
J. Fluid Mech. (2016), vol. 808, pp. 90–115. c© Cambridge University Press 2016
doi:10.1017/jfm.2016.628

90

Investigation of tone generation in ideally
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The generation of tones in a supersonic planar jet impinging on a flat plate normally
has been investigated by performing compressible large-eddy simulations using
low-dissipation and low-dispersion finite differences. At the exit of a straight
nozzle of height h, the jet is ideally expanded, and has a Mach number of 1.28
and a Reynolds number of 5 × 104. Four distances between the nozzle and the
plate between 3.94h and 9.1h have been considered. Flow snapshots and mean
velocity fields are first presented. The variations of turbulence intensities and of
the convection velocity in the jet shear layers are then examined. The properties
of the jet near fields are subsequently described, in particular by applying Fourier
decomposition to the pressure fields. Several coexisting tones appear to be generated
by aeroacoustic feedback loops establishing between the nozzle lip and the flat plate,
which also lead to the presence of hydrodynamic–acoustic standing waves. The tone
frequencies are consistent with those given by the aeroacoustic feedback model and
with measurements for high-aspect-ratio rectangular jets. The jet oscillation modes
at these frequencies are characterized, and found to agree with experimental data.
Their symmetric or antisymmetric natures are shown to be well predicted by a wave
analysis carried out using a vortex sheet model of the jet, providing the allowable
frequency ranges for the upstream-propagating acoustic waves. Thus, it is possible,
for an ideally expanded impinging planar jet to predict both the frequencies of the
tones and the symmetric or antisymmetric nature of the corresponding oscillation
modes by combining the aeroacoustic feedback model and the wave analysis.

Key words: aeroacoustics, jet noise

1. Introduction
Jets impinging on a flat plate have been studied experimentally by many authors

over the past sixty years. In some cases, very intense tones have been observed in
the acoustic field. In his pioneering work, Powell (1953) suggested that they are due
to a feedback mechanism between turbulent structures propagating downstream from
the nozzle lip to the plate and acoustic waves propagating upstream from the plate
to the nozzle lip. This self-sustaining oscillating flow for which a free shear layer
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Tone generation in ideally expanded planar impinging jets 91

impinges on a solid boundary is similar to the oscillating flow over a cavity (Rockwell
& Naudascher 1978), which also generates tones.

Subsonic round jets at a Mach number between 0.3 up to 0.9 impinging on a flat
plate normally have been studied notably by Ho & Nosseir (1981) and Nosseir & Ho
(1982). Their near pressure fields were described using microphones, and a simplified
model predicting the frequencies of the feedback mechanism occurring between the
nozzle and the plate was proposed. Supersonic impinging round jets have also been
investigated experimentally by Henderson & Powell (1993), Krothapalli et al. (1999)
and Henderson, Bridges & Wernet (2005), and more recently by Risborg & Soria
(2009), Buchmann et al. (2011) and Mitchell, Honnery & Soria (2012) using high-
speed optical measurements. In some cases, a feedback mechanism similar to that
encountered in subsonic jets was found. This mechanism is observed very often when
the jets are ideally expanded, but less frequently and only for certain nozzle-to-plate
distances when the jets are imperfectly expanded. Henderson et al. (2005) suggested
that in the latter case, the feedback loop establishes only when a Mach disk forms
upstream from the plate.

Subsonic impinging planar jets also produce intense tones. However, compared to
round jets, the tones are generated for lower flow velocities, as noted by Arthurs
& Ziada (2012). Supersonic impinging planar jets have been studied by Krothapalli
(1985) by considering rectangular jets of moderate aspect ratio. In some cases, two
tone frequencies, namely a screech tone frequency and an impinging tone frequency,
emerge in the sound spectra. A staging behaviour was noted for the impinging
tone frequency. Later, Norum (1991) and Tam & Norum (1992) also studied
supersonic impinging planar jets. For certain jets, they obtained acoustic spectra
with two emerging tone frequencies. The lower and the upper tone frequencies
are respectively associated with breathing (symmetric oscillation) modes and with
flapping (antisymmetric oscillation) modes of the jets. Similar tone frequencies
have been found in a two-dimensional (2-D) simulation by Hourigan, Rudman &
Brocher (1996). In order to explain the symmetric or antisymmetric nature of the jet
oscillations, Tam & Norum (1992) suggested that the second part of the feedback
loop is related to the upstream-propagating neutral acoustic wave modes of the vortex
sheet model of the jets. This model provides an allowable frequency range for each
of these modes. The two tones emerging in the experiments of Norum (1991) were
then noted to fall into the ranges thus obtained for the first symmetric and the first
antisymmetric modes, in agreement with the nature of the corresponding jet oscillation
modes. Later, several tone frequencies were also measured by Thurow, Samimy &
Lempert (2002) for supersonic rectangular impinging jets using a real-time flow
visualization technique. A coupling between the organization of the hydrodynamic
structures in the shear layers of the jets and the degree of resonance of the feedback
mechanism was pointed out.

In the present work, four large-eddy simulations (LES) of an ideally expanded
planar jet impinging on a flat plate normally are carried out on Cartesian meshes
containing between 184 and 263 million points in order to investigate the tone
generation in this flow configuration. The jet is characterized by a Mach number
of 1.28 and a Reynolds number of 5 × 104, and nozzle-to-plate distances varying
from 3.94h up to 9.1h are considered. The properties of the jet flow and acoustic
fields are described, and compared with experimental data and with empirical and
theoretical models. In particular, the effects of the nozzle-to-plate distance on the
tone frequencies of the feedback loop and on the corresponding jet oscillation modes
are examined.
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The paper is organized as follows. The main parameters of the jets and of the
simulations are presented in § 2. Aerodynamic results including flow snapshots, mean
velocity fields, turbulence intensities and convection velocity are shown in § 3. The
acoustic fields are analysed and compared with measurements in § 4. The properties
of the tones produced by the aeroacoustic feedback mechanism establishing in the jets
are discussed in § 5 by applying Fourier decomposition to the near pressure field. A
new approach combining the aeroacoustic feedback model and a wave analysis using a
vortex sheet jet model is developed. It aims to determine the most likely possible tone
frequencies of the feedback mechanism and the antisymmetric or symmetric natures
of the corresponding oscillation modes. Finally, concluding remarks are given in § 6.

2. Large-eddy simulations of supersonic planar jets
2.1. Jet parameters

Four large-eddy simulations of a jet impinging on a flat plate normally are performed.
The jet originates from a planar straight nozzle of height h and width l = 3.25h
in the spanwise direction. The lip thickness is e = 0.5h and periodic conditions are
imposed in the spanwise direction. Nozzle-to-plate distances L equal to 3.94h, 5.5h,
8.27h and 9.1h are considered. The four cases are consequently referred to as JetL3.9,
JetL5.5, JetL8.3 and JetL9.1. The ejection conditions of the jet and the nozzle-to-plate
distances are similar to those in the experimental study of Thurow et al. (2002). Thus,
the jet is ideally expanded, and has a Mach number of Mj= uj/aj= 1.28, where uj is
the jet exit velocity and aj is the speed of sound at the nozzle exit. The jet Reynolds
number is Reh= ujh/ν= 5× 104, where ν is the kinematic molecular viscosity. At the
nozzle exit, a Blasius boundary-layer mean velocity profile of 0.075h wide is imposed.
Finally, low-amplitude random vortical disturbances not correlated in the spanwise
direction are added in the boundary layer in the nozzle 0.25h upstream from the exit
in order to generate velocity fluctuations at the nozzle exit. The strength α of the
forcing is similar to those used in Bogey, Marsden & Bailly (2011). It is set to 0.02,
allowing us to reach peak turbulent intensities between 5 % and 10 % at the nozzle
exit, as it will be reported in the next section.

2.2. Numerical parameters
The unsteady compressible Navier–Stokes equations are solved on a Cartesian
mesh for which x, y and z denote the longitudinal, lateral and spanwise directions,
respectively. An explicit six-stage Runge–Kutta algorithm is used for time integration,
and low-dispersion eleven-point explicit centred finite differences are employed for
spatial derivation (Bogey & Bailly 2004; Berland et al. 2007b). At the end of each
time step, a sixth-order eleven-point filtering (Bogey, de Cacqueray & Bailly 2009) is
applied to the flow variables in order to remove grid-to-grid oscillations and to relax
turbulent energy from scales at wavenumbers close to the grid cutoff wavenumber.
Thus, the filtering acts as a subgrid-scale model in the LES (Bogey & Bailly 2006,
2009; Fauconnier, Bogey & Dick 2013; Kremer & Bogey 2015). The radiation
conditions of Tam & Dong (1994) are implemented at the upstream and lateral
boundaries of the computational domain. A sponge zone combining grid stretching
and Laplacian filtering is also used to damp the turbulent fluctuations before they
reach the lateral boundaries. This numerical set up has been used in past studies to
simulate round subsonic jets at Mj = 0.9 (Bogey et al. 2011; Bogey, Marsden &
Bailly 2012; Bogey & Marsden 2016) and an underexpanded planar jet at a fully
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FIGURE 1. Representation of (a) the lateral mesh spacings and (b) the axial mesh
spacings: —— JetL3.9, — · — JetL5.5, – – – JetL8.3 and JetL9.1.

L nx ny nz Number of points

JetL3.9 3.94h 799 1051 219 184× 106

JetL5.5 5.5h 903 1051 219 208× 106

JetL8.3 8.27h 1087 1051 219 250× 106

JetL9.1 9.1h 1142 1051 219 263× 106

TABLE 1. Parameters of the grids.

expanded Mach number of Mj= 1.55 (Berland, Bogey & Bailly 2007a) for instance.
In the present LES, adiabatic conditions are imposed at the nozzle walls and the
flat plate. A shock-capturing filtering is applied in order to avoid Gibbs oscillations
near shocks. It consists of applying a conservative second-order filter at a magnitude
determined each time step using a shock sensor (Bogey et al. 2009). This method
was successfully used by de Cacqueray, Bogey & Bailly (2011) for the LES of an
overexpanded jet at Mj = 3.3.

The simulations are carried out using an OpenMP-based in-house solver, and a
total of 200 000 iterations are computed in each case after the transient period. The
temporal discretization is equal to 1t = 0.0025h/uj, yielding a simulation time of
500h/uj. The parameters of the Cartesian grids used in the four LES are reported
in table 1. The grids contain between 184 and 263 million points. The variations of
the axial and lateral mesh spacings are represented in figure 1. The minimal axial
mesh spacing, near the nozzle lip and the flat plate, is set to 1x= 0.00375h, and the
maximal axial mesh spacing is 1x= 0.015h. The lateral mesh spacings are equal to
1y= 0.00375h at y=±h/2 and to 1y= 0.03h for 2.5h 6 y 6 8h. Finally, a number
of 219 points are used in the spanwise direction, giving a mesh spacing 1z= 0.015h.
The maximum mesh spacing of 0.03h allows acoustic waves to be well calculated up
to the Strouhal number St = fh/uj = 5.6, where f is the frequency. Note, moreover,
that in the physical domain the grids are stretched at rates lower than 1 % in order to
preserve numerical accuracy.

3. Aerodynamic results
3.1. Flow snapshots

Three-dimensional isosurfaces of density are represented in figure 2 for JetL3.9 and
JetL9.1 in order to visualize the shear layers of the jets. Both small- and very large-
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x
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z
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FIGURE 2. (Colour online) Representation for (a) JetL3.9 and (b) JetL9.1 of the
isosurfaces of density associated with 1.25 kg m−3, coloured by the local Mach number,
and of the pressure fluctuations in the plane (x, y) using a colour scale ranging from
−7500 to 7500 Pa, from white to red. The nozzle and the flat plate are in grey.

scale structures are visible. The near acoustic fields obtained in the plane (x, y) are
also shown. For the two jets, acoustic waves appear clearly to come from the region
of jet impact.

Snapshots of the vorticity norm obtained in the plane (x, y) and in the plane (x, z)
at y=−h/2, are represented in figure 3. For JetL3.9, the two shear layers exhibit in
the (x, y) plane large-scale structures, of typical size 0.5h, which do not seem to be
organized symmetrically with respect to the jet axis. In the spanwise direction, large-
and small-scale structures, namely vorticity tubes along the entire spanwise extent and
structures of typical size 0.05h, can both be seen. Besides, the spanwise correlation
of the flow structures appears significant near the nozzle but also near the flat plate.
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FIGURE 3. (Colour online) Snapshots in the plane (x, y) and in the plane (x, z) at
y=−h/2 of the vorticity norm |ω| for (a) JetL3.9, (b) JetL5.5, (c) JetL8.3 and (d) JetL9.1.
The colour scale ranges up to the level of 10uj/h, from white to red. The nozzle is in
black.

For JetL5.5, JetL8.3 and JetL9.1, large-scale structures are still visible in the shear
layers, but their spanwise correlations is relatively weak far from the nozzle. Overall,
however, a nearly two-dimensional organization of the vortical structures is visible in
the shear layers, as observed experimentally for supersonic rectangular impinging jets
by Krothapalli (1985) and Norum (1991) and by Thurow et al. (2002) using real-time
flow visualization techniques.

Density and fluctuating pressure fields obtained in the (x, y) plane for the four jets
are provided in figure 4 and movie 1 available at https://doi.org/10.1017/jfm.2016.628.
In all cases, large-scale structures and sound waves are observed in the shear layers
and outside the jet, respectively. For JetL3.9 and JetL5.5, the pressure waves come
from the region of jet impact, and are organized antisymmetrically with respect to
the jet axis. For JetL8.3 and JetL9.1, two acoustic components appear in the pressure
fields. The first components consist of circular waves centred around x' 2h in the jet
shear layers. The second components propagate from the region of jet impact, mostly
in the upstream direction. They are similar but weaker than those observed for JetL3.9
and JetL5.5.

3.2. Mean flow fields
Mean velocity fields obtained in the (x, y) plane are shown in figure 5. As expected,
very small variations, of only approximately 4 % of the jet exit velocity, are noted near
the axis, indicating that the jets are almost ideally expanded. In all cases, a stagnation
point is visible on the flat plate at y = 0, and two plane wall jets are created after
the jet impact. Important parameters of wall jets include the maximum velocity umax,
the distance xmax from the wall at which the velocity reaches umax and the distance
x1/2 at which the velocity has dropped to umax/2, refer to Irwin (1973) and George
et al. (2000) for instance. The values calculated at y= 2h for the present wall jets are
given in table 2. For a greater nozzle-to-plate distance, the wall jet maximum velocity
is found to be lower, as expected. In parallel, the wall jet thickness xmax is smaller,
whereas the wall jet thickness x1/2 is larger.

3.3. Velocity fluctuations
The peak root-mean-square values of axial and transverse velocity fluctuations u′ and
v′ calculated in the present jets between the nozzle lip and the flat plate are shown in
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FIGURE 4. (Colour online) Snapshots in the (x, y) plane of the density in the jet and close
to the flat plate and of the pressure fluctuations for (a) JetL3.9, (b) JetL5.5, (c) JetL8.3
and (d) JetL9.1. The colour scale ranges from 1 to 2 kg m−3 for density, from blue to
red and from −7500 to 7500 Pa for pressure, from black to white. The nozzle is in black.

figures 6(a) and 6(b), respectively. For JetL3.9 and JetL5.5, the maximal root-mean-
square values for the axial velocity are found around x= 0.5h, and are equal to 31.8 %
and 32.7 % of the jet exit velocity uj, respectively. For JetL8.3 and JetL9.1, they are
located farther downstream, around x= 0.75h, and reach 26.6 % and 27.3 % of uj. In
all cases, other peak values are observed just upstream of the flat plate. They decrease
with the nozzle-to-plate distance, yielding 28.5 %, 27.3 %, 24.4 % and 24 % of uj for
JetL3.9, JetL5.5, JetL8.3 and JetL9.1. For the transverse velocity, higher root-mean-
square values are obtained for JetL3.9 and JetL5.5 than for JetL8.3 and JetL9.1. In
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FIGURE 5. (Colour online) Mean velocity field obtained in the (x, y) plane for (a) JetL3.9,
(b) JetL5.5, (c) JetL8.3 and (d) JetL9.1. The colour scale ranges from 0 to 400 m s−1,
from blue to red. The nozzle is in black.
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FIGURE 6. Axial variations of the peak root-mean-square values of velocity fluctuations
(a) u′ and (b) v′ for —— JetL3.9, — · — JetL5.5, – – – JetL8.3 and JetL9.1.

umax (m s−1) xmax/h x1/2/h

JetL3.9 361 0.065 0.75
JetL5.5 349 0.051 0.83
JetL8.3 317 0.040 0.98
JetL9.1 300 0.039 1.00

TABLE 2. Maximum velocity umax, thicknesses xmax/h and x1/2/h of the wall jets at y= 2h.

particular, the maximal values, obtained at x ' 1.7h in all cases, are approximately
21 % of the jet exit velocity for JetL3.9 and JetL5.5 and 17.5 % for JetL8.3 and
JetL9.1.

3.4. Convection velocity
The evolution of the shear-layer turbulent structures and more precisely their
convection velocity are important features to understand the aeroacoustic feedback
mechanism. For two pressure-matched parallel streams with equal specific heats,
Papamoschou & Roshko (1988) defined for instance the convection Mach number
Mc as

Mc = u1 − u2

a1 + a2
= u1 − uc

a1
= uc − u2

a2
, (3.1)
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FIGURE 7. Convection velocity of the turbulent structures in the shear layers for
—— JetL3.9, — · — JetL5.5, – – – JetL8.3 and JetL9.1.

where u1 and u2 are the velocities and a1 and a2 are the speeds of sound in the high-
speed and low-speed streams, and uc is the theoretical isentropic convection velocity.
For the present jets, one gets u1 = uj and u2 = 0 and a1 = aj =

√
γRTj and a2 = a0 =√

γRT0, where Tj and T0 are the temperatures in the jet and in the ambient medium
and R= 287 J kg−1 K−1 is the specific gas constant. The convection velocity is thus
given by

uc = uj

aj/a0 + 1
(3.2)

providing uc = 0.57uj for the present jets.
In this study, the local convection velocity at axial position x along the lipline at

y = −h/2 is computed from cross-correlations of axial velocity fluctuations between
two points located at x ± 0.1h. The results obtained are shown in figure 7. In
the four jets, the convection velocity is close to 0.50uj at x = h, increases farther
downstream, reaches a peak around x = 2h and then decreases. The peak values are
equal to 0.62uj, 0.64uj, 0.67uj and 0.68uj for JetL3.9, JetL5.5, JetL8.3 and JetL9.1,
respectively. Overall, the mean convection velocity along the lipline is around 0.60uj.
This value is in good agreement with the theoretical value of 0.57uj, and with the
value of 0.60uj measured by Panda, Raman & Zaman (1997) for an ideally expanded
rectangular jet at a Mach number of Mj = 1.3.

4. Acoustic results
4.1. Sound pressure levels

The sound pressure levels obtained at x = 0 and y = 1.5h are displayed in figure 8
as a function of the Strouhal number St = fh/uj. Several tones are found to emerge,
especially for JetL3.9 and JetL5.5, as observed experimentally by Norum (1991) for
a supersonic rectangular impinging jet. The frequencies of the tones, whose levels are
at least 5 dB higher than the broadband noise level, are given in table 3.

For JetL3.9, in figure 8(a), seven tones appear. As obtained by Tam & Norum
(1992) for cold rectangular supersonic jets, their frequencies are the linear combina-
tions of two tone frequencies, at Strouhal numbers St1 = 0.115 and St2 = 0.255,
yielding St3 = St1 + St2, St4 = 2St1 + St2, St5 = St1 + 2St2, St6 = 2St1 + 2St2 and
St7 = 3St1 + 2St2. These seven tone frequencies were also found in the experiments
of Thurow et al. (2002) for a jet corresponding to that considered in the LES. Eight
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FIGURE 8. Sound pressure levels (SPL) at x=0 and y=1.5h as a function of the Strouhal
number St for (a) JetL3.9, (b) JetL5.5, (c) JetL8.3 and (d) JetL9.1.

St1 St2 St3 S4 St5 St6 St7

JetL3.9 0.115 0.255 0.37 0.485 0.625 0.74 0.855
JetL5.5 0.12 0.19 0.38 0.57 0.76 0.95 1.14
JetL8.3 0.092 0.165 0.21 0.255 — — —
JetL9.1 0.085 0.145 0.19 0.23 — — —

TABLE 3. Strouhal numbers emerging in the spectra of figure 8. The Strouhal numbers
of the dominant tones are in bold.

other tone frequencies were measured, most likely due to the rectangular geometry of
the nozzle, allowing additional oscillation modes along the transverse direction. For
JetL5.5, in figure 8(b), a fundamental tone at St2= 0.19 and its first six harmonics are
seen. This result is in good agreement with the experiments of Thurow et al. (2002),
in which a fundamental tone at St = 0.20 was acquired. Another tone at St1 = 0.12
is also visible in the present spectrum. For JetL8.3 and JetL9.1, in figure 8(c,d),
four tones appear, the fourth tone is at a Strouhal number St4 = St1 + St2. Only the
third ones, at St3 = 0.21 and St3 = 0.19, respectively, are observed experimentally by
Thurow et al. (2002). In these cases where the nozzle-to-plate distances are equal to
8.27h and 9.1h, significant differences can however be expected between the LES
and the experiments given the aspect ratio of 3 of the rectangular nozzle in the
experiments. Note finally that the strongest resonance is obtained for JetL5.5 for
which a maximum sound pressure level of 188 dB/St is reached. This was also the
case in the experiments.
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FIGURE 9. Spectra of the pressure fluctuations computed using a sliding window at x= 0
and y = 1.5h as functions of time and Strouhal number for (a) JetL3.9, (b) JetL5.5,
(c) JetL8.3 and (d) JetL9.1.

In order to determine whether the different tones are produced alternatively or
simultaneously in the jets, a Fourier transform is applied to the pressure fluctuations
at x = 0 and y = 1.5h using a sliding window of size 35uj/h. The spectra thus
calculated are represented in figure 9 as functions of time and Strouhal number. For
JetL3.9, the three main tones at St1 = 0.115, St2 = 0.255 and St3 = 0.37 obtained
above are clearly visible, and seem to coexist. For JetL5.5, the dominant tone at
St2 = 0.19, the tone at St1 = 0.12 and their harmonic at St3 = 0.38 appear at the
same time. Finally, for JetL8.3 and JetL9.1, the dominant tones at St1 = 0.092 and
St1= 0.085, respectively, and the tones at St2, St3 and St4 can be seen. The amplitudes
of the tones at St2, St3 and St4 seem to vary in time. Moreover, given the results
reported in § 5 about the nature of the jet oscillations at the tone frequencies, the
coexistence of the tones in most cases suggests that the jets undergo symmetric
and antisymmetric oscillations at the same time. This is in good agreement with the
experimental observations made by Tam & Norum (1992) for a supersonic rectangular
impinging jet using a stroboscopic light source.

4.2. Tone frequencies
In order to explain the origin of the tones generated by impinging jets, Powell
(1953) proposed a mechanism consisting of two steps. First, in the jet shear layers, a
coherent structure is convected downstream from the nozzle to the plate. It impinges
on the plate, and then generates an acoustic wave propagating upstream. This wave
is reflected back by the nozzle lip, which excites the shear layer, and leads to the
formation of a new coherent structure. The period T0 of this feedback loop is given
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FIGURE 10. Representation of the Strouhal numbers of the@ dominant andu secondary
tones in the present jets as a function of the nozzle-to-plate distance L/h; × experimental
data of Thurow et al. (2002). The grey lines show the Strouhal numbers predicted by (4.2)
using 〈uc〉 = 0.60uj.

by the sum of the time necessary for a shear-layer structure to travel from the nozzle
down to the plate and of the time of propagation of an acoustic wave from the plate
up to the nozzle, yielding

T0 =
∫ L

0

1
uc(x)

dx+ L
a0
= N + p

f
, (4.1)

where uc(x) is the local convection velocity in the shear layers, a0 is the speed of
sound in the ambient medium, p is a phase lag and the mode number N indicates the
number of times the feedback mechanism occurs during the period T0. According to
Powell (1953), the phase lag p is not necessarily null because the reflection of the
acoustic wave on the nozzle lip and the creation of a coherent structure in the shear
layers do not happen simultaneously. Nevertheless, by setting p = 0, Ho & Nosseir
(1981) and Nosseir & Ho (1982) proposed the following model in order to predict
the frequencies of the feedback mechanism, writing

L
〈uc〉 +

L
a0
= N

f
, (4.2)

where 〈uc〉 is the mean convection velocity of the turbulent structures in the shear
layers between the nozzle and the plate.

The Strouhal numbers of the tones reported in table 3 for the present jets are
represented in figure 10 as a function of the nozzle-to-plate distance. Only the
fundamental tone frequencies, which are not harmonics of other tone frequencies and
which will be called source tone frequencies in the following, are shown. The tone
frequencies obtained in the experiments of Thurow et al. (2002), and those given by
relation (4.2) using a mean convection velocity of 0.60uj are also plotted.

The tone Strouhal numbers in the LES are found to be in agreement with the
experimental results, but also to be well predicted by the model equation. The source
tones are associated with the first, third, fourth and fifth modes of the model for
JetL3.9, with the second and third modes for JetL5.5 and with the second, fourth, fifth
and sixth modes for JetL8.3 and JetL9.1. Moreover, the dominant tones in JetL3.9 and
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JetL3.9 JetL5.5 JetL8.3 JetL9.1

SPL (dB/St) 185 188 182 183
Skewness factor 0.39 0.57 0.27 0.29
Kurtosis factor 3.16 3.87 3.36 3.25

TABLE 4. Maximal levels in the sound spectra of figure 8, at x= 0 and y= 1.5h, and
skewness and kurtosis factors of the fluctuating pressure at x= 0 and y= 8.5h.

JetL5.5 and those in JetL8.3 and JetL9.1 appear to be connected, respectively, with the
third and second modes of the model. A similar staging behaviour of the dominant
tone frequency as the nozzle-to-plate distance increases was observed experimentally
by Krothapalli (1985) for a rectangular supersonic impinging jet.

4.3. Skewness and kurtosis factors
The nonlinear effects on the propagation of the acoustic waves generated by the jets
are investigated by looking at the statistical properties of the pressure fluctuations at
x= 0 and y= 8.5h, at a distance far from the region of jet impingement in order to
eventually obtain steep wave fronts. The skewness and the kurtosis factors calculated
for the four jets are reported in table 4. Positive values of skewness between 0.27 and
0.57 are found. They appear to be higher when the peak level in the pressure spectra
at x= 0 and y= 1.5h, also provided in the table, increases. In particular, the strongest
skewness and kurtosis values are reached for JetL5.5, which is also the most resonant
case with a maximum sound level of 188 dB/St at x= 0 and y= 1.5h.

For JetL5.5, in which the strongest resonance is obtained as mentioned above,
the time variations of the pressure fluctuations recorded at x = 0 and y = 8.5h are
represented in figure 11(a) over the entire simulation time for 0 6 t 6 500h/uj, and
in figure 11(b) for 230h/uj 6 t 6 270h/uj. The probability density function of the
full pressure signal is also shown in figure 11(c). Weak shock waves and N-shaped
waves with sharp compressions associated with gradual expansions are visible in
figure 11(b). Similar observations were made by Baars & Tinney (2013, 2014) in
the acoustic field of a jet at Mach 3 and by de Cacqueray & Bogey (2014) for an
overexpanded jet at Mj = 3.3. In addition, at certain times, the pressure fluctuations
exceed 15 % of the ambient pressure. This is notably the case at t = 242h/uj and
t = 253h/uj, where two strong shock waves are found. Finally, the skewness factor
is equal to 0.57, and thus exceeds the value of 0.4 which indicates the probable
presence of crackle noise according to Ffowcs-Williams, Simson & Virchis (1975).

5. Analysis of the aeroacoustic feedback mechanism
5.1. Fourier decomposition of the pressure field

In order to determine the amplitude and phase fields associated with the different tones
of the feedback loop in the four jets, a Fourier transform in time is applied to the
near pressure fields recorded every 50th LES time step in the (x, y) plane. The results
obtained for the dominant tone frequencies are represented in figure 12.

The phase fields in the bottom views of figure 12 allow us to identify the nature of
the oscillation modes associated with the tones. For JetL3.9 and JetL5.5, these modes
are antisymmetric given the 180◦ phase shift visible with respect to the jet axis in
figure 12(e, f ). For JetL8.3 and JetL9.1, on the contrary, they are symmetric since
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FIGURE 11. Pressure fluctuations at x = 0 and y = 8.5h for JetL5.5: (a) time variations
over the entire simulation, (b) variations over a short period and (c) —— probability
density function and – – – probability density function of a Gaussian distribution where
σ represents the standard deviation of p′.

the phase is identical on both sides of the jet axis in figure 12(g,h). Symmetric and
antisymmetric oscillation modes were also found experimentally by Norum (1991) at
the tone frequencies of rectangular supersonic impinging jets.

The amplitude fields in the top views of figure 12 all exhibit a cell structure
between the nozzle and the plate. By considering the two semi-cells near the nozzle
and the plate as one cell, the cell structure appears to contain three cells for JetL3.9
and JetL5.5 in figure 12(a,b) and two cells for JetL8.3 and JetL9.1 in figure 12(c,d).
Thus, at the dominant tone frequency, the number of cells is equal the mode number
predicted by the model of Ho & Nosseir (1981), namely three for the two first jets
and two for the others. Besides, it can be noted that the amplitude levels near the jet
axis in figure 12(a,b) are very weak, as expected for antisymmetric oscillations.

The amplitude fields of figure 12 also provide information on the sound sources
at the dominant tone frequencies. For JetL3.9, three acoustic components labelled (i),
(ii) and (iii) are revealed by the spots of intense levels in figure 12(a). The first
component can be seen on both sides of the jet for 0<α< 20◦, where α is the angle
between the upstream direction and the propagation direction from the impingement
region as illustrated in the figure. It is related to the upstream-propagating neutral
acoustic waves of the jet, which will be further discussed later. The second acoustic
component is visible for 30 < α < 50◦. It seems to propagate from a point around
x = 2.5h and y = 1.5h, where strong pressure levels are found. Finally, the third
acoustic component is noted for α > 60◦. It may be generated near the flat plate
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FIGURE 12. (Colour online) Amplitude (a–d) and phase (e–h) fields obtained for the
dominant tones in (a,e) JetL3.9 at St = 0.255, (b, f ) JetL5.5 at St = 0.19, (c,g) JetL8.3
at St= 0.092 and (d,h) JetL9.1 at St= 0.085.

around y = 3h where, again, high pressure levels are obtained. For JetL5.5, two
acoustic components can be observed in figure 12(b), for 0<α< 30◦ and for α > 40◦.
As for JetL3.9, the first one may be due to the upstream-propagating neutral acoustic
waves of the jet, and the second one may be produced near the plate around y= 3.5h.
Finally, for JetL8.3 and JetL9.1, two acoustic contributions appear to similarly emerge.

5.2. Model of an hydrodynamic–acoustic standing wave
In self-sustaining oscillating flows, hydrodynamic–acoustic standing waves can be
observed, as was the case in the screeching free supersonic jets of Panda et al.
(1997) and Panda & Seasholtz (1999). These waves are due to the superposition
of hydrodynamic waves propagating downstream and acoustic waves propagating
upstream.

A simple model can be built to determine the wavenumber of the hydrodynamic–
acoustic standing waves in the present jets. By denoting ω the angular frequency of
the feedback mechanism, and kp and ka the wavenumbers of the hydrodynamic and
acoustic waves, the fluctuating pressure in the jet shear layers can be written as

p′(x, t)= Aa sin(kax+ωt+ φa)+ Ap sin(kpx−ωt+ φp), (5.1)

where Aa, Ap and φa and φp are the amplitudes and phase shifts of the acoustic and
hydrodynamic waves. The quadratic mean value is then equal to

p′rms(x)=
1
T

∫ T

0
p′(x, t)2 dt= A2

a

2
+ A2

p

2
− AaAp cos((ka + kp)x+ φa + φp), (5.2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

62
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.628


Tone generation in ideally expanded planar impinging jets 105

where T = 2π/ω is the time period. Therefore, at the frequency of the feedback
mechanism, the pattern of a standing wave with a wavenumber

ksw = kp + ka (5.3)

is expected. By considering that ksw = 2π/Lsw, kp = ω/uc and ka = ω/a0, where Lsw
is the wavelength of the hydrodynamic–acoustic standing wave, uc is the convection
velocity in the jet shear layers and a0 is the ambient speed of sound, one gets

1
Lsw
= f

a0
+ f

uc
, (5.4)

where f = 2π/ω. In the amplitude fields of figure 12, there is a whole number N of
cells between the nozzle lip and the flat plate. Assuming that the cell structures result
from the presence of hydrodynamic–acoustic standing waves, this indicates that the
nozzle-to-plate distance is a multiple of the wavelength Lsw, that is L=NLsw, yielding

N
f
= L

a0
+ L

uc
. (5.5)

This equation is identical to (4.2) given by the model of Ho & Nosseir (1981),
demonstrating that the number of cells in the standing wave is also the mode number.
This result is consistent with the observations made in the previous section. The
aeroacoustic feedback loop establishing between the nozzle and the plate thus leads
to the formation of hydrodynamic–acoustic standing waves.

5.3. Wave analysis using a vortex sheet model of the jet
In the analytical study of small-amplitude waves in jets of Tam & Hu (1989), three
families of instability waves were identified: the Kelvin–Helmholtz instability waves,
which correspond to vorticity waves, and the supersonic and subsonic instability
waves, which are acoustic waves (Berman & Williams 1970; Mack 1990; Sabatini
& Bailly 2014). On the basis of this result, Tam & Norum (1992) suggested that
the acoustic waves of the feedback loop in impinging jets are linked to the acoustic
subsonic instability waves of the jets. These waves are found to be unstable for jets
with mixing layers of finite thickness. For jets with mixing layers modelled by a
vortex sheet (Tam & Hu 1989), on the contrary, they are neutral, and have a real
angular frequency, but also a real wavenumber.

In this work, as previously done by Tam & Norum (1992) for planar jets and Tam
& Ahuja (1990) for round jets, a wave analysis is therefore carried out using a vortex
sheet model in order to better describe the feedback loop in impinging jets. More
precisely, the neutral acoustic waves of an ideally expanded 2-D jet of height h, exit
velocity uj and Mach number Mj, bounded by two vortex sheets, are investigated.
A schematic representation of a symmetric instability of such a jet is provided in
figure 13.

The pressure fluctuations, associated with small-amplitude disturbances superim-
posed on the mean flow inside and outside of the jet are denoted by pint and pext, and
the lateral displacement of the upper vortex sheet is given by ζ (x, t). The linearized
continuity, momentum and energy equations for a compressible inviscid fluid

1pext − 1
a2

0

∂2pext

∂t2
= 0 outside the jet,

1pint − 1
a2

j

(
∂2pint

∂t2
+ u2

j
∂2pint

∂x2

)
= 0 inside the jet,

 (5.6)
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x

y

h

Nozzle

FIGURE 13. Symmetric instability of a 2-D supersonic jet bounded by vortex sheets.

where a0 and aj are the sound speeds in the ambient medium and in the jet, are
considered. The boundary conditions on the upper vortex sheet located at y= h/2 are

pint = pext,

∂2ζ

∂t2
=− 1

ρ0

∂pext

∂y
,

∂2ζ

∂t2
+ u2

j
∂2ζ

∂x2
=− 1

ρj

∂pint

∂y
,


(5.7)

where ρ0 are the densities in the ambient medium and in the jet. On the centreline, the
boundary conditions for symmetric and antisymmetric modes are different, yielding

∂pint

∂y
= 0 for symmetric modes,

pint = 0 for antisymmetric modes.

 (5.8)

The equation system (5.6) being closed, wave solutions of the formpint(x, y, t)
pext(x, y, t)
ζ (x, t)

=
 ˆpint(y)
ˆpext(y)
ζ̂

 ei(kx−ωt), (5.9)

where k and ω are the wavenumber and the angular frequency of the wave, can be
sought. Two dispersion relations were found by Tam & Norum (1992). They are given
by

[(ω− ujk)2/a2
j − k2]1/2ρ0ω

2

(k2 −ω2/a2
0)

1/2ρj(ω− ujk)2
+ tan

{[
(ω− ujk)2

a2
j

− k2

]1/2

h/2

}
= 0 (5.10)

for symmetric modes, and

[(ω− ujk)2/a2
j − k2]1/2ρ0ω

2

(k2 −ω2/a2
0)

1/2ρj(ω− ujk)2
+ 1/ tan

{[
(ω− ujk)2

a2
j

− k2

]1/2

h/2

}
= 0 (5.11)

for antisymmetric modes.
The solutions of the dispersion relations (5.10) and (5.11) calculated for the

present jet are represented in figure 14 as functions of the Strouhal number and the
wavenumber. Three symmetric neutral acoustic wave modes, referred to as S1, S2
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FIGURE 14. Dispersion relations for (a) the symmetric and (b) the antisymmetric neutral
acoustic wave modes for an ideally expanded planar jet with Mj = 1.28,u lower limits
of the modes, – – – k=−ω/a0.

and S3, appear in figure 14(a). In the same way, three antisymmetric modes denoted
by A1, A2 and A3 are found in figure 14(b).

According to Tam & Hu (1989), upstream-propagating acoustic waves are present
in high-speed jets. They are confined in the jets when the jets are subsonic, but
lie outside when the jets are supersonic. Such waves are found in figure 14 on the
right-hand side of each mode where d St/dk< 0, leading to a negative group velocity
dω/dk. Allowable frequency ranges can thus be determined for the different modes.
Their upper limits, which correspond to the maximum Strouhal numbers reached for
the modes when d St/dk = 0, are obtained from the figure. Their lower limits are
calculated, since they are necessarily associated with acoustic waves propagating with
a group velocity of −a0, and located on the dashed line of figure 14 defined by

k=− ω
a0
. (5.12)

For k = −ω/a0, the first terms in (5.10) and (5.11), and consequently the second
terms, tend to infinity. The argument of the tangent function needs to be equal to[

(ω− ujk)2

a2
j

− k2

]1/2 h
2
= n− 1

π
(5.13)

for (5.10) and [
(ω− ujk)2

a2
j

− k2

]1/2 h
2
= n− 1/2

π
(5.14)

for (5.11), yielding the following Strouhal numbers for the lower limits of the
allowable frequency ranges

St= n− 1
uj((1+ uj/a0)2/a2

j − 1/a2
0)

1/2
(5.15)

for the symmetric modes and

St= n− 1/2
uj((1+ uj/a0)2/a2

j − 1/a2
0)

1/2
(5.16)

for the antisymmetric modes, where n is the mode number. The values calculated for
the present jet are depicted in figure 14.
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FIGURE 15. Allowable frequency ranges for the upstream-propagating neutral acoustic
wave modes as a function of the exit Mach number; symmetric modes are in light
grey and antisymmetric modes are in dark grey; u dominant tone frequencies in the
experiments of Tam & Norum (1992) for rectangular supersonic cold jets and × dominant
tone frequencies in the present LES.

The allowable frequency ranges determined for the two first symmetric and
antisymmetric upstream-propagating wave modes are represented in figure 15 as
a function of the exit Mach number Mj. The dominant tone frequencies measured
by Tam & Norum (1992) for cold rectangular impinging jets at Mach numbers
between 1.15 and 1.70, for a large number of nozzle-to-plate distances in each
case, are also shown. Two modes, namely a low-frequency symmetric mode and a
high-frequency antisymmetric mode are observed in most cases. The dominant tone
frequencies obtained for the four jets at Mj= 1.28 in the LES are also plotted in the
figure. The tone frequencies for JetL3.9 and JetL5.5, at St2 = 0.255 and St2 = 0.19,
respectively, fall into the allowable range for the first symmetric mode, whereas the
tone frequencies for JetL8.3 and JetL9.1, at St1 = 0.092 and St1 = 0.085, lie in the
allowable range for the first antisymmetric mode. Considering the results in § 5.2,
the present wave analysis thus appears to predict the nature of the jet oscillation
mode at the dominant tone frequencies, which is symmetric for the two first jets
but antisymmetric for the two others. However, it only provides allowable frequency
ranges. In order to better understand how, for a given nozzle-to-plate distance, discrete
frequencies are selected over these ranges, this analysis is combined below with the
aeroacoustic feedback model.

5.4. Combination of the aeroacoustic feedback model and the wave analysis
The aeroacoustic feedback model and the wave analysis based on the vortex sheet
model are combined in order to determine both the most likely possible tone
frequencies of the feedback mechanism and the antisymmetric or symmetric nature
of the corresponding modes. This is made possible by assuming that the acoustic
wavenumber in the feedback loop is equal to the opposite of the wavenumber k of
the upstream propagating acoustic waves found in the wave analysis. Thus, the (5.3)
relating the wavenumber ksw of the hydrodynamic–acoustic standing wave due to the
feedback mechanism and the acoustic and hydrodynamic wavenumbers ka and kp
leads to

f = Nuc

L
+ k

uc

2π
(5.17)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

62
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.628


Tone generation in ideally expanded planar impinging jets 109

20 3.94–1 20 3.94–1 20 3.94–1 20 3.94–1 20 3.94–1 20 3.94–1

2

0

4

6

–2

–4

–6

2

0

4

6

–2

–4

–6

2

0

4

6

–2

–4

–6

2

0

4

6

–2

–4

–6

2

0

4

6

–2

–4

–6

2

0

4

6

–2

–4

–6

(a) (b) (c) (d ) (e) ( f )

FIGURE 16. (Colour online) Amplitude (a,c,e) and phase (b,d, f ) fields obtained for the
three dominant tones of JetL3.9 at St1 = 0.115, St2 = 0.255 and St3 = 0.37, from left to
right.

given that ksw= 2πN/L, kp= 2πf /uc and ka=−k. The feedback model and the wave
analysis are then combined by representing this relation and the dispersion relations
in the same figure for the different impinging jets. The results will be compared with
the simulation results.

For JetL3.9, the phase and the amplitude fields obtained by LES for the three
main tones at St1 = 0.115, St2 = 0.255 and St3 = 0.37 are displayed in figure 16. For
St1 = 0.115, a 180◦ phase shift with respect to the jet axis is found in the phase
field of figure 16(b), indicating an antisymmetric oscillation mode. No cell structure
clearly appears in the amplitude field of figure 16(a), suggesting the absence of an
hydrodynamic–acoustic standing wave in this case. For St2 = 0.255, an antisymmetric
oscillation mode is observed in figure 16(d), and a cell structure containing three cells
between the nozzle and the plate is visible in figure 16(d). Finally, for St3 = 0.37,
a symmetric oscillation mode and a cell structure with four cells are revealed by
figure 16(e, f ).

The results obtained for JetL3.9 by combining the feedback model and the wave
analysis are represented in figure 17 by showing the dispersion relations of the
acoustic wave modes for a planar jet at Mj = 1.28 together with the solutions
of (5.17) for the first ten modes of the feedback mechanism, as functions of the
Strouhal number and the wavenumber. The three dominant tones are also indicated
on the line k = −ω/a0, depending on the symmetric or antisymmetric nature of the
corresponding oscillation modes. In figure 17(a), the tone at St3 = 0.37 is found
just below the symmetric mode S2 of the jet, on the line associated with the mode
N = 4 of the feedback loop. This is consistent with the results reported above for
St3 = 0.37. In figure 17(b), the tone at St2 = 0.255 is located at the intersection of
the antisymmetric mode A1 of the jet and of the mode N = 3 of the feedback loop.
Again, this result is in agreement with the phase and amplitude fields provided by
the LES. Finally, the tone at St1= 0.115 does not seem to be predicted by the model
combination. It is not surprising given that St1 is equal to St3 − St2, and that there is
no hydrodynamic–acoustic standing wave in figure 16(a).

The phase and the amplitude fields obtained for JetL5.5 at the two main tone
frequencies at St1 = 0.12 and St2 = 0.19 are displayed in figure 18. The phase
fields indicate a symmetric oscillation mode for the first tone and an antisymmetric
oscillation mode for the second one. Moreover, cell structures containing two and
three cells, respectively, between the nozzle and the plate appear in the amplitude
fields.
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FIGURE 17. Representation of —— the dispersion relations for (a) the symmetric and
(b) the antisymmetric neutral acoustic wave modes for an ideally expanded planar jet
with Mj = 1.28,u lower limits of the modes, – – – k =−ω/a0, relation (5.17) for
L= 3.94h, ∗ dominant tone frequencies of JetL3.9.
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FIGURE 18. (Colour online) Amplitude (a,c) and phase (b,d) fields obtained for the two
dominant tones of JetL5.5 at St1 = 0.12 and St2 = 0.19, from left to right.

The results of the model combination for JetL5.5 are shown in figure 19, in which
the two dominant tones obtained in the LES for this jet are also represented. In
figure 19(a), the tone at St1 = 0.12 lies at the intersection of the symmetric mode S1
of the jet and of the second mode of the feedback loop, which is in agreement with
the tone properties observed in figure 18(a,b). In figure 19(b), the tone at St2 = 0.19
is located very near the antisymmetric mode A1 of the jet and on the third mode
of the feedback loop, which is also in line with the amplitude and phase fields of
figure 18(c,d).

The phase and amplitude fields obtained for JetL8.3 at the four main tone frequen-
cies, at St1 = 0.092, St2 = 0.165, St3 = 0.21 and St4 = 0.255 are given in figure 20.
For the first tone, a symmetric oscillation mode and a cell structure containing two
cells are seen in figure 20(a,b). For the three other tones, antisymmetric oscillation
modes and cell structures containing four, five and six cells, respectively, are noted in
figure 20(c–h).

The results of the model combination for JetL8.3 and the four dominant tones in
this jet are displayed in figure 19. In figure 21(a), the first tone at St1= 0.092 is very
close to the intersection of the symmetric jet mode S1 and the second mode of the
feedback loop. In figure 21(b), the second, third and fourth tones are found near or
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FIGURE 19. Representation of —— the dispersion relations for (a) the symmetric and
(b) the antisymmetric neutral acoustic wave modes for an ideally expanded planar jet with
Mj=1.28,u lower limits of the modes, – – – k=−ω/a0, relation (5.17) for L=5.5h,
∗ dominant tone frequencies of JetL5.5.
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FIGURE 20. (Colour online) Amplitude (a,c,e,g) and phase (b,d, f,h) fields obtained for
the four dominant tones of JetL8.3 (a–d) at St1 = 0.092 and St2 = 0.165, and (e–h) at
St3 = 0.21 and St4 = 0.255, from left to right.

on the antisymmetric mode A1 of the jet and on the fourth, fifth and sixth modes of
the feedback loop, respectively. These findings are consistent with the amplitude and
phase fields of figure 20.

For brevity, the amplitude and phase fields obtained for JetL9.1 at the four main
tone frequencies and the results given by the model combination in this case are not
presented, because they are very similar to those reported above for JetL8.3.

In summary, the proposed model combination applies successfully to the present
impinging jets. The tone frequencies obtained in the LES lie near the lower limits
of the allowable ranges predicted by the wave analysis for the upstream-propagating
acoustic wave modes. This trend can be due to the fact that, in the vicinity of the
lower limits of the modes, the group velocity of the neutral acoustic waves is very
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FIGURE 21. Representation of —— the dispersion relations for (a) the symmetric and
(b) the antisymmetric neutral acoustic wave modes for an ideally expanded planar jet
with Mj = 1.28,u lower limits of the modes, – – – k =−ω/a0, relation (5.17) for
L= 8.27h, ∗ dominant tone frequencies of JetL8.3.

close to −a0. Consequently, these waves are the most likely to sustain an acoustic
feedback. Having noted this, it seems possible to predict the most probable tones,
their frequencies and their symmetric or antisymmetric natures. For the antisymmetric
modes, the tone frequencies can be expected to be located near the lower limit of
the mode A1, as is the case for the four jets of this study. For the symmetric modes,
they can be found near the lower limit of the mode S2, as for JetL3.9, but also at the
intersections between the modes S1 and the different modes of the feedback loop, as
for the other jets. Obtaining a tone frequency at the first intersection point between
the mode S1 and the mode N = 1 of the feedback loop is however unlikely given the
very low Strouhal number St< 0.05 at this point.

Finally, note that a similar wave analysis can be performed for jets with mixing
layers of finite thickness, as in Tam & Ahuja (1990). In this case, the frequencies of
the lower limits of the allowable bands for the upstream-propagating acoustic wave
modes are lower than using the vortex sheet model. This could explain why tone
frequencies are found just below the lower limits of allowable bands for JetL3.9,
JetL8.3 and JetL9.1 in the present study.

6. Conclusion

In this paper, the flow and the near pressure fields of an ideally expanded planar
jet at a Mach number of 1.28 and a Reynolds number of 5× 104 impinging on a flat
plate at four distances from the nozzle between 3.94 and 9.1 nozzle heights have been
presented. Overall, the numerical results obtained by large-eddy simulation using low-
dissipation schemes compare well with experimental data and with theoretical models
available in the literature. This is the case, in particular, for the mean convection
velocity of the turbulent structures in the shear layers, and for the frequencies of the
several dominant tones emitted by the jets. These tones are shown to be generated, as
expected, by aeroacoustic feedback loops establishing between the nozzle lips and the
flat plate, which result in the presence of hydrodynamic–acoustic standing waves in
the jets. The frequencies of these tones are therefore well predicted by the classical
aeroacoustic feedback model.

In order to better determine which tone frequencies are likely to be emerge among
those given by the aeroacoustic feedback model, and whether a symmetric or an
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antisymmetric jet oscillation will be found at each of these frequencies, a wave
analysis has been conducted for a planar jet with mixing layers modelled by a vortex
sheet. It provides allowable bands for the upstream-propagating acoustic waves, which
are assumed to close the aeroacoustic feedback loops. The tone frequencies obtained
in the LES fall in these bands. More importantly, by combining the wave analysis
and the aeroacoustic feedback model, it has been demonstrated that it is possible to
predict the most probable tones, their frequencies, and the symmetric or antisymmetric
natures of the corresponding jet oscillations.
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