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A SiGe-based fully-integrated 122-GHz
FMCW radar sensor in an eWLB package
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High-performance SiGe HBTs and advancements in packaging processes have enabled system-in-package (SiP) designs for
millimeter-wave applications. This paper presents a 122-GHz bistatic frequency modulated continuous wave (FMCW)
radar SiP. The intended applications for the SiP are short-range distance and angular position measurements as well as com-
munication links between cooperative radar stations. The chip is realized in a 130-nm SiGe BiCMOS technology and is based
on a fully differential frequency-multiplier chain with in phase quadrature phase receiver and a binary phase shift keying
modulator in the transmit chain. On-wafer measurement results show a maximum transmit output power of 2.7 dBm
and a receiver gain of 11 dB. The chip consumes a DC power of 570 mW at a supply voltage of 3.3 V. The fabricated chip
is integrated in an embedded wafer level ball grid array (eWLB) package. Transmit/receive rhombic antenna arrays with
eight elements are designed in two eWLB packages with and without backside metal, with a measured peak gain of
11 dBi. The transceiver chip size is 1.8 mm × 2 mm, while the package size is 12 mm × 6 mm, respectively. FMCW measure-
ments have been conducted with a sweep bandwidth of up to 17 GHz and a measured range resolution of 1.5 cm has been
demonstrated. 2D positions of multiple targets have been computed using two coherently linked radar stations.
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I . I N T R O D U C T I O N

Since the past few years SiGe BiCMOS technology has proven
itself as the technology of choice for high performance, highly
integrated millimeter-wave (mm-wave) systems especially for
commercial applications and markets where cost reduction
holds a central importance. SiGe technology has been able
to stand up to the III–V semiconductor competition because
of its high integration capability, cost effectiveness, and high-
temperature performance. On the other hand, as compared
with CMOS only systems, SiGe BiCMOS has proven better
output power (on account of its higher breakdown voltages)
and flicker or 1/f noise performance [1, 2]. Furthermore,
advancements in packaging techniques and processes sup-
porting mm-wave have added an extra dimension in system
approach and design. These milestones have enabled
mm-wave and even sub-mm-wave radar and local positioning
systems [3], distance and gesture recognition [4], active/
passive imaging [5], and ultra-high-speed communication
systems [6].

The D-band frequency range, which spans from 110 to
170 GHz, is especially suited for realizing highly compact

systems, mainly due to the smaller size of the antennas.
Furthermore, systems can still be designed in fundamental
mode, because of the sufficiently available gain. The allowable
1-GHz bandwidth in the industrial, scientific and medical
(ISM) band provides the extra opportunity for many commer-
cial applications, such as compact sensors for drones/remotely
operated aircrafts, automotive radars [7] and for detection and
recognition of vulnerable road users [8]. For facilitating such
tasks with even better accuracy and resolution, front-ends
with higher level of integration and improved system method-
ology are required. One important and often the most crucial
step in system design, which also directly affects the overall
cost, are to avoid/improve the bond wire transitions from
the chip to the on-Printed circuit board (PCB) antennas.
Since there exists no simple possibility to considerably
modify the electrical characteristics of these bond wire transi-
tions, one has to tolerate their losses and the bandwidth limi-
tation effects. One way to avoid the bond wire transitions is to
utilize an antenna-on-chip (AoC), which however would
consume valuable chip area and has inherently low radiation
efficiency because of high permittivity and low resistivity of
the silicon substrate. Even though the performance of AoCs
can be improved by using several techniques such as backside
etching [9], proton implantation, and dielectric lenses, all of
these techniques, however, require additional processing
steps and sometimes even manual procedures, which increase
the cost, are time consuming and reduce the reliability of the
whole system [10]. A better alternative in terms of perform-
ance, robustness, and ease of integration, is to have
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antenna-in-package (AiP) designs, which have a redistribu-
tion layer (RDL) for the chip-to-package transitions. This
work is an extended version of the reported 122-GHz radar
sensor in [11], which focuses on the circuit and antenna
design/simulation details, more comprehensive frequency
modulated continuous wave (FMCW) radar measurements,
as well as using the integrated binary phase shift keying
(BPSK) TX modulator to determine two-dimensional (2D)
positions of multi-static targets. This paper is organized as
follows: Section II presents the overall system-in-package
(SiP) concept, architecture, and a comparison with other
package solutions. The fully-integrated transceiver design, the
circuit topology, and the schematics are described in Section
III. This section also presents the simulation results of most
of the building blocks. Section IV explains in detail the TX/
RX AiP and its optimization process. Section V discusses the
on-chip measurement results as well as far-field measurements
of the package. The demonstration of the FMCW radar mea-
surements and the determination of the system-level range
resolution follows in Section VI. The 2D target localization
measurements are also presented in this section.

I I . S I P C O N C E P T A N D
A R C H I T E C T U R E

Many successful demonstrations of AiP solutions [12, 13] in
the mmW region have established its premise of being an
elegant and reliable solution, and its capability of mainstream
high-volume production [10]. However, the electrical/radi-
ation performance of the AiP is strongly dependent upon
the frequency of operation and the particular packaging tech-
nology or material being used. The LTCC (low-temperature
co-fired ceramic) process has been used to demonstrate
numerous planar antennas or antenna arrays capable of
being integrated with MMICs in the W-band [14] and in
the D-band [15]. Recently, a packaging solution based on flip-
chip technology was presented, which also eliminates bond
wire transitions by routing through the antenna substrate.
The packaging solution uses flexible polyimide substrate and
demonstrated an AiP with 10 dBi gain and 80% radiation effi-
ciency [16]. The embedded wafer ball grid array (eWLB) on
account of its small form factor, higher I/O density, integra-
tion flexibility and superior mm-wave electrical performance
has certainly a distinct advantage over the traditional packages
such as BGA or quad flat no leads package (QFN) [17]. One of
the major advantages of an eWLB package is the use of a RDL
for implementing the chip–package transitions. The electrical
behavior of the RDL line can be designed as per the require-
ments by modifying its layout. The minimum width in the
order of a few tens of micrometer of this layer also provides
much more flexibility in impedance selection and matching
at the chip–antenna interface. It has been shown that a
chip–package transition insertion loss in an eWLB package
can be about 1 dB better as compared with a very thin QFN
package (VQFN) [17].

Figure 1(a) presents a perspective view of the eWLB
package, while the RDL transition from the chip pads to the
package through a via, is shown in Fig. 1(b). This RDL can
eventually feed an AiP or in case of DC/IO pads connects to
the BGA, which is finally soldered on a low-cost PCB.
Figure 1(c) shows the architecture of the radar sensor,
which is based on the fully-integrated 122 GHz transceiver

chip. The transceiver chip is integrated in the eWLB
package and all the chip-to-package transitions are implemen-
ted using the RDL. Since the only high-frequency signal is the
4 GHz or 20 GHz LO signal, the SiP can be mounted on a
low-cost PCB via the BGA. This clearly demonstrates the flexi-
bility and cost effectiveness of this solution. It thus provides a
platform for easy integration of multiple SiP for MIMO appli-
cations. The SiP consists of a single TX and a single RX
antenna array arrangement, which forms an FMCW bistatic
radar. The bistatic radar provides improved isolation, avoids
the use of a hybrid-coupler and is not too much prone to
DC-offset problems.

I I I . F U L L Y I N T E G R A T E D
T R A N S C E I V E R D E S I G N

The block level diagram of the 122-GHz transceiver chip is
shown in Fig. 1(c), which is realized in Infineon’s advanced
SiGe BiCMOS technology B11HFC. The process features
HBTs with a minimum effective emitter width of 130 nm,
an fT/fmax of 250/370 GHz and a collector–emitter breakdown
voltage BVCEO of 1.5 V. Two thick copper layers are available
for RF transmission lines, and additional four thin layers for
interconnections. The transceiver chip is based on a frequency
multiplier chain, as opposed to the alternate solution of using
a mm-wave voltage controlled oscillator (VCO) and a subse-
quent frequency divider. The multiplication factor (M)
increases the output phase noise by 20 log M. Off-the-shelf
VCOs are available with phase noise in the range of 295 to
2100 dBc/Hz at a center frequency of 22 GHz and
@100 kHz offset (e.g. Hittite’s HMC738LP4 MMIC VCO),
which makes the final phase noise performance comparable
with or in most of the cases even better than that of mmW
VCOs. The receive section of the transceiver consists of a dif-
ferential in phase quadrature phase (IQ) receiver with Gilbert
cell-based down-conversion mixers and a single-stage low
noise amplifier (LNA). The quadrature phase is generated
using a differential microstrip 3-dB hybrid coupler. The
power loss of the LO signal at the coupler is compensated
by a buffer amplifier. The transceiver runs on 1.8 and 3.3 V
power supplies and consumes only around half a Watt,
which is much lower than the maximum power dissipation
rating for this package size. It does not require any additional
heat sinks, which itself is a major advantage in terms of real-
izing larger systems.

A) Wideband active balun and buffer
Figure 2(a) shows the simplified schematic of the active balun
and the buffer stage. An active balun occupies much less chip
area as compared with a passive balun, especially at low
microwave frequencies. The active balun is based on a
simple AC-coupled common-emitter (CE) topology. In an
ideal condition, when no load current is drawn, the collector
and emitter terminals of the Q1 transistor would be 1808 out
of phase. However, there would be some amplitude imbalance
due to the voltage gain provided by the transistor at the col-
lector terminal. To avoid loading Q1, emitter-followers (EFs)
are used together with a fully-differential CE amplifier with
resistive degeneration. This increases the common-mode-
rejection ratio and thus reduces the amplitude imbalance at
the load. The simulated results of the balun and the buffer
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are provided in Fig. 2(b). The circuit shows a wideband per-
formance with a maximum amplitude imbalance of about
1.5 dB and a phase imbalance of +98 from 2 to 22 GHz.
The simulated compression curves at 4 and 20 GHz plotted
in Fig. 2(c), show a saturated power of –3 and 2 dBm,
respectively.

B) Frequency multiplier chain
The multiplier chain of the transceiver is designed to provide
either a multiplication factor of 30 or 6 depending upon the
input frequency of 4 GHz or 20 GHz. The 4 GHz input
allows one to utilize low-cost off-the-shelf frequency synthesi-
zers on low-cost PCB. This however produces many harmo-
nics with a separation of 4 GHz. The 20 GHz input signal
can still be generated using commercially available VCOs
and PLL chips, although they are more expensive. This
option however, allows one to attain a much more harmonic-
ally clean spectrum.

1) 20-ghz × 5 frequency multiplier and

buffer

The ×5 frequency multiplier functionally acts as a
fifth-harmonic extractor or as a 20 GHz bandpass filter,
depending upon the input frequency. The simplified sche-
matic of the multiplier and the buffer is shown in Fig. 2(d).
The core circuit consists of a cascode amplifier whose
output frequency is tuned to 20 GHz using a parallel LC res-
onator at the collector terminal. The 270 pH inductors are rea-
lized using two turn spirals. The selectivity of the circuit is
enhanced by employing three cascades of the core circuit fol-
lowed by EFs and a resistively degenerated fully-differential
CE amplifier. The simulated results are plotted in Fig. 2(e)
for an input power of 0 dBm. The undesired third and
seventh harmonic are more than 30 dB down for the LO
signal of 4 GHz. For an input LO signal of 20 GHz, the
circuit simply behaves as an amplifying stage. As shown in
Fig. 2(f), the 20-GHz signal is already saturated at an input
power level of 210 dBm.

Fig. 1. (a) Perspective view of 122-GHz TRX chip integrated in eWLB package with TX/RX antenna in RDL1 and secondary backside metal in RDL2. (b)
Chip-to-package transition in the eWLB package. (c) Block level diagram of the 122-GHz radar sensor showing the chip, SiP, and PCB.
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2) 40-ghz frequency doubler and active

balun

Frequency doubling can be achieved either by using a
Gilbert-cell or by a push–push stage. A Gilbert-cell-based
doubler requires quadrature phase and stacking of transistors,
and therefore requires elevated supply voltage for sufficient
gain. However, it produces a differential output signal. On
the other hand, a push–push circuit is much simpler and
can easily be operated at a lower supply voltage. Therefore,
the 40-GHz frequency doubler is designed in a push–push
configuration. The balun still can be realized using a single
transistor, as shown in Fig. 3(a). The simulated differential
output power of the second and fourth harmonic are plotted
in Fig. 3(b). This includes the loss incurred at the active
balun. The doubler saturates around 21 dBm, as shown in
Fig. 3(c).

3) 120-ghz frequency tripler and cascode

buffer

This is the last frequency multiplication section in the multi-
plier chain and governs its overall frequency response. The
simplified schematic of the frequency tripler circuit along
with the cascode based buffer amplifer is shown in Fig. 3(d).
The core circuit is again a CE based amplifier stage which is
tuned to the third harmonic of the input signal using a shunt-
series output matching network. Since the third harmonic is at
a very low amplitude, two cascaded stages of cascode ampli-
fiers are used to boost the signal. The output of the buffer is
matched to a differential 30-V impedance. This impedance
is chosen in order to match it to the parallel combination of
the modulator and the LO buffer, which both have a differen-
tial input-impedance of 60 V. A three-reactive element

matching topology is used both for the input and the
output, for a wideband operation. A simple T-type differential
transmission line power divider is used for splitting the LO
signal between the transmit and the receive section. The simu-
lated output power of the third, fifth, and seventh harmonics
are shown in Fig. 3(e) at an input power of 0 dBm, indicating a
wide bandwidth of more than 30 GHz. For an efficient and
wide bandwidth performance it is ensured that each subse-
quent multiplying unit is saturated in the chain. The tripler/
buffer circuit is driven well into saturation by the preceding
doubler stage and shows a simulated saturated power of
about 3 dBm, as shown in Fig. 3(f).

C) 120-GHz BPSK modulator
The modulator is based on a fully-differential Gilbert-cell top-
ology, as shown in Fig. 4(a). The input modulating signal is
directly coupled to the upper quad, while the input RF
signal is fed to the transconductance pair. The BPSK modula-
tor is operated on a 3.3-V supply, to provide output power
above 0 dBm. The modulator uses HBTs with 9 and 8 mm
effective emitter-lengths, respectively.

D) Fully differential IQ receiver
Figure 1(c) shows the receiver architecture. A single-stage
cascade-based LNA with an input and output impedance of
100 and 30 V, respectively (cf. Fig. 4(c)), is used for moderate
amplification. A passive power divider splits the input power
to the two down-conversion mixers. Each of the mixers is
based on fully-differential Gilbert cell topology, as shown in
the simplified schematic in Fig. 4(b). All the HBTs in the
quad and the transconductance stage have an effective-emitter

Fig. 2. (a) Simplified schematic of the active balun and buffer capable of working with 4 GHz or 20 GHz LO input signal. (b) Simulated amplitude/phase
imbalance and VSWR. (c) POUT versus PIN curves showing a 1-dB output compression point of 21 and 2.8 dBm at 4 and 20 GHz, respectively. (d) Simplified
schematic of the ×5 frequency multiplier and buffer for an input frequency of 4 GHz. (e) Simulated output power of the third, fifth, and seventh harmonic of
the ×5 multiplier circuit, at an input power of 0 dBm. (f) POUT versus PIN (5th harmonic) curves when the input LO signal is 4 and 20 GHz.
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length of 7 mm and are biased around peak fT/2 current density.
EFs utilizing high-voltage HBTs are used at the collector to
buffer the output intermediate frequency (IF) signals. To gener-
ate the IQ signals for the receiver, a differential 3-dB 908 hybrid
coupler was simulated and optimized in Sonnet. A folded struc-
ture is selected for reducing the footprint. The coupler achieves
a simulated amplitude and phase imbalance of 0.7 dB and 88
over the 110–130 GHz frequency range.

I V . A I P D E S I G N

The basic antenna element design for the proposed antenna
array configuration is a rhombic AiP with each side length
equal to lg/4 (where lg is the guided wavelength at

122 GHz), similar to the one presented in [12]. This shape
of the antenna is well suited for designing an N-element
array, which is fed using a single element and the subsequent
elements are connected using half-wavelength lines. Such a
configuration reduces the unwanted radiations from the
interconnecting feedlines on account of opposite flow of
current. In order to fully utilize the fan-out area an eight-
element antenna array configuration is selected. Full-wave
3D EM simulations of the packaged antennas are performed
in CST Microwave Studio, as can be seen in Fig. 5(a). For
improving the return-loss bandwidth of the rhombic
element, tapered lines are used instead of uniform widths.
The lines are 85 mm at the thickest point (along the
y-axis) and linearly tapered to a width of 35 mm. Fig. 5(b)
shows the simulated input reflection coefficient of the AiP,

Fig. 3. (a) Simplified schematic of the 40-GHz frequency doubler and active balun. (b) Simulated output power of the second and fourth harmonic, at an input
power of 0 dBm. (c) POUT versus PIN curve at input LO signal of 20 GHz. (d) Simplified schematic of the 120-GHz frequency tripler with cascade-based buffer
amplifier. (e) Simulated output power of the third, fifth, and seventh harmonic, at an input power of 0 dBm. (f) POUT versus PIN curve at input LO signal of 40 GHz.

Fig. 4. Simplified schematic of (a) 120-GHz Gilbert-cell-based differential BPSK modulator. (b) 120-GHz Gilbert-cell-based fully differential down-conversion
mixer with emitter followers. (c) 120-GHz fully-differential cascade-based low-noise amplifier.
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using elements having uniform-widths and tapered-widths.
The improvement in the reflection coefficient magnitude as
well as the bandwidth, using the tapered lines, is evident. By
using the tapered lines a 10-dB return loss bandwidth of

around 30 GHz is achieved. Furthermore, the tapering of
the lines does not significantly affect the gain or the radi-
ation pattern. The simulated input impedance of the
antenna array is 162 V, which is then matched to a 100-V

Fig. 5. AiP simulations in CST Microwave Studio. (a) Perspective view of the eWLB package showing the AiP with the backside metal and the 3D far-field
simulation results. (b) Simulated input reflection coefficient of the AiP with uniform and tapered lines. It can be seen that the tapering considerably improves
the return loss of the antenna.

Fig. 6. From chip to system. (a) The 122-GHz transceiver chip with building blocks indicated. Size: 1800mm × 2006mm. (b) The bottom side of the fabricated
122-GHz eWLB package, showing the transceiver chip, the RX/TX antennas on the RDL and the BGA. Size: 12 mm × 8 mm. (c) The 122-GHz package soldered
on a low-cost PCB connected to the FPGA-based baseband board with high-performance analog IF processing chain (referred to as the Radar Book (http://www.
inras.at/en/products/radarbook.html)).
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differential line using a quarter-wave transformer of 126 V

characteristic impedance. One inherent problem faced
while designing antennas in an eWLB package is the gener-
ation of standing waves in the package, which tend to
produce undesired ripples in the radiation pattern. This
effect is especially significant at higher frequencies or
when the electrical size of the package is significantly large

(more than 3 lg) as compared to the operating wavelength.
One method to reduce this, as proposed in [18] is to use a
backside metal on the RDL2 layer. The tangential compo-
nents of the electric fields are reduced to zero, providing a
secondary aperture. For the proposed AiP, this aperture
opening was optimized for higher gain and improved radi-
ation symmetry. For comparison purpose one package was

Fig. 7. Block diagram of the measurement setup inside an anechoic chamber. The setup is used for measuring EIRP and the receiver gain, from which antenna gain
is calculated. The blue lines and the red lines indicate measurements when the SiP is in receive-only mode and transmit-only mode, respectively. The black lines are
used for both transmit and receive measurements.

Fig. 8. (a) Measured H-plane and (b) E-plane radiation pattern of the AiP with and without backside metal at a frequency of 122 GHz. (c) Measured
cross-polarization level of the AiP with and without backside metal. (d) Measured on-chip output power, EIRP (with and without backside metal) and
receiver gain (including receive antenna).
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designed without the backside metal. A simulated peak rea-
lized gain of 12.3 dBi is achieved for the AiP with the back-
side metal (cf. Fig. 5(a)).

V . O N - W A F E R A N D F A R - F I E L D
M E A S U R E M E N T S

Figure 6(a) shows the micrograph of the transceiver chip. The
dimensions of the chip are 1800 × 2006mm2, which corre-
sponds to 3.6 mm2. The on-wafer measurements were
carried out using D-band GSG wafer-probes (by GGB), and
the second RF-pad was terminated on-chip via laser fuses.
The RF power was measured using Agilent’s power meter
E4416A and a W-band power sensor W8486A. The input
LO signal was swept from 3.67 to 4.67 GHz to characterize
the ×30 multiplication. The multiplier chain becomes satu-
rated at an input power level of 25 dBm. Far-field measure-
ments for radiation pattern, EIRP and receiver gain are
conducted using a waveguide standard gain horn antenna
from Mi-Wave (25 dBi) and a D-band OML frequency con-
verter. The detailed measurement setup is shown in Fig. 7.
The conversion loss of the D-band frequency converter is
de-embedded from the measurements. The radiation pattern
of the AiPs with and without the backside metal is measured
using an electronically controlled turntable. The measured

radiation patterns at a frequency of 122 GHz are presented
in Figs 8(a) and 8(b). Both the E-plane patterns are quite sym-
metrical; however, the improvement is much more prominent
in the H-plane. Furthermore, using the backside metal the
antenna has a comparatively wider beam width, which
becomes very useful for detecting short-range targets at
steep angles. A cross-polarization measurement was per-
formed with the AiPs with and without backside metal.
Measurement results presented in Fig. 8(c) show an overall
better performance with the backside metal. Figure 8(d)
shows the measured on-wafer output power, EIRP of the
two packages with and without backside and the receiver
gain. The first step is the measurement of EIRP, when the
D-band frequency converter is used in a receive mode by con-
necting an LO signal:

EIRPSiP = PR + LFS − Gstd, (1)

where PR is the received power measured at the D-band con-
verters, LFS is the free-space loss, and Gstd is the gain of the
standard gain horn antenna. The AiP gain (GAiP) is then cal-
culated using the measured on-chip output power of the chip.
In the second step, the D-band converters are used in transmit
mode by connecting the RF signal to the converters. The
in-package receiver gain including the AiP gain is then

Table 1. Performance comparison of D-band radar sensors.

Technology fo (GHz) GRX (dB) NF (GHz) P1dB (dBm) POUT (dBm) PDC (mW) GAiP (dBi) EIRP (dBm) BW∗ GHz Ref.

0.13 mm SiGe 122 13 11.5 220 3.6† 0.9 6‡ 3.6§ 8.7 [19]
0.13 mm SiGe 120 12–36 9.5 211 0 0.35 11‡ 11} – [20]
0.13 mm SiGe 122 23 14 29 22.5 0.99 – – – [21]
0.13 mm SiGe 140 8.3∗∗ 19.3∗∗ 23∗∗ 21 0.65 – – 30 [22]
0.13 mm SiGe 122 12 11∗∗ 212∗∗ 2.7 0.55 11†† 13.7 17 This work

∗3-dB BW measured on-chip.
†At transmitter output not including 26 dB antenna coupler.
‡Antenna-on-chip.
§Estimated – does not include focusing lens.
}Estimated – no direct EIRP measurements shown.
∗∗Simulation results.
††Antenna-in-package.

Fig. 9. Measured IF amplitude spectrum with a single static corner reflector using a Hann window. (a) Comparison of measured IF amplitude spectrum for sweep
bandwidths of 12, 14 and 17 GHz. (b) Zoomed-out amplitude spectrum of the target with a 17 GHz sweep bandwidth showing a 3-dB width of 1.5 cm, to
demonstrate the achieved resolution.
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calculated using

GRX + GAiP = PIF + LFS − EIRPconverter, (2)

where GRX and PIF are the on-chip receiver gain and measured
IF power of the chip.

The SiP achieves a peak EIRP of 13.7 dBm (cf. Fig. 8(d)),
which is the highest reported EIRP for D-band radar
sensors without using a lens (cf. Table 1). It has a 210 dB
EIRP bandwidth (when driven by the 4-GHz LO signal) of
more than 10 GHz. The in-package receiver gain is more
than 20 dB at 122 GHz.

V I . F M C W R A D A R S Y S T E M
M E A S U R E M E N T S

A) Range resolution measurements
For determining the system-level bandwidth performance of
the SiP, which translates to the achieved range resolution,
the 122-GHz radar SiP mounted on the Radar Book was
tested in an anechoic chamber with a small corner reflector
with a radar cross-section (RCS) of 23.5 dBsm. A 20-GHz
Hittite MMIC VCO stabilized by a phase-locked loop (PLL)
is configured with the Radar Book to generate broadband
linear FMCW chirps. A ramp duration of 1.2 ms was used
for all the measurements. Two sets of measurements were

Fig. 10. (a) Static multi-target setup in an anechoic chamber consisting of a metallic pole (target 1) and two corner reflectors (targets 2 and 3). Measurements are
taken using two synchronized radars placed 20 cm apart. Radar 1 is working in a classical FMCW configuration with no modulation, while radar 2 utilizes an
identical chirp with a BPSK-modulated signal at a bit-rate of 104 kbps. (b) Measured IF spectrum of the radar 2. The modulated carrier is seen at a frequency
of 52 kHz. Peaks representing 1′ , 2′ , and 3′ are the target signals from radar 1 TX, whereas peaks indicated by 1, 2, and 3 are the target signals from the
modulated chirps (radar 2 TX). (c) Calculated 2D position of the three targets by using the measured IF spectra.
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performed with a sweep bandwidth of 12 and 14 GHz with an
fstart of 114 GHz. A third measurement was taken with an fstart

of 113 GHz and was swept for 17 GHz. The measured IF amp-
litude spectra are presented in Fig. 9(a). The null-to-null dis-
tances for the case of 12, 14, and 17 GHz sweep bandwidths
are 5.4, 4.8, and 4.1 cm, respectively, which correspond well
to the theoretical values (which are 5, 4.2, and 3.5 cm, respect-
ively), considering that the measurements now include the
bandwidth limitation due to the chip-to-package transition,
as well as the antenna. A 3-dB width of 1.5 cm is achieved
with a 17 GHz sweep bandwidth demonstrating the attained
range resolution, as shown in Fig. 9(b). To further evaluate
the quality of the measurement results, 500 individual range
measurements were taken showing a standard deviation of
about 90 mm.

B) 2D Position measurements using BPSK TX
modulator
To demonstrate one possible application of a BPSK-modu-
lated FMCW radar, a static multi-target setup was arranged
in an anechoic chamber, as shown in Fig. 10(a). Target 1 is
a metallic pole (19.4 dBsm), while targets 2 and 3 are small
corner cube reflectors (14.0 dBsm), placed at different angles
and distances. Two radar systems with identical chips
( fstart ¼ 119 GHz, fstop ¼ 123 GHz, Tsweep ¼ 1.2 ms) are
placed 20 cm apart. Radar 1 uses unmodulated chirps, while
radar 2 utilizes a BPSK-modulated TX signal with a data
rate of 104 kbps. In this scenario, each radar receives the
reflected version of its own transmitted signal as well as
from the other station. The reflected signals from the two
radars remain isolated from each other because of the BPSK
modulation. Figure 10(b) shows the IF signal received at the
radar 2, showing the direct targets signals (1, 2, and 3, with
overall higher amplitude) and the target signals transmitted
by the radar 1 (1′, 2′, and 3′). Since the distance between the
radars is known and the distances of the targets from each
radars are measured, the 2D position of the targets can be
computed. This is shown in Fig. 10(c). Each of the targets is
marked with a circle. The signals at the origin represent the
TX–RX crosstalk. The 2D positions are computed with
direct target responses from radars 1 and 2 using a single
measurement, and do not utilize the indirect target responses
(from radar 1 to radar 2, and vice versa), which can still lead to
further accuracy improvement.

V I I . C O N C L U S I O N

This paper has presented a 122-GHz FMCW SiP with a BPSK
transmit modulator. Detailed characterizations of the transceiver
chip and the AiP have been shown. The SiP demonstrates the
highest EIRP for D-band radars, without using any external
lens. A performance comparison of the presented SiP is pre-
sented in Table 1. FMCW measurements show a range reso-
lution up to 1.5 cm at a sweep bandwidth of 17 GHz. The
application of the TX BPSK modulator in determining 2D posi-
tions of targets has been demonstrated. The SiP with its less than
half-a-Watt power consumption, good EIRP and bandwidth of
17 GHz is an excellent candidate for being used for imaging
applications, cooperative radars, and air-borne target localiza-
tion as well as for other sophisticated MIMO applications.
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