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A V -labelled poset P can induce an operation on the languages on any fixed alphabet, as

well as an operation on labelled posets (as noticed by Pratt and Gischer (Pratt 1986;

Gischer 1988)). For any collection X of V -labelled posets and any alphabet Σ we obtain an

X-algebra ΣX of languages on Σ. We consider the variety Lang(X) generated by these

algebras when X is a collection of nonempty ‘traceable posets’. The current paper contains

several observations about this variety. First, we use one of the basic results in Bloom and

Ésik (1996) to show that a concrete description of the A-generated free algebra in Lang(X)

is the X-subalgebra generated by the singletons (labelled a ∈ A) in the X-algebra of all

A-labelled posets. Equipped with an appropriate ordering, these same algebras are the free

ordered algebras in the variety Lang(X)6 of ordered language X-algebras. Further, if one

enriches the language algebras by adding either a binary or infinitary union operation, the

free algebras in the resulting variety are described by certain ‘closed’ subsets of the original

free algebras. Second, we show that for ‘reasonable sets’ X, the variety Lang(X) has the

property that for each n > 2, the n-generated free algebra is a subalgebra of the 1-generated

free algebra. Third, knowing the free algebras enables us to show that these varieties are

generated by the finite languages on a two-letter alphabet.

1. Preliminaries

In this paper, all posets are assumed finite and we identify isomorphic (labelled) posets.

We let [n] denote the set consisting of the first n positive integers. The set of all subsets

of the free monoid Σ∗ is denoted P(Σ∗). In order to avoid requiring familiarity with our

paper ‘Free Shuffle Algebras in Language Varieties’ (Bloom and Ésik 1996), this section

contains the definitions of several frequently used notions.

A Σ∗-labelled poset, or Σ∗-pomset P = (|P |,6P , `P ) consists of a poset (|P |,6P ),

sometimes written just (|P |,6), and an assignment of a nonempty word v`P in Σ∗ to each
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vertex v in P . (Here |P | denotes the underlying set of elements or ‘vertices’ of P , and we

will sometimes just write P for this set. Thus the expression ‘v ∈ P ’ is meaningful.) A

morphism f : P −→ Q of Σ∗-labelled posets is a function |P | −→ |Q| that preserves the

ordering and the labelling.

Suppose that P is a Σ∗-pomset in which the label of each vertex is a word consisting

of a single letter. We call such a labelled poset a Σ-pomset, and usually use the letter A

rather than Σ for the alphabet. From now on, we use the term ‘A-pomset’ for ‘A-labelled

poset’.

We denote the empty poset by 1. Two particular operations on (labelled) posets are the

sequential, or serial product P ·Q and shuffle (or parallel) product P ⊗Q. Given (labelled)

posets P ,Q, with |P | ∩ |Q| = W,

P · Q := (|P | ∪ |Q|,6P ·Q)

P ⊗ Q := (|P | ∪ |Q|,6P⊗Q),

where for v, v′ ∈ |P | ∪ |Q|,

v 6P ·Q v
′ ⇔ v 6P v

′ or v 6Q v
′ or

v ∈ |P | and v′ ∈ |Q|.
v 6P⊗Q v

′ ⇔ v 6P v
′ or v 6Q v

′.

The labelling is extended to P ⊗ Q and P · Q in the obvious way. Note that the ordering

6P⊗Q is the disjoint union of the orderings on P and Q.

Definition 1.1. We let SP(Σ∗) denote the least class of posets containing the empty poset 1,

the singleton posets σ, labelled σ, for each σ ∈ Σ∗, closed under the operations P ·Q, P⊗Q.

The posets in SP(Σ∗) will be called ‘series-parallel’ posets.

Recall that a topological sort, or topological run of a poset P is a bijection s : [n] −→ |P |
such that

si 6P sj ⇒ i 6 j,

where si is the value of s on i ∈ [n]. Suppose that (P ,6P , `) is a Σ∗-pomset. Suppose that

each vertex v of P that is labelled by a word σ1 . . . σk, k = kv > 1, is replaced by the

linearly ordered poset v = v(1) < v(2) < . . . < v(kv), in which the label of the i-th vertex

v(i) is σi. (For example, if P is a 2 element poset {v1, v2} in which the two elements v1, v2

are unrelated, and if v1` = abb and v2` = ba, the resulting poset has 5 elements: two

disjoint chains, one of length 3 and one of length 2, labelled in the indicated way.) Call

the resulting Σ-labelled poset (P ′,6P ′ , `′) the expansion of (P ,6P , `).

Definition 1.2. The expansion (P ′,6P ′ , `′) of (P ,6P , `) is denoted PExp. The ordering in

the expansion of P is v(i) 6P ′ v′(j) if either v = v′ and 1 6 i 6 j 6 kv , or v 6= v′ and

v 6P v′.

Definition 1.3. A topological run of a finite Σ∗-pomset P is a topological run of PExp. A

trace of P is a word

v1`
′v2`

′ . . .
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Varieties generated by languages with poset operations 703

formed by concatenating the letters labelling the vertices of a topological run of PExp.

The set of all traces of P is denoted Tr(P ).

Example 1.4. We give two A = {a, b}-pomsets with the same traces. Let P have vertices

{1, 2, 3, 4} with: 1, 2 minimal and both labelled a; 3, 4 maximal and labelled b; and

pred(3) = {1}, pred(4) = 2. Let Q have vertices {1, 2, 3, 4}, with: 1, 2 minimal, and both

labelled a; 3, 4 maximal and labelled b; and pred(3) = {1, 2}, and pred(4) = 2.

P =

b

a

b

a

b

a

b

a

Q =

Then Tr(P ) = Tr(Q) = {aabb, abab}.
Definition 1.5. A bimonoid M = (M, ·,⊗, 1) consists of a monoid (M, ·, 1) and a commu-

tative monoid (M,⊗, 1). A bimonoid morphism M −→ M′ is a function M −→ M ′ that

preserves the unit and the two binary operations.

Note: The collection SP(A) of all A-labelled series-parallel posets is a bimonoid, as is the

collection P(Σ∗) of all subsets of Σ∗ under concatenation and shuffle (see Example 2.3).

Proposition 1.6. (Gischer 1988) For each set A, the bimonoid (SP(A), ·,⊗, 1) is freely

generated by A in the variety of all bimonoids.

For a fixed set A, we define the set Σ(A) as A×N× [2]†, and write ai instead of (a, i, 1),

and ai instead of (a, i, 2).

Now, since SP(A) is the free bimonoid, let h0 : SP(A) −→ P(Σ(A)∗) be the unique

bimonoid morphism taking each letter a ∈ A to the infinite set of two-letter words

ah0 = {a0a0, a1a1, . . .}, a ∈ A.

For P ∈ SP(A), the value Ph0 is the set of all traces of the Σ(A)∗-pomsets obtained by

relabelling each vertex of P labelled a ∈ A by a word aiai, for some i > 0. Note that this

definition of Ph0 is meaningful for any poset P , not just the series-parallel ones. We use

this fact later.

Suppose that P is a Σ(A)∗-pomset in which each vertex is labelled by a two-letter word

of the form aiai. Assume further that distinct vertices have distinct labels. Then a letter

ai occurs in a word in Tr(P ) at most once. Each word in u ∈ Tr(P ) may be written as a

product

u= s0p1s1 . . . pn−1sn−1pn, (1)

where each si is a word on the ‘open letters’ ai, i > 0, a ∈ A, and each word pj is a word

on the ‘closed letters’ ai, i > 0, a ∈ A. If the vertex v is labelled aiai and the letter ai
appears in the word sj , we say ‘v occurs open in sj ’; similarly, if ai appears in the word

pj , we say ‘v occurs closed in pj ’.

A word u in Tr(P ) is a distinguishing trace if a vertex v occurs open in s0 iff v is

minimal; a vertex occurs closed in pn iff it is maximal, and if v occurs closed in pi, then

† N denotes the set of nonnegative integers and for n ∈ N, [n] = {1, 2, . . . , n}.
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v′ occurs open in si iff v is an immediate predecessor of v′. Clearly, the structure of the

poset can be recovered from any distinguishing trace.

Definition 1.7. An A-pomset P is traceable if one of the Σ(A)∗-pomsets obtained by

relabelling the vertices of P labelled a ∈ A, for each a ∈ A, by distinct words aiai, i > 0,

has a distinguishing trace.

The function h0 separates any two distinct traceable posets.

Proposition 1.8. (Bloom and Ésik 1996) If P ,Q are A-labelled traceable posets, then

Ph0 = Qh0 ⇒ P = Q.

The traceable posets are characterized by a structural property.

Definition 1.9. A poset P has the zig-zag property if for any two vertices u, v,

pred(u) ∩ pred(v) 6= W⇒ pred(u) = pred(v),

where pred(u) is the set of all immediate predecessors of the vertex u.

Proposition 1.10. (Bloom and Ésik 1996) An A-pomset P is traceable iff P has the zig-zag

property.

It follows that each series-parallel poset is traceable, but the converse is not true. Let

|P | = {a, b, c, d, e} be the poset determined by the relations succ(a) = {c, d}, succ(d) =

succ(b) = e.

c

a

e

b

d

Then P has the zig-zag property, and is thus traceable, but P is not series-parallel.

Of course, the poset Q in Example 1.4 is not traceable.

Suppose that P is a poset. For each v, v′ ∈ P such that v is an immediate predecessor

of v′, add a new vertex u immediately above v and immediately below v′. The resulting

poset is always traceable.

Remark 1.11. For series parallel posets, Proposition 1.8 was proved in Tschantz (1994)

using special distinguishing traces.

2. Poset operations on languages

For any set A, the set of all A-pomsets is denoted Pos(A). Let V denote the countably

infinite set

V := {x1, x2, . . .}
of ‘variables’. The posets in Pos(V ) play the role of terms.

In this section, we show how a V -pomset P determines an operation on P(Σ∗), for any

alphabet Σ. Suppose that

h : V −→ P(Σ∗)

is any function. Write the value xih as Li. A P -section w of h is a choice of a word wv ∈ Li,
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for each vertex v ∈ P , where the label of v is xi. (If any language Li is empty, h has no

P -section.) We usually just say ‘section’, when the poset P is clear from context.

For each P -section w of h, let Pw denote the labelled poset obtained from P by

relabelling the vertex v by the word wv .

Definition 2.1. The value of P on h is given by

Plang(h) :=
⋃
w

Tr(Pw),

the set of all traces of all posets Pw , as w varies over all P -sections of h. When the

variables labelling vertices of P are in the set {x1, . . . , xn}, we sometimes write Plang(h) as

Plang(L1, . . . , Ln).

Proposition 2.2. Each poset operation on languages is order-preserving; i.e., if P ∈ Pos(V ),

xih ⊆ xih′, all i, then

Plang(h) ⊆ Plang(h′).
Proof. Let S(h) denote the set of all sections of h, and S(h′) the set of sections of h′.

Then S(h) ⊆ S(h′), so

Plang(h) =
⋃

w∈S(h)

Tr(Pw)

⊆
⋃

w∈S(h′)

Tr(Pw)

= P (h′).

Example 2.3. If P is the two element chain x1 · x2, where the minimal element is labelled

x1 and the maximal element is labelled x2, then

Plang(L1, L2) = L1 · L2 = {uv : u ∈ L1, v ∈ L2}.

If Q is the two-element poset x1 ⊗ x2 consisting of two unrelated elements, one labelled

x1, the other labelled x2, then

Qlang(L1, L2) = L1 ⊗ L2,

where, for languages L, L′, L⊗ L′ is their shuffle product:

L⊗ L′ = {u1v1 · · · unvn : u1 · · · un ∈ L, v1 · · · vn ∈ L′, n > 0}.

Any set may take the role of V ; if P is an A-pomset, and h : A −→ P(Σ∗) is any

function, the value Plang(h) may be defined just as in Definition 2.1. If we regard h :

A −→ P(Σ∗) as fixed, we obtain the function h : Pos(A) −→ P(Σ∗), defined by

P 7→ Plang(h). (2)

Perhaps we should give a different name to this extension of h, but the context should

eliminate any possible confusion.

A collection C of languages in Σ∗ is closed under the poset operation Plang if Plang(h) ∈ C
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whenever xih ∈ C, for all labels xi occurring in P . Clearly, P(Σ∗) is closed under any poset

operation. For any set X of V -pomsets and for any alphabet Σ, we call the structure

ΣX := (P(Σ∗), Plang)P∈X

an X-algebra of languages or a language X-algebra. The variety generated by all of the

X-algebras of languages ΣX is denoted Lang(X).

The following fact has a routine proof.

Proposition 2.4. For any alphabet Σ, the collection of regular subsets of Σ∗ is closed under

any poset operation.

3. Poset operations on posets

For any sets A,B, each poset P in Pos(B) determines an operation on Pos(A) as follows.

Suppose that

g : b 7→ Qb

is a function mapping B to Pos(A).

Definition 3.1. For P ∈ Pos(B), the poset Ppos(g) ∈ Pos(A) is obtained from P by

simultaneously replacing all vertices v of P by (disjoint copies of) the posets Qb, with the

restriction that any vertex labelled b ∈ V in P is replaced by the poset Qb. Given two

vertices u, v in Ppos(g), u < v in Ppos(g) iff both are inside the same poset Qb and u < v in

Qb, or u occurs in a poset Qb determined by the vertex u′ ∈ P and v occurs in a poset

Qb′ determined by the vertex v′ ∈ P , and u′ < v′ in P . If we hold the function g fixed, we

obtain the function g : Pos(B) −→ Pos(A):

P 7→ Ppos(g). (3)

If B = V and the labels of P are in the set {x1, . . . , xn}, we may write Ppos(Q1, . . . , Qn) for

Ppos(g).

Proposition 3.2. Suppose that P is a traceable V -pomset, and xih = Qi is a nonempty

traceable A-pomset, for each xi ∈ V . Then Ppos(Q1, . . . , Qn) is also traceable.

If we allow some Qi = xig to have the value 1 for some xi ∈ V , where 1 is the empty

poset, it is possible that Ppos(Q1, . . . , Qn) is not traceable.

Example 3.3. Suppose that: P is a 5-element poset with vertices [5]. Suppose also that:

1,2 are minimal; 4,5 are maximal; and pred(4) = {1, 3}, pred(3) = pred(5) = {2}.
Suppose the label of 3 is x2 and that of every other vertex is x1.

x1

P =

x2

x1 x1

x1

Then P is traceable, but if Q1 = a, Q2 = 1, P (Q1, Q2) is not traceable.
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The poset and language operations are closely related. In order to describe this rela-

tionship we need some notation. Let UW denote the set of all functions from the set U

to the set W ; if f : W −→W ′, then Uf :U W −→ UW ′ is the function taking g : U −→W

to gf : U −→W ′.

Lemma 3.4. For any h : A −→ P(Σ∗), and any poset P ∈ Pos(V ),

(4)

V Pos (A)

Pos (A)

V0 (R*)

0 (R*)

Vh

h

Ppos Plang

where h : Pos(A) −→ P(Σ∗) was defined in (2) above.

Suppose that P ∈ Pos(V ). We say a collection C of posets in Pos(A) is closed under the

poset operation Ppos if Ppos(Q1, . . . , Qn) ∈ C whenever the posets Qi are in C , xi ∈ V .

For a fixed set X of nonempty traceable V -pomsets, and any set A, let

FX(A)

denote the least collection of nonempty traceable posets in Pos(A) containing all singletons

a ∈ A, closed under all of the operations Ppos, P ∈ X. Then FX(A) is an X-algebra of

posets.

Notation: When A has n-elements, we sometimes write FX(n) for FX(A).

Corollary 3.5. For any function h : A −→ P(Σ∗), the restriction to FX(A) of h : Pos(A)

−→ P(Σ∗) is the unique function g : FX(A) −→ P(Σ∗) such that ag = ah for each a ∈ A,

and such that for any poset P ∈ X, the diagram

V Fx (A) V0 (R*)

0 (R*)

Vg

g

Ppos Plang

Fx (A)

(5)

commutes.

Remark 3.6. There is no finite set X of V -labelled traceable posets such that FX(A)

contains all traceable A-pomsets (unless A = W).

4. Free algebras in Lang(X)

In this section we prove the following theorem.

Theorem 4.1. Suppose that A is a fixed set and X is a set of nonempty traceable posets in

Pos(V ). The A-generated free algebra in Lang(X) is FX(A).
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Proof. First we show FX(A) belongs to Lang(X). Indeed, let h0 : A −→ P(Σ(A)) be the

function that maps the letter a ∈ A to the infinite set of two-letter words

a0a0, a1a1, . . .

Then, by Corollary 3.5, h0 is a morphism from FX(A) to Σ(A)X . From Proposition 1.8,

it follows that h0 is injective on the traceable posets. The fact that any function

h : A −→ P(Σ∗) extends to a unique homomorphism from FX(A) −→ ΣX follows from

Corollary 3.5.

Corollary 4.2. (Tschantz 1994; Bloom and Ésik 1996) The collection of A-labelled series-

parallel posets is the A-generated free algebra in the variety generated by the language

structures (P(Σ∗), ·,⊗).

The X-algebras ΣX are also ordered algebras with respect to the order of set inclusion,

by Proposition 2.2. Let Lang(X)6 denote the variety of ordered algebras generated by the

X-algebras of languages (ΣX,⊆).

The relation on FX(A) defined by

Q 6 Q′ ⇔ Qlang(h0) ⊆ Q′lang(h0)

is clearly a preorder. Since h0 is injective, this relation is a partial order. By Corollary 3.5,

this partial order is preserved by all of the poset operations Ppos, P ∈ X. Let (FX(A),6)

denote the resulting ordered X-algebra.

In Bloom and Ésik (1996), it was shown how the value P (g) is determined by g and the

set of words P (h0), for any poset P ∈ Pos(A) and for any g : A −→ P(Σ∗). It follows that

P (h0) ⊆ Q(h0)⇒ P (g) ⊆ Q(g), (6)

for all P ,Q ∈ Pos(A), all alphabets Σ and all functions g : A −→ P(Σ∗).

Theorem 4.3. (FX(A),6) is the A-generated free ordered algebra in Lang(X)6.

Proof. By Theorem 4.1, each function A −→ P(Σ∗) extends to a unique X-algebra

homomorphism FX(A) −→ P(Σ∗). By (6), the extension preserves the ordering.

Corollary 4.4. (Bloom and Ésik 1996) The collection of A-labelled series-parallel posets

ordered as above is the A-generated free ordered algebra in the variety of ordered algebras

generated by the language structures (P(Σ∗), ·,⊗,6).

5. The union-enriched variety Lang(X)

Let ΣX = (P(Σ∗), Plang)P∈X be an X-algebra in Lang(X). Since the powerset P(Σ∗) is

closed under the union operation, we may consider the structures

Σ+
X = (P(Σ∗),+, 0, Plang)P∈X

where L+ L′ = L ∪ L′ and 0 is the empty set.

We want to describe the free algebras in the variety Lang+(X) generated by the

structures Σ+
X .

A poset P ∈ FX(A) belongs to the closure of the subset C of FX(A), in symbols,

P ∈ cl (C)
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if for all alphabets Σ and all h : A −→ P(Σ∗), P (h) ⊆
⋃
Q∈C Q(h). By (6), it follows that

P is in the closure of C iff P (h0) ⊆
⋃
Q∈C Q(h0). Note that cl (C) is finite whenever C is.

Write Iω(A) for the collection of subsets of FX(A) of the form cl (C) for finite C ⊆ FX(A).

Remark 5.1. By definition, if P ∈ cl (C), then P ∈ FX(A). But if C ⊆ FX(A), P ∈ Pos(A)

and h0(P ) ⊆ h0(C), it is not always the case that P ∈ FX(A). Indeed, let A = {a} and let X

consist just of the 5-element poset P of Example 3.3, with vertex i labelled vi, i ∈ [5]. Then,

if h : V −→ FX(A) takes each letter to the singleton a, let C = {P ′}, where P ′ = P (h).

Then there is a traceable poset Q with h0(Q) ⊆ h0(P ′) that is not in FX(A); indeed, one

such Q has vertex set [5] with: 1, 2 minimal; 4, 5 maximal; and

pred(5) = {3}
pred(3) = pred(4) = {1, 2}.

Now we define poset operations on Iω(A). For any finite set of functions gj:

V −→FX(A), j ∈ J , define

xig = cl (
⋃
j∈J

xigj),

all xi in V . For each poset P ∈ Pos(V ), define

Pω(g) := cl ({Plang(gj) : j ∈ J}).

Further, define the + operation on Iω(A) by:

C + C ′ := cl (C ∪ C ′).

In this way, with 0 defined as the empty set, the structure

(Iω(A),+, 0, Pω)P∈X

is the same as the language algebras Σ+
X .

By the general arguments in Bloom and Ésik (1996), we obtain the following theorem.

Theorem 5.2. For each set A, the algebra (Iω(A),+, 0, Pω)P∈X is the A-generated free

algebra in the variety Lang+(X).

Corollary 5.3. (Bloom and Ésik 1996) The collection of finitely generated closed subsets

of the A-labelled series-parallel posets with the indicated operations is the algebra freely

generated by A in the variety generated by the language structures (P(Σ∗), ·,⊗,+, 0).

If we relax the requirement that the closed subsets of FX(A) be finitely generated, we

obtain a structure with an infinitary sum; all the poset operations distribute over the

sums, and the resulting structure I(A) is freely generated by A in the variety generated

by the language structures enriched by arbitrary unions. The least substructure of I(A)

containing the singletons, closed under ·,⊗ binary + and the operation x 7→ 1 + x +

x2 + . . . is freely generated by A in the variety generated by the language structures

(P(Σ∗), Plang,+,
∗ , 0, 1)P∈X . We omit the details, which follow exactly the model in Bloom

and Ésik (1996).
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6. FX(n) is a subalgebra of FX(1)

In this section we show that for ‘reasonable’ sets X, the n-generated free algebra in both

Lang(X) and Lang(X)6 is a subalgebra of the 1-generated free algebra.

Definition 6.1. A set X of traceable posets in Pos(V ) is reasonable if for each i > 1, the

poset

Ri = x1 · (
i︷ ︸︸ ︷

x1 ⊗ . . .⊗ x1)

belongs to FX(1).

Note that if both posets x1 · x2 and x1 ⊗ x2 belong to X, then X is reasonable.

Definition 6.2. Suppose that B = {b1, . . . , bn} and A = {a}. We define ϕ : Pos(B) −→ Pos(A)

as the function determined by the map

bi 7→Ri (7)

as in (3).

Proposition 6.3. The function ϕ : Pos(B) −→ Pos(A) is injective.

Proof. It is clear how to recover Q from Qϕ.

Proposition 6.4. Let P be any poset in Pos(V ) whose labels are among the letters

{x1, . . . , xn}. For any Qi ∈ Pos(B),

Ppos(Q1, . . . , Qn) ϕ = Ppos(Q1ϕ, . . . , Qnϕ).

Proof. This statement follows from the associativity of substitution. The poset on the

left is obtained by first substituting Qi for xi in P , and then replacing bi by biϕ = Ri; the

one on the right is obtained by first substituting Ri for bi in each Qj , and then replacing

xi by Qiϕ in P .

Corollary 6.5. If X is reasonable, the n-generated free algebra FX(n) is isomorphic to a

subalgebra of the 1-generated free algebra FX(1).

Remark 6.6. The assumption that X is reasonable is used to ensure that when Q ∈ FX(n)

we have Qϕ ∈ FX(1).

Remark 6.7. The definition of ‘reasonable’ is certainly not forced, but some assumption

on the set X is necessary in order to obtain the result in Corollary 6.5. Indeed, if X

consists only of the poset x1 · x2, then FX(2) is isomorphic to the nonempty words on the

two letter alphabet x1, x2, and FX(1) is isomorphic to the nonempty words on x1. For any

morphism ϕ : FX(2) −→ FX(1),

(x1 · x2)ϕ = (x2 · x1)ϕ.

Thus, ϕ is not injective.

7. The variety V2

Let V2 denote the subvariety of Lang(X) generated by the one X-algebra

{a, b}X = (P({a, b}), Plang)P∈X
of languages on a two-letter alphabet. In this section, we show that V2 = Lang(X).
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Theorem 7.1. Suppose that A = {a}. Define the function h : A −→ P({a, b}) by

a 7→ {ab, a2b2, a4b4, . . . , anbn, . . . : n = 2k, k > 0}. (8)

If P ,Q are traceable posets in Pos(A) and Ph = Qh, then P and Q are isomorphic.

Proof. In this argument, we assume familiarity with the notion of a distinguishing

trace, introduced in Bloom and Ésik (1996) and discussed above in Proposition 1.10. We

will show that one can recover a distinguishing trace from the set Ph. It follows that Ph

determines P up to isomorphism.

Suppose that n is a nonnegative integer. Let (n)2 denote the binary representation of n,

and let B(n) denote the number of 1’s in (n)2. For any integers m, j, say that j occurs in

m if (m)2 has a 1 in position j.

Lemma 7.2. Suppose that P is a poset in Pos(A) with n vertices. Then

n = max{B(|w|) : w ∈ Ph}.

Indeed, the length of any word in Ph is the sum of the lengths of the words in a section

of h, and is thus a sum of powers of 2. The number of 1’s will be maximum when these

powers are all distinct. There are at most n distinct powers possible, for any section of h.

If w ∈ Ph and B(|w|) = n, the shortest binary representation of the length of w is

n︷ ︸︸ ︷
11 . . . 1 0.

There are many words w ∈ Ph whose length has this binary representation. In order to

obtain such a word, one vertex must be labelled ab, one is labelled a2b2, etc. Let w0 be

the alphabetically least word with

(|w0|)2 =

n︷ ︸︸ ︷
11 . . . 1 0

(assuming the letters a and b are ordered as usual with a < b). Then

w0 = an1bm1an2bm2 . . . ankbmk ,

where
∑
ni =

∑
mi, and n1 is as large as possible, m1 is as small as possible, etc., in order

to obtain a trace. Since w0 is a trace, if we write each superscript as a sum of distinct

powers of 2, we may identify the vertices involved. Since w0 is alphabetically least, if there

are three minimal vertices, say, they will be labelled a2n−1

b2n−1

, a2n−2

b2n−2

and a2n−3

b2n−3

. Now

m1 6 n1, and if j occurs in m1, then j occurs in n1; similarly, if j occurs in mk , j occurs in

some nk′ , for some k′ 6 k. Thus, we may correlate with this word a trace on the alphabet

a0, a0, a1, a1, . . . .

Indeed, if nj = 2j1 + . . . 2js , we replace anj by aj1 · · · ajs ; if mj = 2j1 + . . . 2js , replace bmj

by aj1 · · · ajs . Since w0 is minimal, it is clear that the resulting word is a distinguishing

trace of P . Thus, the alphabetically least word w ∈ Ph with B(|w|) a maximum, and the

length of (|w|)2 a minimum, determines P up to isomorphism. The proof of Theorem 7.1

is complete.
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Corollary 7.3. The function h : FX(1) −→ {a, b}X is injective.

We can extend this embedding to the case that the set A has more than one element.

Let pi, i > 0 denote the i-th prime, with p0 = 2. Suppose that A = {a0, a1, . . . , ar}. Then

define h : A −→ P({a, b}∗) by

ai 7→ {akbk : k = 2p
n
i , 0 6 i 6 r, n > 1}.

The same argument given for Theorem 7.1 proves the following proposition.

Proposition 7.4. For any P ,Q ∈ Pos(A), if Ph = Qh, then P and Q are isomorphic. In fact,

if P ,Q have at most m vertices, and Phm = Qhm, then P and Q are isomorphic, where

aihm := {akbk : k = 2p
n
i , 0 6 i 6 r, 1 6 n 6 m}.

Corollary 7.5. For any set X of nonempty, traceable posets, each finitely generated free

algebra FX(n) in Lang(X) belongs to V2.

Proof. The proof follows from Corollary 7.4.

Corollary 7.6. The varieties V2 and Lang(X) coincide.

Proof. The proof is immediate from Corollary 7.5.

Corollary 7.7. The variety V2 is generated by the structure (Pω({a, b}, Plang)P∈X , where

Pω({a, b} is the collection of finite languages on the two-letter alphabet {a, b}.
Proof. This fact follows from the second statement of Proposition 7.4.

8. Open problems

The main open problem is whether the results of the last two sections can be extended to

the variety Lang(X)6 of ordered algebras. In detail,

— Is there a notion of ‘reasonable’, so that for reasonable sets X of traceable posets, each

finitely generated free algebra in Lang(X)6 is an ordered subalgebra of the 1-generated

free algebra? The map ϕ, defined in (7), is not order-reflecting: (b3
1)ϕ 6 (b2⊗ b2)ϕ but

b3
1 is not related to b2 ⊗ b2.

— Is the embedding h in (8) order reflecting? If not, is there any order-reflecting embed-

ding of FX(1) into {a, b}X?
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