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Pick’s Theorem relates the area of a simple polygon with vertices at integer lattice points to

the number of lattice points in its inside and boundary. We describe a formal proof of this

theorem using the HOL Light theorem prover. As sometimes happens for highly geometrical

proofs, the formalisation turned out to be more work than initially expected. The difficulties

arose mostly from formalising the triangulation process for an arbitrary polygon.

1. Introduction

We start with some definitions, whose formal counterparts will be given later. Throughout

this paper we call a point (x, y) ∈ �2 of the plane an integer lattice point, or simply a

lattice point, if and only if both x and y are integers. We define a lattice polygon to be

a polygon all of whose vertices are at integer lattice points. Pick’s Theorem (Pick 1899)

states that given a simple lattice polygon, if I is the number of integer lattice points in its

inside and B the number of integer lattice points on its boundary, then the area of the

polygon is given by

A = I + B/2 − 1

For example, the following diagram shows a lattice polygon, with the lattice points

in its vicinity marked with black spots. There are 30 lattice points in the inside of the

polygon and 22 on its boundary, so according to Pick’s theorem the area of the polygon

is 30 + 22/2 − 1 = 40.

To state Pick’s Theorem more precisely, we need to be a bit more careful about what

we consider a polygon to be and what constitutes its ‘inside’ and ‘boundary’. We will pay

more attention to these details later. For now, we just recall that a curve or path in the

plane can be considered formally simply as a continuous function γ : [0, 1] → �2 out of

the unit interval, and a polygonal path is the special case of a piecewise linear continuous

function. A path is said to be closed if its starting and finishing points are the same
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(γ(0) = γ(1)), and simple if it does not otherwise self-intersect (that is, γ(s) = γ(t) implies

either s = t or {s, t} = {0, 1}). We can identify a simple polygon with the image γ[0, 1] of

the unit interval under a simple closed polygonal path γ.

This paper describes a formalisation of Pick’s Theorem using the HOL Light theorem

prover (Harrison 1996). The proof turned out to be somewhat harder work than expected.

Using the crude metric of ‘lines of proof script’, it seems to be almost as challenging as

the Prime Number Theorem and considerably harder than Dirichlet’s Theorem on primes

in arithmetic progression.

Theorem Lines of proof

Dirichlet’s Theorem (Harrison 2009a) 2082 lines

Pick’s Theorem (the present paper) 3709 lines

Prime Number Theorem (Harrison 2009b) 4314 lines

Charming and surprising as Pick’s Theorem is, one would normally consider it a very

straightforward result in comparison with those two jewels of 19th century mathematics.

What accounts for the difficulty of formalising Pick? Of course, it could be just a

reflection of our own ineptitude. However, we prefer to believe that there is an intrinsic

difficulty in formalising many geometric proofs in stating and proving in a formal way

various properties that seem intuitively obvious ‘by eye’. In fact, the main difficulties with

formalising Pick’s Theorem are not at all specific to that theorem, but are connected with

the process of ‘triangulating’ a general polygon, as is done in the informal proof we were

using as a model.

2. Preliminary definitions and lemmas

We will begin by describing the formalisation of the various concepts involved in stating

Pick’s Theorem. The material connected with paths is fairly standard, but the precise

definition of ‘inside’ is perhaps more interesting.

Lattice points

We define the lattice points as ‘integral vectors’, that is, vectors all of whose components

are integers. The definition is made for the more general Euclidean space �N using the

technical setup described in Harrison (2005), but we will only use the special case �2 in

what follows.

|- integral_vector x ⇔
∀i. 1 <= i ∧ i <= dimindex(:N) ⇒ integer(x$i)

Paths and polygons

As noted, we consider a path to be just a continuous function out of the unit interval.

Actually, the HOL Light formalisation uses the unit interval in the type �1, which is

https://doi.org/10.1017/S0960129511000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000089


Pick’s Theorem 717

technically different, though isomorphic to, the unit interval on �. The elements vec 0

and vec 1 are the endpoints of this interval.

|- path g ⇔ g continuous_on interval[vec 0,vec 1]

For most purposes, we want to forget the details of the parametrisation using the

arbitrary interval [0, 1], so we define various natural abbreviations as follows:

|- pathstart g = g(vec 0)

|- pathfinish g = g(vec 1)

|- closed_path g ⇔ pathstart g = pathfinish g

|- path_image g = IMAGE g (interval[vec 0,vec 1])

One important special case of a path is the straight-line path from point a to point b.

The functions drop : �1 → � and lift : � → �1 are the inverse bijections between the

type �1 and �.

|- linepath(a,b) = λx. (&1 - drop x) % a + drop x % b

It is often convenient to stick together two paths to make a new path. To retain the

canonical parametrisation, we allocate the two intervals [0, 1/2] and [1/2, 1] to scaled

versions of the the two components. Formally, we have:

|- g1 ++ g2 = (λx. if drop x <= &1 / &2
then g1(&2 % x)
else g2(&2 % x - vec 1))

We define an arc to be a path that does not self-intersect anywhere:

|- arc g ⇔
path g ∧
∀x y. x IN interval[vec 0,vec 1] ∧

y IN interval[vec 0,vec 1] ∧
g x = g y
⇒ x = y

And a simple path is defined to be one that may intersect only at its endpoints:

|- simple_path g ⇔
path g ∧
∀x y. x IN interval[vec 0,vec 1] ∧

y IN interval[vec 0,vec 1] ∧
g x = g y
⇒ x = y ∨ x = vec 0 ∧ y = vec 1 ∨ x = vec 1 ∧ y = vec 0

Note that every arc is therefore also a simple path, and various other straightforward

relationships hold:

|- arc g ⇒ simple_path g

|- simple_path g ⇒ path g

|- arc g ⇔ simple_path g ∧ ¬(pathfinish g = pathstart g)
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We consider a polygonal path to be one defined by a list of vertices [v0; v1; · · · ; vn].
Intuitively, this is the path that proceeds through those vertices in order via straight-line

segments. It is defined by list recursion as a succession of linepaths:

|- polygonal_path [] = linepath(vec 0,vec 0) ∧
polygonal_path [a] = linepath(a,a) ∧
polygonal_path [a;b] = linepath(a,b) ∧
polygonal_path (CONS a (CONS b (CONS c l))) =

linepath(a,b) ++ polygonal_path(CONS b (CONS c l))

We will seldom be concerned with the cases of empty or singleton lists, but they

are defined for the sake of regularity. In the case of the empty list, the choice of the

corresponding linepath as the constant function whose image is {0} is made only to avoid

technical restrictions on the theorem about the image of a polygonal path under a linear

mapping, and has no deep significance.

Inside and outside

Pick’s Theorem talks about the ‘inside’ or ‘interior’ of a polygon. First, note that there

is already an established topological theory in HOL Light, which includes the interior,

closure and frontier (boundary) of a set:

|- interior s = {x | ∃t. open t ∧ x IN t ∧ t SUBSET s}

|- closure s = s UNION {x | x limit_point_of s}

|- frontier s = (closure s) DIFF (interior s)

Despite the disparate definitions, the interior and closure obey well-known dualities:

|- closure s = (:real^N) DIFF (interior ((:real^N) DIFF s))

|- closure((:real^N) DIFF s) = (:real^N) DIFF interior(s)

However, when one talks about the ‘inside’ or ‘interior’ of a polygon in Pick’s Theorem,

one means not the interior of the polygonal path itself (that would be the empty set since

it has zero thickness) but rather of the region it encloses. So the fundamental problem is to

define that concept. A clearly relevant result is the Jordan Curve Theorem, which asserts

that a simple closed curve divides the plane into an ‘inside’ and ‘outside’. At least, that is

how one thinks of it intuitively, but the traditional formal statements simply observe that

the complement of such a curve has two connected components, each of which has the

curve as its frontier, and exactly one of which is bounded. For a discussion of the formal

proof of this statement, see Hales (2007b).
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|- ∀c:real^1->real^2.
simple_path c ∧ pathfinish c = pathstart c
⇒ ∃ins out.

¬(ins = {}) ∧ open ins ∧ connected ins ∧
¬(out = {}) ∧ open out ∧ connected out ∧
bounded ins ∧ ¬bounded out ∧
ins INTER out = {} ∧
ins UNION out = (:real^2) DIFF path_image c ∧
frontier ins = path_image c ∧
frontier out = path_image c

Intuitively, the components ‘ins’ and ‘out’ whose existence is asserted are thought of

as the ‘inside’ and ‘outside’ of the curve. We might elect to introduce these notions simply

by Skolemising these existential quantifiers. However, we prefer to define the concepts in

a more general way that might be applicable in other situations. In particular, these apply

to arbitrary sets in �N , not just paths in �2 (even if we might not be able to deduce

analogously strong properties). We simply say that a point x is inside (respectively, outside)

a set S if it is not in S and the connected component of �N − S containing x is bounded

(respectively, unbounded).

|- inside s = {x | ¬(x IN s) ∧
bounded(connected_component ((:real^N) DIFF s) x)}

|- outside s = {x | ¬(x IN s) ∧
¬bounded(connected_component ((:real^N) DIFF s) x)}

It is fairly straightforward to prove a collection of natural and straightforward properties

of these concepts, for example:

|- ∀s. inside s INTER s = {}

|- ∀s. inside s UNION outside s = (:real^N) DIFF s

|- ∀s. inside s = (:real^N) DIFF (s UNION outside s)

|- ∀s t. s SUBSET t ⇒ outside t SUBSET outside s

|- ∀s. bounded s ⇒ bounded((:real^N) DIFF outside s)

|- ∀c c1 c2. c INTER outside(c1 UNION c2) = {}
⇒ outside(c1 UNION c2) SUBSET outside(c1 UNION c)

|- ∀s. convex s ⇒ outside s = (:real^N) DIFF s

|- ∀s. bounded s ∧ convex s ⇒ inside(frontier s) = interior s

Although in general it might be rather challenging to prove some other significant

properties in full generality, we can at least fairly straightforwardly use it to ‘Skolemise’

the Jordan Curve Theorem as discussed above.
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|- ∀c:real^1->real^2.
simple_path c ∧ pathfinish c = pathstart c
⇒ ¬(inside(path_image c) = {}) ∧

open(inside(path_image c)) ∧
connected(inside(path_image c)) ∧
¬(outside(path_image c) = {}) ∧
open(outside(path_image c)) ∧
connected(outside(path_image c)) ∧
bounded(inside(path_image c)) ∧
¬bounded(outside(path_image c)) ∧
inside(path_image c) INTER outside(path_image c) = {} ∧
inside(path_image c) UNION outside(path_image c) =
(:real^2) DIFF path_image c ∧
frontier(inside(path_image c)) = path_image c ∧
frontier(outside(path_image c)) = path_image c

As will be explained later, one of the key ideas in the Pick proof is to divide the inside

of a polygon into two pieces by a straight cut across its inside. Once again, we made an

attempt to generalise this property from polygonal arcs to arbitrary ones. Suppose an arc

c cuts across the inside of a simple closed curve, meeting it at points a and b, and we

separate the original closed curve into two arcs c1 and c2 with the endpoints a and b. Our

objective is to prove that the inside of the original curve is essentially cut into two pieces,

one the inside of the curve defined by c1 and c, the other the inside of the curve defined

by c2 and c.

C

C

C

1

2

a b

We had originally hoped that given the Jordan Curve Theorem, all such natural

extensions and variants (we sometimes call this one the ‘Jordan Triple Curve Theorem’)

would be fairly trivial corollaries. But, in fact, this is the sort of theorem that is not

considered very often in the literature, and we had some trouble finding a suitable

proof to formalise. We eventually found a relatively straightforward 14-line proof in

Whyburn (1964, 1.4, page 31). However, it was still quite hard work to formalise: in

particular, the process of cutting paths into sub-arcs and glueing them together in different

ways proved awkward. This is the final result as stated and proved in HOL Light; note

that we merely assume that c has non-empty intersection with the inside of the curve

defined by c1 and c2 (though this generalisation is trivial).
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|- ∀c1 c2 c a b:real^2.
¬(a = b) ∧
simple_path c1 ∧ pathstart c1 = a ∧ pathfinish c1 = b ∧
simple_path c2 ∧ pathstart c2 = a ∧ pathfinish c2 = b ∧
simple_path c ∧ pathstart c = a ∧ pathfinish c = b ∧
path_image c1 INTER path_image c2 = {a,b} ∧
path_image c1 INTER path_image c = {a,b} ∧
path_image c2 INTER path_image c = {a,b} ∧
¬(path_image c INTER inside(path_image c1 UNION path_image c2) = {})
⇒ inside(path_image c1 UNION path_image c) INTER

inside(path_image c2 UNION path_image c) = {} ∧
inside(path_image c1 UNION path_image c) UNION
inside(path_image c2 UNION path_image c) UNION
(path_image c DIFF {a,b}) =
inside(path_image c1 UNION path_image c2)

The eventual formal proof of this result was fully 788 lines long. We do not consider

this as part of the proof of Pick’s Theorem specifically, and have installed it with the

general multivariate theories. For this reason, it was not included in the line-count of 3709

for Pick’s Theorem. However, this categorisation is arguable, and including these further

788 lines in the count makes the Pick proof even longer than that of the Prime Number

Theorem!

3. The proof of Pick’s Theorem

Having established the necessary background to state and prove Pick’s Theorem, we

can now get to work. Our proof of the theorem is fairly standard, though it does not

specifically follow any single informal source. It proceeds by establishing the theorem

for increasingly general classes of polygon: first, a so-called ‘elementary triangle’, then an

arbitrary lattice triangle and finally a general simple polygon. As will be seen, the first

two steps are entirely routine and straightforward to formalise, while the last one presents

significant difficulties.

Elementary triangles

An elementary triangle is one with vertices at lattice points but containing no other lattice

points, either inside or on its boundary. The following picture shows some examples of

elementary triangles.

Pick’s Theorem for such a triangle simply asserts that each such triangle has area

1/2. There are various relatively straightforward proofs of this result. The one we have

formalised is based on linear transformations of the integer lattice.
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Given two vectors A and B, we can consider them as defining the linear transformation

of the plane f : (x, y) 
→ Ax+By, where juxtaposition indicates scalar-vector multiplication.

It is not hard to show that if the image under f of the set of integer lattice points is

exactly this same set of integer lattice points, then the determinant of the matrix of f is

±1:

|- ∀f:real^N->real^N.
linear f ∧ IMAGE f integral_vector = integral_vector
⇒ abs(det(matrix f)) = &1

Given an elementary triangle OAB, where we take O as the origin, one can show that

the integer multiples of the two other vertices generate precisely the integer lattice points.

The determinant in the previous theorem is precisely twice the area of the triangle formed

by the three vertices, which therefore has area 1/2.

In formalising this result, we simply use the convex hull of the set of vertices {a, b, c}
instead of the more elaborate concept of being ‘inside’ the triangle abc (though we can

connect the two definitions easily enough later). Our characterisation of an elementary

triangle is that the set of integer lattice points inside this convex hull is exactly the vertex

set {a, b, c}. This actually takes in the possibility that the triangle is completely degenerate,

i.e. that the three vertices are collinear. So the formal theorem has to take this into

account.

|- ∀a b c:real^2.
{x | x IN convex hull {a,b,c} ∧ integral_vector x} = {a,b,c}
⇒ measure(convex hull {a,b,c}) =

if collinear {a,b,c} then &0 else &1 / &2

Arbitrary triangles

Next, we proceed inductively to establish the result for an arbitrary triangle with all its

vertices at integer lattice points. If a triangle ABC is not elementary, then it must have a

lattice point D either:

— On one if its sides, say AB, in which case we can subdivide it into triangle ADC and

BCD.

— In its interior, in which case we can divide it into three triangles ADB, ADC and

BDC.

The following diagram illustrates these possibilities for a few examples.
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Although this is straightforward enough, we can make it even simpler, by reformulating

things slightly so that the first case becomes a special case of the second, so we can avoid

handling degenerate cases of the theorem itself separately. The key is the following general

theorem about ‘additivity’ of a real-valued function defined on subsets of the plane.

|- ∀f:(real^2->bool)->real a b c d.
(∀s t. compact s ∧ compact t

⇒ f(s UNION t) = f(s) + f(t) - f(s INTER t)) ∧
¬(a = b) ∧ ¬(a = c) ∧ ¬(b = c) ∧
¬affine_dependent {a,b,c} ∧ d IN convex hull {a,b,c}
⇒ f(convex hull {a,b,c}) =

(f(convex hull {a,b,d}) +
f(convex hull {a,c,d}) +
f(convex hull {b,c,d})) -

(f(convex hull {a,d}) +
f(convex hull {b,d}) +
f(convex hull {c,d})) +

f(convex hull {d})

In the inductive proof of Pick’s Theorem for an arbitrary lattice triangle, we can apply

this general result twice, once with f giving the number of lattice points in a set and once

with it giving the measure (area) of a set. This results in an almost immediate proof of

the following reformulation of Pick’s theorem:

|- ∀a b c:real^2.
integral_vector a ∧ integral_vector b ∧ integral_vector c
⇒ measure(convex hull {a,b,c}) =

&(CARD {x | x IN convex hull {a,b,c} ∧ integral_vector x}) -
(&(CARD {x | x IN convex hull {b,c} ∧ integral_vector x}) +
&(CARD {x | x IN convex hull {a,c} ∧ integral_vector x}) +
&(CARD {x | x IN convex hull {a,b} ∧ integral_vector x})) / &2 +

&1 / &2

It is straightforward to show that it is equivalent to the usual formulation with a proviso

of non-degeneracy:

|- ∀a b c:real^2.
integral_vector a ∧ integral_vector b ∧ integral_vector c
⇒ measure(convex hull {a,b,c}) =

if collinear {a,b,c} then &0
else &(CARD {x | x IN interior(convex hull {a,b,c}) ∧

integral_vector x}) +
&(CARD {x | x IN frontier(convex hull {a,b,c}) ∧

integral_vector x}) / &2 - &1

Arbitrary polygons

Again, we proceed inductively, showing that any polygon can be subdivided into two by a

line joining two vertices and otherwise lying entirely in the inside. (This can also be used

to drive an inductive proof that any polygon can be triangulated, and that is where we

looked for a proof, though we do not explicitly deduce this general result.) The informal

proof, essentially excerpted from Hales (2007a), seems relatively straightforward:

Pick the coordinate axis so that no two vertices have the same y coordinate. Let B be the lowest

vertex on the polygon, and let A and C be adjacent to B. If AC is an interior diagonal, we draw the

diagonal AC, forming a triangle ABC and a polygon without the vertex B. Otherwise, let D be a
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vertex of the polygon at maximal distance from the line AC in the direction of B. Cut the polygon

into two along the edge BD.

The first challenge is to formalise the ‘pick the coordinate axis’ step. In an earlier

paper, Harrison (2009c), we described an extensive framework for such ‘without loss of

generality’ reasoning, but to support the present proof, this had to be generalised from

‘first order’ concepts like points and lines to ‘higher order’ concepts like polygonal paths

and lists of points. The following ‘WLOG lemma’ gives the schematic justification for

picking a suitable transform f that enables us to assume that some particular object x

has a nice property.

|- (∀x. ∃f y. transform f ∧ nice y ∧ f y = x)
⇒ ∀P. (∀f x. transform f ⇒ (P(f x) ⇔ P x)) ∧

(∀x. nice x ⇒ P x)
⇒ ∀x. P x

In the applications considered in Harrison (2009c), the objects were always individual

vectors, and the transformations were aimed at making one of these vectors have

some particularly convenient property. In a typical example, one chooses a spatial

translation to turn one point into the origin; in another one chooses an orthogonal

transformation (roughly a rotation or rotoinversion) to align one point with a chosen

rectangular coordinate axis. In our case, our core objects are lists of vectors and we

desire an orthogonal transformation to ensure that all elements of that list have distinct

y coordinates. In order to apply it, we just need to prove that such an orthogonal

transformation exists. This is fairly straightforward because there are infinitely many

possible angles of rotation in the plane and only finitely many pairs of vertices in the list.

|- ∀p:(real^2)list.
∃f q. (∃g. orthogonal_transformation g ∧ f = MAP g) ∧

(∀x y. MEM x q ∧ MEM y q ∧ ¬(x = y) ⇒ ¬(x$2 = y$2)) ∧
f q = p

Having achieved the desired coordinate transformation, the remainder of the informal

proof can be carried through. However, even this turned out to be quite difficult. Recall

that the informal proof has two cases. Once we have established the triangle ABC with

B as the lowest (and strictly lowest, since all y coordinates are different) vertex, we either

split the polygon with a line AC

A

B

C
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or choose a point D in the interior of ABC at maximal distance from the line AC and

split the polynomial with the line BD

A

B

C

D

In either case, in order to apply the Jordan Triple Curve Theorem, we need to establish

that this new cut has non-empty intersection with the inside of the original polygon and

does not intersect the polygon itself except at the endpoints. Simply establishing the first

requirement is not trivial, despite its intuitive obviousness. Essentially, to get started we

need to establish some point that is in both the inside of the polygon and the interior

of the triangle ABC. Once that is achieved, it is fairly straightforward in either case to

argue that we can join this point to at least some point on the new line segment without

touching the polygon itself.

We construct a point known to be inside the polygon and the interior of the triangle

ABC as follows. First, we pick points A′ on AB and C ′ on AC (neither of them being

B) such that of the vertices in the original polygon, only B has a smaller y-coordinate

than either A′ or C ′. After establishing the the triangle A′BC ′ is not degenerate (that is,

those three points are affinely independent), we can easily show that there is a point in

its interior. Intuitively, we believe it is also in the inside of the polygon because there are

no other points inside A′BC ′ to ‘interfere’. To show this formally, we use a kind of parity

lemma. Roughly speaking, this asserts that given any simple closed curve including a line

segment from a to b, if another segment from c to d crosses the line segment from a to

b exactly once and does not otherwise intersect the curve, then c and d have opposite

‘inside’ and ‘outside’ status.

|- ∀a b c d p x:real^2.
simple_path(p ++ linepath(a,b)) ∧
pathstart p = b ∧ pathfinish p = a ∧
segment(a,b) INTER segment(c,d) = {x} ∧
segment[c,d] INTER path_image p = {}
⇒ (c IN inside(path_image(p ++ linepath(a,b))) ⇔

d IN outside(path_image(p ++ linepath(a,b))))

It is easy to establish that points below our vertex B are outside the polygon, and then

to use this parity lemma to deduce that our constructed point lies inside. This still leaves

the task of proving that our new cut does not intersect the original polygon except at

its endpoints. In the first case above, this is relatively easy, but the second is a bit more

involved. The idea of picking the new vertex D as far from the line AC as possible (as

opposed to, for example, the lowest vertex in the interior of ABC) is to avoid cases like
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the following where another vertex V manages to ‘sneak inside’ so that our new cut BD

does after all intersect the polygon.

A

B

C

D

U

V

The geometric reasoning underlying the fact that our choice of vertex D indeed ensures

non-intersection is in principle straightforward, but we found it quite hard work reasoning

about obvious facts like ‘this point and that point are on opposite sides of the line’.

Nevertheless, we do ultimately obtain our goal of proving that a polygon can always be

chopped into two pieces with a cut as required. Note that the condition that the length of

the vertex list is at least 5 corresponds to the fact that the polygon has at least 4 vertices

(since the first and last elements of the vertex list are the same).

|- ∀p:(real^2)list.
simple_path(polygonal_path p) ∧
pathfinish(polygonal_path p) = pathstart(polygonal_path p) ∧
5 <= LENGTH p
⇒ ∃a b. ¬(a = b) ∧ MEM a p ∧ MEM b p ∧

segment(a,b) SUBSET inside(path_image(polygonal_path p))

As a result, we can rather easily drive an inductive proof based on the number of

vertices to obtain the final Pick theorem:

|- (∀x. MEM x p ⇒ integral_vector x) ∧
simple_path(polygonal_path p) ∧
pathfinish(polygonal_path p) = pathstart(polygonal_path p)
⇒ measure(inside(path_image(polygonal_path p))) =

&(CARD {x | x IN inside(path_image(polygonal_path p)) ∧ integral_vector x}) +
&(CARD {x | x IN path_image(polygonal_path p) ∧ integral_vector x}) / &2 -
&1
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4. Conclusions and related work

A presentation by Narboux et al.† discusses a Coq proof of part of the theorem, but

leaves a number of gaps and as far as we know has not been completed. So, as far as

we are aware, the work we describe here is the first successful formalisation of Pick’s

Theorem. Nevertheless, it was somewhat chastening to discover how difficult it was to

formalise some apparently elementary pieces of intuitive geometric reasoning. The main

culprit seems to be the concept of ‘inside’, which is a very natural notion but difficult to

reason about. It would be a very appealing project to try to automate more of it, perhaps

by a more searching analysis of our everyday intuition.

Our general approach to Pick’s Theorem was, naturally enough, chosen because we

believed that it would be relatively easy to formalise. In fact, the proof up to the case

of an arbitrary lattice triangle worked very nicely, and was streamlined by the use of

the inclusion–exclusion result for additive functions. As one of the reviewers pointed out,

this is reminiscent of the inclusion–exclusion expansion over faces in the Euler–Poincaré

formula and some of its common proofs (Barvinok 2002; Webster 1995). We believe

that the same sort of reasoning would easily generalise to the case of a convex polygon.

Indeed, one proof we looked at in the literature and were considering adopting for our

formalisation (Murty and Thain 2007) actually proves the theorem only for a convex

lattice polygon.

All in all, the main difficulties are connected with the treatment of arbitrary polygons

and their ‘inside’ and ‘outside’. In this domain, many intuitively obvious facts require

a considerable amount of work to prove rigorously, and it is often difficult to find a

thorough informal treatment to use as a model without digging into fairly old literature

such as Lennes (1911). It may be that we made things more difficult for ourselves by

generalising where possible from polygons to arbitrary paths, but our hope is that in

compensation the background lemmas are more likely to be useful elsewhere. Here again,

we needed to explore older literature to find proofs of results like the ‘Jordan Triple

Curve theorem’. As noted, we took our proof from Whyburn (1964). The same result is

discussed in Newman (1939), but it is proved by a modified form of a particular proof of

the Jordan Curve Theorem, not deduced directly from the result itself. A restricted form

for polygons, which would have sufficed for our present purposes, is proved in Thomassen

(1992).

One naturally wonders whether a radically different proof of Pick’s Theorem might

avoid all the difficulties associated with triangulation of polygons, perhaps using results

such as the Gauss–Green theorem relating line and plane integrals. Some intriguingly

different proofs are given in Kurogi and Yasukura (2005), Diaz and Robins (1995) and

Blatter (1997), all of which may generate interesting formalisation challenges. It would also

be natural to consider formalising extensions and generalisations of Pick’s Theorem, and

other related results. One possibility is to extend it to non-simple polygons using Euler

characteristics (Dubeau and Labbé 2007). Another is to consider higher-dimensional

† ‘Vers une preuve formelle du théorème de Pick en Coq’, http://galapagos.gforge.inria.fr/

December2008/mns-galapagos-dec-2008.pdf.
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generalisations using Ehrhart polynomials (Ehrhart 1967). Another interesting future

direction would be to use Pick’s Theorem as a case study for automated theory exploration,

since the concepts it involves are combinatorial and finite, lending themselves to automated

conjecture formation and testing.
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