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1. Introduction
Suppose that X is a standard Borel space and T : X→ X is a Borel automorphism of X .
A Borel measure µ on X is T -invariant if µ(T (B))= µ(B) for all Borel sets B ⊆ X . The
characterization of the class of Borel automorphisms of standard Borel spaces admitting
an invariant Borel probability measure is a fundamental problem going back to Hopf (see
[Hop32]).

A compression of an equivalence relation E on X is an injection φ : X→ X sending
each E-class into a proper subset of itself. Building on work by Murray and von Neumann
(see [MVN36]), Nadkarni has shown that the existence of a Borel compression of the
orbit equivalence relation E X

T induced by T is the sole obstruction to the existence of a
T -invariant Borel probability measure (see [Nad90]).

Suppose that E is a Borel equivalence relation on X that is countable, in the sense that
all of its equivalence classes are countable. A Borel measure µ on X is E-invariant if it is
T -invariant for all Borel automorphisms T : X→ X whose graphs are contained in E . It
is easy to see that a Borel measure is T -invariant if and only if it is E X

T -invariant. Becker
and Kechris have pointed out that Nadkarni’s argument yields the more general fact that
the existence of a Borel compression of E is the sole obstruction to the existence of an
E-invariant Borel probability measure (see [BK96, Theorem 4.3.1]).

An equivalence relation is aperiodic if all of its classes are infinite. A set Y ⊆ X is E-
complete if it intersects every E-class in at least one point, and a set Y ⊆ X is a partial
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transversal of E if it intersects every E-class in at most one point. A transversal of E is
an E-complete partial transversal of E . The Lusin–Novikov uniformization theorem (see,
for example, [Kec95, Theorem 18.10]) ensures that there is a Borel transversal of E if and
only if X is the union of countably many Borel partial transversals of E . We say that E
is smooth if it satisfies these equivalent conditions. Dougherty, Jackson and Kechris have
pointed out that the existence of a Borel compression of E is equivalent to the existence of
an aperiodic smooth Borel subequivalence relation of E (see [DJK94, Proposition 2.5]),
thereby obtaining another characterization of the class of countable Borel equivalence
relations on standard Borel spaces admitting an invariant Borel probability measure.

A substantially weaker notion than E-invariance is that of E-quasi-invariance,
where one asks that µ(T (B))= 0 ⇐⇒ µ(B)= 0 for all Borel sets B ⊆ X and Borel
automorphisms T : X→ X whose graphs are contained in E . Given a group 0, we
say that a function ρ : E→ 0 is a cocycle if ρ(x, z)= ρ(x, y)ρ(y, z) whenever x E
y E z. Given a Borel cocycle ρ : E→ (0,∞), we say that a Borel measure µ on X
is ρ-invariant if µ(T (B))=

∫
B ρ(T (x), x) dµ(x) for all Borel sets B ⊆ X and Borel

automorphisms T : X→ X whose graphs are contained in E . Clearly E-invariance is
equivalent to invariance with respect to the constant cocycle, whereas the Radon–Nikodym
theorem (see, for example, [Kec95, §17.A]) and the Feldman–Moore observation that
countable Borel equivalence relations on standard Borel spaces are orbit equivalence
relations induced by Borel actions of countable groups (see [FM77, Theorem 1]) ensure
that E-quasi-invariance is equivalent to invariance with respect to some Borel cocycle
ρ : E→ (0,∞) (see, for example, [KM04, §8]). A characterization of the class of Borel
cocycles ρ : E→ (0,∞) admitting an invariant Borel probability measure was provided
in [Mil08a]. Here we investigate more natural generalizations of the characterizations
mentioned above.

In §2 we introduce the direct generalizations of aperiodicity and compressibility to
cocycles that come from viewing ρ as endowing each E-class with a notion of relative
size. We also introduce the generalization of smoothness to cocycles that comes from the
Glimm–Effros dichotomy. We note that, unfortunately, even when E is smooth, there are
Borel cocycles on E admitting neither a compression nor an invariant Borel probability
measure. In order to bypass this obstacle, we introduce the quotient of ρ by a finite
subequivalence relation of E . Generalizing the observation of Dougherty, Jackson and
Kechris, we show that the existence of an injective Borel compression of the quotient of
ρ by a finite Borel subequivalence relation of E is equivalent to the existence of a Borel
subequivalence relation of E on which ρ is aperiodic and smooth. We also note that, at
least when ρ is smooth, the existence of an injective Borel compression of the quotient of
ρ by a finite Borel subequivalence relation of E is the sole obstacle to the existence of a
ρ-invariant Borel probability measure.

In §3 we introduce Borel coboundaries, a natural class of particularly simple Borel
cocycles containing the constant cocycles. We note that, unfortunately, there are Borel
coboundaries admitting neither an injective Borel compression of the quotient by a finite
Borel subequivalence relation of E nor an invariant Borel probability measure. In order
to bypass this new obstacle, we then drop the assumption of injectivity, and combine the
Becker–Kechris generalization of Nadkarni’s theorem, the Dougherty–Jackson–Kechris
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characterization of the existence of Borel compressions, and an approximation lemma to
generalize Nadkarni’s theorem to Borel coboundaries.

THEOREM 1. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, and ρ : E→ (0,∞) is a Borel coboundary. Then exactly one
of the following statements holds.
(1) There is a finite-to-one Borel compression of the quotient of ρ by a finite Borel

subequivalence relation of E.
(2) There is a ρ-invariant Borel probability measure.

In §4 we no longer restrict our attention to Borel coboundaries. Unfortunately, the direct
generalization of Theorem 1 to Borel cocycles remains open. In order to bypass this final
obstacle, we consider the weakening of the notion of a compression of the quotient of ρ by
a finite subequivalence relation F of E obtained by only taking the quotient in the range,
which we refer to as a compression of ρ over F . By augmenting the main argument of
[Mil08a] with an additional approximation lemma, we generalize Nadkarni’s theorem to
Borel cocycles.

THEOREM 2. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, and ρ : E→ (0,∞) is a Borel cocycle. Then exactly one of
the following statements holds.
(1) There is a finite-to-one Borel compression of ρ over a finite Borel subequivalence

relation of E.
(2) There is a ρ-invariant Borel probability measure.

2. Smooth cocycles
One can think of a cocycle ρ : E→ (0,∞) as assigning a notion of relative size to each
E-class C , with the ρ-size of a point y ∈ C relative to a point z ∈ C being ρ(y, z). More
generally, the ρ-size of a set Y ⊆ C relative to z is given by |Y |ρz =

∑
y∈Y ρ(y, z). We

say that Y is ρ-infinite if this quantity is infinite. As the definition of cocycle ensures that
|Y |ρz′ = |Y |

ρ
z ρ(z, z′) for all z′ ∈ C , it follows that the notion of being ρ-infinite does not

depend on the choice of z ∈ C . It also follows that the ρ-size of Y relative to a non-empty
set Z ⊆ C , given by |Y |ρZ = |Y |

ρ
z /|Z |

ρ
z , does not depend on the choice of z ∈ C .

We say that a cocycle ρ : E→ (0,∞) is aperiodic if every E-class is ρ-infinite. Note
that the aperiodicity of ρ trivially yields that of E . Conversely, when ρ is bounded, the
aperiodicity of E yields that of ρ.

We say that a function φ : X→ X is a compression of ρ if the graph of φ is contained in
E , |φ−1(x)|ρx ≤ 1 for all x ∈ X , and the set {x ∈ X | |φ−1(x)|ρx < 1} is E-complete. Note
that, when ρ is the constant cocycle, a function φ : X→ X is a compression of E if and
only if it is a compression of ρ.

PROPOSITION 2.1. Suppose that X is a standard Borel space and E is an aperiodic
smooth countable Borel equivalence relation on X. Then there is an aperiodic Borel
cocycle ρ : E→ (0,∞) that does not admit a compression.

Proof. Fix a strictly decreasing sequence (rn)n∈N of positive real numbers for which∑
n∈N rn =∞. As E is both aperiodic and smooth, the Lusin–Novikov uniformization
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theorem yields a partition (Bn)n∈N of X into Borel transversals of E . For each x ∈ X , let
n(x) denote the unique natural number for which x ∈ Bn(x), and define ρ : E→ (0,∞)
by setting ρ(x, y)= rn(x)/rn(y) whenever x E y.

The fact that
∑

n∈N rn =∞ ensures that ρ is aperiodic. To see that there is no
compression of ρ, note that if φ : X→ X is a function such that the graph of φ is contained
in E and |φ−1(x)|ρx ≤ 1 for all x ∈ X , then a straightforward induction on n(x), using the
fact that (rn)n∈N is strictly decreasing, shows that φ(x)= x for all x ∈ X . �

A digraph on X is an irreflexive set G ⊆ X × X . Given such a digraph, we say that a set
Y ⊆ X is G-independent if G ∩ (Y × Y )= ∅. A Y -coloring of G is a function c : X→ Y
with the property that c−1(y) is G-independent for all y ∈ Y .

The vertical sections of a set R ⊆ X × Y are the sets of the form Rx = {y ∈ Y | (x, y)
∈ R}, where x ∈ X . When G is Borel, it follows from [KST99, Proposition 4.5] that there
is a Borel N-coloring of G if and only if X is the union of countably many Borel sets
B ⊆ X for which the vertical sections of G ∩ (B × B) are finite.

We say that a Borel measure µ on X is E-ergodic if every E-invariant Borel set is
µ-conull or µ-null. Given a Borel cocycle ρ : E→ 0 and a set Z ⊆ 0, let Gρ

Z denote
the digraph on X with respect to which distinct points x and y are related if and only if
they are E-equivalent and ρ(x, y) ∈ Z . The Glimm–Effros dichotomy for countable Borel
equivalence relations (see [Wei84]) ensures that E is smooth if and only if there is no
atomless E-ergodic E-invariant σ -finite Borel measure. In [Mil08b], this was generalized
to show that if ρ : E→ (0,∞) is a Borel cocycle, then there is an open neighborhood
U ⊆ (0,∞) of 1 for which there is a Borel N-coloring of Gρ

U if and only if there is no
atomless E-ergodic ρ-invariant σ -finite Borel measure. Consequently, we say that a Borel
cocycle ρ : E→ (0,∞) is smooth if it satisfies these equivalent conditions. Note that the
smoothness of E trivially yields that of ρ. Conversely, when ρ is bounded, the smoothness
of ρ ensures that X is the union of countably many Borel sets whose intersection with each
E-class is finite, thus E is smooth.

We say that a set Y ⊆ X is ρ-lacunary if it is Gρ
U -independent for some open

neighborhood U ⊆ (0,∞) of 1.

PROPOSITION 2.2. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, 0 is a Polish group, and ρ : E→ 0 is a Borel cocycle. If there
is an open neighborhood U ⊆ 0 of 10 for which there is a Borel N-coloring of Gρ

U , then
there is a Borel N-coloring of Gρ

K for all compact sets K ⊆ 0.

Proof. Given a digraph G on X , we say that a set Y ⊆ X is a G-clique if all pairs of distinct
points of Y are G-related. It is sufficient to show that if a set Y ⊆ X does not contain an
infinite Gρ

U -clique, then the vertical sections of Gρ
K ∩ (X × Y ) are finite. Towards this

end, fix a non-empty open set V ⊆ 0 with the property that V−1V ⊆U , as well as a finite
sequence (γi )i<n of elements of 0 for which K ⊆

⋃
i<n γi V , and note that if x ∈ X , then

(Gρ
K )x ⊆

⋃
i<n(G

ρ
γi V )x , so we need only show that each (Gρ

γi V )x is a Gρ
U -clique. But if

i < n and y, z ∈ (Gρ
γi V )x , then ρ(y, z)= ρ(y, x)ρ(x, z) ∈ (γi V )−1γi V = V−1V ⊆U . �

The following fact ensures that a Borel cocycle ρ : E→ (0,∞) is smooth if and only
if there is an E-complete ρ-lacunary Borel set.
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PROPOSITION 2.3. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, 0 is a locally compact Polish group, ρ : E→ 0 is a Borel
cocycle, and U ⊆ 0 is a pre-compact open neighborhood of 10 . Then there is a Borel
N-coloring of Gρ

U if and only if there is an E-complete Gρ
U -independent Borel set.

Proof. If c : X→ N is a Borel N-coloring of Gρ
U , then set An = c−1(n) and Bn =

An\
⋃

m<n[Am]E for all n ∈ N. As the Lusin–Novikov uniformization theorem ensures
that the latter sets are Borel, it follows that their union is an E-complete Gρ

U -independent
Borel set.

Conversely, suppose that B ⊆ X is an E-complete Gρ
U -independent Borel set. The

Lusin–Novikov uniformization theorem then yields Borel functions φn : B→ X such
that E ∩ (B × X)=

⋃
n∈N graph(φn), from which it follows that there are such functions

satisfying the additional constraint that the sets Kn = ρ(graph(φn)) are pre-compact.
As Proposition 2.2 yields Borel N-colorings of Gρ

KnU K−1
n
∩ (B × B), and the Lusin–

Novikov uniformization theorem ensures that φn sends Gρ

KnU K−1
n

-independent Borel sets

to Gρ
U -independent Borel sets, there are Borel N-colorings of Gρ

U ∩ (φn(B)× φn(B)), and
therefore of Gρ

U . �

Remark 2.4. Propositions 2.2 and 2.3 easily imply that a Borel cocycle ρ : E→ (0,∞) is
smooth if and only if X is the union of countably many ρ-lacunary Borel sets.

We say that a function φ : X→ X is strictly ρ-increasing if its graph is contained in E
and |φ−1(x)|ρx < 1 for all x ∈ X .

PROPOSITION 2.5. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, and ρ : E→ (0,∞) is a smooth Borel cocycle. Then there
is an E-invariant Borel set B ⊆ X for which E � ∼B is smooth and there is a strictly
(ρ � (E � B))-increasing Borel automorphism.

Proof. Fix a partition (Bn)n∈N of X into ρ-lacunary Borel sets. For each x ∈ X , let n(x)
be the unique natural number for which x ∈ Bn(x). Let � be the partial order on X with
respect to which x � y if and only if x E y, n(x)= n(y), and ρ(x, y)≤ 1, and let B be the
set of x ∈ X such that for all n ∈ N, either Bn ∩ [x]E = ∅ or� � (Bn ∩ [x]E ) is isomorphic
to the usual ordering of Z. Then E � ∼B is smooth, and the (� � B)-successor function is
a strictly (ρ � (E � B))-increasing Borel automorphism. �

Given a cocycle ρ : E→ (0,∞) and a finite subequivalence relation F of E ,
define ρ/F : E/F→ (0,∞) by (ρ/F)([x]F , [y]F )= |[x]F |

ρ
[y]F . The Lusin–Novikov

uniformization theorem ensures that if F is Borel, then X/F is standard Borel, so that
E/F is a countable Borel equivalence relation on a standard Borel space. Moreover, if
ρ is Borel, then ρ/F is a Borel cocycle on E/F . The Lusin–Novikov uniformization
theorem also implies that, when ρ is the constant cocycle, a Borel compression of ρ/F
gives rise to a Borel compression of ρ. In spite of Proposition 2.1, such quotients allow us
to generalize the fact that aperiodic smooth countable Borel equivalence relations admit
Borel compressions.
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PROPOSITION 2.6. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, and ρ : E→ (0,∞) is an aperiodic smooth Borel cocycle.
Then there is a finite Borel subequivalence relation F of E for which there is a strictly
(ρ/F)-increasing Borel injection.

Proof. By Proposition 2.5, we can assume that E is smooth. As the aperiodicity of ρ
yields that of E , there is a partition (Bn)n∈N of X into Borel transversals of E . For each
x ∈ X , let n(x) be the unique natural number with x ∈ Bn(x), set ni (x)= i for all i < 2,
recursively define ni+2(x) to be the least natural number such that the ρ-size of the set {y ∈
[x]E | ni+1(x)≤ n(y) < ni+2(x)} relative to the set {y ∈ [x]E | ni (x)≤ n(y) < ni+1(x)}
is strictly greater than one for all i ∈ N, and let i(x) be the unique natural number with
the property that ni(x)(x)≤ n(x) < ni(x)+1(x). Let F be the subequivalence relation of E
with respect to which two E-equivalent points are F-equivalent if and only if i(x)= i(y).
Then the function φ : X/F→ X/F , given by φ([x]F )= {y ∈ [x]E | i(y)= i(x)+ 1}, is a
strictly (ρ/F)-increasing Borel injection. �

The following fact yields an equivalent form of ρ-invariance that will prove useful when
considering Borel injections.

PROPOSITION 2.7. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, ρ : E→ (0,∞) is a Borel cocycle, and µ is a ρ-invariant
Borel measure. Then µ(T (B))=

∫
B ρ(T (x), x) dµ(x) for all Borel sets B ⊆ X and Borel

injections T : B→ X whose graphs are contained in E.

Proof. Fix a countable group 0 = {γn | n ∈ N} of Borel automorphisms of X whose
induced orbit equivalence relation is E , recursively define Bn = {x ∈ B\

⋃
m<n Bm |

T (x)= γn · x} for all n ∈ N, and note that

µ(T (B))=
∑
n∈N

µ(γn(Bn))

=

∑
n∈N

∫
Bn

ρ(γn · x, x) dµ(x)

=

∫
B
ρ(T (x), x) dµ(x)

by ρ-invariance. �

The following fact yields an equivalent form of ρ-invariance that will prove useful when
considering Borel functions.

PROPOSITION 2.8. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, ρ : E→ (0,∞) is a Borel cocycle, and µ is a ρ-invariant
Borel measure. Then µ(φ−1(B))=

∫
B |φ

−1(x)|ρx dµ(x) for all Borel sets B ⊆ X and
Borel functions φ : X→ X whose graphs are contained in E.

Proof. By the Lusin–Novikov uniformization theorem, there are Borel sets Bn ⊆ B
and Borel injections Tn : Bn→ X with the property that (graph(Tn))n∈N partitions
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graph(φ−1) ∩ (B × X). Then∫
B
|φ−1(x)|ρx dµ(x)=

∑
n∈N

∫
Bn

ρ(Tn(x), x) dµ(x)= µ(φ−1(B))

by Proposition 2.7. �

Much as before, we say that a function φ : X→ X is a compression of ρ over a finite
subequivalence relation F of E if the graph of φ is contained in E , |φ−1([x]F )|

ρ
[x]F ≤ 1 for

all x ∈ X , and the set {x ∈ X | |φ−1([x]F )|
ρ
[x]F < 1} is E-complete. The Lusin–Novikov

uniformization theorem ensures that every Borel compression of the quotient of ρ by a
finite Borel subequivalence relation F of E gives rise to a Borel compression of ρ over F .
It also implies that, when ρ is the constant cocycle, a Borel compression of ρ over a finite
Borel subequivalence relation of E gives rise to a Borel compression of ρ.

PROPOSITION 2.9. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, ρ : E→ (0,∞) is a Borel cocycle, and there is a Borel
compression φ : X→ X of ρ over a finite Borel subequivalence relation F of E. Then
there is no ρ-invariant Borel probability measure.

Proof. By the Lusin–Novikov uniformization theorem, there exist a Borel transversal
B ⊆ X of F , Borel sets Bn ⊆ B, and Borel injections Tn : Bn→ X for which
(graph(Tn))n∈N partitions F ∩ (B × X). If µ is a ρ-invariant Borel measure, then
Proposition 2.7 ensures that

µ(X)=
∑
n∈N

µ(Tn(Bn))

=

∑
n∈N

∫
Bn

ρ(Tn(x), x) dµ(x)

=

∫
B
|[x]F |ρx dµ(x),

whereas Propositions 2.7 and 2.8 imply that

µ(X)=
∫
|φ−1(x)|ρx dµ(x)

=

∑
n∈N

∫
Tn(Bn)

|φ−1(x)|ρx dµ(x)

=

∑
n∈N

∫
Bn

|(φ−1
◦ Tn)(x)|

ρ

Tn(x) d((T−1
n )∗(µ))(x)

=

∑
n∈N

∫
Bn

|(φ−1
◦ Tn)(x)|ρx dµ(x)

=

∫
B
|φ−1([x]F )|ρx dµ(x).

As the set A = {x ∈ B | |φ−1([x]F )|
ρ
x < |[x]F |

ρ
x } is E-complete, it follows that if

µ(X) > 0, then µ(A) > 0. As |φ−1([x]F )|
ρ
x ≤ |[x]F |

ρ
x for all x ∈ B, it follows that if

µ(A) > 0, then µ(X)=∞. �
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We next note the useful fact that smoothness is invariant under quotients by finite Borel
subequivalence relations of E .

PROPOSITION 2.10. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, ρ : E→ (0,∞) is a Borel cocycle, and F is a finite Borel
subequivalence relation of E. Then ρ is smooth if and only if ρ/F is smooth.

Proof. By partitioning X into countably many F-invariant Borel sets, we can assume
that there is a real number r > 1 with |[x]F |

ρ
x ≤ r for all x ∈ X . As [Y ]F/F is Gρ/F

(1/r,r)-
independent for all Gρ

(1/r2,r2)
-independent sets Y ⊆ X , the smoothness of ρ yields that of

ρ/F . As every F-invariant set Y ⊆ X for which Y/F is Gρ/F
(1/r2,r2)

-independent is itself

(Gρ

(1/r,r)\F)-independent, the smoothness of ρ/F yields that of ρ. �

Generalizing the Dougherty–Jackson–Kechris observation that there is a Borel
compression of E if and only if there is an aperiodic smooth Borel subequivalence relation
of E , we have the following proposition.

PROPOSITION 2.11. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, and ρ : E→ (0,∞) is a Borel cocycle. Then the following
statements are equivalent.
(1) There is an injective Borel compression of the quotient of ρ by a finite Borel

subequivalence relation of E.
(2) There is a Borel subequivalence relation of E on which ρ is aperiodic and smooth.
(3) There exist an E-invariant Borel set B ⊆ X and a Borel subequivalence relation F

of E such that F � ∼B is smooth, ρ � (F � ∼B) is aperiodic, and there is a strictly
(ρ � (F � B))-increasing Borel automorphism.

Proof. To see (1) H⇒ (2), observe that by Proposition 2.10 we can assume that there
is an injective Borel compression φ : X→ X of ρ. Set A = {x ∈ X | |φ−1(x)|ρx < 1},
and let F be the orbit equivalence relation generated by φ. As the sets Ar = {x ∈ X |
|φ−1(x)|ρx < r} are (ρ � F)-lacunary for all r < 1, it follows that ρ � (F � A) is smooth,
thus ρ � (F � [A]F ) is aperiodic and smooth. By the Lusin–Novikov uniformization
theorem, there is a Borel extension ψ : X→ [A]F of the identity function on [A]F whose
graph is contained in E , in which case the restriction of ρ to the pullback of F � [A]F
through ψ is aperiodic and smooth.

To see (2) H⇒ (3), note that if condition (2) holds, then Proposition 2.5 immediately
yields the weakening of condition (3) in which the set B need not be E-invariant. To see
that this weakening yields condition (3) itself, note that if B ′ ⊆ X is a Borel set and F ′ is
a smooth Borel subequivalence relation of E � B ′ for which ρ � F ′ is aperiodic, then the
Lusin–Novikov uniformization theorem yields a Borel extension π : [B ′]E → B ′ of the
identity function on B ′ whose graph is contained in E , the subequivalence relation F ′′ of
E � [B ′]E given by x F ′′ y ⇐⇒ π(x) F ′ π(y) is smooth, and ρ � F ′′ is aperiodic.

It only remains to note that Proposition 2.6 yields (3) H⇒ (1). �
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We close this section by noting that, at least when ρ is smooth, the existence of an
injective Borel compression of the quotient of ρ by a finite Borel subequivalence relation
of E is the sole obstacle to the existence of a ρ-invariant Borel probability measure.

PROPOSITION 2.12. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, and ρ : E→ (0,∞) is a smooth Borel cocycle. Then exactly
one of the following statements holds.
(1) There is an injective Borel compression of the quotient of ρ by a finite Borel

subequivalence relation of E.
(2) There is a ρ-invariant Borel probability measure.

Proof. Proposition 2.9 ensures that conditions (1) and (2) are mutually exclusive. To
see that at least one of them holds, note first that if ρ is aperiodic, then Proposition 2.6
yields a finite Borel subequivalence relation F of E for which there is a strictly (ρ/F)-
increasing Borel injection. And if there is a ρ-finite equivalence class C of E , then the
Borel probability measure µ on X , given by µ(B)= |B ∩ C |ρC for all Borel sets B ⊆ X , is
ρ-invariant. �

3. Coboundaries
We say that a Borel cocycle ρ : E→ (0,∞) is a Borel coboundary if there is a
Borel function f : X→ (0,∞) such that ρ(x, y)= f (x)/ f (y) for all (x, y) ∈ E . The
following observation shows that, even for Borel coboundaries, the equivalent conditions
of Proposition 2.11 do not characterize the non-existence of an invariant Borel probability
measure.

PROPOSITION 3.1. Suppose that X is a standard Borel space and E is an aperiodic
countable Borel equivalence relation on X admitting an invariant Borel probability
measure. Then there is a Borel coboundary ρ : E→ (0,∞) with the property that there is
neither an injective Borel compression of the quotient of ρ by a finite Borel subequivalence
relation of E nor a ρ-invariant Borel probability measure.

Proof. Set B0 = X and let ι0 : B0→ B0 be the identity function. Recursively apply
[KM04, Proposition 7.4] to obtain Borel sets Bn+1 ⊆ ιn(Bn) and Borel involutions
ιn+1 : ιn(Bn)→ ιn(Bn) such that the graph of ιn+1 is contained in E and the sets Bn+1

and ιn+1(Bn+1) partition ιn(Bn) for all n ∈ N. For each x ∈ X , let n(x) be the maximal
natural number for which x ∈ Bn(x), and set f (x)= 2n(x). Define ρ : E→ (0,∞) by
setting ρ(x, y)= f (x)/ f (y) for all (x, y) ∈ E .

To see that there is no ρ-invariant Borel probability measure, note that if µ is a ρ-
invariant Borel measure, then the fact that ιn+1(Bn+2) and (ιn+1 ◦ ιn+2)(Bn+2) partition
Bn+1 for all n ∈ N ensures that

µ(Bn+1)=

∫
Bn+2

ρ(ιn+1(x), x)+ ρ((ιn+1 ◦ ιn+2)(x), x) dµ(x)= µ(Bn+2)

for all n ∈ N, thus µ(X) ∈ {0,∞}.
Suppose, towards a contradiction, that there is an injective Borel compression of the

quotient of ρ by a finite Borel subequivalence relation of E . Then Proposition 2.11
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yields an E-invariant Borel set A ⊆ X and a Borel subequivalence relation F of E
such that F � ∼A is smooth, ρ � (F � ∼A) is aperiodic, and there is a strictly (ρ � (F �
A))-increasing Borel automorphism φ : A→ A. Fix an E-invariant Borel probability
measure µ. As ιn(Bn+1) and (ιn ◦ ιn+1)(Bn+1) partition Bn for all n ∈ N, it follows
that µ(Bn)= 2µ(Bn+1) for all n ∈ N. As the aperiodicity of ρ � (F � ∼A) yields that of
F � ∼A, Propositions 2.6 and 2.9 imply that A is µ-conull, thus so too is A ∩

⋃
n∈N Bn+1.

As the definition of ρ ensures that φ(A ∩
⋃

n∈N Bn+1)⊆ A ∩
⋃

n∈N Bn+2, and the latter
set has µ-measure 1/2, this contradicts E-invariance. �

The following fact yields an equivalent of ρ-invariance that will prove useful when
dealing with finite Borel subequivalence relations.

PROPOSITION 3.2. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, ρ : E→ (0,∞) is a Borel cocycle, and µ is a ρ-invariant
Borel measure on X. Then µ(B)=

∫
|B ∩ [x]F |

ρ
[x]F dµ(x) for all Borel sets B ⊆ X and

finite Borel subequivalence relations F of E.

Proof. Fix a Borel transversal A ⊆ X of F , Borel sets An ⊆ A, and Borel injections
Tn : An→ X with the property that (graph(Tn))n∈N partitions F ∩ (A × X), and observe
that ∫

|B ∩ [x]F |
ρ
[x]F dµ(x)=

∑
n∈N

∫
Tn(An)

|B ∩ [x]F |
ρ
[x]F dµ(x)

=

∑
n∈N

∫
An

|B ∩ [x]F |
ρ
[x]F d((T−1

n )∗µ)(x)

=

∑
n∈N

∫
An

|B ∩ [x]F |
ρ
[x]Fρ(Tn(x), x) dµ(x)

=

∫
A
|B ∩ [x]F |ρx dµ(x)

=

∑
n∈N

∫
An∩T−1

n (B)
ρ(Tn(x), x) dµ(x)

=

∑
n∈N

µ(Tn(An) ∩ B)

= µ(B)

by Proposition 2.7. �

Given a Borel set R ⊆ X × X with countable vertical sections and a Borel function
ρ : R→ (0,∞), we say that a Borel measure µ on X is ρ-invariant if µ(T (B))=∫

B ρ(T (x), x) dµ(x) for all Borel sets B ⊆ X and Borel injections T : B→ X whose
graphs are contained in R−1. The composition of sets R ⊆ X × Y and S ⊆ Y × Z is given
by R ◦ S = {(x, z) ∈ X × Z | ∃y ∈ Y x R y S z}. The Lusin–Novikov uniformization
theorem ensures that if R and S are Borel sets with countable vertical sections, then so
too is their composition. The following fact will prove useful in verifying ρ-invariance.
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PROPOSITION 3.3. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, R, S ⊆ E are Borel, and ρ : E→ (0,∞) is a Borel cocycle.
Then every (ρ � (R ∪ S))-invariant Borel measure µ is (ρ � (R ◦ S))-invariant.

Proof. Note first that if B ⊆ X is a Borel set, TS : B→ X is a Borel injection whose graph
is contained in S−1, and TR : TS(B)→ X is a Borel injection whose graph is contained in
R−1, then

µ((TR ◦ TS)(B))=
∫

TS(B)
ρ(TR(x), x) dµ(x)

=

∫
B
ρ((TR ◦ TS)(x), TS(x)) d((T−1

S )∗µ)(x)

=

∫
B
ρ((TR ◦ TS)(x), x) dµ(x).

As the Lusin–Novikov uniformization theorem ensures that every Borel injection whose
graph is contained in (R ◦ S)−1 can be decomposed into a disjoint union of countably
many Borel injections of the form TR ◦ TS as above, the proposition follows. �

We say that Borel cocycles ρ : E→ (0,∞) and σ : E→ (0,∞) are Borel
cohomologous if their ratio is a Borel coboundary. We say that a Borel function f : X→
(0,∞) witnesses that ρ and σ are Borel cohomologous if f (x)/ f (y)= σ(x, y)/ρ(x, y)
for all (x, y) ∈ E .

PROPOSITION 3.4. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, f : X→ (0,∞) is a Borel function witnessing that Borel
cocycles ρ, σ : E→ (0,∞) are Borel cohomologous, and µ is a ρ-invariant Borel
measure. Then the Borel measure given by ν(B)=

∫
B f dµ is σ -invariant.

Proof. Simply observe that if B ⊆ X is a Borel set and T : X→ X is a Borel
automorphism whose graph is contained in E , then

ν(T (B))=
∫

T (B)
f dµ

=

∫
B

f ◦ T d((T−1)∗µ)

=

∫
B
( f ◦ T )(x)ρ(T (x), x) dµ(x)

=

∫
B

f (x)σ (T (x), x) dµ(x)

=

∫
B
σ(T (x), x) dν(x)

by ρ-invariance. �

We say that a Borel set B ⊆ X has ρ-density at least ε if there is a finite Borel
subequivalence relation F of E such that |B ∩ [x]F |

ρ
[x]F ≥ ε for all x ∈ X . We say that

a Borel set B ⊆ X has positive ρ-density if there exists ε > 0 for which B has ρ-density at
least ε.
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PROPOSITION 3.5. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, ρ : E→ (0,∞) is a Borel cocycle, and B ⊆ X is a Borel set
with positive ρ-density. Then every (ρ � (E � B))-invariant finite Borel measure µ extends
to a ρ-invariant finite Borel measure.

Proof. Fix ε > 0 for which B has ρ-density at least ε, as well as a finite Borel
subequivalence relation F of E such that |B ∩ [x]F |

ρ
[x]F ≥ ε for all x ∈ X , and let µ be

the Borel measure on X given by

µ(A)=
∫
|A ∩ [x]F |

ρ
B∩[x]F dµ(x)

for all Borel sets A ⊆ X .
As µ(X)≤ µ(B)/ε, it follows that µ is finite, and Proposition 3.2 ensures that

µ= µ � B.

LEMMA 3.6. Suppose that f : X→ [0,∞) is a Borel function. Then
∫

f dµ=∫ ∑
y∈[x]F f (y)|{y}|ρB∩[x]F dµ(x).

Proof. It is sufficient to check the special case that f is the characteristic function of a
Borel set, which is a direct consequence of the definition of µ. �

LEMMA 3.7. The measure µ is (ρ � F)-invariant.

Proof. Simply observe that if A ⊆ X is a Borel set and T : X→ X is a Borel
automorphism whose graph is contained in F , then∫

A
ρ(T (x), x) dµ(x)=

∫ ∑
y∈A∩[x]F

ρ(T (y), y)|{y}|ρB∩[x]F dµ(x)

=

∫
|T (A ∩ [x]F )|

ρ
B∩[x]F dµ(x)

= µ(T (A))

by Lemma 3.6. �

As E = F ◦ (E ∩ (B × B)) ◦ F , two applications of Proposition 3.3 ensure that µ is
ρ-invariant. �

The primary argument of this section will hinge on the following approximation lemma.

PROPOSITION 3.8. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, and ρ : E→ (0,∞) is a Borel cocycle. Then for all Borel sets
A ⊆ X and positive real numbers r < 1, there exist an E-invariant Borel set B ⊆ X, a
Borel set C ⊆ B, and a finite Borel subequivalence relation F of E � C such that ρ � (E �
∼B) is smooth, r < |A ∩ [x]F |

ρ
[x]F\A < 1 for all x ∈ C, and A ∩ [x]E ⊆ C or [x]E\A ⊆ C

for all x ∈ B.

Proof. By [KM04, Lemma 7.3], there is a maximal Borel set S of pairwise disjoint non-
empty finite sets S ⊆ X with S × S ⊆ E and r < |A ∩ S|ρS\A < 1. Set D = A\

⋃
S and

D′ = (∼A)\
⋃

S.
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LEMMA 3.9. Suppose that (x, x ′) ∈ E. Then there exists a real number s > 1 with the
property that x has only finitely many Gρ

(1/s,s)-neighbors in D or x ′ has only finitely many
Gρ

(1/s,s)-neighbors in D′.

Proof. Fix n, n′ ∈ N such that (n/n′)ρ(x, x ′) lies strictly between r and 1, and fix s > 1
sufficiently small that (n/n′)ρ(x, x ′) lies strictly between rs2 and 1/s2. Suppose, towards
a contradiction, that there are sets S ⊆ D and S′ ⊆ D′ of Gρ

(1/s,s)-neighbors of x and x ′ of
cardinalities n and n′. Then n/s < |S|ρx < ns and n′ρ(x ′, x)/s < |S′|ρx < n′ρ(x ′, x)s, so
the ρ-size of S relative to S′ lies strictly between (n/n′)ρ(x, x ′)/s2 and (n/n′)ρ(x, x ′)s2.
As these bounds lie strictly between r and 1, this contradicts the maximality of S. �

Lemma 3.9 ensures that [D]E ∩ [D′]E is contained in the E-saturation of the union of
the sets of the form {x ∈ D | |D ∩ (Gρ

(1/s,s))x |< ℵ0} and {x ∈ D′ | |D′ ∩ (Gρ

(1/s,s))x |<

ℵ0}, so ρ � (E � ([D]E ∩ [D′]E )) is smooth. Set B = ∼([D]E ∩ [D′]E ) and C = B ∩
⋃

S,
and let F be the equivalence relation on C whose classes are the subsets of C in S. �

We say that a Borel set B ⊆ X has σ -positive ρ-density if X is the union of countably
many E-invariant Borel sets An ⊆ X for which An ∩ B has positive (ρ � (E � An))-
density.

THEOREM 3.10. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, ρ : E→ (0,∞) is a Borel cocycle, and A ⊆ X is an E-
complete Borel set. Then X is the union of an E-invariant Borel set B ⊆ X for which
ρ � (E � B) is smooth, an E-invariant Borel set C ⊆ X for which A ∩ C has σ -positive
(ρ � (E � C))-density, and an E-invariant Borel set D ⊆ X for which there is a finite-to-
one Borel compression of the quotient of ρ � (E � D) by a finite Borel subequivalence
relation of E � D.

Proof. Fix a positive real number r < 1. We will show that, after throwing out countably
many E-invariant Borel sets B ⊆ X for which ρ � (E � B) is smooth, as well as
countably many E-invariant Borel sets C ⊆ X for which A ∩ C has positive (ρ � (E � C))-
density, there are increasing sequences of finite Borel subequivalence relations Fn of
E and E-complete Fn-invariant Borel sets An ⊆ X with the property that r < |An ∩

[x]Fn+1 |
ρ

(An+1\An)∩[x]Fn+1
< 1 for all n ∈ N and x ∈ An .

We begin by setting A0 = A and letting F0 be equality. Suppose now that n ∈ N and we
have already found An and Fn . By applying Proposition 3.8 to An/Fn , and throwing
out an E-invariant Borel set B ⊆ X for which ρ � (E � B) is smooth, we obtain a finite
Borel subequivalence relation Fn+1 ⊇ Fn of E and an Fn+1-invariant Borel set An+1 ⊆ X
such that r < |An ∩ [x]Fn+1 |

ρ
[x]Fn+1\An

< 1 for all x ∈ An+1, and An ∩ [x]E ⊆ An+1 or
[x]E\An ⊆ An+1 for all x ∈ X . By throwing out an E-invariant Borel set C ⊆ X for which
A ∩ C has positive (ρ � (E � C))-density, we can assume that An ⊆ An+1, completing the
recursive construction.

Set Bn = An\
⋃

m<n Am and define φn : Bn/Fn→ Bn+1/Fn+1 by setting φn(Bn ∩

[x]Fn )= Bn+1 ∩ [x]Fn+1 for all n ∈ N and x ∈ Bn . Then the union of
⋃

n∈N φn and the
identity function on ∼

⋃
n∈N An is a Borel compression of the quotient of ρ by the union

of
⋃

n∈N Fn � Bn and equality. �
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As a corollary, we obtain the desired characterization.

THEOREM 3.11. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, and ρ : E→ (0,∞) is a Borel coboundary. Then exactly one
of the following statements holds.
(1) There is a finite-to-one Borel compression of the quotient of ρ by a finite Borel

subequivalence relation of E.
(2) There is a ρ-invariant Borel probability measure.

Proof. Proposition 2.9 ensures that conditions (1) and (2) are mutually exclusive. To see
that at least one of them holds, fix a bounded open neighborhood U ⊆ (0,∞) of 1. As
ρ is a Borel coboundary, the Lusin–Novikov uniformization theorem implies that there
is an E-complete Borel set A ⊆ X for which ρ(E � A)⊆U . By Theorem 3.10, after
throwing out E-invariant Borel sets B ⊆ X and D ⊆ X for which ρ � (E � B) is smooth
and there is a finite-to-one Borel compression of the quotient of ρ � (E � D) by a finite
Borel subequivalence relation of E � D, we can assume that A has σ -positive ρ-density.

If there is a (ρ � (E � A))-invariant Borel probability measure µ, then by passing to an
(E � A)-invariant µ-positive Borel set, we can assume that A has positive ρ-density, in
which case Proposition 3.5 yields a ρ-invariant Borel probability measure.

If there is no (ρ � (E � A))-invariant Borel probability measure, then Proposition 3.4
ensures that there is no (E � A)-invariant Borel probability measure, in which case
the Becker–Kechris generalization of Nadkarni’s theorem and the Dougherty–Jackson–
Kechris characterization of the existence of a Borel compression yield an aperiodic
smooth Borel subequivalence relation F of E � A. Then ρ � F is smooth, and the fact
that ρ � (E � A) is bounded ensures that ρ � F is also aperiodic. Fix a Borel extension
φ : X→ A of the identity function on A whose graph is contained in E , and observe
that ρ is aperiodic and smooth on the pullback of F through φ. Proposition 2.6 therefore
yields an injective Borel compression of the quotient of ρ by a finite Borel subequivalence
relation of E . �

4. The general case
Here we generalize Nadkarni’s theorem to Borel cocycles. As in §3, our primary
argument will hinge on a pair of approximation lemmas. Given a finite set S ⊆ X for which
S × S ⊆ E , let µρS be the Borel probability measure on X given by µρS(B)= |B ∩ S|ρS .

PROPOSITION 4.1. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, ρ : E→ (0,∞) is a Borel cocycle, f : X→ [0,∞) is Borel,
δ > 0, and ε > sup(x,y)∈E f (x)− f (y). Then there exist an E-invariant Borel set B ⊆ X
and a finite Borel subequivalence relation F of E � B for which ρ � (E � ∼B) is smooth
and δε > sup(x,y)∈E�B

∫
f dµρ

[x]F −
∫

f dµρ
[y]F .

Proof. We can clearly assume that δ < 1, and since one can repeatedly apply the
corresponding special case of the proposition over the corresponding quotients, we can
also assume that δ > 2/3. For each x ∈ X , let f ([x]E ) be the average of inf f ([x]E ) and
sup f ([x]E ). By [KM04, Lemma 7.3], there is a maximal Borel set S of pairwise disjoint
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non-empty finite sets S ⊆ X with S × S ⊆ E and ε(δ − 1/2) > |
∫

f dµρS − f ([S]E )|. Set
C = {x ∈ ∼

⋃
S | f (x) < f ([x]E )} and D = {x ∈ ∼

⋃
S | f (x) > f ([x]E )}.

LEMMA 4.2. Suppose that (x, y) ∈ E. Then there exists a real number r > 1 such that
x has only finitely many Gρ

(1/r,r)-neighbors in C or y has only finitely many Gρ

(1/r,r)-
neighbors in D.

Proof. As δ > 2/3, a trivial calculation reveals that −ε(δ − 1/2) is strictly below the
average of −ε/2 and ε(δ − 1/2), and that the average of −ε(δ − 1/2) and ε/2 is
strictly below ε(δ − 1/2). In particular, by choosing m, n ∈ N for which the ratios
s = m/(m + nρ(y, x)) and t = nρ(y, x)/(m + nρ(y, x)) are sufficiently close to 1/2,
we can therefore ensure that the sums s( f ([x]E )− ε/2)+ t ( f ([x]E )+ ε(δ − 1/2)) and
s( f ([x]E )− ε(δ − 1/2))+ t ( f ([x]E )+ ε/2) both lie strictly between f ([x]E )− ε(δ −
1/2) and f ([x]E )+ ε(δ − 1/2). Fix r > 1 such that they lie strictly between ( f ([x]E )−
ε(δ − 1/2))r2 and ( f ([x]E )+ ε(δ − 1/2))/r2.

Suppose, towards a contradiction, that there exist sets S ⊆ C and T ⊆ D of Gρ

(1/r,r)-
neighbors of x and y of cardinalities m and n. Then m/r < |S|ρx < mr and nρ(y, x)/r <
|T |ρx < nρ(y, x)r , from which a trivial calculation reveals that s/r2 < |S|ρx /|S ∪ T |ρx <
sr2 and t/r2 < |T |ρx /|S ∪ T |ρx < tr2. As

∫
f dµρS lies between f ([x]E )− ε/2 and

f ([x]E )− ε(δ − 1/2), and
∫

f dµρT lies between f ([x]E )+ ε(δ − 1/2) and f ([x]E )+
ε/2, it follows that

∫
f dµρS∪T lies between (s( f ([x]E )− ε/2)+ t ( f ([x]E )+ ε(δ −

1/2)))/r2 and (s( f ([x]E )− ε(δ − 1/2))+ t ( f ([x]E )+ ε/2))r2, so strictly between
f ([x]E )− ε(δ − 1/2) and f ([x]E )+ ε(δ − 1/2), contradicting the maximality of S. �

Lemma 4.2 ensures that [C]E ∩ [D]E is contained in the E-saturation of the union
of the sets of the form {x ∈ C | |C ∩ (Gρ

(1/r,r))x |< ℵ0} and {x ∈ D | |D ∩ (Gρ

(1/r,r))x |<

ℵ0}, so ρ � (E � ([C]E ∩ [D]E )) is smooth. Set B = ∼([C]E ∩ [D]E ), and let F be the
equivalence relation on B whose classes are the subsets of B in S together with the
singletons contained in B\

⋃
S. �

PROPOSITION 4.3. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, ρ : E→ (0,∞) is a Borel cocycle, f, g : X→ [0,∞) are
Borel, and r > 1. Then there exist an E-invariant Borel set B ⊆ X, a Borel set C ⊆ B,
and a finite Borel subequivalence relation F of E � B such that ρ � (E � ∼B) is smooth
and

∫
C f dµρ

[x]F ≤
∫

B\C g dµρ
[x]F ≤ r

∫
C f dµρ

[x]F for all x ∈ B.

Proof. As the proposition holds trivially on f −1(0) ∪ g−1(0), we can assume that
f, g : X→ (0,∞). By [KM04, Lemma 7.3], there is a maximal Borel set S of pairwise
disjoint non-empty finite sets S ⊆ X with S × S ⊆ E and 1<

∫
S\T g dµρS /

∫
T f dµρS < r

for some T ⊆ S.
Set DU,V = ( f −1(U ) ∩ g−1(V ))\

⋃
S for all U, V ⊆ (0,∞).

LEMMA 4.4. For all x ∈ X, there exists s > 1 such that x has only finitely many Gρ

(1/s,s)-
neighbors in D( f (x)/s, f (x)s),(g(x)/s,g(x)s).

Proof. Fix m, n ∈ N for which 1< (g(x)/ f (x))(n/m) < r , as well as s > 1 sufficiently
large that s6 < (g(x)/ f (x))(n/m) < r/s6. Suppose, towards a contradiction, that there is
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a set S ⊆ D( f (x)/s, f (x)s),(g(x)/s,g(x)s) of Gρ

(1/s,s)-neighbors of x of cardinality k = m + n,
and fix T ⊆ S of cardinality m. Then f (x)µρS(T )/s <

∫
T f dµρS < f (x)µρS(T )s and

(m/k)/s2 < µ
ρ
S(T ) < (m/k)s2, so f (x)(m/k)/s3 <

∫
T f dµρS < f (x)(m/k)s3. And

g(x)µρS(S\T )/s <
∫

S\T g dµρS < g(x)µρS(S\T )s and (n/k)/s2 < µ
ρ
S(S\T ) < (n/k)s2,

so g(x)(n/k)/s3 <
∫

S\T g dµρS < g(x)(n/k)s3. It follows that
∫

S\T g dµρS /
∫

T f dµρS
lies strictly between (g(x)/ f (x))(n/m)/s6 and (g(x)/ f (x))(n/m)s6, and therefore
strictly between 1 and r , contradicting the maximality of S . �

As Lemma 4.2 ensures that ∼
⋃

S is contained in the union of the sets of the form
{x ∈ DU,V | |DU,V ∩ (G

ρ

(1/s,s))x |< ℵ0}, it follows that ρ � (E � [∼
⋃

S]E ) is smooth. Set
B = ∼[∼

⋃
S]E , let F be the Borel equivalence relation on B whose classes are the subsets

of B in S, and appeal to the Lusin–Novikov uniformization theorem to obtain a Borel set
C ⊆ B with the property that 1<

∫
B\C g dµρ

[x]F /
∫

C f dµρ
[x]F < r for all x ∈ B. �

We are now ready to establish our primary result.

THEOREM 4.5. Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X, and ρ : E→ (0,∞) is a Borel cocycle. Then exactly one of
the following statements holds.
(1) There is a finite-to-one Borel compression of ρ over a finite Borel subequivalence

relation of E.
(2) There is a ρ-invariant Borel probability measure.

Proof. Proposition 2.9 ensures that conditions (1) and (2) are mutually exclusive. To see
that at least one of them holds, fix a countable group 0 of Borel automorphisms of X
whose induced orbit equivalence relation is E , and define ργ : X→ (0,∞) by ργ (x)=
ρ(γ · x, x) for all γ ∈ 0.

By standard change of topology results (see, for example, [Kec95, §13]), there exist a
Polish topology on [0,∞) and a zero-dimensional Polish topology on X , compatible with
the underlying Borel structures of [0,∞) and X , with respect to which every interval with
rational endpoints is clopen, 0 acts by homeomorphisms, and each ργ is continuous. Fix
a compatible complete metric on X , as well as a countable algebra U of clopen subsets of
X , closed under multiplication by elements of 0, and containing a basis for X as well as
the pullback of every interval with rational endpoints under every ργ .

We say that a function f : X→ [0,∞) is U-simple if it is a finite linear combination of
characteristic functions of sets in U . Note that for all ε > 0, γ ∈ 0, and Y ⊆ X on which
ργ is bounded, there is such a function with the further property that | f (y)− ργ (y)| ≤ ε
for all y ∈ Y .

Fix a sequence (εn)n∈N of positive real numbers converging to zero, as well as an
increasing sequence (Un)n∈N of finite subsets of U whose union is U .

By recursively applying Propositions 4.1 and 4.3 to functions of the form [x]F 7→
µ
ρ
[x]F (A) and [x]F 7→ µ

ρ
[x]F (B)− µ

ρ
[x]F (A), and throwing out countably many E-

invariant Borel sets B ⊆ X for which ρ � (E � B) is smooth, we obtain increasing
sequences of finite algebras An ⊇ Un of Borel subsets of X and finite Borel subequivalence
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relations Fn of E such that:
(1) ∀n ∈ N∀A ∈An∀(x, y) ∈ E µρ

[x]Fn+1
(A)− µρ

[y]Fn+1
(A)≤ εn .

(2) ∀n ∈ N∀A, B ∈An(∀x ∈ X µρ
[x]Fn

(A)≤ µρ
[x]Fn

(B) H⇒
∃ C ∈An+1∀x ∈ X 0≤ µρ

[x]Fn+1
(B\C)− µρ

[x]Fn+1
(A)≤ εn).

Set A=
⋃

n∈N An and F =
⋃

n∈N Fn . Condition (1) ensures that we obtain finitely
additive probability measures µx on U by setting µx (U )= limn→∞ µ

ρ
[x]Fn

(U ) for all
U ∈ U and x ∈ X .

LEMMA 4.6. Suppose that (Un)n∈N is a sequence of pairwise disjoint sets in U whose
union is in U and B = {x ∈ X |

∑
n∈N µx (Un) < µx (

⋃
n∈N Un)}. Then there is a finite-to-

one Borel compression of ρ � (E � B) over a finite Borel subequivalence relation of E � B.

Proof. As µx (
⋃

m≥n Um)−
∑

m≥n µx (Um) is independent of n, it follows that for
all x ∈ B, there exist δ > 0 and n ∈ N with the property that δ + 2

∑
m≥n µx (Um)≤

µx (
⋃

m≥n Um). So by partitioning B into countably many E-invariant Borel sets and
passing to terminal segments of (Un)n∈N on each set, we can assume that B = {x ∈ X |
δ + 2

∑
n∈N µx (Un)≤ µx (

⋃
n∈N Un)} for some δ > 0. Fix a sequence (δn)n∈N of positive

real numbers whose sum is at most δ.

SUBLEMMA 4.7. There are pairwise disjoint sets An ⊆
⋃

m>n Um in A with the property
that for all n ∈ N, there exists k ∈ N such that ∀x ∈ B 0≤ µρ

[x]Fk
(An)− µ

ρ
[x]Fk

(Un)≤ δn .

Proof. Suppose that n ∈ N and we have already found (Am)m<n . Note that if x ∈ B, then

µx (Un)+
∑
m≥n

δm ≤ µx

(⋃
m∈N

Um

)
−

(
µx (Un)+

∑
m<n

2µx (Um)+ δm

)
≤ µx

(⋃
m>n

Um

)
−

∑
m<n

µx (Um)+ δm,

so ∀x ∈ B µρ
[x]Fk

(Un)≤ µ
ρ
[x]Fk

(
⋃

m>n Um\
⋃

m<n Am) for sufficiently large k ∈ N, by
condition (1). It then follows from condition (2) that there exists An ⊆

⋃
m>n Um\⋃

m<n Am in A with the property that ∀x ∈ B 0≤ µρ
[x]Fk

(An)− µ
ρ
[x]Fk

(Un)≤ δn for
sufficiently large k ∈ N. �

Fix kn ∈ N with the property that µρ
[x]Fkn

(Un)≤ µ
ρ
[x]Fkn

(An) for all n ∈ N and x ∈ B,

as well as Borel functions φn : B ∩Un→ An whose graphs are contained in Fkn for all
n ∈ N. Then the union of

⋃
n∈N φn and the identity function on B\

⋃
n∈N Un is a finite-to-

one Borel compression of ρ � (E � B) over the union of
⋃

n∈N Fkn � (An ∩ B) and equality
on B. �

Lemma 4.6 ensures that, after throwing out countably many E-invariant Borel sets
B ⊆ X for which there is a finite-to-one Borel compression of ρ � (E � B) over a finite
Borel subequivalence relation of E � B, we can assume that for all δ > 0 and U ∈ U ,
there is a partition (Un)n∈N of U into sets in U of diameter at most δ such that µx (U )=∑

n∈N µx (Un) for all x ∈ X .
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LEMMA 4.8. Each µx is a measure on U .

Proof. Suppose, towards a contradiction, that there are pairwise disjoint sets Un ∈ U
with

⋃
n∈N Un ∈ U but µx (

⋃
n∈N Un) >

∑
n∈N µx (Un), for some x ∈ X . Fix a sequence

(δn)n∈N of positive real numbers converging to zero, and recursively construct a sequence
(Vt )t∈N<N of sets in U , beginning with V∅ =

⋃
n∈N Un , such that (Vta(n))n∈N is a partition

of Vt into sets of diameter at most δ|t | with the property that µx (Vt )=
∑

n∈N µx (Vta(n)),
for all t ∈ N<N. Set r =

∑
n∈N µx (Un), and recursively construct a sequence (in)n∈N of

natural numbers with the property that
∑

t∈Tn
µx (Vt ) > r , where Tn =

∏
m<n im , for all

n ∈ N. Set Vn =
⋃

t∈Tn
Vt for all n ∈ N. As (Un)n∈N covers the compact set K =

⋂
n∈N Vn ,

so too does (Um)m<n , for some n ∈ N. Set U =
⋃

m<n Um , and let T be the tree of all
t ∈

⋃
m∈N Tm for which Vt * U . Note that T is necessarily well founded, since any branch

b through T would give rise to a singleton
⋂

n∈N Vt�n contained in K\U . König’s lemma
therefore yields m ∈ N with T ⊆

⋃
`<m T`, in which case Vm ⊆U , contradicting the fact

that µx (Vm) > µx (U ). �

As a consequence, Carathéodory’s theorem ensures that there is a unique extension of
each µx to a Borel probability measure µx on X .

LEMMA 4.9. Suppose that γ ∈ 0, U ∈ U , ργ is bounded on U, and B = {x ∈ X |
µx (γ (U )) 6=

∫
U ργ dµx }. Then there is a finite-to-one Borel compression of ρ � (E � B)

over a finite Borel subequivalence relation of E � B.

Proof. By the symmetry of our argument, it is enough to establish the analogous lemma
for the set B = {x ∈ X | µx (γ (U )) <

∫
U ργ dµx }. By partitioning B into countably many

E-invariant Borel sets, we can assume that B = {x ∈ X | δ + µx (γ (U )) <
∫

U ργ dµx } for
some δ > 0.

SUBLEMMA 4.10. For all ε > 0, there exists n ∈ N with the property that |
∫

U ργ dµx −∫
U ργ dµρ

[x]Fn
| ≤ ε for all x ∈ X.

Proof. Fix a U-simple function f : X→ [0,∞) with the property that | f (x)− ργ (x)| ≤
ε/3 for all x ∈U . By condition (1), there exists n ∈ N such that |

∫
U f dµx −∫

U f dµρ
[x]Fn
| ≤ ε/3 for all x ∈ X . But then∣∣∣∣∫

U
ργ dµx −

∫
U
ργ dµρ

[x]Fn

∣∣∣∣≤ ∣∣∣∣∫
U
ργ dµx −

∫
U

f dµx

∣∣∣∣
+

∣∣∣∣∫
U

f dµx −

∫
U

f dµρ
[x]Fn

∣∣∣∣
+

∣∣∣∣∫
U

f dµρ
[x]Fn
−

∫
U
ργ dµρ

[x]Fn

∣∣∣∣
≤ ε

for all x ∈ X . �

Condition (1) and Sublemma 4.10 ensure that there exists n ∈ N such that
µ
ρ
[x]Fn

(γ (U )) <
∫

U ργ dµρ
[x]Fn

for all x ∈ B. As the former quantity is |γ (U ) ∩
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[x]Fn |
ρ
x /|[x]Fn |

ρ
x and the latter is |γ (U ∩ [x]Fn )|

ρ
x /|[x]Fn |

ρ
x , it follows that |γ (U ) ∩

[x]Fn |
ρ
x < |γ (U ∩ [x]Fn )|

ρ
x for all x ∈ B, so any function from B ∩ γ (U ) to B ∩ γ (U ),

sending γ (U ) ∩ [x]Fn to γ (U ∩ [x]Fn ) for all x ∈ B ∩ γ (U ), is a compression of ρ �
(E � (B ∩ γ (U ))) over the equivalence relation (γ × γ )(Fn) � (B ∩ γ (U )). The Lusin–
Novikov uniformization theorem yields a Borel such function, and every Borel such
function trivially extends to a finite-to-one Borel compression of ρ � (E � B) over a finite
Borel subequivalence relation of E � B. �

Lemma 4.9 ensures that, after throwing out countably many E-invariant Borel sets
B ⊆ X for which there is a finite-to-one Borel compression of ρ � (E � B) over a finite
Borel subequivalence relation of E � B, we can assume that µx (γ (U ))=

∫
U ργ dµx for

all γ ∈ 0, U ∈ U on which ργ is bounded, and x ∈ X . As our choice of topologies ensures
that every open set U ⊆ X is a disjoint union of sets in U on which ργ is bounded, we
obtain the same conclusion even when U ⊆ X is an arbitrary open set. As every Borel
probability measure on a Polish space is regular (see, for example, [Kec95, Theorem
17.10]), we obtain the same conclusion even when U ⊆ X is an arbitrary Borel set. And
since every Borel automorphism T : X→ X whose graph is contained in E is a disjoint
union of restrictions of automorphisms in 0 to Borel subsets, it follows that each µx is
ρ-invariant. �
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