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Abstract We invoke the classical fact that the algebra of bi-invariant forms on a compact connected Lie
group G is naturally isomorphic to the de Rham cohomology H∗

dR(G) itself. Then, we show that when a
flat connection A exists on a principal G-bundle P , we may construct a homomorphism EA : H∗

dR(G) →
H∗

dR(P ), which eventually shows that the bundle satisfies a condition for the Leray–Hirsch theorem. A
similar argument is shown to apply to its adjoint bundle. As a corollary, we show that that both the flat
principal bundle and its adjoint bundle have the real coefficient cohomology isomorphic to that of the
trivial bundle.
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1. Introduction

Let G be a compact connected Lie group. We consider a principal G-bundle π : P →M ,
where M is any smooth manifold, which is necessarily neither compact nor connected.
Furthermore, we assume that P is flat.

We recall the classical fact that H∗
dR(G) is canonically isomorphic to the algebra of

bi-invariant forms on G (see (3.1)). Then, by exploiting a flat connection A on P , we
define a homomorphism (see (3.2) below),

EA : H∗
dR(G) → H∗

dR(P ). (1.1)

Furthermore, choose any p ∈ P and let ιp : G→ P be the map defined by ιp(g) = pg.
Then we will observe that

(ιp)∗EA = 1, (1.2)

by (3.9) below, which is the identity on H∗
dR(G). Now, we may apply the Leray–Hirsch

theorem (cf., [3, 5.11] or [9, 4D.1]) to have an isomorphism

H∗
dR(M) ⊗H∗

dR(G) ∼= H∗
dR(P ) (1.3)

betweenH∗
dR(M) modules. The isomorphism is such that a⊗ b→ (π∗a) ∧ (EA(b)) for any

a ∈ H∗
dR(M) and any b ∈ H∗

dR(G). In addition, since EA is a homomorphism between the
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algebras, the isomorphism (1.3) is not only between H∗
dR(M)-modules but also between

R-algebras (see (3.3)). The fact represented by (1.3), in spite of its mundane outlook,
does not appear known yet, and the current paper seems the first to point it out.

We will show that a similar argument also applies to the adjoint bundle AdP = (P ×
G)/G in § 4.

It is not difficult to see that connectedness of G is a necessary condition for (1.3). For
instance, consider the principal Z2-bundle Sn → Pn. On the other hand, even if we use
in this paper the condition that G should be compact, we do not have at the moment an
example which shows that it is indeed a necessary condition.

The current paper is partially motivated by a statement of K. Wehrheim ([12, 1.2]
and the paragraph below it) which asserts that there is a closed 3-form on the adjoint
bundle which is, when restricted to each fibre, a form which she refers to as the Maurer–
Cartan 3-form. We will provide the precise definition of the Maurer–Cartan 3-form just
above (3.3). Her statement concerns not only trivial bundles but also non-trivial bundles.
In particular, the structure group in question is not required to be simply connected.
Therefore, one may say that the current work proves her statement under the extra
condition that the principal bundle is flat. We will prove it by an explicit construction,
applying the map EA in (1.1) (see Corollaries 3.3 and 4.3 below). In addition, we note
that the question remains of how EA in (1.1) depends on the flat connection A. In fact,
EA depends on A on the form level, as can be seen by (3.2) and (3.5).

Our result represented by (1.1)–(1.3), including the corresponding statements regarding
the adjoint bundle, describes the real coefficient cohomology of a flat principal bundle
and that of its adjoint bundle completely in terms of the cohomology of the fibre and
that of the base, under the condition that the fibre is compact and connected. Part of
the current paper appears in another work of ours (see [4, § 4]). In the current work, we
discuss both the flat principal bundle and its adjoint bundle, while [4] dealt with only the
adjoint bundle. The overlap emerged in the process of communication with the journal
in which [4] appeared. Nevertheless, the overlap is much smaller now by the omission of
some arguments and proofs in § 4. The omission was advised by an anonymous referee,
whom we thank for this and also for many other helpful suggestions.

2. Flat principal bundles

Let G be a Lie group. Let P and M be any smooth finite-dimensional manifolds. A
surjective smooth map π : P →M together with a smooth right action P × G→ P is a
principal G-bundle if the following conditions are satisfied.

• The local triviality condition holds. That is, for each x ∈M , there is an open neigh-
bourhood U of x and a diffeomorphism ψ : π−1U → U × G which maps Py = π−1{y},
y ∈ U , onto {y} ×G and is also a G-map, when U ×G is considered with the obvious
right G-action.

Let G denote the Lie algebra of G, which we regard as the tangent space at the identity
element e ∈ G, i.e., G := TeG. Furthermore, let Adg : G→ G denote the map defined by
Adg(x) = gxg−1 = LgRg−1(x) for any x ∈ G and for any g ∈ G. Here, Lh and Rh denote
the multiplications on G by h from the left and from the right, respectively, for any h ∈ G.
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Use the same notation Adg to denote the isomorphism G → G, which is the derivative of
the map Adg : G→ G at e ∈ G. Then a connection A on P is, to begin with, a G-valued
1-form on P which must have the following additional properties.

(1) A is equivariant in the sense that A(dRgX) = Adg−1(A(X)) for any tangent vector
X of P and for the right multiplication Rg : P → P by any g ∈ G.

(2) Let p ∈ P and ιp : G→ P be as in the introduction. Then for any X ∈ G we have
that A((dιp)eX) = X.

The curvature FA ∈ Ω2(P ;G) of a connection A is defined as the twisted derivative,

FA = dAA.

In turn, the twisted derivative is defined as follows. The horizontal subbundle H of the
tangent bundle TP determined by A is the bundle whose fibre Hp at p is given by
Hp = Ker(Ap : TpP → G) for any p ∈ P . The vertical subbundle V of TP is defined by
Vp = TpPπ(p) ⊂ TpP for any p ∈ P . Then we have the decomposition TP = V ⊕H. Let
πH : TP → H be the associated projection. Now let W be any vector space over R and
α ∈ Ωk(P ;W ) be any W -valued k-form. Then αH ∈ Ωk(P ;W ) is defined as follows:

αH(X1, . . . , Xk) = α(πHX1, . . . , πHXk),

for any Xi ∈ TpP , i = 1, 2, . . . , k, and any p ∈ P . Now dAα is defined as (dα)H . For this
brief introduction to the principal bundle, the connection and its curvature, we referred
mainly to [1, pp. 26–37] and [2, pp. 332–334].

A connection is flat if its curvature vanishes. A principal bundle is referred to as flat if
it admits a flat connection. It is well known that a connection A is flat if and only if the
associated horizontal distribution H is integrable (cf., [6, pp. 48–49]). In other words, A
is flat if and only if for each p ∈ P there is an integral submanifold of H containing p,
which is mapped diffeomorphically onto an open subset of M by π. In fact, this version
of flatness will be more useful for the later arguments.

3. Cohomology of flat principal bundles

Let π : P →M be a principal bundle whose structure group G is connected and compact.
Let A ∈ Ω1(P ;G) be a connection on P . Then let H be the horizontal distribution deter-
mined by A and let V denote the vertical distribution of P as in the previous section.
Now, we consider the projection onto the vertical distribution, πA : TP → V , given by
the decomposition TP = V ⊕H.

On the other hand, let H∗(G) denote the set of all bi-invariant real-valued forms on
G. That a form α ∈ Ω∗(G; R) is bi-invariant means that it satisfies L∗

gα = R∗
gα = α for

any g ∈ G, where Lg and Rg respectively denote the left and the right multiplication by
g. It is well known that bi-invariant forms are closed, and we have that

H∗(G) ≡ H∗
dR(G) (3.1)

under the assumption that G is connected and compact (cf., [5, 12.1]).
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For any p ∈ P we have the map κp : Px → G, where x = π(p), which is defined by
κp(pg) = g for any g ∈ G. Let h ∈ G. Then we have κph = Lh−1κp, which follows from the
identities κph(pg) = κph(ph(h−1g)) = h−1g = Lh−1κp(pg). The equality κph = Lh−1κp

implies that, for any α ∈ H∗(G), the pull-back (κp)∗α ∈ Ω∗(Px; R) does not depend on
the choice of p ∈ Px.

Now, we define for any α ∈ Hk(G) a k-form α̂ on P by the rule

α̂(X1, . . . Xk) = ((κp)∗α)(πAX1, . . . , πAXk), (3.2)

for any tangent vectors X1, . . . , Xk ∈ TpP and for any p ∈ P .
In fact, we need to prove that α̂ is smooth, which is done as follows. Write π−1U = PU

and assume there is a local section s : U → PU . Then, by exploiting s, we may define
ψ : PU → U ×G as the inverse of the map U ×G→ PU , (x, g) → s(x)g. In fact, ψ is
well known to be a local trivialization. On the other hand, let ϕ : U ×G→ G denote the
projection. We will use the identity

ϕψ = κs(x) (3.3)

on Px for any x ∈ U . This holds since we have ϕψ(s(x)g) = g = κs(x)(s(x)g) for any
g ∈ G. Therefore, we have that

α̂(X1, . . . , Xk) = ((κs(π(p)))∗α)(πAX1, . . . , πAXk) = (ψ∗ϕ∗α)(πAX1, . . . , πAXk) (3.4)

for any tangent vectors X1, . . . , Xk ∈ TpP and for any p ∈ PU . Here, the first equality
comes from the definition (3.2) together with the fact that (κp)∗α = (κs(π(p)))∗α as forms
on Pπ(p), since (κp)∗α does not depend on the choice of p as observed in the above. The
second equality of (3.4) comes from (3.3). Since πA : TP → V is a smooth homomorphism
between the smooth bundles covering the identity, (3.4) proves that α̂ is smooth. Thus,
we have indeed

α̂ ∈ Ωk(P ; R).

Now we write

EA : H∗(G) → Ω∗(P ; R) (3.5)

for the map defined by EA(α) = α̂ for any α ∈ H∗(G).
For the existence of the map EA in (3.5), we did not require the flatness of A. As

mentioned in the last lines of § 2, a connection A on P is flat if and only if there is a
horizontal section s : U → P such that ds(TM |U ) ⊂ HPU

for each member U of an open
cover of M , where H is the horizontal distribution of P determined by A. Now we observe
the following.

Lemma 3.1. If A is flat, EA(α) ∈ Ω∗(P ) is closed for any α ∈ H∗(G).

Proof. Let U ⊂M be an open set for which there is a horizontal section s : U → P
with respect to A. Then we have the local trivialization ψ : PU → U ×G determined by s
as in the above. Also recall the projection ϕ :U ×G→G. Then we write κ = ϕψ :PU →G.
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It will be also useful to note the equality

p = s(π(p))κ(p) (3.6)

for any p ∈ PU : note that ψ(p) = (π(p), κ(p)) by definition of κ. Now apply the inverse
of ψ, which is given by (x, g) → s(x)g, to both sides of the equation.

Now we will show that
α̂|PU

= κ∗α

which is enough since α is a closed form on G.
Assume that α is homogeneous and its degree is k. Then let X1, . . . , Xk ∈ TpP and

p ∈ PU . Write x = π(p). Then we have by definition that

α̂(X1, . . . , Xk) = α((dκs(x))pπAX1, . . . , (dκs(x))pπAXk),

where we used the fact that (κp)∗α = (κs(x))∗α on Px, in other words, that (κp)∗α does
not depend on the choice of p ∈ Px. Therefore, the equality α̂|PU

= κ∗α follows from the
following assertion. �

Claim. We have the identity

(dκs(x))pπA = (dκ)p : TpP → Tκ(p)G.

Proof. Consider a curve s(δ(t))γ(t) on P where δ and γ are some curves on U and
on G, respectively, such that δ(0) = x and γ(0) = κs(x)(p) = κ(p) (see (3.3)). Note that
s(δ(0))γ(0) = s(x)κs(x)(p) = s(π(p))κ(p) = p by (3.6). Thus s(δ(t))γ(t) is a curve which
passes through p at t = 0. Therefore, the velocity of the curve at t = 0 is a tangent vector
of P at p, which we denote by X.

Recall the map ιp : G→ P from the introduction. Also write κ(p) = g. Then the
velocity vector X can be written as

(dRg)s(x)(ds)xδ̇(0) + (dιs(x))gγ̇(0), (3.7)

which is by itself a decomposition of X in accordance with that of the tangent space,
TpP = Hp + Vp. Note that we have exploited the fact that s : U → P is horizontal. We
also used the invariance of H in the sense that dRhHq = Hqh for any q ∈ P and for any
h ∈ G, which holds for general connections.

Thus πAX is the velocity of the curve s(x)γ(t) at t = 0. Since κs(x)(s(x)γ(t)) = γ(t), we
conclude that (dκs(x))pπAX is γ̇(0). On the other hand, we observe that κ(s(δ(t))γ(t))
is γ(t), which means (dκ)pX = γ̇(0). Thus both (dκs(x))pπAX and (dκ)pX are γ̇(0).
Furthermore, the expression (3.7) shows that X can be any vector in TpP . Thus, the
claim has been established. �

Remark. For other examples in which calculations such as (3.7) are used, see, for
instance [1, pp. 32–33 and p. 38].

Thus, assuming A is flat, we have a map H∗
dR(G) → H∗

dR(P ) induced by EA, since
we have the identity (3.1), H∗(G) ≡ H∗

dR(G). We will continue using EA to denote
this map. It is clear that EA : H∗

dR(G) → H∗
dR(P ) respects the wedge product. Assume
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that α ∈ Hk(G), β ∈ Hl(G) and X1, . . . , Xk,Xk+1, . . . , Xk+l ∈ TpP , p ∈ P . Then it is
straightforward to see the equality

α̂ ∧ β(X1, . . . , Xk+l) = (α̂ ∧ β̂)(X1, . . . Xk+l) (3.8)

by the definition of wedge product and by that of γ̂ for a bi-invariant form γ on G. Thus
EA is a homomorphism between algebras.

Now we consider again the inclusion ιp : G→ P given by ιp(g) = pg for any g ∈ G
and for any p ∈ P . Then we have that (ιp)∗α̂ = α for any p ∈ P and for any α ∈ H∗(G).
Assume again that α is homogeneous and of degree k. Let X1, . . . , Xk ∈ TgG for a g ∈ G.
Then it is straightforward to see that

(ιp)∗α̂(X1, . . . , Xk) = α(dκpπAdιpX1, . . . ,dκpπAdιpXk) = α(X1, . . . , Xk) (3.9)

using the facts that πAdιpX = dιpX for any X ∈ TgG and κpιp is the identity map on G
when the codomain of ιp is restricted to Pπ(p). Therefore, we have proved the following
theorem.

Theorem 3.2. Let P →M be a flat principal bundle with a compact connected struc-
ture group G. Then for any flat connection A on P there is a homomorphism between
algebras

EA : H∗
dR(G) → H∗

dR(P )

such that (ιp)∗EA is the identity on H∗
dR(G) for any p ∈ P .

The Maurer–Cartan 3-form Θ on a compact connected Lie groupG is defined as follows.
Choose a bi-invariant inner product 〈·, ·〉 on the Lie algebra G of G. Let [·, ·] denote the
Lie bracket on G. Then Θ is defined by

Θ(X,Y,Z) = 〈Lg−1X, [Lg−1Y,Lg−1Z]〉

for any X,Y,Z ∈ TgG and for any g ∈ G. Here, the derivative of Lh : Th−1G→ G is also
denoted by Lh, for any h ∈ G. Then it is straightforward to see that Θ a bi-invariant
3-form which represents a class in H3

dR(G). We have the following result.

Corollary 3.3. Let P →M be a flat principal bundle with a compact connected
structure group G, and A any flat connection on P , and let Θ denote the Maurer–Cartan
3-form of G associated with an invariant inner product. Then EA[Θ] ∈ H3

dR(P ) is the
class such that ι∗pEA[Θ] = [Θ] ∈ H3

dR(G) ≡ H3
dR(Px), where x = π(p) and p ∈ P .

In particular, the above justifies the principal bundle version of Wehrheim’s statement
[12, 1.2] under the additional condition that P is flat.

On the other hand, Theorem 3.2 means that a flat principal bundle with a compact
connected structure group G is a fibre bundle to which the Leray–Hirsch theorem (cf., [3,
5.11] or [9, 4D.1]) applies. As a consequence of the theorem, we have an isomorphism of
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H∗(M)-modules

H∗
dR(P ) ∼= H∗

dR(M) ⊗H∗
dR(G),

where the isomorphism H∗
dR(M) ⊗H∗

dR(G) → H∗
dR(P ). Moreover, H∗

dR(M) ⊗H∗
dR(G)

can be given a ring structure given on simple tensors by

(a1 ⊗ b1)(a2 ⊗ b2) = (−1)kl(a1 ∧ a2) ⊗ (b1 ∧ b2),

where b1 and a2 are homogeneous classes of degrees k and l, respectively. Then, since EA

is a homomorphism between algebras by the observation given by (3.8), we conclude the
following.

Theorem 3.4. Let P →M and G be as in (3.2) above. Then there is an isomorphism
between algebras,

H∗
dR(P ) ∼= H∗

dR(M) ⊗H∗
dR(G).

Remarks. A principal G-bundle P over M is flat if and only if it is induced from
the universal covering space M̃ by a homomorphism π1(M) → G (see [11, Lemma 1]).
For instance, assume G has a non-trivial discrete centre and π1(M) maps into the centre
non-trivially, then there exists a non-trivial flat bundle P →M . The theorem above says
that, if G is furthermore connected and compact, H∗

dR(P ) ∼= H∗
dR(M) ⊗H∗

dR(G).
Non-trivial flat SO(3)-bundles P over a compact connected 3-manifold M were studied

intensively in the works by Dostoglou and Salamon [7,8]. The theorem above also applies
in this case.

4. Cohomology of the adjoint bundle

Let us begin with a principal bundle π : P →M , not necessarily assuming flatness. Let
G act on itself from the right by the rule: x · g = g−1xg = Adg−1(x) for any x, g ∈ G.
Then P ×G has the diagonal right G-action given by (p, g)h = (ph,Adh−1(g)), and AdP
is defined as the orbit space. Write [p, g] = (p, g)G. Then, let q : P ×G→ AdP denote
the projection defined by q(p, g) = [p, g]. For the sake of simplicity, let π also denote the
projection AdP →M which maps [p, g] to π(p). Then π : AdP →M is referred to as
the adjoint bundle of P . Note that the fibre (AdP )x = π−1{x} at x ∈M can be written
as {[p, g] | g ∈ G}, choosing any p ∈ P such that π(p) = x. We will write (AdP )U to
denote π−1U for any subset U of M . The adjoint bundle is a bundle of Lie groups such
that each fibre is a Lie group which is isomorphic to G. A gauge transformation P → P
is equivalent to a section M → AdP (cf. [10]).

Now let A be any connection on P , and H be the horizontal distribution determined
by A. Then we define a distribution H̄ on AdP as follows:

H̄[p,g] = (dq)(p,g)(Hp ⊕ 0g) ⊂ T[p,g](AdP )

for any [p, g] ∈ AdP . In fact, the invariance of H with respect to the action of G
implies that H̄ is well defined. Let h ∈ G and consider Rh : P ×G→ P ×G defined
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by Rh(p, g) = (p, g)h = (ph,Adh−1(g)). Then we have q = qRh, and it follows that

(dq)(p,g)(Hp ⊕ 0g) = (dq dRh)(p,g)(Hp ⊕ 0g) = (dq)(ph,h−1gh)(Hph ⊕ 0h−1gh).

We observe that (dq)(p,g) is injective when restricted to Hp ⊕ 0g as follows. Let π̄ : P ×
G→M denote the map defined by π̄(p, g) = π(p). Then (dπ̄)(p,g) is clearly injective on
Hp ⊕ 0g. Note that π̄ = πq, and therefore that (dπ̄)(p,g) = (dπ)[p,g](dq)(p,g). Thus (dq)(p,g)

is injective on Hp ⊕ 0g.
As in the previous section, we let V̄ denote the ‘vertical’ distribution defined by

V̄[p,g] = T[p,g](AdP )π(p) ⊂ T[p,g](AdP )

for any [p, g] ∈ AdP . We will show that the decomposition of the tangent vector bundle

T (AdP ) = V̄ ⊕ H̄ (4.1)

indeed makes sense as follows. It suffices to show that V̄[p,g] ∩ H̄[p,g] = 0 for any
[p, g] ∈ AdP . Let X ∈ H̄[p,g]. Then X = (dq)(p,g)(X ′, 0g) for some X ′ ∈ Hp. We have
that (dπ)[p,g](X) = (dπ)[p,g](dq)(p,g)(X ′, 0g) = (dπ̄)(p,g)(X ′, 0g) = 0 if and only if X ′ = 0.
Thus dπ(X) = 0 if and only if X = 0. This shows that V̄[p,g] ∩ H̄[p,g] = 0.

Therefore, there is the projection πA : T (AdP ) → V̄ coming from the decomposition
(4.1), where we use the same notation as in the previous section.

Choose any p ∈ P . Recall the map κp : Pπ(p) → G from the previous section. This time
we let κp denote the isomorphism (AdP )π(p) → G given by κp[p, g] = g for any g ∈ G,
allowing ourselves an obvious abuse of notation. Then, if h ∈ G, we have

κph[p, g] = κph[ph,Adh−1(g)] = Adh−1(κp[p, g])

for any g ∈ G. That is, we have κph = Adh−1κp = Lh−1Rhκp. Therefore, if we fix an
x ∈M , for any α ∈ H∗(G), (κp)∗α ∈ Ω∗((AdP )x; R) does not depend on the choice of
p ∈ Px. Now we define α̂, a form on AdP whose smoothness is yet to be verified, for any
α ∈ Hk(G) by the same formula as (3.2), using the projection πA : T (AdP ) → V̄ given
by (4.1) above.

The smoothness of α̂ follows from similar computations to (3.3) and (3.4).
Therefore, we may again write

EA : H∗(G) → Ω∗(AdP ; R)

for the map defined by EA(α) = α̂ for any α ∈ H∗(G).
We also have the following result, by a proof similar to that of Lemma 3.1.

Lemma 4.1. If A is flat, EA(α) ∈ Ω∗(AdP ; R) is closed for any α ∈ H∗(G).

The identity (3.8) is valid in the current case, as well to show that EA is an algebra
homomorphism. Also note that now ιp : G→ AdP can be defined for any p ∈ P by
ιp(g) = [p, g] for any g ∈ G. Note that κpιp is the identity on G when the codomain of ιp
is restricted to (AdP )π(p). Therefore, we have that (ιp)∗α̂ = α for any α ∈ H∗(G) by the
same observation as (3.9). Again recall the identification (3.1), H∗(G) ≡ H∗

dR(G). Then
we have the following by an argument similar to the proof of Theorem 3.2 above.
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Theorem 4.2. Let P →M , G and A be as in Theorem 3.2. Then there is the
homomorphism between algebras

EA : H∗
dR(G) → H∗

dR(AdP )

such that (ιp)∗EA is the identity on H∗
dR(G) for any p ∈ P .

In particular, we have a result similar to (3.3), as follows.

Corollary 4.3. Let P →M be a flat principal bundle with a compact connected
structure group G, and A any flat connection on P . Let Θ denote the Maurer–Cartan
3-form of G associated with an invariant inner product. Then EA[Θ] ∈ H3

dR(P ) is the
class such that ι∗pEA[Θ] = [Θ] ∈ H3

dR(G) ≡ H3
dR(AdPx), where x = π(p) and p ∈ P .

This result justifies the statement by Wehrheim (see [12, (1.2)] and the paragraph
below it) under the additional conditions that G is connected and compact, and P is flat.
By the same argument which led to (3.4) above, we conclude as follows.

Theorem 4.4. Let P →M and G be as in Theorem 3.2 above. Then there is an
isomorphism between algebras,

H∗
dR(AdP ) ∼= H∗

dR(M) ⊗H∗
dR(G).
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