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UNCOUNTABLE TREES AND COHEN κ-REALS

GIORGIO LAGUZZI

Abstract. We investigate some versions of amoeba for tree-forcings in the generalized Cantor and
Baire spaces. This answers [10, Question 3.20] and generalizes a line of research that in the standard case
has been studied in [11], [13], and [7]. Moreover, we also answer questions posed in [3] by Friedman,
Khomskii, and Kulikov, about the relationships between regularity properties at uncountable cardinals. We
show Σ11-counterexamples to some regularity properties related to trees without club splitting. In particular
we prove a strong relationship between the Ramsey and the Baire properties, in slight contrast with the
standard case.

§1. Introduction. This article is concerned with forcings consisting of uncount-
able trees. In particular we focus on some issues about pure decision and Cohen
κ-reals, attacking some points raised in [10, Question 3.20]. The main part of the
article is centered around the investigation of amoeba forcings, and more generally,
the effects of adding uncountable generic trees over models of ZFC. The importance
of such a topic is that it has crucial applications in questions concerning cardinal
invariants associated with tree-ideals and regularity properties. In the standard
case, such a topic has been extensively studied; see [11], [13], [1], [7], and [14] for
important results in the context of 2� and �� .
When dealing with trees on�, even if themost natural versions of amoeba usually
do not have pure decision, some refinements can be defined in order to even get
the Laver property. This is indeed possible for Sacks, Miller, Laver, and Mathias
forcing, whereas in [14] Spinas has shown this cannot be done for Silver forcing.
Rather surprisingly, we show that the situation with trees on κ > � is completely
different, and we are going to show that pure decision gets very often lost. In the last
section, we also present some results about regularity properties for tree-forcings at
κ, showing Σ11-counterexamples for Mathias and Laver measurability even without
club splitting, and we obtain an interesting and rather surprising result connecting
the generalizations of Ramsey property and the property of Baire. This contributes
to solve some questions raised by Friedman, Khomskii, and Kulikov concerning
the regularity properties diagram at κ (see [3]).
We remark that this research field has largely spread out in the last years among
set theorists. In particular, the problems analysed in this article are part of those
collected in [10], which is the output of a series of workshops which took place in
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Amsterdam (November 2014), Hamburg (September 2015), and Bonn (September
2016).

§2. Definitons and notation. Throughout the article we assume κ be an uncount-
able regular cardinal and κ<κ = κ. The elements in �κ are called κ-reals or
κ-sequences, where � is also a regular cardinal, usually � = 2 or � = κ. Given
s, t ∈ �κ we use the standard notation: s ⊥ t iff neither s ⊆ t nor t ⊆ s (and we say
s and t are incompatible). The following notation is also used.

• A tree T ⊆ �<κ is a subset closed under initial segments and its elements
are called nodes. We consider <κ-closed trees T , i.e., for every ⊆-increasing
sequence of length<κ of nodes inT , the supremum (i.e., union) of these nodes
is still in T . Moreover, we abuse of notation denoting by |t| the order type of
dom(t) (such a choice is rather standard in the literature).

• We say that a <κ-closed tree T is perfect iff for every s ∈ T there exist t ⊇ s
and α, � ∈ �, α �= � , such that t�α ∈ T and t�� ∈ T ; we call such t a splitting
node (or split node) and set Split(T ) := {t ∈ T : t is splitting}.

• We say that a split node t ∈ T has order type α (and we write t ∈ Splitα(T )) iff

|{s ∈ T : s � t ∧ s ∈ Split(T )}| = α.

• succ(t, T ) := {α ∈ � : t�α ∈ T}, for t ∈ T .
• t ∈ T is a terminal node iff there are no s � t such that s ∈ T , and we write
t ∈ Term(T ).

• For every tree T we define the boundary of T b(T ) as:

b(T ) := {t /∈ T : ∀s � t(s ∈ T )}.

• Given a tree S, let cl(S) denotes the <-closure of S, i.e., t ∈ cl(S) iff either
t ∈ S or t is the limit of a ⊆-increasing sequence of length <κ of nodes
in S.

• We say that T end-extends S iff T ⊇ S and for every t ∈ T \ S there exists
s ∈ Term(cl(S)) such that s ⊆ t.

• stem(T ) is the longest node in T which is compatible with every node in T ;
Tt := {s ∈ T : s is compatible with t}.

• Let p ⊂ T be <κ-closed, we define T↓p := {t ∈ T : ∃s ∈ Term(p)(s ⊆ t ∨
t ⊆ s)}.

• [T ] := {x ∈ �κ : ∀α < κ(x�α ∈ T )} is called the set of branches (or body)
of T .

We say that a poset P is a tree-forcing if the conditions are perfect trees in �<κ

with the property that if T ∈ P and t ∈ T , then Tt ∈ P too. The ordering is the
inclusion ⊆, i.e., T ′ ≤ T ⇔ T ′ ⊆ T . The generic κ-real added by a tree-forcing P
is xG :=

⋃
T∈G stem(T ).

Along the article we are going to introduce several types of tree-forcings: Sacks,
Silver, Miller, Cohen, Laver, and Mathias. We remark that some popular forc-
ings can be seen as tree-forcings, even if this might not be evident a priori. For
instance:
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• κ-Cohen forcing Cκ := (2<κ,⊇) can be seen as a tree-forcing by associating
s ∈ 2<κ with the tree Ts := {t ∈ 2<κ : t ⊇ s}. Also we will often write
[s] := {x ∈ 2κ : x ⊃ s} instead of [Ts ].

• κ-Mathias forcing
Rκ :={(s, x) : s ∈ 2<κ, x ∈ 2κ, s ⊂ x

|{α < κ : x(α) = 1}| = κ ∧ x�|s | = s},
and we define (t, y) ≤ (s, x) if and only if

s ⊆ t ∧ ∀i(|s | ≤ i < |t| ⇒ t(i) ≤ x(i)) ∧ ∀i < κ(y(i) ≤ x(i)).
Again, one can associate (s, x) ∈ Rκ with a tree T(s,x) as follows:

T(s,x) := {t ∈ 2<κ : t ⊆ s ∨ (
t ⊇ s ∧ ∀i < |t|(t(i) ≤ x(i)))}.

Each section is indeed devoted to focus on a particular kind of trees. The specific
definitions are given at the beginning of the corresponding section.

Definition 2.1 (Tree-ideals and tree-measurability). Let P be a tree-forcing and
let X be a set of κ-reals. We define:

• X is P-open dense iff ∀T ∈ P∃T ′ ≤ T ([T ′] ⊆ X ). The complement of a P-open
dense set is called P-nowhere dense. X is P-meager iff it can be covered by a
≤κ-size union of P-nowhere dense sets. The ideal of P-meager sets is denoted
by IP. (The complement of a P-meager set is called P-comeager.)

• X is P-measurable iff for every T ∈ P there is T ′ ≤ T , such that
[T ′] ∩ X ∈ IP or [T ′] \ X ∈ IP.

Definition 2.2. • Let P be a tree-forcing. We say that T ∈ P is an absolute
P-generic tree over V if for every forcing extension N ⊇ V via a <κ-closed
poset

N |= T ∈ P ∧ ∀x ∈ [T ](x is P-generic over V ).
• We say thatAP is an amoeba forcing forPwheneverAP adds an absolute generic
tree T ∈ P over V .

Definition 2.3 (κ-Axiom A). Let P be a forcing notion. We say that P satisfies
κ-Axiom A iff there is a sequence {≤α: α < κ} of partial orders satisfying the
following properties:

1. ≤0 =≤, and for every α < � , ≤� ⊆≤α;
2. if {pα : α < κ} ⊆ P is such that for every α < � , p� ≤α pα , then there is
q ∈ P such that for all α < κ, q ≤α pα (such q is called fusion);

3. if A ⊆ P is an antichain, p ∈ P and α < κ, then there is q ≤α p such that
{p′ ∈ A : p′ and q are compatible} has size ≤κ.

Definition 2.4. Let P be a forcing satisfying κ-Axiom A and {≤α: α < κ} be
the corresponding sequence of orders. We say that P satisfies pure decision iff for
every formula ϕ, every p ∈ P there exists q ≤0 p deciding ϕ, i.e., either q � ϕ or
q � ¬ϕ.
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§3. κ-Sacks trees.
Definition 3.1. A tree T ⊆ 2<κ is called club κ-Sacks (T ∈ SClubκ ) iff T is perfect
and for every x ∈ [T ], {α < κ : x�α ∈ Split(T )} is closed unbounded (briefly
called “club”, from now on).

This forcing was introduced by Kanamori [6] as a suitable generalization of
Sacks forcing in order to obtain <κ-closure and preservation of κ+ under ≤κ-
support iteration. In more recent years, SClubκ has been investigated by several
authors, such as Friedman and Zdomskyy [2] and Friedman, Khomskii, and
Kulikov [3].

Definition 3.2. (p,T ) ∈ ASClubκ iff the following holds:

• T ∈ SClubκ ;
• p ⊂ T is a <κ-closed subtree of size <κ such that if {ti : i < �} is a <κ-
sequence of split nodes of p then limi<� ti ∈ Split(p) too;

• Term(p) ⊆ Splitα(T ), for some α < κ.

The order is given by:

(p′, T ′) ≤ (p,T )⇔ T ′ ⊆ T ∧ p′ ⊇ p.
If G is ASClubκ -generic over V , put TG :=

⋃{p : ∃T (p,T ) ∈ G}.
The following result shows that ASClubκ is really an amoeba forcing for SClubκ with
respect to Definition 2.2. The proof is similar to the one of [7, Lemma 12].

Proposition 3.3. Let G be ASClubκ -generic over V . Then TG is an absolute SClubκ -
generic tree over V .

Proof. TG ∈ SClubκ is clear, since any approximation p ⊆ TG has the property
that limits of splitting nodes are splitting.
We first check that

V [G ] |= ∀x ∈ [TG ](x is SClubκ -generic over V )

Fix D ⊆ SClubκ dense and put ED := {(p,T ) : ∀t ∈ b(p)(Tt ∈ D)}. We claim ED is
dense. In fact, fix (p,T ) ∈ ASClubκ , and for every t ∈ b(p), pick St ⊆ Tt such that
St ∈ D. Then put S :=

⋃
t∈b(p) St . Clearly (p, S) ∈ ED . Hence, for everyD ⊆ SClubκ

open dense in V , V [G ] |= ∀x ∈ [TG ](Hx ∩D �= ∅), where Hx := {T ∈ SClubκ : x ∈
[T ]}. Note that Hx is a filter. If not, there are T,T ′ ∈ Hx , such that T ∩ T ′ is not
in SClubκ . Let A = T ∩ T ′; then DA := {S ∈ SClubκ : [S] ∩ [A] = ∅} is dense, as for
every S ∈ SClubκ we can find t ∈ S /∈ A. But then Hx ∩ DA �= ∅, contradicting the
fact that x ∈ [T ] ∩ [T ′] = [A]. Note that what we have proven is

V [G ] |= ϕ :≡ ∃F ⊆ 2<κ∀x ∈ 2κ(x ∈ [TG ]⇒ ∃t ∈ F (t ⊂ x ∧ (TG )t ∈ D)).
Butϕ is a Σ12(κ

κ) statement and so for every<κ-closed forcing extensionN ⊇ V [G ],
N |= ϕ. Since D ⊆ SClubκ is arbitrary, we are done. �
We now assume κ be inaccessible and we consider the ordering:

(p′, T ′) ≤ (p,T )⇔ T ′ ⊆ T ∧ p′ end-extends p.
Now we aim at showing the following.

https://doi.org/10.1017/jsl.2019.46 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.46


UNCOUNTABLE TREES AND COHEN κ-REALS 881

Proposition 3.4. Let κ be inaccessible. ASClubκ satisfies κ-Axiom A.
The sequence of orders {≤α: α < κ} is defined as follows:
for every (p,T ), (p′, T ′) ∈ ASClubκ ,

(p′, T ′) ≤α (p,T ) iff p′ = p ∧ T ′ ≤α T,
where T ′ ≤α T :⇔ T ′ ≤ T ∧ Splitα(T

′) = Splitα(T ). Proposition 3.4 follows from
the following two lemmata.

Lemma 3.5. ASClubκ satisfies quasi pure decision, i.e., givenD ⊆ ASClubκ open dense
and (p,T ) ∈ ASClubκ there is T ′ ∈ SClubκ such that T ′ ≤ T , (p,T ′) ∈ ASClubκ and

∀(q, S) ≤ (p,T ′)((q, S) ∈ D ⇒ (q, T ′↓q) ∈ D).
Proof. To simplify the notation, we give a proof for p = ∅ and leave the general
case to the reader. We use the following notation: given a <κ-closed tree q′ of size
<κ we say that q ⊆ q′ is a terminal subtree iff ∀t ∈ Term(q), t ∈ Term(q′) too.
In the following construction, we use the following notation:

– T [�] denotes the tree generated by Split�(T ). i.e.,

T [�] := {t : ∃t′ ∈ Split�(T )(t ⊆ t′)}.
– For a tree T , q <κ-size <κ-closed subtree of T , and S ≤ T such that S
end-extends q, put

T �q S := {t ∈ T : (∃t0 ∈ Term(q)(t0 �⊥ t))⇒ t ∈ S}.
Webuild a fusion sequence {Tα : α < κ}by induction as follows (withT0 = T ):
Step α + 1. Let {piα : i < �α} enumerate all terminal subtrees of Tα [α + 1].

Note that �α ≤ 22α < κ, since κ is inaccessible. Then we proceed
by induction on i < �α as follows:
i = 0. If∃S0α ≤ Tα so that (p0α, S0α) ∈ D, then putT 0α := Tα�p

0
α S0α ;

otherwise let T 0α := Tα .
i + 1. If ∃Si+1α ≤ T iα so that (pi+1α , Si+1α ) ∈ D, then put

T i+1α := T iα �
pi+1α Si+1α ;

otherwise let T i+1α := T iα .
i limit. Put T iα :=

⋂
j<i T

j
α .

Then put Tα+1 :=
⋂
i<�α
T iα . Note that Tα+1 ≤α Tα .

Step α limit. Put Tα :=
⋂
	<α T	 . Note that for all 	 < α, Tα ≤	 T	 .

Finally put T ′ :=
⋂
α<κ Tα . We claim that T

′ as the required property. Indeed
pick any (q, S) ≤ (∅, T ′) such that (q, S) ∈ D. Choose α < κ and i < �α such that
q = piα . Then the statement ∃S0(piα, S0) ∈ D is satisfied (with S0 = S), and so
(q, T ′↓q) ≤ (q, T iα↓q) ≤ (q, S0) ∈ D. �
Lemma 3.6. Let A ⊆ ASClubκ be a maximal antichain, (p,T ) ∈ ASClubκ and α < κ.
Then there exists T ′ ∈ SClubκ , T ′ ≤ T such that (p,T ′) ≤α (p,T ) and (p,T ′) only
has ≤κ many elements compatible in A.
Proof. Let A ⊆ ASClubκ be a maximal antichain and DA := {(p,T ) : ∃(q, S) ∈
A, (p,T ) ≤ (q, S)} its associated open dense set. Given any (p,T ) ∈ ASClubκ ,α < κ,
let {pi : i < �} (� < κ) list all terminal subtrees of T [α + 1] end-extending p and
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apply Lemma 3.5 in order to find T i ⊆ T↓pi , for i < �, satisfying quasi pure
decision for (pi , T↓pi) with D = DA. Then define T ′ as the limit of the following
recursive construction on i < � (starting with S0 = T ): successor case i + 1: put
Si+1 := Si �p

i

T i ; limit case i : Si :=
⋂
j<i Sj . Finally put T

′ :=
⋂
i<� Si . We get

(p,T ′) ≤α (p,T ) and
{(q, S) ∈ A : (q, S) �⊥ (p,T ′)} ⊆

⋃
i<�

{(q, S) ∈ A : (q, S) �⊥ (pi , T i)}.

But for every i < �, Lemma 3.5 implies {(q, S) ∈ A : (q, S) �⊥ (pi , T i)} has size
≤κ, and so also the �-size union has size ≤κ. �
Remark 3.7. Looking at the �-case, without particular care, amoeba forcings
tend to add Cohen reals (and indeed they fail to have pure decision). For instance,
the naive Sacks amoeba adds the following Cohen real c ∈ 2�: let TG be the generic
Sacks tree added by the amoeba, z its leftmost branch, {tn : n ∈ �} the set of
splitting nodes such that z =

⋃
n∈� tn . Define c(n) to be 0 iff min{|s | : t�n 0 � s ∧

s ∈ Split(TG)} ≤ min{|s | : t�n 1 � s ∧ s ∈ Split(TG )}. This construction straight-
forwardly generalizes to our context 2κ. This kind of Cohen real can be suppressed
by considering a finer version of Sacks amoeba, that not only kills this instance
of Cohen real, but in the �-case actually turns out to have pure decision and the
Laver property (see [11] and [7]). However, in the generalized framework we are
considering, this kind of construction fails, since we do not have an appropriate
partition property for perfect trees in SClubκ . A symptom of this problem is revealed
by the existence of another kind of Cohen κ-real, that seems to be more robust
compared to the previous one. To build this Cohen κ-real we fix a stationary and
costationary subset S ⊆ κ in the ground model. Let ASClubκ be an amoeba ordered
by: (p′, T ′) ≤ (p,T ) ⇔ T ′ ⊆ T ∧ p′ end-extends p. Then let x ∈ [TG ] be the
leftmost branch, where TG is the generic tree added by ASClubκ , and let {txα : α < κ}
enumerate all splitting nodes that are initial segments of x. Then put c(α) = 0 iff
|txα+1| ∈ S. It is easy to check that c is a Cohen κ-real. Indeed let (p,T ) ∈ ASClubκ ,
t ∈ p be the longest leftmost split node in p and z ∈ T be the leftmost branch.
Then

C := {|t′| : (t′ ∈ Split(T ) ∧ t′ � t ∧ t′ ⊆ z)}
is a club, per definition of ASClubκ , and so there are both split nodes with length
in C ∩ S and split nodes with length in C ∩ (κ \ S), as S is both stationary and
costationary. Hence we can freely select the first split node extending t in oder to
meet either S or its complement, and this implies c is Cohen.

3.1. Coding by stationary sets. The main result in this section will be the
following.

Theorem 3.8. Let V ⊆ N be ZFC-models such that in N there is an absolute
SClubκ -generic tree over V and N is a forcing extension of V via a <κ-closed poset.
Then there exists z ∈ N ∩ 2κ that is Cohen over V .
We remark that this result highlights a strong difference from the standard Sacks
forcing in the �-case, for which one can construct an amoeba for Sacks satisfying
pure decision and the Laver property. Theorem 3.8 essentially asserts that nomatter
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how we refine our amoeba for SClubκ , we never find a version not adding Cohen
κ-reals.
To prove Theorem 3.8 we introduce a way to read off a Cohen κ-sequence from
T ∈ SClubκ in an absolute way. This coding will use stationary subsets of κ.
So fix {S
 : 
 ∈ 2<κ} family of disjoint stationary subsets of κ in V . Let

{�α : α < κ} be an increasing enumeration of all limit ordinals <κ. The set
Hα we will refer to is meant in different ways, depending whether we are dealing
with a successor or an inaccessible κ.

inaccessible case: putHα := 2≤�α .
successor case: let W 0 be a well-ordering of all s ∈ 2�0 and for every α < κ,
t ∈ 2�α , let Wα+1

t be a well-ordering of all s ∈ 2�α+1 extending t. In what
follows ot(s) refers to the order type of s ∈ 2�α+1 in the well-ordering Wα+1

t .
Then recursively define:
– H0 := {t ∈W 0 : ot(t) < �0} and
– t ∈ Hα+1 iff there exists {t	 : 	 ≤ α + 1} with the following properties:
* for every 	 ≤ α, one has: t	 ∈ 2�	 , t	+1 ∈ W	+1

t	 , and ot(t	) < �α+1,
ot(tα+1) < �α+1,
* t� = lim	<� t	 , for � limit,
* 	 < 	′ ⇒ t	 ⊆ t	′ ,
* t = tα+1.
– H� :=

⋃
α<� Hα , for � limit.

Note that everyHα has size <κ.

Lemma 3.9 (Coding Lemma). Let T ∈ SClubκ , {D	 : 	 < κ} be a ⊆-decreasing
family of open dense subsets of Cκ in V . Then there is T ′ ∈ SClubκ , T ′ ≤ T such that
for every α < κ, there exists 
α ∈ 2<κ such that

∀t ∈ Splitα+1(T
′)∀s ∈ Hα(|t| ∈ S
α ∧ s�
α ∈ Dα).

The first step is to prove the following.

Claim 3.10. Given T ∈ SClubκ , α ∈ κ, 
 ∈ 2<κ, there is T ′ ≤α T , such that
∀t ∈ Splitα+1(T

′)(|t| ∈ S
).
Proof of Claim. Fix α < κ and 
 ∈ 2<κ. For every t ∈ Splitα(T ), i ∈ {0, 1},
pick �(t, i) ∈ Split(T ) such that �(t, i) ⊇ t�i and |�(t, i)| ∈ S
 . Note that we can
do that, since S
 is stationary and we have clubbed many split nodes above each
t�i . Moreover, note that for every 
′ �= 
, |�(t, i)| /∈ S
′ , since the stationary sets
are pairwise disjoints. Finally let T ′ :=

⋃{T�(t,i) : t ∈ Splitα(T ), i ∈ {0, 1}}. By
construction, T ′ ∈ SClubκ , T ′ ≤α T and has the desired property. �
Proof of Coding Lemma. We build a fusion sequence {Tα : α < κ}, with
Tα+1 ≤α Tα as follows (we start with T0 = T ):
case α+1: first find 
α ∈ 2<κ so that ∀s ∈ Hα , s�
α ∈ Dα ; note this is possible
since |Hα| < κ and Dα is open dense in Cκ. (Moreover, note that 
α is not
uniquely determined, but we can simply choose the ≤lex-least.)
Then apply the previous claim forT = Tα and 
 = 
α to obtainTα+1 ≤α Tα
such that
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∀t ∈ Splitα+1(Tα+1)∀s ∈ Hα(|t| ∈ S
α ∧ s�
α ∈ Dα).
case � limit: put T� :=

⋂
α<� Tα .

Finally put T ′ :=
⋂
α Tα . Note that, Splitα(T

′) = Splitα(Tα). Hence, by
construction T ′ has the desired properties. �
Remark 3.11. Given T ∈ SClubκ , let {
α : α < κ} be such that, for every α < κ,
the leftmost node tα ∈ Splitα+1(T ) satisfies |tα| ∈ S
α . We call {
α : α < κ} the
Cohen κ-sequence associated with T .
Note that for every T ∈ SClubκ for every 
̄ := {
α : α < κ} ∈ (2<κ)κ there exists
T ′ ≤ T such that 
̄ is the Cohen κ-sequence associated with T ′.

Proof of Theorem 3.8. Let c be a Cohen κ-real over N . Let TG ∈ N denote
the absolute SClubκ -generic tree over V , f̄ : 2<κ → Split(TG ) ⊆-isomorphism, f :
2κ → [TG ] the homeomorphism induced by f̄, and finally let x = f(c) ∈ [TG ].
Remark that TG,f, f̄ ∈ N , while f(c) ∈ N [c] \ N obviously. Note that, in N [c],
x is SClubκ -generic over V , since TG is absolute generic and N [c] ⊇ V is a forcing
extension via a <κ-closed poset. Let A be the family of all maximal antichains of
SClubκ in V . For every A ∈ A, pick TA ∈ A and s ∈ Cκ such that s � ẋ ∈ [TA]. For
every s ∈ Cκ, one can then define,

B(s) :=
⋂

{TA : A ∈ A ∧ s � ẋ ∈ [TA]}.
Fact 3.12. B(s) contains a tree in SClubκ .
Proof of Fact. To reach a contradiction, assume not. Define Ds := {t′ ∈ 2<κ :
[f̄(t′)] ∩ [B(s)] = ∅}. NoteDs ∈ N . For every t ∈ 2<κ there is t∗ ∈ Split(TG ) such
that t∗ ⊇ f̄(t) and t∗ /∈ B(s); this is possible as (TG )f̄(t) ∈ SClubκ and so there is

t∗ ∈ (TG )f̄(t) \B(s). Then pick t′ ∈ 2<κ so that f̄(t′) = t∗ is inDs and t′ ⊇ t. That
implies Ds is dense in Cκ. Hence, c ∩Ds �= ∅, i.e., there is i < κ such that c�i ∈ Ds ,
which gives � [f̄(ċ�i)] ∩ [B(s)] = ∅. But we know s � ẋ = f(ċ) ∈ [B(s)], by
definition. Contradiction. �
So we can assume for every s ∈ 2<κ there is T (s) ⊆ B(s) in SClubκ . Now let

{T i : i ∈ κ} enumerate all such T (s)’s, and let {
iα : α < κ} be the components
of the Cohen κ-sequence associated with T i . Then put z :=

⋃
i<κ �i , where the �i ’s

are recursively defined as follows:
• �0 := ∅
• �i+1 := ��i 
iαi+1 , where αi+1 is chosen in such a way thatHαi+1 � �i• �i :=

⋃
j<i �j , for i limit ordinal.

We aim at showing that z is Cohen over V . Let D ⊆ Cκ be open dense in V ; we
say T satisfies the Coding Lemma forD if the sequence is so thatD	 = D, for every
	 < κ. Let S(D) := {T ∈ SClubκ : T satisfies Coding Lemma for D} in V , which
is a dense subset of SClubκ . Let A ⊆ S(D) maximal antichain (note A is a maximal
antichain in SClubκ as well, as S(D) is a dense subposet of SClubκ ). Then pick T i ≤ TA,
for some TA ∈ A. For every s ∈ Hαi+1 we have s�
iαi+1 ∈ D. By construction,⋃
j<i �j ∈ Hαi+1 , and so �i+1 ∈ D. Hence, for every D ∈ V open dense of Cκ, there
exists α < κ such that z�α ∈ D, which means z is Cohen over V . �
Corollary 3.13. Let AS be any amoeba for SClubκ satisfying<κ-closure andG be

AS-generic over V . Then there is c ∈ 2κ ∩ V [G ] which is Cohen over V .
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Proof. It is simply a direct application of the main theorem. By definition, an
amoeba for SClubκ adds an absolute generic tree TG . Then simply apply the theorem
for N = V [G ], which satisfies the assumption, as AS is <κ-closed. �
Remark 3.14. Given T ∈ SClubκ satisfying the Coding Lemma and {
α ∈ 2<κ :
α < κ} its associated κ-Cohen sequence, one can define E∗(α,T ) =

⋃
s∈Hα [s

�
α]
and then

E∗(T ) :=
⋂
�<κ

⋃
α≥�
E∗(α,T ) and E(T ) :=

⋂
t∈Split(T )

E∗(Tt).

By construction, both E∗(T ) and E(T ) are dense Π02 sets (κ-intersection of open
dense).

So there is a way to associate T ∈ SClubκ with dense Π02 sets. This might be useful
to answer the following interesting and natural question.

Question 3.15. LetM be the ideal ofmeager sets,ISClubκ
is the ideal of SClubκ -meager

sets, and ≤T denotes Tukey embedding. IsM ≤T ISClubκ
?

Note that we can prove an analogue of Proposition 3.8 by replacing κ-Cohen
reals with dominating κ-reals. Recall that z ∈ κκ is dominating over V iff ∀x ∈
κκ ∩ V ∃α < κ∀� ≥ α(x(�) < z(�)). Indeed the analogue of the Coding Lemma
we need in this case is the following.

Lemma 3.16. Let T ∈ SClubκ , let {tα : α < κ} denote the increasing sequence of
leftmost splitting nodes in Splitα(T ). Let {x	 : 	 < κ} be a family of κ-reals. Then
there is T ′ ∈ SClubκ , T ′ ⊆ T such that for every α < κ, |tα+1| >

∑
	≤α x	(α) + |tα |.

This result about dominating κ-reals is not so surprising, since the same occur
for the standard generic Sacks tree in the �-case.

3.2. Other versions of Sacks amoeba. May one generalize the Sacks forcing in
order to get an amoeba with pure decision and not adding Cohen κ-reals?
In this section we actually give a partially negative answer to this issue, by showing
that even finer versions of amoeba for Sacks without club splitting have problems
in killing all Cohen κ-sequences. So in what follows we are going to work with any
version of amoeba for Sκ being <κ-closed as a forcing notion. (For instance one
might consider κ measurable and require the set of splitting levels to be in a given
normal measure on κ; we get back to this example in more details in the end of this
section, as it does not play a specific role in the coming construcion.)
If one analyses the proof to get an amoeba for Sacks forcing in the �-case one
can realize that the main step is the following (with κ = �).

Partition property. Let {Ti : i < �}, with � < κ and Ti ∈ Sκ. Let C :∏
i<� Split(Ti) → {0, 1} be a 2-coloring. Then there exist T ′

i ≤ Ti such that
for every i < �, C �

∏
i<� Split(T

′
i ) is constant, i.e., there is k ∈ {0, 1} such that

∀〈ti : i < �〉 ∈
∏
i<� Split(T

′
i ), C (〈ti : i < �〉) = k.

We are going to build a counterexample to such a partition property in our
generalized context κ > �. (Specifically our counterexample work for � = �.)

Definition 3.17. GivenT ⊆ 2<κ perfect tree,we say thatT is�-perfect iff there is
an⊆-isomorphism h : 2� → T , i.e., for every s, t ∈ 2� one has s ⊆ t ⇔ h(s) ⊆ h(t)
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and s ⊥ t ⇔ h(s) ⊥ h(t) (roughly speaking, T is �-perfect if it is an isomorphic
copy of 2� inside 2<κ). Then we define

Ω := {T ⊆ 2<κ : T is �-perfect}.
Given T ∈ Ω, xT denotes the leftmost �-branch in T . For every T,T ′ ∈ Ω we
define

T ∼ T ′ ⇔ xT = xT ′ ∧ ∃t ⊆ xT (Tt = T ′
t ).

It is easy to check that ∼ is an equivalence relation. Pick a representative for each
equivalence class. We now define the following coloring C : Ω → {0, 1}. For
every representative T ∗ we put C (T ∗) = 0. Given T ∈ Ω, pick the corresponding
representative T ∗ ∼ T and let 
 = stem(T ) and 
∗ = stem(T ∗). Note that 
 ⊆ 
∗
or 
∗ ⊆ 
.
For every t, t′ ∈ T , with t ⊆ t′ ⊆ xT , let

Δ(t, t′) :=

{
0 iff |{s ∈ Split(T ) : t ⊆ s � t′}| is even,
1 else.

Then define

C (T ) :=

{
Δ(
, 
∗) if 
 ⊆ 
∗,
Δ(
∗, 
) if 
∗ ⊂ 
.

Claim 3.18. There is no T ∈ Sκ homogeneous for C w.r.t. �-perfect trees, i.e.,
there is no T ∈ Sκ and i ∈ {0, 1} such that ∀T ′ ⊆ T,T ′ ∈ Ω one has C (T ′) = i .

Indeed, given any T ∈ Ω, let � = stem(S) with S = T ∩ T ∗ (where T ∗ is the
representative of T ), and pick 
 be the first split node of T extending ��0. Then
clearly C (T ) �= C (T
).
As specified above, in the following result, ASκ be an amoeba for Sκ satisfying
<κ-closure, and defined like in Definition 3.2 (but in a more general framework,
not necessarily with club splitting levels).

Corollary 3.19. ASκ adds Cohen κ-reals.

Proof. Given TG generic tree added via ASκ, we can define z ∈ 2κ as follows:
First let {�α : α < κ} be an increasing sequence of all limit ordinals <κ (but
starting with �0 = 0), then let {tα : α < κ} be an increasing subsequence of
the leftmost split nodes in Split�α (TG ) and qα be the �-perfect tree generated by
Split�α+�(Ttα ), i.e., the tree consisting of those nodes s such that there exists s

′ ⊇ s
with s ′ ∈ Split�α+�(Ttα ). Then define z(α) = C (qα), for every α < κ.
To show that z is Cohen we argue as follows: given (p,T ) ∈ ASκ, and w ∈ 2<κ
arbitrary, let z̄ be the part of z and {tα : α ≤ �} the leftmost split nodes with
tα ∈ Split�α (TG ) decided by (p,T ). Pick t� and let p0 be the�-perfect tree generated
by Split��+�(Tt� ). By definition of C , we can always find q0 ⊆ p0, q0 ∈ Ω, such that
C (q0) = w(0). Then replace p0 by q0 in T , i.e., define T 1 as follows: t ∈ T 1 if and
only if

• t ⊆ t� , or
• t ⊥ t� and t ∈ T , or
• t ⊇ t� and ∃s ∈ Term(q0)(t and s are compatible).
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Then proceed by induction on 1 ≤ 	 < |w|: let p	 be the�-perfect tree generated
by Split��+	+�(T

	
t�+	 ). Then pick an �-perfect tree q	 ⊆ p	 such that C (q	) = w(	)

and define T	+1 by replacing p	 with q	 as follows: t ∈ T	+1 if and only if
• t ⊆ t�+	 , or
• t ⊥ t�+	 and t ∈ T	 , or
• t ⊇ t�+	 and ∃s ∈ Term(q	)(t and s are compatible).
(For 	 limit ordinals, simply put T	 :=

⋂
�<	 T

�.)
Finally let T ′ :=

⋂
	<|w| T

	 and p′ be the tree generated by p ∪ ⋃
	<|w| q	. By

construction, (p′, T ′) ∈ ASκ, (p′, T ′) ≤ (p,T ), and (p′, T ′) � z ⊇ z̄�w, and this
shows that z is κ-Cohen. �
Question 3.20. Can we prove an analogue of Proposition 3.8? In other words: can
we prove that if N ⊇ V is a ZFC-model containing an absolute Sκ-generic tree over
V , then there is c ∈ 2κ ∩N Cohen over V ?
Remark 3.21. As we mentioned at the beginning of this section, an example
of <κ-closed forcing, without splitting levels, can be obtained by working with κ
measurable. Let U be a normal measure on κ, and define

SUκ := {T ∈ Sκ : ∀x ∈ [T ]({α < κ : x�α ∈ Split(T )} ∈ U)}.
(p,T ) ∈ ASU iff T ∈ SUκ and p is an initial subtree of T .

§4. κ-Miller and κ-Silver trees. The situation for κ-Miller and κ-Silver trees is
rather similar to that of κ-Sacks forcing.

Definition 4.1. A tree T ⊆ κ<κ is club κ-Miller (T ∈ MClubκ ) iff

• for every s ∈ T there is t ⊇ s , t ∈ Split(T ) and {α ∈ κ : t�α ∈ T} is club;
• for every x ∈ [T ], {α ∈ κ : x�α ∈ Split(T )} is club.
A tree T ⊆ 2<κ is club κ-Silver (T ∈ VClubκ ) iff

• T is perfect and for every s, t ∈ T such that |s | = |t| one has s�i ⇔ t�i , for
i ∈ {0, 1};

• {α < κ : ∃t ∈ T (t ∈ Split(T )) ∧ |t| = α} is club.
When κ is measurable, we can similarly define MU

κ and V
U
κ by replacing “being

club” with “being in normal measure U”. Pure decision for κ-Miller forcing has
been studied in detail by Brendle andMontoya (private communication: they indeed
proved thatMClubκ does not have pure decision and adds Cohen κ-reals, while MU

κ

satisfies the κ-Laver property, and so it does not add Cohen κ-reals).

Remark 4.2. The situation occurring for κ-Silver trees is essentially the same
as for κ-Sacks trees, when κ is inaccessible; the only innocuous difference when
defining the corresponding amoeba AVκ is that one has to maintain the uniformity
of the frozen part as well, and the same care has to be taken when doing the
various fusion arguments. Apart from that, the reader can easily realize that all
of the definitions and proofs in the previous section work for the κ-Silver case as
well.
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So we only focus on the κ-Miller case, which requires some slight modifications,
though it is rather similar. When defining the corresponding amoeba we have to
require the frozen part to have size <κ. This will be crucial to have quasi pure
decision, and therefore not to collapse κ+. In what follows, κ is inaccessible.

Definition 4.3. We say that (p,T ) ∈ AMClubκ iff the following hold:

• T ∈ MClubκ , p ⊆ T and |p| < κ, p <κ-closed;
• if  is limit and {tα : α < } is a ⊆-increasing sequence of splitting nodes in p,
then

⋃
α< tα ∈ Split(p);

• if  is limit and {αj : j < } is a set of ordinals in κ such that t�αj ∈ p, then
t�α∗ ∈ p, where α∗ := ⋃

j∈ αj .

Proposition 4.4. Let G beAMClubκ -generic over V and TG :=
⋃{p : ∃T (p,T ) ∈

G}. Then, for every <κ-closed forcing extension N ⊇ V [G ],
N |= TG ∈ MClubκ ∧ ∀x ∈ [TG ](x isMClubκ -generic over V ).

Proof. Similar to the one of amoeba for Sacks. For checking that the setHx be a
filter, for T,T ′ ∈ Hx , we argue by contradiction as follows: if T ∩ T ′ /∈ MClubκ then
D := {S : [S] ∩ [T ∩ T ′] = ∅} is dense. Hence we should have Hx ∩ D �= ∅, i.e.,
x ∈ [S] for some S ∈ D, but also x ∈ [T ∩ T ′]. �
Lemma 4.5. AMClubκ has quasi pure decision, i.e., given D ⊆ AMClubκ and (p,T ) ∈

AMClubκ there is T ′ ∈ MClubκ such that T ′ ⊆ T , (p,T ′) ∈ AMClubκ and

∀(q, S) ≤ (p,T ′)((q, S) ∈ D ⇒ (q, T ′↓q) ∈ D).
Given T ∈ MClubκ let {tT� : � ∈ κ<κ} be the natural enumeration of all splitting
nodes of T with the property that for every �, � ′ ∈ κ<κ , � ≤lex � ′ iff t� ≤lex t�′ .
Given T,T ′ ∈ MClubκ we define T ′ ⊆α T iff T ′ ⊆ T and for every � ∈ αα , tT� = tT

′
� .

Proof. The proof is analogous to the proof of quasi pure decision for ASClubκ .
The only difference is that at step α+1, instead of considering all terminal subtrees
of Tα [α + 1], we consider all terminal subtrees of the tree generated by the set
{tTα� : � ∈ (α + 1)(α+1)}. �
As for ASClubκ we then get the following corollary.

Corollary 4.6. AMClubκ satisfies κ-Axiom A.

We remark that the analogous results hold for AMU
κ as well.

AMClubκ adds Cohen κ-reals, since even MClubκ itself adds Cohen κ-reals. On the
contraryMU

κ does not add Cohen κ-reals, but the reader can easily realize that we
can consider a construction as in the case of ASκ in order to show that AMκ adds
Cohen κ-reals, for any <κ-closed version of amoeba forcings.

§5. κ-Mathias and κ-Laver trees.
κ-Mathias forcing. The κ-Mathias forcingRκ for κ uncountable is defined as the
poset of pairs (s, A), where s ⊂ κ of size<κ andA ⊆ κ of size κ such that sup(s) <
min(A), ordered by (t, B) ≤ (s, A)⇔ t ⊇ s∧t� sup s = s∧B ⊆ A∧t \s ⊆ A. Note
that this definition is equivalent to the forcing notion given in the introduction and
its analogous tree-version. As for the other tree-forcings, it might be convenient to
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assume some further assumptions, in order to obtain a <κ-closed forcing, having
some kind of fusion (such as A ∈ Club, or A ∈ U , for some normal measure U).
We remark that κ-Mathias satisfies quasi pure decision and so κ-Axiom A as well,
for κ inaccessible. The proof works exactly as in the �-case, so we can omit it. We
just remark that the use of κ inaccessible is important in the proof; in fact we have
to recursively run through all <κ-size subsets of a given set of splitting levels of
order type α, for every α < κ, and we need this procedure to end in<κ-many steps,
for each α. The situation for κ successor in not known and it is listed as an open
question in the last section.

Remark 5.1. Let S ⊆ κ be stationary and costationary. Note that for RClubκ we
have the following three straightforward facts:

1. RClubκ adds Cohen κ-reals. Let z be the canonical RClubκ -generic branch and
then define c ∈ 2κ by: c(α) = 0 iff z(α + 1) ∈ S. One can easily check that c
is κ-Cohen, by arguing that S is both stationary and costationary, as we did
above for ASClubκ .

2. RClubκ does not have pure decision. In fact, let (s, A) ∈ RClubκ and α ∈ κ
successor ordinal such that (s, A) does not decide ż(α) (for instance forα ∈ A).
Consider the formulaϕ = ż(α) ∈ S; thenϕ cannot bepurely decided by (s, A),
as A is a club.

3. Let f̄ : [κ]<κ → [κ]<κ be a map defined as follows: for every t ∈ [κ]<κ ,
t := {αi : i ≤ j}, put f(t)(i) = 0 ⇔ αi ∈ S. Then let f : [κ]κ → [κ]κ

be the extension induced by f̄. Then f is obviously continuous. Moreover, if
X ⊆ [κ]κ is closed nowhere dense, then f−1[X ] is RClubκ -meager; indeed, for
every (s, A) ∈ RClubκ , let � = f̄(s), and pick � ′ ⊇ � such that [� ′]∩X = ∅.Note
that we can pick s ⊆ s ′ ⊂ A, so that f̄(s ′) = � ′. Then, we get (s ′, A) ≤ (s, A)
and [s ′, A] ∩ f−1[X ] = ∅ (where [s, A] := {x ∈ [κ]κ : x ⊃ s ∧ x ⊆ A}).

Now we want to show that any <κ-closed version of κ-Mathias forcing adds
Cohen κ-reals, and in particular has no pure decision. I thank Heike Milden-
berger for suggesting me an idea about �-tuples giving me a hint for the coming
construction.
Weworkwith the standard version of κ-Mathias forcing, but clearly an analogous
construction works for the tree-version as well. For every a, b ∈ [κ]� , we define
the following equivalence relation: a ≈ b ⇔ |a � b| < �. We also choose a
representative for any equivalence class.We then define a coloringC : [κ]� → {0, 1}
as follows:

for b ∈ [κ]� , let a be the representative of [b]≈. Then put:

C (b) :=

{
0 iff a � b is even,
1 else.

Let x ⊆ κ be the Mathias generic and {αj : j < κ} enumerate all limit ordinals
<κ. ix(	) denotes the 	th elements of x. Define, for j < κ,

z(j) :=

{
0 iff C ({ix(	) ∈ x : αj ≤ 	 < αj+1)}) = 0,
1 else.

https://doi.org/10.1017/jsl.2019.46 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.46


890 GIORGIO LAGUZZI

(Note that αj+1 = αj + � and so C is well defined, since the set {ix(	) ∈ x : αj ≤
	 < αj+1)} ∈ [κ]� .)We claim z is Cohen. Fix (s, A) ∈ Rκ and let z0 be the<κ-initial
segment of z already decided by (s, A). Let t ∈ 2<κ. We are going to find A′ ⊆ A
and s ′ ⊇ s such that (s ′, A′) ≤ (s, A) and (s ′, A′) � z�0 t ⊆ z. This will imply z
be Cohen. W.l.o.g., assume (s, A) exactly decides the first α� + 1-many elements
in x. Then let bj := {iA(	) ∈ A : α�+j ≤ 	 < α�+j+1}, aj be the corresponding
representative, and 	j := min(bj ∩ aj). We then recursively define b′j ⊆ bj , for
j < |t|, as follows:

b′j :=

{
bj if C (bj) = t(j),
bj \ {	j} if C (bj) �= t(j).

Let Γ := {	j : b′j �= bj} and A′ := A \ Γ. Moreover, let s ′ = s ∪ �, where
� :=

⋃
j<|t| b

′
j . Hence, for every j < |t|, (s ′, A′) � z(� + j) = t(j), since (s ′, A′) �

z(�+ j) = C (b′j) = t(j).
Note that this construction provides a counterexample to pure decision as well.
Indeed, given (s, A) ∈ Rκ, pick α� so large that b := {ix(	) ∈ x : α� ≤ 	 < α�+1}
is not decided by (s, A), where x is the Mathias generic. Then the formula ϕ :=
“C (b) = 0” cannot be purely decided by (s, A).

Proposition 5.2. Let Γ be a topologically reasonable family of subsets of κ-reals,
i.e., Γ closed under continuous preimages and intersections with closed sets. Then

Γ(Rκ)⇒ Γ(Baire).
Proof. Let {αj : j < κ} enumerate all limit ordinals <κ (but starting with
α0 = 0) and without loss of generality we consider trees T ∈ Rκ for which there
exist j < κ so that

{	 < κ : stem(T )(	) = 1} has order type αj .
(Note that such trees form a dense subposet of Rκ, as one can always lengthen the
stem with as many 1s as we need in order to catch the subsequent limit ordinal.)
Let H consist of the sequences in 2κ which are not eventually equal 0. Define
h : H → H so that, for every x ∈ H ,

h(x)(j) := C ({ix(	) ∈ x : αj ≤ 	 < αj+1}).
For every j < κ, put Hj := {t ∈ 2<κ : |{	 : t(	) = 1}| has order type αj}. Let
h∗ :

⋃
j<κ Hj →

⋃
j<κ Hj be the function induced by h, i.e., h

∗ is such that for every
x ∈ H ,

h(x) := lim
j<κ
h∗(x�αj).

Note that any subset of 2κ differs from X ∩H by a set of size ≤κ, and so it does
not affect either the Rκ-measurability or the Baire property.
It is easy to check that h is continuous and surjective. Moreover, for everyT ∈ Rκ
one has h[[T ]] = [h∗(stem(T ))]. As an immediate consequence, for every X ⊆ 2κ,
if h−1[X ] is Rκ-open dense, then X is open dense.
Fix X ∈ Γ and let Y := h−1[X ]. We want to show that X has the Baire property.
Note thatY ∈ Γ too, and so it is Rκ-measurable. This provides us with two possible
cases.
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Case 1. There is T ∈ Rκ such that [T ] ∩ Y is Rκ-comeager, and so there are sets
Bα , α < κ, so that each Bα is Rκ-open dense in [T ] and

⋂
α<κ Bα ⊆ Y ∩ [T ]. We

claim thatX is comeager in h∗(stem(T )). Put t := h∗(stem(T )). We aim at building
a sequence {Ui : i < κ} of open dense sets in [t] such that

⋂
i<κ Ui ⊆ [t]∩X , which

means X is comeager in [t]. For � ∈ κ<κ define T� ∈ Rκ such that:

1. T〈〉 := T ;
2.

⋃
j<κ[h

∗(stem(T��j))] ⊆ [h∗(stem(T�))] is comeager in [h∗(stem(T�))];
3. for every α < κ, � ∈ κ<κ such that |�| = α, we have⋃j<κ[T��j ] ⊆ ⋂

�≤α B� ;
4. for every j ∈ κ, |stem(T��j)| > |stem(T�)|;
5. for every � ∈ κκ there is (unique) z ∈ Y such that⋂i<κ[T��i ] = {z};
6.

⋂
i<κ Ui can be written as

⋂
i<κ

⋃
|�|=i h[[T� ]].

This can be done as follows. Fix α < κ and � ∈ κ<κ such that |�| = α. Given

 ∈ 2<κ, by definition of h∗ and the same argument used for provingRκ adds Cohen
κ-reals, we can pick S(
) ≤ T� such that h∗(stem(S(
))) = h∗(stem(T�))�
; then,
by using the fact that each Bα is Rκ-open dense, we can find T (
) ≤ S(
) such that
[T (
)] ⊆ ⋂

�≤α B� . Then let {T��j : j < κ} enumerate all such T (
)’s, for 
 ∈ 2<κ.
Now let t� := h∗(stem(T�)), for all � ∈ κ<κ . Find a� ⊆ κ such that:
• for i, j ∈ a� , [t��i ] ∩ [t��j ] = ∅;
• ⋃

j∈a� [t��j ] is open dense in t� .
Note this can be done by refining the choices of T��j ’s. Then define by recursion:
A0 = {〈〉}, Ai+1 =

⋃
�∈Ai {��j : j ∈ a�}, and put Ui :=

⋃
�∈Ai [t� ].

Then clearly U :=
⋂
i<κ Ui is dense in [t] := [h

∗(stem(T ))]. Finally, U ⊆ X ;
indeed given y ∈ U , the construction of the t� ’s provides us with a unique � ∈ κκ
such that y ∈ ⋂

i<κ[t��i ]. Also the construction of the T� ’s gives a unique z ∈⋂
i<κ[T��i ], and h(z) = y. But z ∈ Y := h−1[X ], and so y ∈ X .
Case 2. For densely many T ∈ Rκ, it holds [T ] ∩ Y ∈ IRκ . Hence, for densely
many s ∈ 2<κ one has [s] ∩ X is κ-meager, which means that X has the Baire
property (following the notation of Definition 2.1, the Baire property is equivalent
to Cκ-measurability). �
By picking h−1[Club] we then obtain the following straightforward consequence.
Corollary 5.3. There is a Σ11 set that is not Rκ-measurable.
This is a rather surprising result; indeed, to our knowledge, it is the first example
where a tree-measurability fails at Σ11 for trees without “fat” splitting (e.g., club).

κ-Laver forcing. First we consider LClubκ , which consists of trees T ⊆ κ<κ such
that:

• ∀t ⊇ stem(T )(t ∈ Split(T ));
• ∀t ∈ Split(T )(succ(t) is club);

For LClubκ we have an analogue of Remark 5.1. Like for the κ-Mathias forcing,
we can consider version without club splitting. For κ inaccessible, a standard proof
shows that κ-Laver satisfies quasi pure decision and κ-Axiom A. We want to show,
for κ = �1, we can build a Cohen �1-real, and implicitly a sentence that cannot be
purely decided. So let L�1 denote any version of Laver forcing at �1 with possibly
any extra requirement on the splitting nodes in order to have <�1-closure and
fusion.
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Aiming at that, we first consider the following version of Laver forcing L(�1, �)
in ��1 . We say T ∈ L(�1, �) iff T ⊆ �<�1 is a tree such that for every t ⊇ stem(T ),
|succ(t, T )| = �. Note that a diagonalization against trees in L�1 (�1, �) provides
us with a Bernstein-type set X , i.e., X ⊆ ��1 such that for every T ∈ L(�1, �)
one has X ∩ [T ] �= ∅ and X \ [T ] �= ∅. So we can build the following Cohen
�1-real.
Let z ∈ ��11 and {αj : j < �1} enumerate all limit ordinals <�1 (but starting
with α0 = 0) and let Az(j) := 〈z(	) : αj ≤ 	 < αj+1〉. Note we can view Az(j) as
an element of ��1 . Define hz ∈ 2�1 as: hz(j) = 1⇔ Az(j) ∈ X .
Now let x ∈ ��11 be L�1 -generic and put c = hx . We claim c is Cohen. Indeed,
given T ∈ L�1 , let cT be the initial segment of c already decided by T , and fix
t ∈ 2<�1 arbitrarily. W.l.o.g. we can assume |stem(T )| be a limit ordinal. We have
to find T ′ ≤ T such that T ′ � c�T t ⊆ c. We recursively build the set {�j : j < |t|}
consisting of elements of ��1 in order to obtain:

j = 0. stem(T )��0 ∈ T such that �0 ∈ X iff t(0) = 1;
j successor. stem(T )�(⊕i<j�i)��j ∈ T such that �j ∈ X iff t(j) = 1 (where

⊕i<j�i simply consists of the concatenation of the �i ’s, for i < j);
j limit. �j := ⊕i<j�i .

Finally put � := stem(T )�(⊕j<|t|�j) and T ′ := T� . By construction, for every
j < |t|, T ′ � Ax(j) ∈ X ⇔ t(j) = 1, and so T ′ � c(j) = t(j), as desired.
Like for κ-Mathias forcing, this idea provides us with a counterexample to pure
decision too. Indeed, given T ∈ L�1 , pick j ∈ �1 ordinal large enough so that T
does not decide c(j). Then the formula ϕ = “c(j) = 1” cannot be purely decided
by T .
Hence, for κ = �1, an analogue of Proposition 5.2 and Corollary 5.3 holds for
Laver measurability as well.

Proposition 5.4. Γ(L�1 ) implies Γ(Baire), for Γ topologically reasonable family.
As a corollary, there is a Σ11 set which is not L�1 -measurable.

Actually, if one looks at the proof, one can easily realize that it perfectly works
for any κ ≤ 2� , as the argument for building a Bernstein sets works in such cases
as well. On the contrary, if κ > 2� then we have too many trees compared to the
possible branches we can select, and so the Bernstein-type construction of X does
not work anymore. It then remains open what about the case κ > 2� .

§6. Concluding remarks. In [9] it was proven that if one drops the club splitting
on the trees then it is possible to obtain a tree-measurability which can be forced for
all projective sets (e.g., for Silver forcing) or in other cases forΣ11 sets (e.g., forMiller
forcing). On the other hand, in this article we have seen that for κ-Mathias and �1-
Laver measurability this is subject to more restriction, as specified in Propositions
5.2 and 5.4. In the following table we summarize the currently known situation.
In the column “Σ11-counterexample” we list all cases for which the existence of a
nonmeasurable Σ11 set is provable in ZFC; in the column “Forceable” we list all cases
for which Σ11 or even projective measurability is forceable; the last column obviously
exhibits the open questions.
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Forcing notionΣ11-counterexample Forceable Unknown

Sacks SClubκ ([3]) Sκ ([9]) SUκ

Silver VClubκ ([9]) Vκ ([9]) VU
κ

Miller MClubκ ([3]) Mκ ([9]) MU
κ

Laver LClubκ ([3]), L∗
�1 , L

U
�1 (Proposition 5.4) Lκ, LU

κ , κ > �1

Mathias RClubκ ([3]), R∗
κ, R

U
κ (Corollary 5.3)

Cohen Cκ ([4])

(Recall Cκ-measurability is simply the Baire property; the ∗ for Lκ and Rκ simply
mean that we require <κ-closure of the forcing together with fusion.)
About this type of questions, concerning the consistency of certain regularity
properties for a given family of sets, we remark that an important tool used in
the standard �-case is the amalgamation of Boolean algebras. It was originally
introduced by Shelah in [12] for proving the consistency of the Baire prop-
erty in the �-case for all projective sets without using an inaccessible cardinal.
Other applications of Shelah’s amalgamation were presented in [5] and [8], where
the authors proved some results about separating different notions of regularity
properties.
An interesting point to investigate would be to what extend we can generalize
Shelah’s amalgamation in our generalized context with κ > �. We know that a
rough and trivial generalization cannot work properly, as we know that the Baire
property fails for Σ11-sets. Indeed if we look at Shelah’s construction, we can realize
that in general the amalgamation does not ensure <κ-closure; in the �-case this
was not a point, as any tree-forcing is trivially <�-closed, and � is preserved. The
point is that amalgamation might collapse κ. A possible solution that we aim to
further investigate could be to amalgamate in order to obtain strong homogeneity
over a restricted set of κ-branches only, instead of all. (This idea was also used
in [9] for proving that all projective sets are Vκ-measurable, where we used strong
homogeneity of Cohen κ-branches of a Silver tree.)
About generic trees we recall the main questions that remain open.

Question 6.1. LetMκ be the ideal of κ-meager sets, ISClubκ
is the ideal of SClubκ -

meager sets, and ≤T denotes Tukey embedding. IsMκ ≤T ISClubκ
?

Question 6.2. Can we prove an analogue of Proposition 3.8 forASκ (without club-
splitting) and the other tree-forcings? In other words: can we prove that if N ⊇ V is a
ZFC-model containing an absolute Sκ-generic tree over V , then there is c ∈ 2κ ∩ N
Cohen over V ?

Finally we remark that in all proofs about κ-Axiom A, we use that κ be
inaccessible. So the following is still open.

Question 6.3. Can one prove κ-Axiom A for the amoebas and tree-forcings
analysed in this article, for κ regular successor?
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