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Abstract

We sought to examine whether rat maternal food restriction (MFR) affects the expression of
steroidogenesis-related genes Cyp19, Cyp17a1, Insl3 and Gdf-9 in the ovaries of offspring
from the first (FRG1) and second (FRG2) generations at pre-pubertal age (week 4) and during
adulthood (week 8). At week 4, MFR significantly increased the expression of RNAs for all
analyzed genes in both FRG1 and FRG2 females, which may indicate that MFR affects the
onset of the reproductive lifespan, by inducing early pubertal onset. At week 8, the Cyp19
gene was still upregulated in MRF-subjected animals (Cyp19: P= 0.0049 and P= 0.0508 in
FRG1 and FRG2, respectively), but MFR induced a significant decrease in Cyp17 and Gdf-9
gene expression in the offspring of both FRG1 and FRG2 females when compared with the
controls (Cyp17: P= 0.0018 and P= 0.0016, respectively; Gdf-9: P= 0.0047 and P= 0.0023,
respectively). This suggests that females at week 8, which should normally be in their optimal
reproductive capacity, experience premature ovarian aging. At week 4, the activation of Cyp19
and Cyp17 was higher in the FRG1 ovaries than in the FRG2 ovaries, whereas the extent of
Insl3 and Gdf-9 activation was lower in the FRG1 ovaries. This may indicate that FRG2
females were more vulnerable to MFR than their mothers (FRG1) and grandmothers, which
is consistent with the ‘predictive adaptive response’ hypothesis. Our findings reveal that MFR
may induce intergenerational ovarian changes as an adaptive response to ensure reproductive
success before death.

Introduction

Most diseases are believed to be caused by a combination of genetic variations that increase the
susceptibility to a disease, on the one hand, and environmental factors, on the other. With
respect to genetic factors, several diseases such as obesity, cardiovascular diseases and diabetes
in adult animals and humans could have their origin in embryonic environments.1–6 Many
female reproductive disorders related to early oocyte formation, which is vulnerable to many
environmental factors, also have their sources in the prenatal environment.7 Adult ovarian
folliculogenesis and steroidogenesis are highly influenced by the prenatal environment.8

Among the environmental factors, maternal food restriction (MFR) may adversely affect fetal
growth and development, and thereby, the reproductive outcomes of the offspring.7,9,10

Ovarian functions, including fecundity, are controlled by steroid hormones, the synthesis of
which, in turn, is defined by steroidogenic enzymes and the expression of their genes.11

However, little is known about the influence of MFR on the expression of ovarian genes
controlling ovarian steroidogenesis and folliculogenesis. Moreover, the limited data available
are contradictory in nature; some authors have reported that calorie restriction leads to a
decrease in the expression of ovarian genes controlling steroidogenesis and folliculogen-
esis,9,12,13 whereas others have found either an increased expression of these genes under the
same conditions14 or no differences in mRNA expression at all14,15 between females exposed
to high- and low-energy diets, when compared with the controls.

Thus, we sought to determine whether and how MFR, during pregnancy, can affect the
expression of key ovarian genes involved in steroidogenesis, follicle development and repro-
ductive performance in subsequent generations (first and second) of female offspring in rats.
Among these genes, we focused on aromatase (Cyp19), insulin-like factor 3 (Insl3), cyto-
chrome P450 17A1 (Cyp17a1) and growth differentiation factor 9 (Gdf-9). Aromatase cyto-
chrome P450 is encoded by the Cyp19 gene and converts androgens to estrogens.16 The
expression of Cyp19 mRNA in ovarian granulosa cells is differentially regulated during
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follicular growth.17,18 Aromatase gene expression is negligible in
fetal ovaries, while in the ovaries of sexually mature animals it is
restricted to the granulosa cells of healthy large antral follicles and
to luteal cells of the corpus luteum.18,19 The Insl3 gene has been
described in women, rodents and ruminant ovaries.20–24 Insl3 has
been detected within the internal layers of the theca, which may
suggest a role in the production of androgen by these cells,25 and
has also been identified in the oocytes, suggesting an involvement
in oocyte maturation.26 Gdf-9, belonging to the tumor growth
factor-β superfamily, is secreted exclusively by the oocyte in
rodents;27 however, in other mammals it has been found in the
cumulus and mural granulosa cells.28,29 It plays a key role during
follicular development30 by inducing the differentiation of theca
cells and their androgen production, and is involved in the pro-
liferation of granulosa cells.31,32

Interrelationships between the analyzed genes are possible. For
example, Insl3 knock-down resulted in a decrease in Cyp17a1
expression.25 Notably, the protein encoded by Cyp17 is an enzyme
that mediates the production of androgens DHEA or androste-
nedione in rodent gonads.33,34 Despite the importance of these
genes and their products in the control of ovarian steroidogenesis
and other steroidogenesis-related processes, it remains to be
established whether MRF can affect ovarian functions via these
genes, and at which age/stage of the reproductive cycle.

By focusing on two rat offspring generations, we have exam-
ined whether MFR affects the expression of the steroidogenesis-
related genes Cyp19, Cyp17a1, Insl3 and Gdf-9 in the ovaries of
first (FRG1) and second (FRG2) generations offspring at pre-
pubertal age (week 4) and during adulthood (week 8).

Methods

Experimental design

The study was approved by the Research Ethics Committee at
King Saud University. Adult, virgin female Wistar rats weighing
230± 20 g (40 days old), obtained from the Animal Unit at King
Saud University, were provided ad libitum access to tap water and
food (23% protein, 4.5% fat, 3030 kcal/kg; lab diet 5001, Brent-
wood, MO, USA). The experimental design employed in this
study is summarized in Fig. 1. After being maintained in separate
cages for 4 days of adaptation, each female was put together with
a virgin 40 days-old male until the appearance on the cage floor of
a white vaginal plug. This was counted as day 0 of gestation, after

which the mated females were randomly divided into two groups.
The first group (normal control – C; n= 15) was fed ad libitum.
The second group was supplied with only 50% of ad libitum food
throughout gestation and was called the food-restricted group
(FR, n= 20). First-generation offspring rats were fed ad libitum:
those obtained from FR were called food-restricted group of the
first generation (FRG1) and those obtained from the control were
called the control of the first generation (CG1). After complete
weaning, some of the first-generation females were euthanized
with chloroform before puberty (week 4; n= 10) and some in
adulthood (week 8; n= 10). Their ovaries were removed and
ovarian fat was discarded. The ovaries were immediately fixed in
RNA later, and total RNA was extracted and stored at −80°C. The
remainder of the FRG1 and CG1 females were allowed to reach
sexual maturity and treated exactly like their mothers (CG1
females were fed ad libitum, whereas FRG1 females were fed 50%
ad libitum throughout gestation). After parturition, we obtained
the second-generation offspring that were fed ad libitum: those
obtained from FRG1 were called the food-restricted group of the
second generation (FRG2) and those obtained from CG1 were
called the control of the second generation (CG2). The FRG2 and
CG2 offspring females were humanely euthanized with chloro-
form at 4 and 8 weeks, and their ovaries were treated in exactly
the same way as for the ovaries of offspring females of the first
generation.

Total RNA isolation and quantitative real-time polymerase
chain reaction

Transcript levels were analyzed using freshly prepared mRNA
that was extracted using the DNA/RNA Mini kit (Qiagen, Hilden,
Germany). The purity, concentrations and quality of RNA were
measured using the Agilent Small RNA analysis kit and the
Agilent 2100 Bio-analyzer system (Agilent Technologies, Wald-
bronn, Germany), according to the manufacturer’s instructions. A
sample of 1 μg of total RNA was reverse-transcribed into cDNA
using a high-capacity cDNA reverse transcription (RT) kit
(Applied Biosystems, Warrington, USA). RT was performed using
the following thermal cycling conditions for polymerase chain
reaction (PCR) analysis: 10min at 25°C, 2 h at 37°C and 5min at
85°C. Once cDNA was synthesized, the obtained samples were
immediately stored at −20°C. We used 96-well plates and CFX 96
RT-qPCR for all the experiments concerning the mRNA
expression of the selected genes. The expression of the GAPDH

Fig. 1. Diagram summarizing the experimental design used in this study.
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gene was used to normalize the RNA samples to that of
the endogenous control. We used a PCR SYBR Green
Supermix (Applied Biosystems) to perform the reactions. Real-
time PCR was carried out using a 7500 real-time PCR system
(Applied Biosystems). The Cyp19 primers were: forward
5′-TGAGTCTCCCAAGGTCATCC-3′ and reverse 5′-GGG
TTCAGCATTTCCAAAAA-3′. The Cyp17a1 primers were:
forward 5′-ACTGAGGGTATCGTGGATGC-3′ and reverse
5′-TCGAACTTCTCCCTGCACTT-3′. The Insl3 primers were:
forward 5′-CTTCCTCACCAGGCTTCTCA-3′ and reverse
5′-CACCACCTGAGCCCTACAAT-3′. The Gdf-9 primers
were: 5′-GATGTGACCTCCCTCCTTCA-3′ and reverse 5′-G
CCTGGGTACTCGTGTCATT-3′. The GAPDH primers were:
forward 5′-GGTATCGTCGAAGGACTCATGAC-3′ and
reverse 5′-ATGCCAGTGAGCTTCCCGTTCAGC-3′. Primers
were added to the reaction mix at a final concentration of
250 nM. From each sample, 5 μl cDNA were added to a volume of
20 μl of PCR mixture (0.5 μl specific primers, 12.5 μl of SYBR
Green Supermix and 7 μl RNase-/DNase-free water). PCR cycles
were as follows: 50°C for 2min and 95°C for 5min, followed by
40 cycles at 95°C for 15 s, 62°C for 30min and 30 s at 72°C. The
amplified products were separated using agarose gel in order to
confirm that no spurious products had been amplified. There-
after, we followed the 2-ΔΔCt (Livak) relative expression method
to analyze the obtained results.

Statistical analysis

Experimental values were expressed as means± SD of a one-way
analysis of variance. A posteriori comparisons were done using the
Tukey’s method. Variance and normality assumptions were
checked using the Brown and Forsythe test and the Shapiro–Wilk
test, respectively. P values were considered significant if they were
⩽ 0.05. Statistical data analysis was conducted using the SPSS

version 16.0 statistical package (SPSS, Chicago, IL, USA). Addi-
tionally, Bonferroni multiple comparison tests using Stata/SE
version 13.0.168 were applied.

Results

Gene expression

Cyp19
Cyp19 mRNA levels were significantly higher in the ovaries of
FRG1 and FRG2 females than in those of controls, both at week 4
(P= 0.0034 and P= 0.0217, respectively; Fig. 2a and b) and at
week 8 (P= 0.0049 and P= 0.0508, respectively). When the two
generations were compared, Cyp19mRNA levels were found to be
significantly higher in the FRG1 than in the FRG2 females at week
4 (P= 0.015 and P= 0.056, respectively, Fig. 2c). The difference
was not significant at week 8.

Cyp17a1

Cyp17a1 mRNA levels at week 4 were significantly higher in the
ovaries of both FRG1 and FRG2 females than in the ovaries of the
controls (P= 0.0032 and P= 0.0042, respectively; Fig. 3a and b).
However, at week 8, the Cyp17 mRNA levels were significantly
lower in the ovaries of the FRG1 and FRG2 groups than in those
of the control rats (P= 0.0018 and P= 0.0016, respectively; Fig. 3a
and b). When the two generations were compared with each
other, the levels of Cyp17a1 mRNA were found to be significantly
lower in the ovaries of the FRG2 females than in those of the
FRG1 females, both at week 4 (P= 0.016) and 8 (P= 0.015).

Insl3
Insl3 mRNA levels were significantly higher in the ovaries of
4-week-old females in both FRG1 and FRG2 groups, when

Fig. 2. Effect of MFR on the mRNA expression level of Cyp19 gene. The mRNA level was positively associated with MFR in FRG1 (a) and FRG2 (b) females at 4 and 8 weeks
compared to control females. However, the Cyp19 gene expression was higher in ovaries of FRG1 females compared to FRG2 (c). All results are an average ± S.E.M. of three
independent experiments, each performed in triplicate. ***P< 0.0005, **P< 0.005 and *P< 0.05 compared to control (CG1 and CG2).
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compared with those of the controls (P= 0.0007 and P= 0.0001,
respectively; Fig. 4a and b). In the ovaries of 8-week-old females,
however, Insl3 mRNA levels were not different from the controls,
for both the FRG1 (P= 0.4003) and FRG2 (P= 0.3897) females.
However, when compared between the two generations, Insl3
mRNA levels were significantly higher in the FRG2 than in the
FRG1 females at week 4 (P= 0.002, Fig. 4c).

Gdf-9
Gdf-9 mRNA levels were significantly higher in the ovaries of 4-
week-old rats in both the FRG1 and the FRG2 groups, when
compared with the controls (P= 0.0073 and P= 0.0003, respec-
tively; Fig. 5a and b). There was, however, a significant decrease in
Gdf-9 mRNA levels in the ovaries of 8-week-old rats in both
FRG1 and FRG2 females, compared with those of the controls
(P= 0.0047 and P= 0.0023, respectively; Fig. 5a and b). At week 4,
Gdf-9 mRNA levels were significantly higher in the FRG2 females
than in their FRG1 counterparts (P= 0.025; Fig. 2), whereas no
significant difference was observed in 8-week-old females of the
two MFR groups.

Discussion

Reprogramming of the ovarian maturity and aging in
response to MFR

Many factors have been reported to play key roles in folliculo-
genesis and steroidogenesis owing to their effects on oocyte
development at various follicular stages.15,35 In the present study,
the mRNA expression levels of four steroidogenic-related genes
(Cyp19, Cyp17a1, Insl3 and Gdf-9) were investigated, in relation
to malnutrition during pregnancy, in female offspring. In general,
our data demonstrated that MFR significantly increased the

expression of steroidogenic-related genes in the females of both
first and second generations at week 4. This meant a priori that
MFR has the capacity to induce steroidogenesis during early life
(females at week 4). However, when the effects of MFR on gene
expression were considered in the different groups at week 8,
differences were found in terms of the different genes analyzed. In
fact, in contrast to the Cyp19 gene, which was still upregulated at
this age, Cyp17 and Gdf-9 were found to be significantly down-
regulated in the ovary of the FRG1 and FRG2 females at week 8,
suggesting an inhibitory role of MFR on the expression of these
two steroidogenic-related genes at this age. This last result is
consistent with previous reports9,36 and may suggest that 8-week-
old females, which should normally be in their optimal repro-
ductive capacity, were developing premature ovary aging.

Notably, fetal growth restriction can be considered as a part of
the life history strategy for FRG1 and FRG2 females that were in
utero when their mothers underwent food restriction.37–40 Since
prenatal undernutrition leads to reduced longevity in mice,41

these females may have been predisposed to a shorter life because
of a higher risk of extrinsic mortality. To overcome this challenge,
these females may have had to adjust their reproductive capacity,
for example, by changing the intensity and duration of their
reproductive lifespan, the timing of the stages of folliculogenesis,
as well as the onset of reproductive maturity. Owing to the
shortage of food, sensed through nutritional or endocrine sig-
naling during fetal life,42 to ensure the reproductive success before
death, these females may have changed the timing of their
reproductive lifespan, to make it more intensive, but relatively
limited in time, which is consistent with the life history strategy of
population regulation.43 Thus, at 4 weeks of age, the upregulation
of genes for early steroidogenesis might induce enhanced folli-
culogenesis for a greater number of primordial follicles. This is
consistent with a previous study that rat maternal calorie

Fig. 3. Effect of MFR on the mRNA expression level of Cyp17 gene. The mRNA level was positively associated with MFR in FRG1 (a) and FRG2 (b) females at 4 weeks compared to
control females. However, the Cyp17 mRNA level decreased significantly in ovaries of FRG1 and FRG2 females at 8 weeks compared to controls (a and b). The Cyp19 gene
expression was higher in ovaries of FRG1 females compared to FRG2 (c) at both 4 and 8 weeks. All results are an average ± S.E.M. of three independent experiments, each
performed in triplicate. ***P< 0.0005, **P< 0.005 and *P< 0.05 compared to control (CG1 and CG2).
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restriction leads to an early pubertal onset.44 In particular, the
upregulation of Gdf-9, which is essential for promoting the
molecular dialogue between the oocyte and the surrounding
granulosa cells,27,35,45 may induce the transition of primordial
follicles to the primary follicular stage and enhance follicular
survival at an age as early as 4 weeks.27,46 The upregulation of
Gdf-9 was consistent with that of Cyp17a1 in the ovary of 4-week-
old FRG1 and FRG2 females. In fact, Cyp17a1 is responsible for
androgen production (testosterone, androstenedione and dihy-
drotestosterone), and has been reported to enhance the activation
and growth of primordial follicles.47–49 According to our results,
however, MFR caused a significant decrease in the expression of
two different steroidogenic factors (Cyp17a1 and Gdf-9) at
8 weeks, which normally corresponds to the peak of sexual
activity. This decrease suggested an early decline in ovarian
function, as well as in reproductive lifespan, ultimately leading to
premature ovarian aging. This finding was consistent with pre-
vious reports showing that decreased Gdf-9 mRNA levels in off-
spring from underfed mothers contributed to an early disruption
in follicular growth.9,50 This finding may also help to explain the
results of previous studies showing that malnutrition during
pregnancy leads to premature ovarian aging in offspring,9 a
relatively short reproductive lifespan,51 and a decrease in adult
progesterone levels for female offspring later in life.44

We expected that, in 8-week-old FGR1 and FGR2 females, the
decreased availability of aromatase substrates, as a result of
Cyp17a1 downregulation, would lead to a decline in the expres-
sion of Cyp19, as was the case with Cyp17 and Gdf-9. On the
contrary, Cyp19 mRNA levels were significantly higher in the
ovary of the first- and second-generation 8-week-old female off-
spring following MFR, when compared with the respective con-
trol. However, this is in agreement with previous studies reporting
that a decline in serum androgen levels is associated with

increased aromatase activity in aging women.52 In fact, ovarian
steroidogenesis is unexpectedly preserved, as reflected by the
consistent level of aromatase, in older, regularly cycling women
(35 years of age), despite the anatomic and physiological
decline53–56 represented by a dramatic depletion of ovarian fol-
licles.57–59 This also may explain the selective preservation of
estradiol synthesis in older, premenopausal women, since aro-
matase converts androgens to estrogens,16,36 mainly in the heal-
thy, large antral follicles.19,60,61

Intergenerational effect of MFR on female reproduction
It is well known that, in animals, a substantial proportion of the
total energy demand is devoted to reproduction, and the
mechanisms by which this energy is allocated are central to the
process of sexual selection.62 To counter the threat represented by
energy restriction experienced during their fetal life,42 the FRG1
and FRG2 females apparently underwent reshaping of their
reproductive physiology and behavior through early onset of the
expression of steroidogenesis-related genes. This result is con-
sistent with the ‘thrifty phenotype’ hypothesis proposed by Hales
and Barker63 in 1992 and later extended by Gluckman and
Hanson to the ‘predictive adaptive response’ hypothesis.64 In
other words, our life history strategies are not fixed but can
change in response to the environmental signals we receive dur-
ing development. Notably, the shortage of nutrients during fetal
life may act as a forecast of the possible nutritional environment
that will be faced after birth, and the fetus could respond and
adapt to that predicted situation by adopting specific strategies, in
order to maximize its chances of surviving and reproducing.63,65

Among the steroidogenesis-related genes, at week 4, Cyp19
and Cyp17 displayed higher expression levels in the ovaries of
FRG1 females than in those of FRG2, whereas Insl3 and Gdf-9

Fig. 4. Insl3 mRNA levels were significantly higher in ovaries of 4-week-old females in both FRG1 (a) and FRG2 (b) groups than in those of the control animals, whereas no
significant difference was found in ovaries of 8-week-old females compared to controls. However, when the two generations were compared to each other at week 4,
Cyp19 mRNA levels were significantly higher in FRG2 females than in FRG1, whereas no significant difference was found in ovaries of 8-week-old females. All results are an
average ± S.E.M. of three independent experiments, each performed in triplicate. ***P< 0.0005, **P< 0.005 and *P< 0.05 compared to control (CG1 and CG2).
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were downregulated in the ovaries of FRG1 rats, when compared
with their FRG2 counterparts. Many reports have demonstrated
that the impact of steroidogenesis-related genes on reproductive
physiology is species-specific.66,67 As cited above, Gdf-9 and Insl3
play a key role in inducing the proliferation and differentiation of
the follicular cells since primordial stages until maturation and
ovulation.68,69 All these being considered, it is worth noting that,
because the FRG2 females were doubly constrained, energetically,
via their parents (FRG1) and grandparents, these females ensured
their reproductive success by intensifying the proliferation and
differentiation of their follicular cells, when compared with their
mothers (FRG1). Moreover, they may learn from their parents
and grandparents to increase fertility before the onset of repro-
ductive maturity, which is consistent with population regulation
in the theory of life history.43 Our results seem to be consistent
with the finding of Liang and Zhang, who demonstrated that F2
offspring were more vulnerable to MFR than the F1 offspring and
grandmothers.70 However, other studies reported no female
intergenerational reproductive effects as a consequence of food
deprivation during gestation.71,72 Thus, in view of these contra-
dictory findings, additional studies are required to elucidate the
impact of maternal malnutrition on the reproductive activities of
the offspring.

In conclusion, the shortage of nutrients experienced by the
FRG1 and FRG2 females via their mothers when they were in
utero, might be perceived as a ‘warning message’ about an
increased risk of mortality during postnatal life. To overcome this
challenge, these females may have reprogrammed their repro-
ductive capacity to precociously reach puberty, through the
upregulation of the steroidogenic-related genes. However, the
downside of this strategy may be represented by early ovarian
aging, since we found that MFR was inversely correlated with
reduced ovarian steroidogenesis-related genes (Gdf-9 and Cyp17)

in female offspring of the first and second generations at week 8,
an age normally corresponding to maximal reproductive capacity
in female rats. The effect of MFR was more significant in FRG2
than in FRG1 females, which may reflect intergenerational
reproductive effects of food deprivation of mothers during
gestation.
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