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Abstract

Let Xn(k) be the number of vertices at level k in a random recursive tree with n + 1
vertices. We are interested in the asymptotic behavior of Xn(k) for intermediate levels
k = kn satisfying kn → ∞ and kn = o(log n) as n → ∞. In particular, we prove
weak convergence of finite-dimensional distributions for the process (Xn([knu]))u>0,
properly normalized and centered, as n → ∞. The limit is a centered Gaussian process
with covariance (u, v) �→ (u + v)−1. One-dimensional distributional convergence of
Xn(kn), properly normalized and centered, was obtained with the help of analytic tools
by Fuchs et al. (2006). In contrast, our proofs, which are probabilistic in nature, exploit
a connection of our model with certain Crump–Mode–Jagers branching processes.
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1. Introduction and main result

A (deterministic) recursive tree with n vertices is a rooted tree with vertices labeled with
1, 2, . . . , n that has the following property: the labels of the vertices on the unique path from
the root (labeled with 1) to any other vertex (labeled with m ∈ {2, . . . , n}) form an increasing
sequence. There are (n − 1)! different recursive trees with n vertices, and we denote them
T1,n, T2,n, . . . , T(n−1)!,n. A random object Tn is called random recursive tree with n vertices if
it has uniform distribution on the set of recursive trees with n vertices, that is,

P{Tn = Ti,n} = 1

(n − 1)! , i = 1, 2, . . . , (n − 1)!.

Let Xn(k) be the number of vertices at level k ∈ N (that is, at distance k from the root) in
the random recursive tree Tn+1 on n + 1 vertices. It is known that Tn+1 has logarithmic height
(see [13, Theorem 1] and [4]); namely,

max{k ∈ N : Xn(k) �= 0}
log n

→ e as n → ∞ a.s.,

where we abbreviate almost surely to a.s. The asymptotic behavior of the occupation numbers
Xn(k) as n → ∞ has been much studied for various asymptotic regimes of k = kn that is
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allowed to be a function of n. Fuchs et al. [6, Theorem 3] showed, by using analytic tools, that
for any fixed k ∈ N,

√
2k − 1(k − 1)! (Xn(k) − (log n)k/k!)

(log n)k−1/2
d−→ N (0, 1) as n → ∞, (1.1)

where N (0, 1) is the standardized normal distribution. Throughout, we write ‘
w−→’, ‘

d−→’,
and ‘

f.d.−−→’ to denote weak convergence in a functional space, and weak convergence of one-
dimensional and finite-dimensional distributions, respectively. Furthermore, the uniform in
k = 1, 2, . . . , o(log n) rate of convergence in the uniform metric was obtained. On the other
hand, in the regime where ε log n < kn < (e − ε) log n (with ε > 0 fixed), functional limit
theorems with nonnormal limits were established in [2], [3], [5], and [12].

This paper is a follow-up of [10] in which a functional limit theorem was proved for the
random process (X[nu](1), . . . , X[nu](k))u≥0 for each k ∈ N, properly normalized and centered,
as n → ∞. In particular, for u = 1 this result yields the following multivariate version of (1.1):

(
(j − 1)! (Xn(j) − (log n)j /j !)

(log n)j−1/2

)
j=1,...,k

d−→ (N1, . . . , Nk) as n → ∞, (1.2)

where (N1, . . . , Nk) is a k-variate normal random vector with zero mean and covariances

ENiNj = 1

i + j − 1
, 1 ≤ i, j ≤ k. (1.3)

Let (kn)n∈N be a sequence of positive numbers satisfying kn → ∞ and kn = o(log n) as
n → ∞. Our purpose is to investigate weak convergence of the process (Xn([knu]))u>0,
again properly normalized and centered, thereby providing information about occupancy of
intermediate levels in a random recursive tree on n + 1 vertices. Our main result is given in
Theorem 1.1.

Theorem 1.1. Let (kn)n∈N be a sequence of positive numbers satisfying kn → ∞ and kn =
o(log n) as n → ∞. The following limit theorem holds for the intermediate levels of a random
recursive tree with n + 1 vertices:( [kn]1/2([knu] − 1)! (Xn([knu]) − (log n)[knu]/[knu]!)

(log n)[knu]−1/2

)
u>0

f.d.−−→
(∫

[0,∞)

e−uy dB(y)

)
u>0

as n → ∞, (1.4)

where (B(v))v≥0 is a standard Brownian motion.

Remark 1.1. The limit process in Theorem 1.1 can be defined via integration by parts as

T (u) :=
∫

[0,∞)

e−uy dB(y) = u

∫ ∞

0
e−uyB(y) dy, u > 0.

The process T is a.s. continuous on (0, ∞). However, it cannot be defined by continuity at
u = 0 because of the oscillating behavior of the Brownian motion at ∞. This explains that the
limit theorem holds for u > 0 rather than u ≥ 0.
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It can be checked (details can be found in [8, Section 2]) that T (u) has the same distribution
as B(1)/

√
2u for each u > 0. Therefore, we recover (1.1) when taking u = 1 in (1.4). Note

also that
ET (u)T (v) = (u + v)−1, u, v > 0.

As a consequence of

E(euT (e2u)evT (e2v)) = eu+v

e2u + e2v
= 1

2 cosh(u − v)
, u, v ∈ R,

a transformed process (euT (e2u))u∈R is stationary Gaussian. Finally, observe that on the formal
level Theorem 1.1 is consistent with (1.2). Indeed, taking i = [knu] and j = [knv] in (1.3), we
obtain the covariance 1/([knu] + [knv] − 1) ∼ (u + v)−1k−1

n as n → ∞, where xn ∼ yn as
n → ∞ means that limn→∞(xn/yn) = 1.

2. Connection to a Crump–Mode–Jagers branching process

To prove Theorem 1.1 we shall use the same approach as in [10]. The core of this approach is
distributional equality (2.1) which shows that the process (Xn([knu]))u>0 is naturally embedded
into an appropriate Crump–Mode–Jagers (CMJ) branching process.

The random recursive tree can be constructed in continuous time as follows. At time 0, start
with a tree consisting of one vertex labeled by 1 (the root). After an exponential time with
unit mean, add to this vertex an offspring labeled by 2. Any time a new vertex with label n is
added to a tree, assign to each vertex of the tree a unit exponential clock that is independent
of everything else. Each time some clock rings, add an offspring to the corresponding vertex
and repeat the procedure. We denote by τn the time at which the vertex with label n + 1 was
added to the tree. Then the tree obtained at time τn has the same probability law as the random
recursive tree Tn+1. Note that τ0 = 0, and for each n ∈ N the difference τn − τn−1 is an
exponential random variable with mean 1/n. Moreover, all such differences are independent.

By construction, the times at which the root of the tree generates offspring form arrival times
of a Poisson process with unit intensity. A similar statement holds for any vertex in the tree: if
a vertex was born at time t then the differences between the times at which this vertex generates
offspring and t , form arrival times of a Poisson process with unit intensity. In the following,
we shall generalize this construction by replacing exponential interarrival times with arbitrary
positive interarrival times.

Let (ξk)k∈N be independent copies of a positive random variable ξ . Let S := (Sn)n∈N be
the ordinary random walk with jumps ξn for n ∈ N, that is, Sn = ξ1 + · · · + ξn, n ∈ N.
The corresponding renewal process (N(t))t∈R is defined by

N(t) :=
∑
k≥1

1{Sk≤t}, t ∈ R .

Let U(t) := EN(t), where t ∈ R, be the renewal function. For t ≤ 0, we have N(t) = 0 a.s.
and U(t) = 0.

We are now ready to recall the construction of the CMJ branching process relevant to us.
We are interested only in the special case when the CMJ process is generated by the random
walk S. At time τ0 = 0, there is one individual, called the ancestor. The ancestor produces
offspring (the first generation) with birth times given by a point process Z = ∑

n≥1δSn on
R+ := [0, ∞). The first generation produces the second generation. The shifts of birth times
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of the second generation individuals with respect to their mothers’ birth times are distributed
according to independent copies of the same point process Z. The second generation produces
the third one, and so on. All individuals act independently of each other.

For k ∈ N, denote by Yk(t) the number of the kth generation individuals with birth times
less than or equal to t . For example, Y1(t) = N(t) for t ≥ 0. For n ∈ N, denote by τn the birth
time of the nth individual (in the chronological order of birth times, excluding the ancestor).

Now we are ready to state the basic observation for the proof of Theorem 1.1. In the special
case when ξ has exponential distribution with unit mean, the individuals of the CMJ process
correspond to vertices of the random recursive tree, the ancestor at time 0 corresponds to the
root, and the generation of the individual corresponds to the distance to the root. It follows that
for a sequence (kn) with limn→∞ kn = ∞, we have

(Xn([knu]))u>0
d= (Y[knu](τn))u>0, n ∈ N. (2.1)

The basic decomposition we need reads as

Yk(t) =
∑
i≥1

Y
(i)
k−1(t − Si), t ≥ 0, k ≥ 2,

where Y
(i)
j (t) is the number of successors in the (j + 1)th generation of the first generation

individual born at time Si that are born in the interval [Si, t + Si]. By the definition of the
CMJ process, (Y

(1)
j (t))t≥0, (Y

(2)
j (t))t≥0, . . . are independent copies of (Yj (t))t≥0 which are

independent of S. Note that, for k ≥ 2, (Yk(t))t≥0 is a particular instance of a random process
with immigration at the epochs of a renewal process which is a renewal shot-noise process with
random and independent response functions (the term was introduced in [11]; see also [9] for
a review).

For t ≥ 0 and k ∈ N, we define Uk(t) := EYk(t). Then U1(t) = U(t) and

Uk(t) =
∫

[0,t]
Uk−1(t − y) dU(y), k ≥ 2, t ≥ 0.

In the special case when the distribution of ξ is exponential with unit mean, we have U1(t) = t

for t ≥ 0 and, more generally,

Uk(t) = tk

k! , k ∈ N, t ≥ 0, (2.2)

which follows from the recursive formula Uk(t) = ∫ t

0 Uk−1(y) dy for k ≥ 2.
Theorem 1.1 will be obtained as a consequence of the following two results.

Theorem 2.1. Let k(t) be any positive function satisfying k(t) → ∞ and k(t) = o(t) as
t → ∞. Assume that the distribution of ξ is exponential with unit mean. Then( [k(t)]1/2([k(t)u] − 1)!

t [k(t)u]−1/2

∑
j≥1

(Y
(j)

[k(t)u]−1(t − Sj ) − U[k(t)u]−1(t − Sj )) 1{Sj ≤t}
)

u>0

f.d.−−→ 0 as t → ∞,

where, recalling (2.2), U[k(t)u]−1(t) = t [k(t)u]−1/([k(t)u] − 1)! for u > 0 and t > 0.
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In what follows we denote by D(0, ∞) (respectively, D[0, ∞)) the Skorokhod space of
right-continuous functions defined on (0, ∞) (respectively, [0, ∞)) with finite limits from the
left at positive points.

Theorem 2.2. Let k(t) be any positive function satisfying k(t) → ∞ and k(t) = o(t) as
t → ∞. Assume that σ 2 := var ξ ∈ (0, ∞) (the distribution of ξ is not assumed exponential).
Then( [k(t)]1/2([k(t)u] − 1)!√

σ 2μ−2[k(t)u]−1t2[k(t)u]−1

(∑
j≥1

(t − Sj )
[k(t)u]−1 1{Sj ≤t}

([k(t)u] − 1)! μ[k(t)u]−1
− t [k(t)u]

([k(t)u])! μ[k(t)u]

))
u>0

w−→ (T (u))u>0 as t → ∞ (2.3)

in the J1-topology on D(0, ∞), where μ = Eξ < ∞. In particular, we have in (2.3) weak
convergence of the finite-dimensional distributions.

3. Proof of Theorem 1.1

Throughout the proof we assume that ξ is exponentially distributed with unit mean. In
particular, we have μ = σ 2 = 1 in the notation of Theorem 2.2. Keeping this in mind, a
combination of Theorems 2.1 and 2.2 yields

( [k(t)]1/2([k(t)u] − 1)!
t [k(t)u]−1/2

(
Y[k(t)u](t) − t [k(t)u]

([k(t)u])!
))

u>0

f.d.−−→ (T (u))u>0 as t → ∞ (3.1)

for any positive function k(t) satisfying k(t) → ∞ and k(t) = o(t) as t → ∞.
Given a sequence (kn) as in the statement of Theorem 1.1, define the function k = k(t) =

k[et ]. Note that k(log n) = kn, k(t) → ∞, and k(t) = o(t) as t → ∞. Choose any positive
� = �(t) satisfying limt→∞(�2(t)/(tk(t))) = ∞ and �(t) = o(t) as t → ∞. For instance, one
can take �(t) = t3/4k1/4(t). For n ∈ N, set an = log n/�(log n).

Recall from the previous section that τn is the sum of n independent exponentially distributed
random variables with means 1, 1

2 , . . . , 1/n. This implies that
(
τn − (1 + 1

2 + · · · + 1/n)
)
n∈N

is a square integrable (hence, convergent) martingale with respect to the natural filtration. As a
consequence, τn − log n converges a.s., whence limn→∞(τn − log n)/an = 0 a.s. Equivalently,
given ε > 0 there exists an a.s. finite N > 0 such that log n−εan ≤ τn ≤ log n+εan whenever
n ≥ N . In what follows, for ease of notation we write 1 for ε.

Fix any positive and finite T1 < T2. For u > 0 and n ∈ N, set

Kn(u) := [k(log n)]1/2([k(log n)u] − 1)!
(log n)[k(log n)u]−1/2

(
Y[k(log n)u](τn) − (log n)[k(log n)u]

([k(log n)u])!
)

.

In view of (2.1), it suffices to show that

(Kn(u))u>0
f.d.−−→ (T (u))u>0 as n → ∞.

Obviously, for all δ > 0,

lim
n→∞ P

{
sup

u∈[T1,T2]
Kn(u) 1{N>n} > δ

}
= 0.

https://doi.org/10.1017/jpr.2018.75 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.75


1136 A. IKSANOV AND Z. KABLUCHKO

Since Y[k(t)u](t1) ≤ Y[k(t)u](t2) whenever t1 < t2, we infer

Kn(u) 1{n≥N} ≤ [k(log n)]1/2([k(log n)u] − 1)!
(log n + an)[k(log n)u]−1/2

(
Y[k(log n)u](log n + an)

− (log n + an)
[k(log n)u]

([k(log n)u])!
)

×
(

1 + 1

�(log n)

)[k(log n)u]−1/2

1{n≥N}

+ (k(log n) log n)1/2

[k(log n)u]
((

1 + 1

�(log n)

)[k(log n)u]
− 1

)
=: In(u) × ηn(u) + Jn(u).

Setting in (3.1) t = log n when t is an argument of the function k and t = log n + an,
otherwise we infer (In(u))u>0

f.d.−−→(T (u))u>0 as n → ∞. Further, our choice of � entails
limn→∞(�(log n)/k(log n)) = ∞, whence

lim
n→∞ sup

u∈[0,T2]
|ηn(u) − 1| = 0 a.s.

Finally, for large enough n,

sup
T1≤u≤T2

Jn(u) ≤ 2(k(log n) log n)1/2

�(log n)
.

The right-hand side converges to 0 as n → ∞ by our choice of �. Combining these results,
we obtain (In(u) × ηn(u) + Jn(u))u>0

f.d.−−→(T (u))u>0 as n → ∞. The same conclusion for the
lower bound of Kn(u) 1{n≥N} can be derived similarly. The proof of Theorem 1.1 is complete.

4. Proof of Theorem 2.1

We first prove the following lemma.

Lemma 4.1. Assume that the distribution of ξ is exponential with unit mean and let k = k(t) →
∞ through integers and k(t) = o(t) as t → ∞. Then

E

(∑
j≥1

(Y
(j)
k−1(t − Sj ) − Uk−1(t − Sj )) 1{Sj ≤t}

)2

∼ 1

4

t2k

(k!)2

(
k

t

)2

, t → ∞.

Proof. Without any restrictions on the distribution of a positive random variable ξ , the
following formulas were obtained in [10, Lemma 4.2]: for k ≥ 2 and t ≥ 0,

Dk(t) := var Yk(t) = E

(∑
j≥1

(Y
(j)
k−1(t − Sj ) − Uk−1(t − Sj )) 1{Sj ≤t}

)2

+ E

(∑
j≥1

Uk−1(t − Sj ) 1{Sj ≤t} −Uk(t)

)2

, (4.1)

E

(∑
j≥1

(Y
(j)
k−1(t − Sj ) − Uk−1(t − Sj )) 1{Sj ≤t}

)2

=
∫

[0,t]
Dk−1(t − y) dU(y), (4.2)
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and

E

(∑
j≥1

Uk−1(t − Sj ) 1{Sj ≤t} −Uk(t)

)2

= 2
∫

[0,t]
Uk−1(t − y)Uk(t − y) dU(y)

+
∫

[0,t]
U2

k−1(t − y) dU(y) − U2
k (t). (4.3)

Assume now that the distribution of ξ is exponential with unit mean. Invoking (2.2) and (4.3),
we obtain

E

(∑
j≥1

Uk−1(t − Sj ) 1{Sj ≤t} −Uk(t)

)2

= 2
∫ t

0
Uk−1(y)Uk(y) dy +

∫ t

0
U2

k−1(y) dy − U2
k (t)

= t2k−1

((k − 1)!)2(2k − 1)
, k ≥ 2, t ≥ 0.

Using the latter formula together with (4.1) and (4.2), we have

Dk(t) =
∫ t

0
Dk−1(y) dy + E

(∑
j≥1

Uk−1(t − Sj ) 1{Sj ≤t} −Uk(t)

)2

=
∫ t

0
Dk−1(y) dy + t2k−1

((k − 1)!)2(2k − 1)
.

This, in combination with the boundary condition D1(t) = t , immediately yields

Dk(t) =
k−1∑
i=0

tk+i

(i!)2

(2i)!
(k + i)! , k ∈ N, t ≥ 0,

whence, recalling (4.2),

E

(∑
j≥1

(Y
(j)
k−1(t − Sj ) − Uk−1(t − Sj )) 1{Sj ≤t}

)2

=
∫ t

0
Dk−1(y) dy

=
k−2∑
i=0

tk+i

(i!)2

(2i)!
(k + i)! , k ≥ 2, t ≥ 0.

We claim that the left-hand side is asymptotic to the (k − 2)th term of the last sum, which is

t2k−2

((k − 2)!)2

(2k − 4)!
(2k − 2)! ∼ 1

4

t2k

(k!)2

(
k

t

)2

, t → ∞.

To prove this, it suffices to show that

lim
t→∞

k−3∑
i=1

A(i, k, t)

tk−i−2 = 0,

where

A(i, k, t) := (k!)2(2i)!
(i!)2(k + i)! k2 .
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Using the inequality

(2πn)1/2(ne−1)n ≤ n! ≤ e(2πn)1/2(ne−1)n, n ∈ N,

which is a consequence of the Stirling formula in the form

n! = (2πn)1/2(ne−1)neθn/(12n), n ∈ N,

where θn ∈ (0, 1), we obtain

1

21/2e
A(i, k, t) ≤ 4i

i1/2

k2k−1

(k + i)k+i+1/2ek−i−2 ≤ 4ik1/2
(

k

e

)k−i−2

. (4.4)

This yields

1

21/2e

[k/2]−1∑
i=1

A(i, k, t)

tk−i−2 ≤ k1/2
k−3∑

i=k−[k/2]−1

(
4k

et

)i

≤ k1/2
(

4k

et

)k−[k/2]−1(
1 − 4k

et

)−1

having utilized 4i ≤ 4k−i−2 which holds for 1 ≤ i ≤ [k/2] − 1. The right-hand side goes to 0
as t → ∞. Another appeal to (4.4) yields

1

21/2e

k−3∑
i=[k/2]

A(i, k, t)

tk−i−2 ≤ k1/2
(

k

et

)k−[k/2]−2 k−3∑
i=[k/2]

4i ≤ 1

3
k1/24k−2

(
k

et

)k−[k/2]−2

.

The right-hand side converges to 0 as t → ∞ which completes the proof of the lemma. �
We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. In view of the Cramér–Wold device and Markov’s inequality, weak
convergence of the finite-dimensional distributions to the zero vector is a consequence of

(([ku] − 1)!)2k

t2[ku]−1 E

(∑
j≥1

(Y
(j)
[ku]−1(t − Sj ) − U[ku]−1(t − Sj )) 1{Sj ≤t}

)2

∼ (([ku] − 1)!)2k

t2[ku]−1

1

4

t2[ku]

(([ku])!)2

( [ku]
t

)2

∼ k

4t

→ 0 for each u > 0 as t → ∞.

Here, we have used Lemma 4.1 for the first asymptotic equivalence. �

5. Proof of Theorem 2.2

First, we use the Cramér–Wold device to prove weak convergence of finite-dimensional
distributions in (2.3). Namely, it is sufficient to check that for any j ∈ N, any real α1, . . . , αj ,
and any 0 < u1 < · · · < uj < ∞, we have

j∑
i=1

αi

k1/2([kui] − 1)! Z(kui, t)√
σ 2μ−2[kui ]−1t2[kui ]−1

d−→
j∑

i=1

αiui

∫ ∞

0
B(y)e−uiy dy as t → ∞, (5.1)
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where

Z(ku, t) :=
∑
j≥1

(
(t − Sj )

[ku]−1

([ku] − 1)! μ[ku]−1 1{Sj ≤t} − t [ku]

([ku])! μ[ku)]

)
.

For ease of notation, here and hereafter, we write k for k(t).
We have for any u, T > 0, and sufficiently large t ,

k1/2([ku] − 1)! Z(ku, t)√
σ 2μ−2[ku]−1t2[ku]−1

= k1/2√
σ 2μ−3t2[ku]−1

∫
[0,t]

(t − y)[ku]−1 d(N(y) − μ−1y)

= k1/2([ku] − 1)√
σ 2μ−3t2[ku]−1

(∫ T k/t

0
(N(y) − μ−1y)(t − y)[ku]−2 dy

+
∫ t

T k/t

(N(y) − μ−1y)(t − y)[ku]−2 dy

)

= [ku] − 1

k

∫ T

0

N((t/k)y) − μ−1(t/k)y√
σ 2μ−3t/k

(
1 − y

k

)[ku]−2

dy

+ k1/2([ku] − 1)√
σ 2μ−3t2[ku]−1

∫ t

T k/t

(N(y) − μ−1y)(t − y)[ku]−2 dy.

From [7, Theorem 3.1, p. 162],

N(t ·) − μ−1(·)√
σ 2μ−3t

w−→ B(·) as t → ∞

in the J1-topology on D[0, ∞). By Skorokhod’s representation theorem, there exist versions N̂

and B̂ such that

lim
t→∞ sup

0≤y≤T

∣∣∣∣ N̂(ty) − μ−1ty√
σ 2μ−3t

− B̂(y)

∣∣∣∣ = 0 a.s. for all T > 0. (5.2)

Using (5.2) with t/k replacing t in combination with

lim
t→∞ sup

0≤y≤T

∣∣∣∣
(

1 − y

k(t)

)[k(t)u]−2

− e−uy

∣∣∣∣ = 0,

we infer

lim
t→∞ sup

u∈[0,T ]

∣∣∣∣ N̂((t/k)y) − μ−1(t/k)y√
σ 2μ−3t/k

(
1 − y

k

)[ku]−2

− B̂(y)e−uy

∣∣∣∣ = 0 a.s.

This shows that

lim
t→∞

j∑
i=1

αi

[kui] − 1

k

∫ T

0

N̂((t/k)y) − μ−1(t/k)y√
σ 2μ−3t/k

(
1 − y

k

)[kui ]−2

dy

=
j∑

i=1

αiui

∫ T

0
B̂(y)e−uiy dy a.s.
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and thereupon

j∑
i=1

αi

[kui] − 1

k

∫ T

0

N((t/k)y) − μ−1(t/k)y√
σ 2μ−3t/k

(
1 − y

k

)[kui ]−2

dy

d−→
j∑

i=1

αiui

∫ T

0
B(y)e−uiy dy as t → ∞.

Since limT →∞
∑j

i=1αiui

∫ T

0 B(y)e−uiy dy = ∑j
i=1αiui

∫ ∞
0 B(y)e−uiy dy a.s., it remains to

prove that

lim
T →∞ lim sup

t→∞
P

{∣∣∣∣
j∑

i=1

αi

k1/2([kui] − 1)

t [kui ]−1/2

∫ t

T k/t

(N(y) − μ−1y)(t − y)[kui ]−2 dy

∣∣∣∣ > ε

}

= 0 for all ε > 0.

In view of Markov’s inequality and the fact that E|N(y) − μ−1y| ∼ σμ−3/2
E|B(1)|y1/2 as

y → ∞ (see [7, Theorem 8.4, p. 98]), the latter is a consequence of

lim
T →∞ lim sup

t→∞
k1/2([ku] − 1)

t [ku]−1/2

∫ t

T k/t

y1/2(t − y)[ku]−2 dy = 0 for u > 0.

To justify it, observe that

k1/2([ku] − 1)

t [ku]−1/2

∫ t

T k/t

y1/2(t − y)[ku]−2 dy = [ku] − 1

k

∫ k

T

y1/2
(

1 − y

k

)[ku]−2

dy

→ u

∫ ∞

T

y1/2e−uy dy as t → ∞

by Lebesgue’s dominated convergence theorem. The proof of (5.1) is complete. For later use,
we note that exactly the same argument leads to

∫ k

0

∣∣∣∣N((t/k)y) − μ−1(t/k)y√
σ 2μ−3t/k

∣∣∣∣
(

1 − y

k

)[ku]−2

(1 + y) dy

d−→
∫ ∞

0
|B(y)|e−uy(1 + y) dy as t → ∞ for u > 0. (5.3)

It remains to prove tightness in (2.3). From [1, Theorem 15.5], it suffices to show that for
any 0 < a < b < ∞, ε > 0, and γ ∈ (0, 1), there exist t0 > 0 and δ > 0 such that

P

{
sup

a≤u, v≤b, |u−v|≤δ

∣∣∣∣k1/2([ku] − 1)! Z(ku, t)√
σ 2μ−2[ku]−1t2[ku]−1

− k1/2([kv] − 1)! Z(kv, t)√
σ 2μ−2[kv]−1t2[kv]−1

∣∣∣∣ > ε

}
≤ γ for all t ≥ t0. (5.4)
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As a preparation for the proof of (5.4), we note that for a ≤ u, v ≤ b such that |u − v| ≤ δ,
y ∈ [0, k], and large enough k, we have

∣∣∣∣ [ku] − 1

k

(
1 − y

k

)[ku]−2

− [kv] − 1

k

(
1 − y

k

)[kv]−2∣∣∣∣
=

(
1 − y

k

)[k(u∧v)]−2∣∣∣∣ [k(u ∨ v)] − [k(u ∧ v)]
k

(
1 − y

k

)[k(u∨v)]−[k(u∧v)]

− [k(u ∧ v)] − 1

k

(
1 −

(
1 − y

k

)[k(u∨v)]−[k(u∧v)])∣∣∣∣
≤

(
1 − y

k

)[ka]−2( [k(u ∨ v)] − [k(u ∧ v)]
k

+ b
[k(u ∨ v)] − [k(u ∧ v)]

k
y

)

≤ C|u − v|
(

1 − y

k

)[ka]−2

(1 + y)

≤ Cδ

(
1 − y

k

)[ka]−2

(1 + y)

for an appropriate constant C > 0. With this at hand,

sup
a≤u, v≤b, |u−v|≤δ

∣∣∣∣k1/2([ku] − 1)! Z(ku, t)√
σ 2μ−2[ku]−1t2[ku]−1

− k1/2([kv] − 1)! Z(kv, t)√
σ 2μ−2[kv]−1t2[kv]−1

∣∣∣∣
= sup

a≤u, v≤b, |u−v|≤δ

∣∣∣∣
∫ k

0

N((t/k)y) − μ−1(t/k)y√
σ 2μ−3t/k

( [ku] − 1

k

(
1 − y

k

)[ku]−2

− [kv] − 1

k

(
1 − y

k

)[kv]−2)
dy

∣∣∣∣
≤ Cδ

∫ k

0

∣∣∣∣N((t/k)y) − μ−1(t/k)y√
σ 2μ−3t/k

∣∣∣∣
(

1 − y

k

)[ka]−2

(1 + y) dy.

Recalling (5.3) and choosing sufficiently small δ, we arrive at (5.4). The proof of Theorem 2.2
is complete.

6. Open problem

It is an interesting open problem as to whether weak convergence of the finite-dimensional
distributions in Theorem 1.1 can be strengthened to weak convergence on D(0, ∞). To ensure
this it is sufficient to show that the left-hand side of the centered formula in Theorem 2.1
converges weakly to the zero function on D(0, ∞). Indeed, if the latter were true, the proof
of Theorem 1.1 would only require an inessential modification. However, we have been able
neither prove nor disprove the aforementioned functional version of Theorem 2.1.
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