problem, considering the limit of small amplitude and frequency of the torsional
oscillations. He shows that a mean zonal flow results from a geostrophic response
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generated via nonlinearities in the boundary layers, and argues that this mean flow
may play an essential role in the generation of the observed longitudinal rolls. Neither
of these recent investigations consider the role of inertial waves in the transition to
observed ‘wavy’ turbulence.

While these recent studies on librating flows have been motivated by planetary
problems, these types of flows have also attracted considerable interest from a
flow instability control perspective, particularly in rotating convection problems
(Bhattacharjee 1989, 1990; Niemela, Smith & Donnelly 1991; Thompson, Bajaj &
Ahlers 2002; Roxin & Riecke 2002; Rubio, Lopez & Marques 2008, 2009). Further,
librating cylinder flows, with additional differential rotation, have also been employed
to study the fundamental dynamics of wind-forced ocean gyres (Hart & Mundt 1996).

The experiments of Noir et al. (2009) show that the onset of laminar longitudinal
rolls and the onset of their transition to turbulence occur at well-characterized critical
values of the boundary layer Reynolds number, over about a decade of background
rotation (the range being limited by the mechanics of their apparatus). As well as
the spherical cavity problems, they also report on some preliminary observations in
a torsionally oscillated rotating cylinder, i.e. a librating cylinder, showing the presence
of longitudinal roll structures throughout the sidewall boundary layer.

In a subsequent study (Noir et al. 2010), they presented more details of the librating
cylinder experiment where they noted that the transition to wavy turbulence is abrupt.
It is this flow that we investigate in detail in this paper. Busse (2010b) also considered
this type of flow, but in the limit that the modulation frequency is very much smaller
than the mean rotation frequency of the cylinder, and in an asymptotic limit where
the radius is much larger than the height of the cylinder such that the sidewall
layer is omitted from the analysis. From the analysis of linear transient spin-up and
spin-down, Greenspan & Howard (1963) suggest that the sidewall layer is passive,
however Barcilon (1968) suggests that this may not be the case. The analysis of
Barcilon (1968) is still linear and does not consider fully coupled horizontal and
vertical boundary layers via the corner region, although he does discuss some aspects
of the corner region flow. The main result from the asymptotic analysis of Busse
(2010b) is that a mean retrograde interior zonal flow is produced whose magnitude
scales with the modulation amplitude squared. However, the analysis of Wang (1970),
which does include sidewall boundary layer considerations as well as the corners
where the horizontal and sidewall layers meet, already established this result and
confirmed the analysis with an experiment.

Rubio et al. (2009) also considered a librating cylinder flow in the low modulation
amplitude limit, but within a fully nonlinear Navier–Stokes formulation that also
accounted for the nonlinear coupling between the horizontal and sidewall boundary
layers. They found that a mean retrograde zonal flow is produced whose magnitude
scales with the modulation amplitude squared, and showed that this scaling comes
naturally from the harmonic nature of the modulation. Further, they noted that the
strength of this mean zonal flow is greatest at the sidewall. Their study also included
thermal convection, but the results about the mean zonal flows were in a regime below
the onset of convection where the temperature field may be expected to act as a
passive scalar.

The experiments of Noir et al. (2010) also report a mean retrograde zonal flow
whose magnitude scales with the modulation amplitude squared, and their results are
not limited to very small modulation amplitudes. They also comment on the presence
of inertial waves since the modulation frequencies they impose are typically less than
twice the background rotation frequency, but they do not present direct measurements
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of these waves. At the larger amplitudes, they find that the sidewall layer is unstable to
Taylor–Görtler-type vortices which abruptly become wavy turbulent with a very small
further increase in modulation amplitude.

There have been several studies of boundary layer flows with a fast background
rotation where the boundary has been subjected to torsional oscillations, including
the torsional oscillation of a rotating infinite unbounded disc (Benney 1965; Jones
1969), the torsional oscillation of two infinite discs (Barrett 1969), as well as the
boundary layer analysis of the torsional oscillations of an enclosed rotating cylinder
(Wang 1970). This last case corresponds to the geometry considered in this paper.
In all of these problems, the boundary layer equations develop a singularity when
the (torsional) modulation frequency is twice the background rotation frequency. This
so-called resonant breakdown comes about as the boundary layer thickness becomes
ill-defined at this frequency ratio, with the boundary layer flow extending deep into the
interior. It is significant that it is for this frequency ratio and smaller that inertial waves
are possible in the interior. Wang (1970) also conducted some laboratory experiments
in the librating cylinder, confirming his theoretical prediction of a mean azimuthal bulk
flow that scales with the modulation amplitude squared and the modulation frequency.
Wang noted that when the modulation frequency is less than twice the background
rotation frequency, the scatter in the experimental measurements of the mean flow
were larger than that found for larger modulation frequencies. He concluded that this
must be due to the presence of inertial waves, even though the modulation amplitudes
used were very small.

In this study we explore in § 3 the boundary layer structure of the base state and
the presence of inertial waves when the modulation frequency is smaller than twice
the background rotation frequency Ω , and also an axisymmetric period doubling
bifurcation that is able to excite inertial waves for modulation frequencies larger
than 2Ω . In § 4 we explore the three-dimensional states that appear when the base
state loses stability on increasing the modulation amplitude, and the wavy turbulent
states that appear close to the bifurcation, for different values of the modulation
frequency.

2. Governing equations and numerical methods
Consider the flow in a circular cylinder of radius R and height H, completely filled

with a fluid of kinematic viscosity ν , rotating with a mean angular speed Ω that is
harmonically modulated. A schematic of the flow system is shown in figure 1. The
Navier–Stokes equations, non-dimensionalized using R as the length scale and 1/Ω
as the time scale, are

(∂t+u ·∇ )u= −∇p+ 1
Re
∇ 2u, ∇ ·u= 0, (2.1)

where u= (u, v ,w) is the velocity field in polar coordinates (r, θ ,z) ∈ [0,1] ×
[0,2π ] × [−γ /2, γ /2] and p is the kinematic pressure. The boundary conditions are
no-slip: on the cylinder sidewall (u, v ,w) = (0,1+ α sinωt,0), on the top and bottom
endwalls (u, v ,w) = (0,r(1+ α sinωt),0). There are four governing parameters:

Reynolds number, Re= ΩR2/ν ;
aspect ratio, γ = H/R;
modulation amplitude, α ;
modulation frequency, ω .

(2.2)
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H

R

FIGURE 1. (Colour online available at journals.cambridge.org/flm) Schematic of the apparatus
including streamfunction contours of a basic state at Re= 104, γ = 1.0, α= 0.5 and ω= 0.8π.

Present
study

Wang
(1970)

Rubio et al.
(2009)

Busse
(2010b)

Noir et al.
(2010)

Re α2β/ε Ω0γ
2 R2/E 1/E

γ 1/α 1/γ 1/R 2χ
α δ/2β A ε ε
ω 1/β Ωm/Ω0 ω f

TABLE 1. The parameters used in the present study are given as a function of the parameters
used in other studies.

Study γ Re α ω

Present study 1 104 [0.2, 0.9] [1.2, 2.6]
Wang (1970),
experiments

2.26 [0.39, 14]×104 [0.14, 13.0] [1.0, 100]

Rubio et al. (2009) 0.25 104 [0.0, 0.05] [0.0, 1.6]
Noir et al. (2010) 2.14 [0.1, 10.0]×104 [0.0, 5.0] [0.1, 3.0]
Wang (1970), theory ∼1 Asymptotics: α� (ω/Re)1/2�ω.
Busse (2010b) ∼ 0 Asymptotics: Re−1/2�ω� 1, α� 1.

TABLE 2. Parameter ranges used in different studies.

There are, of course, many different ways to non-dimensionalize the problem, and
several of the previous studies on related problems have used different scalings.
Table 1 gives the expression of the parameters used in the present study as a function
of the parameters used in some of the other studies.

The present problem is governed by four non-dimensional independent parameters,
and a comprehensive exploration of the parameter space is extremely expensive.
Table 2 gives the parameter ranges explored in different studies. We have kept the
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aspect ratio fixed at γ = 1 and the mean angular speed of the fluid container fixed
at Re= 104; these are in the middle of the parameter ranges explored experimentally
by other authors (as indicated in table 2). In this study, we have focused on the
effects of the amplitude and frequency, α and ω, of the angular modulations. As
the dynamics is mainly governed by the boundary layers appearing at the container
walls, and the boundary layer thickness is much smaller than the dimensions of the
cylinder, it is reasonable to assume that changing the aspect ratio does not qualitatively
change the dynamics, as the previous studies suggest. Inertial waves may appear for
ω 6 2, so we have explored a range of the modulation frequency around 2. For the
modulation amplitude, we have selected values able to excite inertial waves with
enough amplitude to be detected, but not too large, because the flow becomes turbulent
at large amplitudes, i.e. we consider α . 1.

The governing equations and boundary conditions are invariant under arbitrary
rotations through angle φ about the axis, Rφ , whose action is

Rφ (u, v ,w)(r, θ ,z, t) = (u, v ,w)(r, θ + φ ,z, t) . (2.3)

They are also reflection-symmetric about the cylinder half-height. The action Kz of this
symmetry is

Kz(u, v ,w)(r, θ ,z, t) = (u, v ,−w)(r, θ ,−z, t) . (2.4)

The symmetry group of the system is G= SO(2)×Z2, with SO(2) generated by Rφ

and Z2 by Kz.
The governing equations (2.1) have been solved using a second-order time-splitting

method, with space discretized via a Galerkin–Fourier expansion in θ and Chebyshev
collocation in r and z. The spectral solver is based on that described by Mercader,
Batiste & Alonso (2010) and it has recently been tested and used in a wide variety
of enclosed cylinder flows (Marques et al. 2007; Lopez et al. 2007; Lopez & Marques
2009; Lopez et al. 2009; Do, Lopez & Marques 2010; Lopez & Marques 2010). For
the solutions presented here, with γ = 1, we have used up to nr = nz = 64 Chebyshev
modes in the radial and axial directions and up to nθ = 128 azimuthal Fourier modes.
Typically, we have used 2500 time steps per modulation period τ = 2π/ω. The
viscous time is R2/ν , so that in non-dimensional time units, the viscous time is Re,
and for the range of modulation frequencies considered, there are a few thousand
periods per viscous time (i.e. ωRe/2π modulation, or libration, periods per viscous
time unit).

3. Synchronous, axisymmetric basic state
Since the synchronous state is axisymmetric, it is convenient to describe it in terms

of streamlines and vortex lines. The meridional components of velocity can be written
in terms of the Stokes streamfunction, u= −1/r∂ ψ/∂ z and w= 1/r∂ ψ/∂ r and the
vorticity is

∇ ×u= (ξ , η , ζ ) =
(
− 1

r

∂ rv

∂ z
,− 1

r

(
∂ 2

∂ r2
− 1

r

∂

∂ r
+ ∂ 2

∂ z2

)
ψ,

1
r

∂ rv

∂ r

)
. (3.1)

Contours of ψ in a meridional plane depict the streamlines, and likewise, contours
of rv depict the vortex lines. Note that ψ and η are independent of the rotating frame
of reference; we compute and present results mainly in the inertial (i.e. stationary)
frame of reference, although the velocity and vorticity fields are the same in both
the inertial frame and the frame rotating with mean angular velocity Ω , except for
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FIGURE 2. (Colour online) Contours of ψ , v and η at the phases as indicated, for the SO(2)×
Z2 state at Re= 104, γ = 1.0, α= 0.5 and ω= 0.8π≈ 2.513> 2. The colour bar is scaled by
the maximum (red) and minimum (yellow) levels of each variable with ψ ∈ [−0.0005,0.0005],
v ∈ [0.0,1.5], and η∈ [−5.0,5.0]: (a) ψ at 0.25τ ; (b) ψ at 0.75τ ; (c) v at 0.25τ ; (d) η at 0.25τ .

the azimuthal velocity (v = vrot + r) and the axial vorticity (ζ = ζrot + 2), where the
subscript rot refers to the mean rotating frame; using the mean rotating frequency Ω

as the time scale, the non-dimensional form of Ω r is just r.
In the unmodulated problem, with α = 0, the fluid remains in solid-body rotation

with vortex lines parallel to the rotation axis. Figure 2 shows the streamlines,
azimuthal velocity and azimuthal vorticity of a periodic solution at Re= 104, γ = 1.0,
α = 0.5 and ω = 0.8π at one phase in time. This is the basic state; it is axisymmetric,
reflection symmetric and synchronous with the forcing. The most salient features of
the base state are the presence of time-dependent boundary layers at the top and
bottom endwalls and the sidewall, and the presence of a large-scale circulation (LSC)
emanating from the corners. The velocity field changes sign in the LSC region away
from the sidewall every half period, as shown in the streamline plots in figure 2.
However, the circulation close to the sidewall (SWC) always has the same sign.

Figure 3 shows the tangential (radial and azimuthal) velocity profiles at the top
endwall boundary layer at the midradius (r = 0.5). Both oscillate in time and decay
exponentially fast towards the interior of the fluid, as can be seen from the 10 profiles
(grey) equally spaced over a forcing period τ . The blue and red profiles correspond
to the maximum (at t = τ /4) and minimum (at t = 3τ /4) angular velocities of the
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FIGURE 3. (Colour online) Velocity profiles in the top boundary layer, for the SO(2)×Z2 state
at Re=104, γ =1.0, α=0.5 and ω=0.8π, the same state as in figure 2; (a) shows the azimuthal
velocity vrot in the rotating frame and (b) shows the radial velocity u. Ten equispaced profiles in
a forcing period are plotted, at the radial location r= 0.5; the blue and red profiles correspond
to t= τ/4 and t= 3τ/4. The black profile is the time-averaged velocity.

cylindrical container. The time average of these profiles is not zero, and the thick
black curves in figure 3 show the time averages ū and v̄rot , where we have defined
f̄ = 1/τ

∫ t0+τ
t0

f (t) dt. For synchronous solutions, f̄ is independent of t0, but this is not
the case for more general non-periodic solutions and time averages must be taken over
several periods in order to obtain results whose dependence on t0 is very small.

A comprehensive analysis of boundary layers and inertial waves in rotating fluids is
presented in Greenspan (1968), where steady and unsteady situations were considered.
The particulars of the finite enclosed cylindrical geometry and the periodic forcing, as
used in the present problem, were elaborated on in great detail by Wang (1970), and
only minor particular additional results have been incorporated in subsequent studies
(Yih 1977; Rubio et al. 2009; Busse 2010b). In order to compare the boundary layer
structure of the base state that we have numerically computed with the theory from
Wang (1970), the computed velocity field u is separated into a steady part, i.e. the
time-averaged ū, and an unsteady part ũ= u− ū with zero temporal mean, i.e. a purely
oscillatory part. The unsteady boundary layer profiles at the top and bottom endwalls
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FIGURE 4. (Colour online) Velocity profiles in the top boundary layer, for the SO(2)×Z2 state
at Re=104, γ =1.0, α=0.5 and ω=0.8π, the same state as in figure 2; (a) shows the unsteady
azimuthal velocity ṽrot in the rotating frame and (b) shows the unsteady radial velocity ũ, at the
radial location r= 0.5; the black profiles are computed numerically, and the red profiles are
given by Wang (1970), (3.2) and (3.3).

obtained by Wang, in terms of the parameters used in the present study, are given by

ũ= 1
2αr(e−z̃/δ+ cos(ωt− z̃/δ+ )− e−z̃/δ− cos(ωt− sz̃/δ− )), (3.2)

ṽrot = 1
2αr(e−z̃/δ+ sin(ωt− z̃/δ+ )+ e−z̃/δ− sin(ωt− sz̃/δ− )), (3.3)

where z̃ is the z coordinate, but with origin at the endplate being considered, and
pointing into the interior of the fluid, s is the sign of ω− 2 (+1 if ω > 2 and −1
if ω < 2), and

δ+ =
√

2
(ω+ 2)Re

, δ− =
√

2
| ω− 2 | Re . (3.4)

A measure of the boundary layer thickness is given by the largest of δ± , i.e. by δ− .
Figure 4 shows the numerically computed unsteady parts of the velocities in figure 3,
ũ= u− ū (black curves) together with Wang’s profiles, (3.2) and (3.3) (red curves).
The agreement is very good, considering that Wang’s results are valid for α/ω�
(ωRe)−1/2� 1. In the numerical case considered in the figure, (ωRe)−1/2 ≈ 6×
10−3, but the forcing amplitude α/ω ≈ 0.2 is quite large. Wang (1970)’s profiles are
antisymmetric, in the sense that ũ(t+ τ /2)=−ũ(t); the computed profiles show small
deviations from this behaviour, i.e. they are not purely sinusoidal, due to the presence
of harmonics (2ωt, 3ωt, etc.) generated by the nonlinear terms in the Navier–Stokes
equations. The boundary layer thickness estimate δ− ≈ 0.0197 is also plotted. The
boundary layers at the top and bottom endwalls are identical because the base flow
is reflection symmetric. These endwall boundary layers are a combination of the
Ekman boundary layer and the Stokes boundary layer (see Schlichting & Gersten 2000,
Stokes’ second problem).

The mean azimuthal velocity does not go to zero away from the boundary layer,
but is slightly negative (retrograde), as can be seen in figure 3(a). In fact, the
bulk of the fluid is in solid-body rotation, but with a small retrograde precession
(angular translation) in the rotating frame, whose value in the case considered in the
aforementioned figure is Ωp ≈ −0.0285. Wang (1970) found the precession frequency
of the bulk as a function of ω, and also measured it experimentally, with good
agreement; the result he reports for the case considered here is Ωp≈−0.0309, in good
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agreement with our numerical result, considering that the amplitude α = 0.5 is larger
than that used in Wang’s experiments (α = 0.34). We have extracted these values from
figure 2 in Wang’s paper, where Ω ′ (β ) is given; the relationship with our parameters
is β = 1/ω and Ωp= α2Ω ′/ω. Therefore, the precession frequency of the bulk varies
quadratically with the amplitude α of the forcing, a fact also reported by Rubio et al.
(2009) and Busse (2010b).

Apart from the tangential velocities, u and v , there is a small axial velocity
component w in the boundary layer, very similar to the pumping velocity typical
of Ekman boundary layers. It can be easily computed from the continuity equation,
resulting in w= − ∫ z̃

0 1/r∂r(ru) dz̃; the exact expression can be obtained from (3.2),
and it is of order αδ− , much smaller than the tangential velocities that are of order α .
This vertical axial velocity, combined with the radial velocity in the top and bottom
boundary layers produces the oscillating LSC depicted in figure 2. This circulation
emanates from the corner and is significant around the corner and close to the top and
bottom boundary layers, penetrating into the bulk several boundary layer widths.

The sidewall boundary layer is more complex than the top and bottom boundary
layers; the analysis of Wang (1970) describes it as consisting of three different layers
for the steady mean flow field, but Wang does not describe the non-steady flow at
all. Moreover, since the mean radial flow in the top (and bottom) boundary layer is
positive (see figure 3b), there is a net injection of fluid into the sidewall boundary
layer. Figure 5 shows the tangential velocities (azimuthal and axial) at the sidewall
boundary layer, at z= 3/8≈ 0.37, i.e. at 1/8 of the cylinder length from the corner.
Both oscillate in time and decay exponentially fast towards the interior of the fluid, as
can be seen from the 10 profiles (grey) equispaced over a forcing period τ . The blue
and red profiles correspond to the maximum (at t = τ /4) and minimum (at t = 3τ /4)
angular velocities of the cylinder. The time average of these profiles is not zero, and
the thick black curves in figure 5 show the time averages v̄rot and w̄. The azimuthal
velocity profile has the same qualitative features as v̄rot at the top boundary layer;
however, the axial velocity profile is very different from the corresponding tangential
component, ū. The mean axial velocity w̄ (black curve in figure 5b) is large, and
corresponds to a SWC zone that does not change sign with time, this can also be
seen in figure 2. This recirculation zone is the result of the injection of fluid coming
from the top and bottom boundary layers. The outer zone, where the velocities go to
zero very slowly, corresponds to the LSC, discussed earlier, that changes sign every
half forcing period. Also plotted in the figure are the three nested layer thicknesses
estimated from Wang’s analysis: (a) δ3 = (Re)−1/4 ≈ 0.10, where the steady bulk
precession Ωp is brought to rest; (b) δ2 = (Re)−1/3 ≈ 0.046, that balances the mass
flux induced by the δ3 layer; and (c) δ1 = (ωRe)−1/2 ≈ 0.0063, the innermost layer,
with a strong axial flow which accommodates the injected flow from the top endwall,
and is important close to the corner. This axial flow decreases along the sidewall on
approaching the cylinder midplane z= 0, where it becomes zero.

3.1. Inertial waves
For ω = 2, i.e. when the forcing frequency is two times the mean angular speed of the
container, the boundary layer thickness given by (3.3) grows unbounded, completely
filling the container. This singularity coincides with the appearance of inertial waves.
These waves are typical of rotating flows (Greenspan 1968); they are excited by
changes in the angular velocity of the container and decay rapidly, but continuous
changes of the rotation rate (due to external noise or periodic forcing, or even due to
intrinsic flow instabilities, say, in the boundary layers) can make them permanent. For

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

37
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.378


180 J. M. Lopez and F. Marques

0.90 0.92 0.94 0.96 0.98 1.00
–0.50

–0.25

0

0.25

0.50

0.6 0.7 0.8 0.9 1.0
r

–0.02

–0.01

0

0.01

0.02

w

SWCLSC

(a)

(b)

−

3 2 1

FIGURE 5. (Colour online) Velocity profiles in the sidewall boundary layer, for the SO(2)×Z2
state at Re=104, γ =1.0, α=0.5 and ω=0.8π, the same as in figure 2; (a) shows the azimuthal
velocity vrot in the rotating frame and (b) the vertical velocity w. Ten equispaced profiles in a
forcing period are plotted, at the axial location z= 0.37; the blue and red profiles correspond
to t= τ/4 and t= 3τ/4. The black profile is the time-averaged velocity.

periodically forced flows they only exist for ω 6 2, and the wave fronts make an angle
given by cosβ = ω/2 with the plane orthogonal to the rotation axis (see Landau &
Lifshitz 1984, for a short and very clear discussion). These inertial waves change the
nature and properties of the base flow, and although the boundary layer analysis, (3.2)
and (3.3), can still be carried out for ω < 2, it loses most of its meaning, due to the
presence of the inertial waves. Of course, for small ω satisfying 1/

√
Re� ω� 1 it

may be expected that their influence is negligible (Aldridge & Toomre 1969; Busse
2010a,b; Sauret et al. 2010).

Figure 6 shows the streamlines, azimuthal velocity and azimuthal vorticity of a
periodic solution at Re= 104, γ = 1.0, α = 0.2 and ω = 0.6π ≈ 1.885< 2 at one
phase in time. By comparing with figure 2, there is a stark contrast between the flow
structure in the ω > 2 and the ω < 2 cases. For ω < 2, inertial waves play an important
role, breaking the solid-body rotation of the bulk, establishing a time-dependent flow
everywhere, and strongly modifying the boundary layers, that are now less intense.
These states with inertial waves are still the basic state, axisymmetric and synchronous,
for sufficiently small forcing amplitudes α ; the presence of inertial waves is not an
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FIGURE 6. (Colour online) Contours of ψ , v and η at the phases as indicated, for the SO(2)×
Z2 state at Re= 104, γ = 1.0, α= 0.2 and ω= 0.6π≈ 1.885< 2. The colour bar is scaled by
the maximum (red) and minimum (yellow) levels of each variable with ψ ∈ [−0.0005,0.0005],
v ∈ [0.0,1.5] and η∈ [−5.0,5.0]: (a) ψ at 0.25τ ; (b) ψ at 0.75τ ; (c) v at 0.25τ ; and (d) η at
0.25τ .

instability of the base state at a given modulation amplitude αcrit , but exist for all
α > 0, although their amplitude goes to zero linearly with α , for ω < 2.

Even when ω > 2, inertial waves can be generated via flow instabilities. We
illustrate this with an example at ω = 0.8π, which as we have shown earlier does
not support inertial waves as long as α is sufficiently small (figure 2 showed such
a case with α = 0.5). By α = 0.75 a number of subtle things happen, the flow
remains axisymmetric and reflection symmetric about the midheight (i.e. SO(2)×Z2

symmetric), but now vortices form in the sidewall boundary layer symmetrically about
the midheight and these equatorial vortices are not synchronous with the forcing.
Instead, they oscillate at twice the forcing frequency; the flow has period doubled.
The period doubling is quite localized to these equatorial vortices, the top and
bottom endwall layers and the corner region appear to oscillate synchronously with
the forcing (of course, on very much closer inspection, they too oscillate with their
period doubled). The interesting result of this period doubling is that the flow now
has a period of 0.4π, and so now the interior near-solid-body rotation flow has
inertial waves and these propagate at an angle cos−1(0.2π) ≈ 51◦; figure 7 shows two
snapshots of η exactly one forcing period apart.
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FIGURE 7. (Colour online) Contours of η at two phases exactly one forcing period apart, for
the SO(2)×Z2 period-doubled state at Re= 104, γ = 1.0, α= 0.75 and ω= 0.8π. The colour
bar is scaled by the maximum (red) and minimum (yellow) levels of η∈ [−5.0,5.0]: (a) 0.5τ ;
and (b) 1.5τ .

4. Three-dimensional flows
As the forcing amplitude α is increased, the basic state loses stability. How

this occurs depends on the forcing frequency, ω, and there are a succession of
secondary instabilities that occur over a small range of α leading to states with
all symmetries broken and broadband temporal characteristics. These states resemble
the wavy turbulent states observed in experiments (Noir et al. 2010). We have not
performed a comprehensive bifurcation analysis of these cascades of instabilities
as this would be a very expensive and challenging numerical exercise, but in the
following we describe a number of the observed states for a few select values of ω
and α illustrating the variety and complexity of the transitions to wavy turbulence.

In the previous section, we saw for ω = 0.8π, a frequency value where the libration
does not induce inertial waves in and of itself, that the centrifugal instability of the
sidewall layer during the deceleration phase of the oscillation leads to the formation of
vortices in the boundary layer, primarily about the cylinder half-height, and that these
oscillate at half the forcing period and so induce inertial waves. This period-doubled
flow at α = 0.75 remains SO(2)×Z2 symmetric. On increasing α to 0.77, the vortices
in the sidewall layer intensify and those in between the corner vortices and the vortices
near the equator lose stability to azimuthal wavenumber m= 3 and the flow is now
a modulated rotating wave state. Figure 8(a) shows the azimuthal vorticity on the
sidewall, where the cylinder has been ‘unwrapped’ (i.e. plotting η on r = 1.0, θ ∈
[0,2π ], z ∈ [0.0,1.0]). This snapshot in time illustrates that the corner vortices and
the vortices at the equator are axisymmetric and the vortices in between break-up into
a herringbone pattern. The two intense vortices about the equator are no longer mirror
images of each other, the Z2 reflection symmetry has also been broken. The inclined
vortices have a mean precession and their intensity waxes and wanes with the cylinder
libration.

Increasing the amplitude slightly to α = 0.80, the form of the flow is the same, a
modulated rotating wave, except that now the azimuthal wavenumber is m= 4. The
plot of η on the sidewall, figure 8(b), and figure 9(a,b) showing η in a meridional
section (θ = 0) and a horizontal section (z= 0.25), illustrate that the Z2 symmetry
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FIGURE 8. (Colour online) Azimuthal vorticity contours at Re=104, γ =1.0, ω=0.8πwith α
as indicated, on the sidewall (r= 1.0, θ ∈ [0,2π], z∈ [0.0,1.0]). The colour bar is scaled by the
maximum (red) and minimum (yellow) levels of η∈ [−15,15] (enhanced online): (a) α=0.77:
(b) α= 0.80; and (c) α= 0.82; (d) α= 0.90.

breaking is no longer localized to the sidewall vortices near the equator and that the
non-axisymmetric flow is not localized to the vortices in between those at the equator
and the corners; the interior flow has inertial waves that are not SO(2)×Z2.

Further increasing the amplitude to α = 0.82 introduces an m= 2 azimuthal
wavenumber, further modulating the modulated rotating wave. Energy is exchanged
between m= 2 and m= 4 in an incommensurate fashion, as the online movie (available
at journals.cambridge.org/flm) of η on the sidewall associated with figure 8 illustrates.
The movie shows the mean precession of the sidewall vortices much better than in the
lower α cases since at larger α , these vortices are more intense and persist throughout
the entire libration cycle. One may view this persistence as a mean steady-streaming
flow, but it is difficult to compute it unambiguously, not only because the flow is
not time periodic, but because it is also non-axisymmetric and we do not have a very
accurate estimate of the mean precession of the flow (if the time average is not done
in a reference frame rotating exactly at the precession rate, large variabilities occur in
estimates of a mean flow).

By α = 0.85, the m= 1 azimuthal wavenumber has been excited and now the flow
has all spatial and spatiotemporal symmetries broken; both spatial and temporal spectra
are broadband (but decaying at high wavenumbers), and it is this state that is termed
wavy turbulent. Snapshots and corresponding online movies at α = 0.90 are shown in
figures 8(d), 9(b) and 9(d).

Repeating this exercise of considering flows at increasing α when ω = 0.6π ≈
1.885< 2 produces a very different picture, primarily due to the presence of inertial
waves for all α > 0; these waves propagate at an angle of ∼19.5◦ . The azimuthal
vorticity η of the basic state at α = 0.20 is presented in various planes and projections
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FIGURE 9. (Colour online) Azimuthal vorticity contours at Re= 104, γ = 1.0, ω= 0.8π with
α as indicated, in a meridional section (r ∈ [0.0,1.0], θ = 0, z∈ [0.0,1.0]) and a horizontal
section (r ∈ [0.0,1.0], θ ∈ [0,2π], z= 0.25). The colour bar is scaled by the maximum (red)
and minimum (yellow) levels in each section, with η∈ [−5,5] for the meridional section and
η∈ [−0.25,0.25] for the horizontal section. (enhanced online): (a) α= 0.80; (b) α= 0.90; and
(c) α= 0.80; (d) α= 0.90.

in figures 10(a), 11(a) and 12(a). At this ω, the basic state becomes unstable for α
greater than ∼0.27; the bifurcating flow is a modulated rotating wave with m= 4
that is not Z2 reflection symmetric, but is invariant to a Z2 reflection composed
with an azimuthal rotation of π/4, i.e. Rπ/4Kz (see figures 10b, 11b, 12b and
the accompanying supplementary movies). This symmetry breaking appears to be
associated with the inertial waves in the interior rather than instability of the boundary
layers; the sidewall layer at this low α does not show evidence of Taylor–Görtler (TG)
vortices.

Increasing α beyond ∼0.37, the m= 4 modulated rotating wave becomes unstable,
eventually settling down to an m= 5 modulated rotating wave. This transition has the
very slow characteristics of an Eckhaus instability (Liu & Ecke 1999; Lopez et al.
2007). For α = 0.38, we illustrate this type of transition where we have used the m= 4
state at α = 0.35 as the initial condition. Figure 13 shows the temporal evolution of
the kinetic energies in each azimuthal Fourier component of the flow,

Em = 1
2

∫ z=1/2

z=−1/2

∫ r=γ

r=0
um ·u∗mr dr dz, (4.1)
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FIGURE 10. (Colour online) Azimuthal vorticity contours at Re= 104, γ = 1.0, ω= 0.6π with
α as indicated, on the sidewall (r=1.0, θ ∈[0,2π], z∈[0.0,1.0]). The colour bar is scaled by the
maximum (red) and minimum (yellow) levels of η∈ [−10,10] (enhanced online): (a) α=0.20;
(b) α= 0.30; (c) α= 0.50; and (d) α= 0.70.

where um is the mth Fourier mode of the velocity field and u∗m is its complex conjugate.
The figure shows that the energies in azimuthal wavenumber m= 4 and its harmonics
remain almost constant for about two-thirds of a viscous time (with the time scaling
used, one viscous time corresponds to Re time units, which for this ω is ∼3000
libration periods). During this time, the other modal energies are growing exponentially
(linear in the log-linear plot used in the figure). Then for about a quarter of a viscous
time, the flow appears to have settled into a mixed-mode state where the m= 4 state is
modulated by m= 2 (like a square being alternatively squeezed along one diagonal and
then the other). During this phase of the evolution, the flow components with m= 5
and its harmonics decay for a while, but then suddenly, at ∼t = 104, start to grow
and eventually saturate whilst the other components of the flow decay, leaving a stable
m= 5 modulated rotating wave, after about two viscous times of evolution. This very
slow dynamics is typical of the flows in this study, and illustrates the computational
challenges in performing a bifurcation analysis. For example, we could have computed
the unstable m= 4 state by imposing its symmetry and then performed a linear stability
analysis (this would not be a straightforward Floquet analysis as the state being
investigated is not periodic, but quasiperiodic). However, such an analysis would have
indicated instability to m= 2, and yet the nonlinear evolution just described shows that
the stable bifurcating state is an m= 5 modulated rotating wave. In these flows, linear
stability analysis does not provide a reliable prediction of what an unstable flow will
saturate to.

By α = 0.5, the sidewall boundary layer has become unstable and has TG vortices
(much like those described for the ω = 0.8π case, but there they did not appear until α
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FIGURE 11. (Colour online) Azimuthal vorticity contours at Re= 104, γ = 1.0, ω= 0.6π with
α as indicated, in a meridional section (r ∈ [0.0,1.0], θ = 0, z∈ [0.0,1.0]). The colour bar is
scaled by the maximum (red) and minimum (yellow) levels of η∈ [−5,5] (enhanced online):
(a) α= 0.20; (b) α= 0.30; (c) α= 0.50; and (d) α= 0.70.

was significantly larger), but these are now present in an environment with pre-existing
non-axisymmetric inertial waves; the vortices and the waves interact to produce a
rather complicated flow (see figures 10c, 11c and 12c).

Further increasing α above ∼0.6 intensifies the TG vortices in the sidewall and
there is a very noticeable coupling between them and the inertial waves. Figures 10(d),
11(d), 12(d) and the accompanying supplementary movies show the azimuthal vorticity
for this flow, and the movies in particular give some hint to the extent of the coupling.
However, the movies are only showing the flow over one libration period, and the
coupling has a very low-frequency form characteristic of a flow near a heteroclinic
cycle. Figure 14 shows the time series of E5 and E6, which apart from the underlying
axisymmetric component, are the energies of the dominant components of this flow
state. It shows that there is a fairly regular exchange of energy between the m= 5
and m= 6 components, occurring with a period of roughly 330, which corresponds
to ∼100 libration periods. Similar low-frequency behaviour was found for α = 0.8
and 0.9.

The dynamics are again different for the lower libration frequency ω = 0.4π ≈
1.26 case. Again, inertial waves are present for all α > 0, but now they propagate
at an angle of ∼51◦ . This leads to significant undulations in the top and bottom
boundary layers and in the sidewall layer. The undulations in the sidewall layer
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FIGURE 12. (Colour online) Azimuthal vorticity contours at Re= 104, γ = 1.0, ω= 0.6π with
α as indicated, in a horizontal section (r ∈ [0.0,1.0], θ ∈ [0,2π], z= 0.25). The colour bar is
scaled by the maximum (red) and minimum (yellow) levels η∈ [−2,2] (enhanced online):
(a) α= 0.20; (b) α= 0.30; (c) α= 0.50; and (d) α= 0.70.
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FIGURE 13. (Colour online) Time series of the modal energies for Re= 104, γ = 1.0,
ω= 0.6π and α= 0.38, showing a slow transition from an m= 4 state to an m= 5 state.

promote separation zones on the scale of the TG vortices we have described for
the larger ω cases. Up to α = 0.51, the flow remains SO(2)×Z2 and synchronous.
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FIGURE 14. (Colour online) Time series of the modal energies E5 (black) and E6 (red) over
half a viscous time, after the flow had evolved over one viscous time, indicative of being close
to a heteroclinic cycle, for Re= 104, γ = 1.0, ω= 0.6π and α= 0.70.

–1.0 –0.5 0 0.5 1.0

(a)

(b)

(c)

(d)

FIGURE 15. (Colour online) Azimuthal vorticity contours at Re= 104, γ = 1.0, ω= 0.4π with
α as indicated, on the sidewall (r= 1.0, θ ∈ [0,2π], z∈ [0.0,1.0]). The colour bar is scaled by
the maximum (red) and minimum (yellow) levels of η∈ [−10,10]. (a) α= 0.50; (b) α= 0.55;
(c) α= 0.60; and (d) α= 0.70.

Figures 15(a), 16(a) and 17(a) illustrate this flow at α = 0.50. For α > 0.52, the
sidewall TG vortices are well-formed, but they are not primarily at the equator as
they were for the larger ω cases, but rather form around z= ±0.25. For α = 0.55,
figures 15(b), 16(b) and 17(b) show that the flow is essentially axisymmetric, except
for the TG vortices which have an azimuthal wavenumber m= 2 variation, and Z2

reflection symmetric, except again for the TG vortices near the equator. By α = 0.6,
the TG vortices have clearly broken the Z2 symmetry in the sidewall boundary layer
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FIGURE 16. (Colour online) Azimuthal vorticity contours at Re= 104, γ = 1.0, ω= 0.4π with
α as indicated, in a meridional section (r ∈ [0.0,1.0], θ = 0, z∈ [0.0,1.0]). The colour bar is
scaled by the maximum (red) and minimum (yellow) levels of η∈ [−5,5] (enhanced online):
(a) α= 0.50; (b) α= 0.55; (c) α= 0.60; and (d) α= 0.70.

region as well as becoming completely three-dimensional, but the inertial wave flow
remains essentially SO(2)×Z2 (see figures 15c, 16c and 17c). By α = 0.7 (see
figures 15d, 16d, 17d and the accompanying supplementary movies) the inertial waves
have also broken Z2, but they remain essentially axisymmetric, except for close to the
sidewall layer.

5. Discussion and conclusions
Inertial waves are ubiquitous in rotating fluids, but they are quickly damped and

have a significant impact in the flow only when there is a permanent source that
excites them. This can be the case in the presence of noise or an external periodic
forcing, or even due to the intrinsic dynamics of the flow that develops non-trivial
temporal behaviour triggering inertial waves (Lopez & Marques 2010). Geophysical
problems have several periodic forcings and therefore there is a growing interest in
inertial waves in geophysical flows, as well as in controlled laboratory experiments
designed to mimic some features of geophysical flows (Kelley et al. 2006; Bewley et al.
2007; Kelley et al. 2007; Noir et al. 2009; Kelley et al. 2010; Calkins et al. 2010; Noir
et al. 2010).
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FIGURE 17. (Colour online) Azimuthal vorticity contours at Re= 104, γ = 1.0, ω= 0.4π with
α as indicated, in a horizontal section (r ∈ [0.0,1.0], θ ∈ [0,2π], z= 0.25). The colour bar is
scaled by the maximum (red) and minimum (yellow) levels of η∈ [−2,2] (enhanced online):
(a) α= 0.50; (b) α= 0.55; (c) α= 0.60; and (d) α= 0.70.

Interactions between inertial waves (largely understood in the context of linear,
inviscid dynamics) and viscous boundary and shear layer flows are observed in a
variety of settings. For example, Bewley et al. (2007) observed in their rotating grid
turbulence experiments that large-scale inertial waves quickly sensed the boundaries
and they presented arguments to suggest that the resultant inhomogeneities they
observed should be a general feature of rotating turbulent flows. In rotating spherical
cavities, inertial waves are found to be driven by instabilities and eruptions of the
Ekman layer (Noir et al. 2001; Noir, Jault & Cardin 2001; Lorenzani & Tilgner
2001), and in differentially rotating cylinder flow, inertial waves generated by sidewall
boundary layer instability have been reported (Lopez & Marques 2010). Furthermore,
rotating convection in low-Prandtl-number fluids can be interpreted as inertial waves
driven by buoyancy (Zhang 1994, 1995; Busse & Simitev 2004; Zhang, Liao & Busse
2007).

In the present study we have investigated the flow in a rotating circular cylinder
driven by a harmonic modulation of the rotation rate, i.e. a librating cylinder, focusing
on two main points: the boundary layer structure of the base state and the subsequent
bifurcations resulting in the experimentally observed ‘wavy’ turbulent flow.
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The top and bottom boundary layer structure of the base state agrees well with
the analysis developed by Wang (1970), but the sidewall boundary layer is very
complex and had not been studied in detail previously. The corner regions couple
the horizontal top and bottom boundary layers with the vertical sidewall boundary
layer, giving rise to a LSC originating at the corners. The bulk of the fluid is in
solid-body rotation for large modulation frequencies (ω > 2), with a slightly retrograde
precession with respect to the mean rotation rate of the container. However, for small
modulation frequencies (ω < 2) inertial waves are excited, regardless of the size of the
modulation amplitude α , and these drastically change the properties of the base state,
driving the bulk flow away from solid-body rotation, establishing a time-dependent
flow throughout the entire cylinder and strongly modifying the boundary layers that
are now less intense. We have also found that inertial waves can be excited, even with
ω > 2, via an axisymmetric period-doubling instability of the sidewall that produces a
flow with a frequency smaller than two, thus allowing the generation of inertial waves.

When the base state becomes unstable to three-dimensional perturbations, a complex
succession of secondary instabilities takes place over a small range of α , resulting in
states with all symmetries broken and broad-band temporal characteristics, that closely
resemble the wavy turbulent states observed in experiments (Noir et al. 2010). The
route to spatiotemporal complexity in this problem is highly dependent on the value of
the modulation amplitude and on the presence and angle of propagation of the inertial
waves. When the modulation frequency is large (ω > 2) the instabilities develop near
the centre of the sidewall boundary layer, in the form of TG vortices, generating
herringbone patterns of increasing complexity with increasing α , breaking all of the
symmetries of the problem and evolving towards wavy turbulence. Inertial waves are
absent or very weak, and the dynamics is concentrated on and near the boundary
layers.

When the modulation frequency is smaller but close to the threshold of inertial
waves (ω . 2) we find a very different picture due to the presence of inertial waves
filling the fluid domain. The bifurcated flows are modulated rotating waves, and the
symmetry-breaking process appears to be associated with the inertial waves in the
interior rather than instability of the boundary layers, that do not show evidence of TG
vortices. Modulated rotating waves with different azimuthal wavenumbers compete in
a way similar to the Eckhaus instability, with very slow dynamics. Further increasing
α results in the formation of TG vortices that couple with the inertial waves resulting
in heteroclinic-type dynamics.

For a lower modulation frequency, the inertial waves have a larger inclination angle
producing significant undulations in all of the boundary layers. Now the TG vortices
form midway between the equator and the top and bottom lids. The flow remains
nearly axisymmetric in the bulk, except close to the sidewall layer, where the dynamics
becomes very complex, similar to wavy turbulence.

This first study on the interaction between boundary layers and inertial waves and
the development of wavy turbulence in a librating cylinder can be reasonably easily
reproduced and analysed in laboratory experiments. Such experiments would be able
to cover a larger parameter range, and they are essential to confirm the findings of
the present study and potentially uncover further new dynamics. Previous experiments,
that have been very useful, focused on partial aspects of the problem, and the strong
interaction between boundary layers and inertial waves, filling the whole flow domain,
requires additional and more comprehensive experiments.

There are many open questions in the present problem, and a few of them deserve
explicit mention here. One open question is what happens at larger Re numbers, with
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large mean rotation rates and very thin boundary layers: what are the changes in
the flow dynamics and the wave turbulence? Another open question is the detailed
response of the system to different modulation frequencies (we have explored only
three frequencies in this study), and if there are critical frequencies or frequency
intervals where the response is particularly intense, as occurs in similar problems
involving thin boundary layers in rotating flows that are periodically forced (Do et al.
2010).

This work was supported in part by the US National Science Foundation grants
DMS-0505489 and DMS-0922864, the Spanish Ministry of Education and Science
grant FIS2009-08821 and the Korean Science and Engineering Foundation WCU grant
R32-2009-000-20021-0.

Supplementary movies are available at journals.cambridge.org/flm.
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layer flow. Phys. Rev. E 82, 036301.
GREENSPAN, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
GREENSPAN, H. & HOWARD, L. 1963 On a time-dependent motion of a rotating fluid. J. Fluid Mech. 17,

385–404.
HART, J. E. & MUNDT, M. D. 1996 Instability of oscillatory Stokes–Stewartson layers in a rotating fluid.

J. Fluid Mech. 311, 119–140.
JONES, A. F. 1969 The resonance effect of a disk oscillating about a state of steady rotation. J. Fluid Mech.

39, 269–281.
KELLEY, D. H., TRIANA, S. A., ZIMMERMAN, D. S., BRAUN, B., LATHROP, D. P. & MARTIN, D. H. 2006

Driven inertial waves in spherical Couette flow. Chaos 16, 041105.
KELLEY, D. H., TRIANA, S. A., ZIMMERMAN, D. S. & LATHROP, D. P. 2010 Selection of inertial modes in

spherical Couette flow. Phys. Rev. E 81, 026311.
KELLEY, D. H., TRIANA, S. A., ZIMMERMAN, D. S., TILGNER, A. & LATHROP, D. P. 2007 Inertial waves

driven by differential rotation in a planetary geometry. Geophys. Astrophys. Fluid Dyn. 101, 469–487.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

37
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

journals.cambridge.org/flm
journals.cambridge.org/flm
journals.cambridge.org/flm
journals.cambridge.org/flm
https://doi.org/10.1017/jfm.2011.378


Instabilities and inertial waves generated in a librating cylinder 193

LANDAU, L. D. & LIFSHITZ, E. M. 1984 Fluid Mechanics, 2nd edn. Pergamon Press.
LIU, Y. & ECKE, R. E. 1999 Nonlinear travelling waves in rotating Rayleigh–Bénard convection: stability

boundaries and phase diffusion. Phys. Rev. E 59, 4091–4105.
LOPEZ, J. M. & MARQUES, F. 2009 Centrifugal effects in rotating convection: nonlinear dynamics. J. Fluid

Mech. 628, 269–297.
LOPEZ, J. M. & MARQUES, F. 2010 Sidewall boundary layer instabilities in a rapidly rotating cylinder driven

by a differentially co-rotating lid. Phys. Fluids 22, 114109.
LOPEZ, J. M., MARQUES, F., MERCADER, I. & BATISTE, O. 2007 Onset of convection in a moderate

aspect-ratio rotating cylinder: Eckhaus–Benjamin–Feir instability. J. Fluid Mech. 590, 187–208.
LOPEZ, J. M., MARQUES, F., RUBIO, A. M. & AVILA, M. 2009 Crossflow instability of finite Bödewadt
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