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SUMMARY
This paper investigates the dynamics of an underwater vehicle-manipulator system (UVMS) con-
sisting of a two-link flexible-joint manipulator affixed to an autonomous underwater vehicle. The
quasi-Lagrange formulation is utilized in deriving a realistic mathematical model of the UVMS
considering joints’ friction, hysteretic coupling between the joints and links, and the nonlinear hydro-
dynamic forces acting on the system, such as added mass, viscous damping, buoyancy, drag, and
vortex-induced forces. Numerical simulations are performed to demonstrate the effects of hydrody-
namic forces and system coupling between the vehicle and the manipulator and the joints and the
links on the precise positioning of the end effector.

KEYWORDS: Underwater vehicle-manipulator system; Fluid–structure interaction; Underwater
robotics; Joint friction and hysteresis; Vortex-induced vibrations; Quasi-Lagrange formulation.

Nomenclature

Notation Meaning

Ap Frontal area of an object
B(xB, yB, zB) Center of buoyancy of the vehicle
cu, cv, cw, cp, cq, Viscous damping coefficients associated with the motion of the
cr, cj, cα1, cα2 vehicle and the manipulator
Ca Added mass coefficient
Cd Drag coefficient
Cl Lift coefficient
Cv Coriolis and centrifugal force matrix in (19)
d Diameter of the cylinder (i.e., vehicle/manipulator’s link)
d v Diameter of the vehicle
Dv Vector of hydrodynamic drag forces on UVMS in (19)
EK Kinetic energy of the UVMS
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Notation Meaning

EKa Kinetic energy of the actuators
EKl Kinetic energy of the links of the manipulator
EKm Kinetic energy of the manipulator
EKv Kinetic energy of the vehicle
EP Potential energy
fj Dynamic friction torque of the flexible joint
fu Force input to drive the vehicle along surge direction (iv)
fv Force input to drive the vehicle along sway direction (jv)
fw Force input to drive the vehicle along heave direction (kv)
Fa Added mass force
Fb Buoyancy force
FC Coulomb friction
Fd Drag force
FS Stribeck friction
Fv Force vector in body-fixed frame
Fvisc Viscous damping force
FVIV Vortex-induced force
g Gravitational acceleration
G(xG, yG, zG) Center of gravity of the UVMS
Gv Vector of gravity and buoyancy in (19)
I Identity matrix
J1,a Added moment of inertia of link 1
J2,a Added moment of inertia of link 2
Ja1 Moment of inertial of the rotor of actuator 1
Ja2 Moment of inertial of the rotor of actuator 2
Jax Added moment of inertia of the vehicle about iv-axis
Jay Added moment of inertia of the vehicle about jv-axis
Jaz Added moment of inertia of the vehicle about jv-axis
JG Rotational inertia matrix of the vehicle
Jl1 Moment of inertia of link 1
Jl2 Moment of inertia of link 2
Jxx, Jyy, and Jzz Moments of inertia of the vehicle about iv, jv, and kv

Jxy = Jyx, Jyz = Jzy, Jxz = Jzx Products of the vehicle’s inertias about iv, jv, and kv

kl Stiffness of flexible joints (in torsional spring model) of manipulator
km Stiffness of the flexible joint connecting manipulator with vehicle
K Stiffness of the flexible joint
l1 Length of link 1
l2 Length of link 2
lc1 Position of the CG of link 1 w.r.t. O1

lc2 Position of the CG of link 2 w.r.t. O2

lv Length of the vehicle
m1 Mass of link 1
m1,au Added mass of link 1 along surge direction
m2 Mass of link 2
m2,au Added mass of link 2 along surge direction
ma1 Mass of actuator 1
ma2 Mass of actuator 2
mmau Added mass of the manipulator along surge direction
mmav Added mass of the manipulator along sway direction
mmaw Added mass of the manipulator along heave direction
mv Mass of the underwater vehicle
mvau Added mass of the vehicle along surge direction
mvav Added mass of the vehicle along sway direction
mvaw Added mass of the vehicle along heave direction
Mv Mass matrix in (19)
Nr Gear transmission ratio of the actuator
O1 Position of joint 1 w.r.t. Ov

O2 Position of joint 2 w.r.t. O1

O-ijk Inertial frame
Ov-ivjvkv Body-fixed frame (affixed to the AUV)
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Notation Meaning

p(t) Angular velocity of the AUV about the iv-axis (roll rate)
q(t) Angular velocity of the AUV about the jv-axis (pitch rate)
Q Vector of generalized forces
r(t) Angular velocity of the AUV about the kv-axis (yaw rate)
rg rg = [xg, yg, zg] Vector representing CG of the UVMS w.r.t. Ov-ivjvkv

St Strouhal number
su Position of O1 w.r.t. Ov along the iv-axis
sw Position of O1 w.r.t. Ov along the kv-axis
T Coordinate transformation matrix
u(t) Linear velocity of the AUV along the i-axis w.r.t. Ov-ivjvkv

U Sea current along the i-axis
v(t) Linear velocity of the AUV along the jv-axis (sway) w.r.t. Ov-ivjvkv

vc1 Velocity of the CG of link 1
vc2 Velocity of the CG of link 2
vr Velocity of the object with respect to the upstream velocity
vs Shape factor in dynamic friction of the flexible joint
vv vv = [u, v,w], translational quasi velocities
V Sea current along the j-axis
Vs Volume of submerged body
w(t) Linear velocity of the AUV along the kv-axis (heave) w.r.t. Ov-ivjvkv

W Sea current along the k-axis
x(t) Position of the AUV along the i-axis (surge) w.r.t. O-ijk
y(t) Position of the AUV along the j-axis (sway) w.r.t. O-ijk
z(t) Position of the AUV along the k-axis (heave)w.r.t.O-ijk
zh A variable capturing deflection of the hysteretic spring
α1 Angle of link 1 w.r.t. the iv-axis
α2 Angle of link 2 w.r.t. link 1
β1 Actuator angle at joint 1
β2 Actuator angle at joint 2
ϕ(t) Roll angle of the AUV w.r.t. O-ijk
θ (t) Pitch angle of the AUV w.r.t. O-ijk
ψ(t) Yaw angle of the AUV w.r.t. O-ijk
ω1 ω1 = α′

1, angular velocity of link 1
ω2 ω2 = α′

2, angular velocity of link 2
ω3 ω3 = β ′

1, angular velocity of motor 1
ω4 ω4 = β ′

2, angular velocity of motor 2
ωv Rotational quasi velocities: ωv = [

p, q, r
]

ωvs Vortex-shedding frequency
σ The weighting function in hysteresis model
ρw Density of water
τ 1 Coupling term between link 1 and joint motor 1
τ 2 Coupling term between link 2 and joint motor 2
τ p Torque input to the vehicle to induce roll motion
τ q Torque input to the vehicle to induce pitch motion
τ r Torque input to the vehicle to induce yaw motion
τβ1 Torque generated by motor 1
τβ2 Torque generated by motor 2
� The torque transmitted by the hysteretic spring
μ Stribeck velocity
λ Velocity scaling factor
η Vector of generalized coordinates
ξ Body-fixed or quasi velocities

1. Introduction
An underwater vehicle-manipulator system (UVMS) is an underwater vehicle, such as a remotely
operated vehicle (ROV) or an autonomous underwater vehicle (AUV), with a robotic manipulator
affixed to it. The UVMS is mostly utilized for performing underwater inspection, maintenance, and
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repair tasks requiring high precision, such as plugging, gripping, structural defects detection, fas-
tening, drilling. According to ref. [1], such tasks require a high positioning accuracy of the end
effector of the order of a centimeter or less. However, considering the hydrodynamic forces act-
ing on the UVMS and the coupling between the motions of the vehicle and the manipulator, it is
a strenuous task to achieve such a high precision of the end effector.2 To improve the precision of
the end effector, control schemes based on vehicle–motion compensation can be applied. However,
such schemes rely on the accuracy of the position sensors of the vehicle, which is mostly of the
order of a meter and, therefore, cannot effectively meet the precision requirements for positioning
the end effector. Therefore, an alternate way of enhancing the precision of the end effector is to
pursue model-based control schemes,3 which requires developing a comprehensive dynamics model
of the UVMS. The already existing works on the dynamics of the UVMS overlook some important
aspects of coupling that exists within the UVMS components. Such modeling inaccuracies hamper
the performance of the model-based control schemes in achieving high precision positioning of the
end effector. Therefore, the main aim of this paper is to develop a comprehensive dynamic model of
the UVMS to extensively analyze the dynamics of the UVMS in view of the system’s coupling and
the external nonlinear hydrodynamic forces acting on the system.

Several methods have been used to derive the dynamics equation of the UVMS, such as Newton–
Euler method, Kane’s method, and the Lagrange method. The UVMS is a highly nonlinear and
coupled system that operates in harsh environmental conditions.4 A proper choice of dynamic mod-
els of the UVMS is crucial for the control design due to the extremely complicated and coupled
dynamics and uncertain underwater environments. It is desired that the UVMS be modeled with as
much detail as possible for simulation purposes. Further, it is also desirable to retain the most signifi-
cant dynamic effects in the model to simplify the analysis and control design. Moreover, uncertainties
in the hydrodynamic parameters and influence of external disturbances, such as ocean currents may
be detrimental to the performance of the UVMS. The dynamics of the AUV system without onboard
manipulators has already been explored in detail.5 However, the works investigating the dynamics
of the UVMS are limited: In refs. [6]–[10], the dynamic models of the UVMS were derived using
the Newton–Euler algorithm, whereas in ref. [11], the quasi-Lagrange method was used. In ref. [12],
a dynamic model of an underwater vehicle was developed with a robotic manipulator using Kane’s
method. The problem of detailed modeling and simulation of the dynamic coupling between an
underwater vehicle and manipulator system was studied in ref. [9] considering damping, restoring
forces, inertial effects of manipulator mounted on the AUV, and actuator and sensor characteristics.

Considering underwater operation of the UVMs, the dynamics of the manipulator in a fluid envi-
ronment must be investigated in detail, which involves several hydrodynamic forces, such as the
added mass force, viscous damping, buoyancy, drag force, and the vortex-induced forces acting
on the UVMS. Although, several existing works have dealt with the effect of drag force on the
manipulator,13−14 the effect of vortex-induced vibrations (VIVs) has not been thoroughly investi-
gated. Whenever a fluid flows past an object, an unstable wake region is formed around the object
due to the vortices shed from its structure, which causes the object to vibrate (i.e., vortex-induced
vibrations (VIVs)) in the perpendicular direction of the flow.15−16 Also, due to the fact that the vortex-
shedding phenomenon occurs at varying frequencies, VIV is a highly unpredictable and nonlinear
phenomenon.17 The mathematical model, developed in this paper, considers vortex-induced forces
acting on the underwater vehicle and investigates the effects of the VIVs transmitted from the vehicle
to the manipulator.

The other most important aspect of this study is the integration of the flexibility of joints in the
dynamics of the UVMS, which requires the inclusion of the coupling between the vehicle and the
manipulator and between the links of the manipulator themselves. Most existing works on the dynam-
ics of the UVMS have considered the joints to be rigid; however, this is not a realistic approach for
correctly investigating the responses of a highly coupled system like the UVMS. The control model
must incorporate flexibility of the joints connecting the manipulator with the vehicle and the links
of the manipulator (i.e., at the motor–link interface) of the robotic manipulator for precise position
control of the end effector. Although several works have been reported on the dynamics of flexible-
joint manipulators,18–24 however, as per the best of our knowledge, the effects of the flexibility of the
manipulator’s joints have not yet been incorporated in the dynamics of the UVMS. Spong18 modeled
the coupling between the link and the actuator as a torsional spring. Such model is quite effective
in simulating the actual responses of the flexible joint. However, certain details like damping and
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Fig. 1. Schematic of the UVMS.

friction within the flexible joint had been overlooked in the said model. Recently, Ruderman25 has
opted for a more detailed model of the flexible joint, representing it as a hysteretic spring. The said
model uses a hysteresis spring to model the energy variation during the operation of a flexible joint.
Furthermore, the joint’s friction, which is transmitted from the rotor of the motor to the link, has
also been included in the said model. In this work, the joint between the manipulator and the vehicle
is modeled using the torsional spring model whereas the manipulator joints are modeled flexible as
hysteretic springs with dynamic friction.

In this paper, first, the quasi-Lagrange formulation is utilized in deriving the equations of motion
of the UVMS, see Section 2. Based on the developed model, an extensive dynamic analysis of the
UVMS is presented in Section 3, which discusses (i) the effect of the flexibility of the joints on
the precise positioning of the end effector, (ii) the effect of ocean currents on the dynamics of the
UVMS, (iii) the effect of the motions of the vehicle on the dynamics of the end effector considering
both rigid and flexible joints between the vehicle and the manipulator, and finally (iv) the effect of
the movements of the manipulator on the dynamics of the vehicle. In the end, conclusions are drawn
in Section 4, which indicate that the VIVs, the coupling between the subsystems of the UVMS, and
the flexibility of joints have a significant impact on precise positioning of the end effector.

2. Problem Formulation
Figure 1 depicts the 3D schematic of the UVMS, which consists of an underwater vehicle and a
manipulator attached to the vehicle. O-ijk is the inertial frame whereas Ov-ivjvkv is the moving coor-
dinate system that is affixed to the vehicle and is also called the body-fixed reference frame. For low
speed marine vehicles like ROVs and AUVs, the position and orientation of the vehicle are repre-
sented relative to the inertial frame, O-ijk, while the linear and angular velocities are specified with
respect to the body-fixed frame, Ov-ivjvkv. In a UVMS, the Ov-ivjvkv frame may not coincide with
the center of gravity (CG) and the center of buoyancy of the vehicle, depicted as points G and B in
Fig. 1, respectively.

2.1. Kinematics of the UVMS
The considered underwater vehicle has six degrees-of-freedom (DOF), which include three transla-
tional and three rotational motions in the 3D space, and a two-link flexible-joint robotic manipulator.
For a manipulator with rigid joints, the DOF equals the number of joint variables, which are the
angular displacements of the rotating links. However, in this paper, we are considering elastic- or
flexible-joint configuration of the manipulator. In which case, the dynamics of the joint actuators
also need to be considered and, consequently, the DOF also include the angular displacements of the
shafts of the respective motors. Therefore, for a manipulator having two rigid links and two flexible
joints, the DOF = 4. Consequently, the UVMS with flexible joints has 10 DOF and the vector of the
generalized coordinates is given by

η= [
x, y, z, φ, θ, ψ, α1, α2, β1, β2

]T
, (1)

where x, y, and z are the linear displacements along the i, j, and k axes and φ, θ , and ψ are the angular
displacements of the vehicle about the i, j, and k axes, respectively, with respect to the inertial frame,
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whereas α1 and α2 are the angular displacements of link 1 and link 2 and β1 and β2 are the angular
displacements of the actuators of joint 1 and joint 2, respectively. Now, from Fig. 1, the kinematic
equations of the UVMS can be written as follows.

η′ = Tξ, (2)

where

ξ = [u, v,w, p, q, r, ω1, ω2, ω3, ω4]T (3)

is the velocity vector given with respect to the body-fixed frame (i.e., quasi coordinates) such that
u, v, and w represent the linear velocities of the underwater vehicle along the iv (surge), jv (sway),
and kv (heave) directions and p, q, r denote the angular velocities of the vehicle about the iv, jv, and
kv axes, that is, the rates of change of roll, pitch, and yaw motions; ω1 = α′

1 and ω2 = α′
2 signify the

angular velocities of the two links; ω3 = β ′
1 and ω4 = β ′

2 are the angular velocities of the two joint
motors, respectively, and

T(η)=
[

Tv6×6 O6×4

O4×6 Tm4×4

]
(4)

is the non-singular coordinate transformation matrix such that TTT = I10×10, where I is the 10×10

identity matrix. In (4), Tv =
[

J1 O
O J2

]
and Tm = I4×4, where J1 and J2 matrices are the linear and angu-

lar velocity transformation (i.e., Jacobian) matrices between the inertial and the body-fixed frames,
given as follows11:

J1 =
⎡
⎢⎣

cosθ cosψ sinφ sinθ cosψ − sinψ cosφ sinφ sinψ + sinθ cosφ cosψ

sinψ cosθ cosφ cosψ + sinφ sinθ sinψ sinθ sinψ cosφ − sinφ cosψ

−sinθ sinφ cosθ cosφ cosθ

⎤
⎥⎦, (5)

J2 =
⎡
⎢⎣

1 sinφ tanθ cosφ tanθ

0 cosφ −sinφ

0 sinφ secθ cosφ secθ

⎤
⎥⎦. (6)

Note: In this paper, the derivatives with respect to time are denoted as d(∗)
dt = (∗)′.

2.2. Dynamics of the UVMS considering flexible-joint manipulator
The UVMS is a highly coupled nonlinear system. As discussed earlier in the Introduction section,
several methods such as the Newton–Euler method, the Kane’s method, and the Lagrange method can
be used to derive the equations of motion of the UVMS. However, according to Sarkar and Podder,11

since the Lagrangian approach is an energy-based method, it is easier to incorporate the dynamics
of new subsystems like additional links or even manipulators in the original model. Further, for the
control of the UVMS, it is convenient to deal with the feedback of the deflections/velocities of the
manipulator expressed in the body-fixed frame, which requires obtaining the Lagrangian in terms of
the body-fixed coordinates rather than the inertial coordinates. In ref. [26], the following form of the
quasi-Lagrange formulation, which is the Lagrangian expressed in terms of the body-fixed velocities,
was used in obtaining the equations of motion of the UVMS considering rigid joints.

d

dt

(
∂EK

∂ξ

)
+ TTγ

∂EK

∂ξ
− TT ∂EK

∂η
= F, (7)

where

γ =
[
ξTTT ∂�

∂η

]
−

[
ξTTT

[
∂�

∂η

]]
, (8)
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Fig. 2. Schematic of a flexible joint represented as a torsional spring.

EK = EK(η,ξ ) denotes the kinetic energy of the UVMS where η= [x, y, z, φ, θ, ψ, α1, α2]T repre-
sents the vector of the positions of the vehicle along the i-, j-, and k-axis, the roll, pitch, and yaw
angles, and the angles of link 1 and link 2, respectively. The vector ξ = [u, v,w, p, q, r, ω1, ω2]T

represents the time derivative of η. The force vector F = TTQ, where Q denotes the vector of the
generalized forces acting on the UVMS, includes the control inputs to drive both the vehicle and the
manipulator as well as the hydrodynamic forces acting on the system.

In this paper, a dynamic model of the UVMS is developed, which not only includes the manipula-
tor joint flexibility, but also the dynamics of the actuators driving the links. Therefore, the said system
has 10 DOF represented by the coordinates vector η defined in (1). For such a flexible-joint config-
uration, the coupling between the links and their drive motors must be considered as well. Spong18

modeled a flexible joint as a torsional spring, see Fig. 2, which can be represented by the following
phenomena/variables: (i) gear reduction represented by the gear ration Nr; and (ii) the elasticity of the
joint represented by kl(αn – βn), where kl denotes the stiffness and the subscript represents the joints’
number (i.e., n = 1, 2). This coupling between the links and their drive motors can be represented by
the following potential energy term:

EP =
(

1

2

) (
kl

(
N−1

r β1 − α1
)2 + Kl(N

−1
r β2 − α2)

2
)
. (9)

Furthermore, for the flexible-joint configuration, the total kinetic energy (EK) of the UVMS is
the sum of the kinetic energies of the vehicle (EKv), the links of the manipulator (EKl), and the
actuators (EKa):

EK = EKv + EKl + EKa . (10)

First, the kinetic energy of the underwater vehicle is given as follows:

EKv =
(

1

2

)
(mv + m1 + m2)v

T
v vv + mvvv.

(
ωv × rg

) +
(

1

2

)
ωT

v JGωv, (11)

where mv denotes the mass of the vehicle, m1 is the mass of link 1, m2 is the mass of link 2, vv =
[u, v,w], ωv = [

p, q, r
]
, rg = [xg, yg, zg] is the position vector representing the CG of the UVMS with

respect to the body-fixed frame, and

JG =
⎡
⎢⎣

Jxx −Jxy −Jxz

−Jyx Jyy −Jyz

−Jzx −Jzy Jzz

⎤
⎥⎦, (12)

where Jxx, Jyy, and Jzz denote the moments of inertia of the vehicle about the surge, sway, and heave
axes, respectively, and Jxy = Jyx, Jyz = Jzy, Jxz = Jzx, are the products of the vehicle’s inertias about
the respective body-fixed axes.
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Fig. 3. Schematic of a flexible joint represented as a hysteretic spring.19

Now, the kinetic energy of the rigid links of the manipulator is given as follows:

EKl = (1/2)
((

m1v2
c1 + Jl1ω

2
1

) + (
m2v2

c2 + Jl2ω
2
2

))
, (13)

where vc1 and vc2 are the linear velocities of the CGs, m1 and m2 are masses, Jl1 and Jl2 are the
moments of inertias, and ω1 and ω2 are the angular velocities of the two rigid links of the manipulator,
respectively. Finally, the kinetic energy of the actuators of the two joints is given as follows:

EKa = (1/2)
(

ma1vT
v vv + ma2v2

1 + Ja1ω
2
3 + Ja2

(
ω2

1 +ω
2
4

))
, (14)

where ma1 is the mass of the actuator driving link 1, ma2 is the mass of the actuator driving link 2,
v1 is the velocity of the end point of link 1, Ja1 and Ja2 are the moments of inertias, and ω3 and
ω4 are the angular velocities of the two rotors of the motors driving the links, respectively.

If the flexibility of the joints is considered in the dynamic model, the potential energy terms
derived in Eq. (9) must be included in Eq. (7). Therefore, in the presence of the potential energy
term due to the consideration of flexible-joint configuration, the quasi-Lagrange equation takes on
the following form:27

d

dt

(
∂EK

∂ξ

)
+ TTγ

∂EK

∂ξ
− TT ∂EK

∂η
+ TT ∂EP

∂η
= F, (15)

where η and ξ are defined in (1) and (3), respectively, T is shown in (4), γ in (8), EP in (9),
EK in (10)–(14), and the force vector F comprises the forces and torques to drive the vehicle and
the manipulator together with the hydrodynamic forces acting on the UVMS, given in the body-fixed
frame as

F = [(fu + Fh,u) (fv + Fh,v) (fw + Fh,w) τp τq τr τ1 τ2 (τβ1 − τ1) (τβ2 − τ2)]T , (16)

where fu, fv, and fw are the thrust forces to move the vehicle along the surge, sway, and heave direc-
tions; τ p, τ q, and τ r are the torques to induce roll, pitch, and yaw motions in the vehicle; Fh,u, Fh,v,
Fh,w are the components of the hydrodynamic forces acting on the system along the surge, sway,
and heave directions, respectively; τβ1 and τβ2 are the torques generated by the two motors to drive
the links of the manipulator; and τ 1 and τ 2 represent the coupling torques between the links and
the respective drive motors imparted by the flexibility of the joint. It is to be noted that the forces
(fu, fv, and fw) used for translating, and the torques (τ p, τ q, and τ r) used for rotating the vehicle, are
generated by a collective action of the vehicle’s thrusters and fins.

In view of (9), when the flexible joints are modeled as a torsional springs,18 the resulting torques
are represented as follows:

τn = kl(N
−1
r βn − αn), (17)

where n = 1, 2. The torsional spring representation of the flexible joint is simplistic and consid-
ers only a linear coupling relationship between the angular deflections of the motors and the links.
However, according to ref. [28], a flexible link behaves as a hysteretic spring and must also contain
viscous damping and dynamic friction terms (i.e., the friction transmitted from motor’s shaft to the
link) associated with the joint, see Fig. 3. Now, considering the hysteretic spring configuration of the
flexible joint, the coupling terms τ 1 and τ 2 are represented as follows:

τn = �(δn)+cjδ
′
n(t), (n = 1, 2) (18)
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where δn = N−1
r βn − αn, cj is the viscous damping coefficient associated with the hysteresis spring

and � is the torque transmitted by the hysteretic spring, which can be written using the Bouc-Wen-
like hysteretic model as follows:

�(δn)= σK(δn)δn + (1 − σ)K(δn) |zh(t)| , (19)

where σ is the weighting function that provides a relationship between a purely elastic (i.e., σ = 1)
and purely hysteretic (i.e., σ = 0) response, K(δn) is the nonlinear stiffness, and zh is a variable which
captures the elasto-plastic deflection behavior of the hysteretic spring, given as follows:

zh(t)= δ́n(t)− a
∣∣∣δ́n(t)

∣∣∣ |zh(t)|n−1zh(t)− bδ́n(t)|zh(t)|n, (20)

where a and b are the parameters for controlling the amplitude and shape of the hysteresis loop, and
n ≥ 1 assigns the smoothness of transitions between elastic and hysteretic parts.

Now, the dynamic friction torque fj(β ′) of the motor drive can be described using the following
friction model given in ref. [25]:

fj(β
′) = sig(β ′)

(
FC + FSe

[−v−μ
s |β ′|μ])

, (21)

sig(β ′) = −1 +
(

2
/ (

1 + e−λβ ′))
, (22)

where λ is the velocity scaling factor, FC and Fs are the Coulomb and Stribeck friction coefficients
such that FC > 0 and FS > 0, the Stribeck velocity μ �= 0, and the shape factor vs > 0. Now, consid-
ering the flexible joints as hysteretic springs having dynamic friction, the force vector F in (16) can
be rewritten as follows:

F = [(fu + Fh,u) (fv + Fh,v) (fw + Fh,w) τp τq τr τ1 τ2 (τβ1 − f1 − τ1) (τβ2−f 2 − τ2)]T , (23)

where τ 1 and τ 2 are given by (18)–(20) and f 1 and f 2 are given by (21)–(22).

2.2.1. Hydrodynamic forces. Whenever an object moves in a fluid, the resulting fluid–structure
interaction generates hydrodynamic forces that act on the object. Such hydrodynamic forces have
a significant impact on the movement of the object in the fluid and consist of the added mass, buoy-
ancy, viscous damping, drag, and vortex-induced forces. The added mass force is the hydrodynamic
force exerted on the object by the additional fluid/water displaced by the object itself. Although, it
can take on many different shapes, the UVMS is assumed to have a cylindrical shape (torpedo-like).
Therefore, from ref. [29], for a translational motion of a cylindrical object, the added mass force is
given as follows:

Fa = mav′
r, (24)

where ma = (π/4)ρCad2l such that ρ = 1, 000 Kg/m3 is the density of water, Ca is the added mass
coefficient, whereas d, l, and vr denotes the diameter, length, and relative velocity (with respect to
the upstream velocity) of the object, respectively. Motivated by the work of refs. [6, 7], a simplified
added mass force is adopted where Ca = 1.0.

Now, for rotational motion, a resultant moment (Ma) due to the displaced fluid acts on the object,
which is given as follows:29

Ma = Jaα
′′, (25)

where Ja is the added moment of inertia and α′′ is the angular acceleration of the object. Here, Ja is
chosen as Ja = (1/12)πρr2l3.6,7.

The buoyancy force is the weight of the water displaced by the volume (Vs) of the submerged
object and is given as follows:

Fb = ρVsg, (26)
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where g is the gravitational acceleration. The components of the viscous damping forces (Fv) oppos-
ing the motion of the vehicle can be modeled as −cuu, −cvv, −cww, −cpp, −cqq, and −crr, whereas
those for opposing the rotary motion of the links of the manipulator can be modeled as −cα1α

′
1 and

−cα2α
′
2 where cu, cv, cw, cp, cq, cr, cα1, and cα2 are the viscous damping coefficients associated with

the motion of the vehicle and the links. The drag force has a quadratic form and, formally, it is given
as follows:

Fd =
(

1

2

)
CdρAp |vr| vr, (27)

where Cd is the coefficient of drag and Ap is the frontal area of the object. The vortex-induced force
acts on the object in the perpendicular direction to the motion (or the impacting sea current).30 It is
caused by the formation of a turbulent wake region around the object, which is a consequence of the
shedding of vortices from the structure of the object upon its interaction with the surrounding fluid.
The nonlinear vortex-induced force is given by ref. [31]

FVIV =
(π

4

)
Clρdv2

r cos(ωvst + ϑ), (28)

where Cl is the lift coefficient, ϑ is the phase angle, and ωvs is the vortex-shedding frequency
given as

ωvs = 2πStvr/d, (29)

where St is the Strouhal number.

2.2.2. Equations of motion. Substituting (9), (10)–(14) into (15), leads to the equations of motion of
the UVMS with flexible joints in the following matrix form:

Mvξ
′ + Cvξ + Dvξ + Gv = Fv, (30)

where Mv is the mass matrix that includes the masses of the rigid bodies (i.e., the vehicle, the links of
the manipulator, and the actuators of the manipulator) as well as the added masses of the vehicle and
the links, Cv is the Coriolis and Centrifugal force matrix, Dv is the vector of hydrodynamic drag and
viscous damping forces acting on the UVMS, Gv is the vector of the gravity and buoyancy forces,
and Fv is the vector of external forces acting on the UVMS. It is to be noted that the subscript v
in (30) refers to the matrices obtained with respect to the quasi coordinates (i.e., in the body-fixed
frame). The details of matrices Mv, Cv, Dv, and the vectors Gv and Fv, in (30), are provided online (as
Appendix A) at Cambridge Core in supplementary material to this article. Readers may refer to the
supplementary material associated with this article, available at Cambridge Core (www.cambridge.
org/core/journals/econometric-theory).

To obtain the responses of the UVMS with respect to the inertial frame, (30) can be written in the
following form:32, 33

Mη′′ + Cη′ + Dη′ + G = Q, (31)

where M = T−TMvT−1, C = T−T [Cv − MvT−1T ′]T−1, D = T−TDvT−1, G = T−TGv, and Q = T−TFv.

3. Dynamic Analysis of the UVMS
The UVMS is a highly coupled nonlinear system. Whenever the UVMS moves in water or encounters
ocean currents, the fluid–structure interaction induces VIVs in the structure of the vehicle. The VIVs
are then transmitted to the manipulator affixed to the vehicle that, consequently, results in positional
inaccuracies and possible wear/damage in the structure of the manipulator. Further, the manipulator,
due to its inertia, also affects the dynamics of the vehicle. Other than the vehicle–manipulator cou-
pling, the links of the manipulator are also coupled to the actuators via flexible joints. Such coupling,
although overlooked in the existing UVMS dynamic models, has a significant impact on the position-
ing of the end effector especially during maneuvers requiring high positional precision, for example,
welding, screw fastening, tool gripping, etc. Therefore, to investigate the influence of (i) coupling
between the vehicle and the manipulator, (ii) the flexibility of the rotational joints of the manipulator,
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Table I. Simulation parameters.

Parameters Values

Mass of the vehicle (mv) 53.97 Kg
Length of the vehicle (lv) 1.1 m
Diameter of the vehicle (dv) 0.25 m
Vehicle’s moment of inertia iv-axis (Ixx) 0.34 Kg-m2

Vehicle’s moment of inertia jv-axis (Iyy) 3.71 Kg-m2

Vehicle’s moment of inertia kv-axis (Izz) 3.71 Kg-m2

Position of the CG (xg, yg, zg) (0, 0, 0) m
Position of the CB (xb, yb, zb) (0, 0, 0.015) m
Mass of link 1 and link 2 (m1, m2) 1.5708 Kg
Length of link 1 and link 2 (l1, l2) 0.2 m
Diameter of link 1 and link 2 (dm1, dm2) 0.025 m
Length of the centroids of links (lc1 = lc2) 0.1 m
Viscous damping coefficients for translation (cx = cy = cz) 0.01 N-s/m
Viscous damping coefficients for rotation (cφ = cθ = cψ = cα1 = cα2 = cβ1 = cβ2) 0.02 N-m-s/rad
Moment of inertia of the links (I1 and I2) 0.01 Kg-m2

Coefficient of drag (Cd),9 1.25
Lift coefficient (Cl),9 1.15
Strouhal number (St) 2.0
Coulomb friction coefficient (FC) 0.01
Stribeck friction coefficient (FS) 0.01
Stribeck velocity (μ) 0.1 m/s
Shape factor (vs) 0.1
Velocity scaling factor (λ) 0.5

and (iii) the vortex-induced forces on the precision positioning of the end effector, a comprehensive
dynamic analysis of the UVMS is presented in this section.

In this section, underwater responses of the end effector resulting from both translational and rota-
tional movements of the vehicle and the manipulator are simulated using MATLABTM . The numerical
simulations are generated using the UVMS’s equations of motion, (30), and the parameters are listed
in Table I. The initial configuration of the UVMS is such that the surge, the sway, and the heave axes
of the vehicle are aligned with the i, j, and k axes of the inertial frame and that both the links of
the manipulator are aligned with the heave axis of the vehicle. Three forces are applied to translate,
taht is, along the iv-axis (fu), the jv-axis (fv), and the kv-axis (fw), and three torques are applied to
rotate, that is, about the iv-axis (τ p), the jv-axis (τ q), and the kv-axis (τ r), the vehicle in the 3D space,
whereas the τβ1 and τβ2 are the torques of the two motors applied at the joints of the manipulator
to drive the two links. Furthermore, constant velocity sea currents are also considered to act on the
vehicle along the i-axis (U), the j-axis (V), and the k-axis (W), respectively.

First, the effect of the elasticity of joints on the positioning of the end effector is investigated.
Three different cases are analyzed while assuming the vehicle to be at rest: (a) when the joints are
considered as rigid, (b) when the joints are considered as torsional springs, and (c) when the joints are
considered as hysteretic springs. Figure 4(a) compares the dynamic responses of the manipulator for
rigid and flexible joint (modeled as torsional spring) configurations when the applied motor torques
are τβ1 = τβ2 = 0.1 N-m. The responses represented by the dashed lines refer to the rigid-joint con-
figuration whereas the dash-dot and solid lines correspond to the flexible joint configuration with
joint stiffness values of 0.02 and 0.6 N/m, respectively. It is evident that for a higher stiffness value
(kl = 0.6 N/m), the responses are close to those of the rigid-joint configuration. However, for a lower
stiffness value (kl = 0.02 N/m), there is a large deviation of the response from that of the rigid-joint
case. It is to be noted that the responses in Fig. 4(a) are obtained for a gear ratio value of Nr = 1. To
depict the effect of variations in the gear ratio on the dynamics of the manipulator, responses of the
end effector for τβ1 = τβ2 = 0.1 N-m are shown, in Fig. 4(b), for three different values of gear ratios
(i.e., Nr = 1, 10, and 50) while considering a fixed joint stiffness, kl = 0.6 N/m. The dashed line cor-
responds to Nr = 1, the dotted line to Nr = 10, and the solid line to Nr = 50. It can be seen that as the
gear ratio increases, the response becomes stiffer, manifested in an increase in the torque transmitted
to the links from the motors. Figure 4(a) and (b) represent the dynamic responses of the manipulator
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Fig. 4a. Manipulator dynamics with a fixed base – A comparison of rigid-joint configuration with flexible joints
modeled as torsional springs with Nr = 1 and varying joint stiffness (kl).

when its joints were modeled as torsion springs. Such a flexible joint model is simplistic and does not
cover all the structural aspects of the actual joint. A more realistic approach in modeling the flexible
joint is to consider it as a hysteretic spring.28 The hysteretic spring model considers joint damping
(cj), the torque due to the hysteretic spring (�), the gear ratio (Nr), and the friction (fj) transferred
from the motor’s shaft to the link, see Fig. 3.

Figure 5 compares the responses of the end effector considering rigid- and flexible-joint (mod-
eled as a hysteretic spring) configurations when torques of the two actuators are taken as τβ1 =
τβ2 = 0.01sin(0.5t) N-m. Figure 5(a) emphasizes the effect of variation in the joint’s damping on the
response of the end effector without considering joint’s friction (fj): The dashed line represents the
rigid joint, whereas the dotted, the dash-dot, and the solid lines indicate the responses to the hysteretic
spring joint model corresponding to three different values of the joint’s damping (i.e., cj = 0.01, 0.1,
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Fig. 4b. Manipulator dynamics with a fixed base – A comparison of rigid-joint configuration with flexible joints
modeled as torsional springs with kl = 0.6.

and 0.2 N-s/m). The values of the parameters defining the hysteretic torque are as follows: a = 161,
b = 0.1, σ = 0.5, n = 2.1. It can be seen that the responses of the end effector considering the flexible
joint configuration are different from the responses resulting from the rigid-joint configuration. The
plots for the positions of the end effector along the i-axis (i.e., xe) and k-axis (i.e., ze) indicate that
joint flexibility imparts more oscillations to the responses as compared to the responses caused by the
rigid-joint configuration. However, an increase in the damping of the joint attenuates the amplitude
of the response of the end effector. The reduction in the areas of hysteresis loops (the two plots shown
at the bottom) with the increase in the damping indicate a loss of energy that causes low amplitude
oscillations.

Figure 5(b) illustrates the effect of the joint friction (fj), which is transmitted from the shaft of the
actuator to the link, on the response of the end effector: The dashed line corresponds to the response
due to the rigid joint, the dash-dot line indicates the response due to the flexible joint, modeled as a
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Fig. 5a. Manipulator dynamics with a fixed base – A comparison of rigid-joint configuration with flexible joints
modeled as hysteretic springs, considering variation in joint damping (cj).
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Fig. 5b. Manipulator dynamics with a fixed base – a comparison of rigid-joint configuration with flexible joints
modeled as hysteretic springs with viscous damping and contact friction.
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hysteretic spring without considering joint friction, whereas the solid line represents the response due
to the hysteretic joint with friction. It is to be noted that in Fig. 5(b), the responses are obtained using a
joint-damping value of cj = 0.2 N-s/m. It is evident from the plots of the positions of the end effector
that when friction of the joints is included, it significantly reduces the amplitudes of oscillations and
results in a large deviation of the responses from those corresponding to the rigid joint. The values of
the parameters of the friction are given in Table I. Figure 6 compares the responses of the end effector
considering all the three joint configurations discussed above, given that τβ1 = τβ2 = 0.01sin(0.5t)
N-m. The response due to the rigid joint is represented by dashed line, due to the torsion spring
configuration is represented by the dash-dot line, and due to the hysteretic spring configuration is
represented by the solid line. It is clearly evident that the responses corresponding to the flexible-joint
(modeled considering hysteresis and dynamic friction) are significantly different from the other two
joint configurations. Therefore, the importance of considering the hysteresis and dynamic friction in
modeling a flexible joint is clearly evident.

So far, the dynamics of the flexible joint manipulator was discussed when the vehicle was assumed
to be at rest. Now, the effect of the movements of the vehicle on the responses of the manipulator will
be included. First, the case of the movements of the vehicle caused by its interaction with sea currents
is discussed. It is to be noted that, in this study, steady sea currents, having a constant velocity, are
assumed in the simulations. Figure 7 compares the responses of the UVMS in the presence and
absence of the sea currents when a rigid joint between the vehicle and the manipulator is used.
The dash-dot lines in Fig. 7(a) show the responses of the UVMS upon its interaction with a current
U = 0.03 m/s along the i-axis whereas the solid lines depict the responses to a current U = 0.05 m/s
along the i-axis. When there are no currents, both the vehicle and the manipulator remain stationary,
see the dashed lines. It is evident that the currents move the vehicle only along the i-axis. Since there
is no actuation of the joints of the manipulator, the position of the end effector changes along the
i-axis only. Since the current is along the i-axis, it interacts (head on) with the face of the vehicle
and passes parallel to the surge axis of the vehicle. In such a configuration (i.e., when a cylindrical
body is parallel to the flow of a fluid), the effect of the vortex-induced forces is minimal and thus is
ignored in this set of simulations. However, when the currents act perpendicular to the surge axis of
the vehicle (i.e., along the j and k axes), the fluid–structure interaction results in shedding of vortices
from the surface of the vehicle in the direction perpendicular to that of the current. Consequently, a
current along the j-axis induces VIVs in the vehicle along the k-axis whereas a current along the k-
axis induces VIVs along the j-axis. The said VIV phenomenon is depicted in Fig. 7(b) and (c). Figure
7(b) shows that a current V = 0.03 m/s acting on the vehicle along the j-axis moves the vehicle along
both the j and k axes, see the dash-dot lines, where the movement along the j-axis is due to the drag
force along the same direction and the oscillatory movement along the k-axis is due to the VIVs.
When a current of higher magnitude (i.e., V = 0.05 m/s) interacts with the UVMS, it can be seen
that the vibrations of the VIVs of the vehicle are increased (see the solid lines). Such VIVs are also
transmitted to the manipulator as significant oscillations can be observed in the response of the end
effector along the k-axis, see the dash-dot and solid lines. The responses of the vehicle and the end
effector when V = 0 m/s are represented in dashed lines. Similarly, Fig. 7(c) shows the transmission
of VIVs from the vehicle to the end effector along the j-axis given by the dash-dot and the solid lines
for end-effector’s response along the j-axis when the UVMS encounters the currents W = 0.03 m/s
and W = 0.05 m/s, respectively, along the k-axis.

After considering the effects of sea currents on the responses of the UVMS, now the effect of the
translations and rotations of the vehicle on the dynamics of the manipulator will be discussed without
considering the effects of the currents and movements of the links of the manipulator. Figure 8(a)
shows that a force fu = 1.0 N translates the vehicle along the i-axis and, consequently, the position
(xe) of the end effector along the i-axis. Figure 8(b) shows that force fv = 1.0 N translates the vehicle
along the j-axis, which results in the shedding of vortices from the structure of the vehicle and,
consequently, the vehicle exhibits VIVs along the k-axis. The said translational and vibratory motion
of the vehicle along the j and k axes, respectively, is also evident in the response of the end effector.
It can be seen that the end effector is translated along the j-axis while exhibiting VIVs along the
k-axis. Similarly, Fig. 8(c) depicts that when a force fw = 1.0 N moves the vehicle along the k-axis,
the vehicle also experiences VIVs along the j-axis. The transmittance of the VIVs to the manipulator
is also evident in the position response ye of the end effector along the j-axis.
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Fig. 6. Manipulator dynamics with a fixed base – A comparison of rigid-joint configuration with flexible joints
modeled as torsional springs and hysteretic springs.
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Fig. 7a. Effect of sea current (along the surge direction) on the dynamics of UVMS considering rigid joint
between the AUV and the manipulator.

Fig. 7b. Effect of sea current (along the sway direction) on the dynamics of UVMS considering rigid joint
between the AUV and the manipulator.

So far, only the responses of the manipulator upon translations of the vehicle are considered. Now,
the effect of the rotations of the vehicle on the dynamics of the manipulator will be investigated.
Figure 8(d) depicts that a torque τp = 1.0 N-m rotates the vehicle about the i-axis and, consequently,
the position of the end effector changes along the j and k axes. Figure 8(e) shows that a torque τq = 1.0
N-m rotates the vehicle about the j-axis resulting in a change of the position of the manipulator along
the i and k axes. Figure 8(f) shows that a torque τr = 1.0 N-m rotates the vehicle about the k-axis
resulting in a change of the position of the manipulator along the i-axis only. The change in the
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Fig. 7c. Effect of sea current (along the heave direction) on the dynamics of UVMS considering rigid joint
between the AUV and the manipulator.

Fig. 8a. Effect of AUV translation, in surge direction, on the position of the end effector.

position of the end effector only along the i-axis indicates an offset, along the surge axis, of the base
of the manipulator from the CG of the vehicle by 0.25 m.

The simulations generated so far investigate the effects of the movements of the vehicle on the
dynamics of the manipulator only. However, Fig. 9 shows that the movements of the manipulator do
not have any influence on the dynamics of the vehicle, that is, the pitch dynamics of the AUV are
not changed. This is because the coupling between the manipulator and the vehicle is neglected in
the previous set of simulations. Such a behavior is acceptable only if the mass of the manipulator
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Fig. 8b. Effect of AUV translation, in the sway direction, on the position of the end effector.

Fig. 8c. Effect of AUV translation, in the heave direction, on the position of the end effector.
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Fig. 8d. Effect of AUV rotation (roll) on the position of the end effector (considering no coupling between the
AUV and the manipulator).

Fig. 8e. Effect of AUV rotation (pitch) on the position of the end effector (considering no coupling between the
AUV and the manipulator).

is significantly less than that of the vehicle. However, in this work, it is assumed that the movement
of the manipulator is coupled with the pitch dynamics of the vehicle and must be reflected in the
dynamics of the UVMS by including the terms km(α1(t)− θ(t)) and km(θ(t)− α1(t)) on the right-
hand side of the equations of the pitch motion of the vehicle and the first link of the manipulator.
Figure 10 shows the effect of the movements of the manipulator on the dynamics of the vehicle,
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Fig. 8f. Effect of AUV rotation (yaw) on the position of the end effector (considering no coupling between the
AUV and the manipulator).

Fig. 9. Manipulator movements do not effect AUV dynamics when there is no coupling between the AUV and
the manipulator.

after inclusion of the coupling between the manipulator and the vehicle. Variation in the coefficient
of coupling km results in the transmittance of motion from the manipulator to the vehicle. In Fig. 10,
the solid line represents the responses when coupling is not included whereas the dash-dot line, the
dashed line, and the dotted line indicate responses for km = 0.005, 0.01, and 0.02, respectively. It is
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Fig. 10. Effect of manipulator movements on AUV dynamics.

evident that increasing the value of km accentuates the transmission of motion from the manipulator
to the vehicle, which also results in deviation of the position of the end effector from that of the
uncoupled response. By considering the coupling between the manipulator and the vehicle, the effect
of the pitch movements of the vehicle on the response of the manipulator is also changed. Figure
11 presents the comparison of the responses of the end effector due to the pitch movements of the
vehicle when coupling between the manipulator and the vehicle is not included (represented by the
dashed line) and when km = 0.1 (represented by the solid line). Finally, Fig. 12 shows the responses
of the end effector considering all the movements of the vehicle and the manipulator for the cases
when coupling between the manipulator and the vehicle is not considered (dashed line) and when
km = 0.1 (solid line).

In order to demonstrate the effect of the hydrodynamic forces on the UVMS, Fig. 13 provides a
comparison of the responses of the end effector for the UVMS operation with and without consid-
eration of the hydrodynamic forces. Figure 13(a) depicts the comparison of responses for the pitch
movement of the vehicle. It can be seen that in the absence of the hydrodynamic forces, which in this
case it is assumed as a friction/damping, the magnitudes of movements of both the vehicle and the
end effector (shown in dashed lines) are larger when hydrodynamic forces are considered (shown as
solid lines in Fig. 13(a)). The pitch movement of the vehicle in water involves only the drag, viscous
damping, and added mass forces. Finally, the VIV effect is also included in the simulations and the
results are shown in Fig. 13(b) which depicts the end-effector’s responses when the vehicle exhibits
heave motion. It can be seen that in the absence of hydrodynamic forces, the end effector moves only
along the k-axis, see the dashed line. However, in the presence of the hydrodynamic forces, VIVs
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Fig. 11. Effect of AUV rotation (pitch) on the EE position considering coupling between AUV and the
manipulator.

are induced along the j-axis of the vehicle. Moreover, due to the coupling between the vehicle and
the manipulator, the said vibrations are also transmitted to the end effector, see the solid line for the
response of the end effector along the j-axis. Finally, Fig. 13(c) compares the response of the end
effector for simultaneous pitch and heave motions of the vehicle in the air, represented by dashed
lines, and in water, represented by solid lines. Hence, from Fig. 13, the effect of the hydrodynamic
forces on the response of both the vehicle and the end effector is clearly visible.

4. Results and Conclusion
A detailed mathematical model of the UVMS, consisting of an underwater autonomous vehicle
affixed with a flexible-joint two-link manipulator, is derived using the quasi-Lagrange formulation. In
order to model the fluid–structure interaction, the added mass forces, buoyancy forces, viscous damp-
ing forces, and the nonlinear drag and vortex-induced forces are accounted for. Further, flexible-joint
configuration of the manipulator was considered, where the interface of the joints’ motor with the
links was modeled as a hysteretic spring having additional dynamic as well as viscous friction. The
study presented here revealed that the flexibility of the joints of the manipulator and the VIVs trans-
mitted from the AUV to the manipulator significantly affect the positions of the end effector and
must be incorporated in developing a control model for the UVMS to perform precise manipulation
tasks in water.
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Fig. 12. Complete UVMS operation considering rigid and flexible joints.
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Fig. 13a. Responses of the end effector while considering and neglecting the hydrodynamic forces upon pitch
motion of the vehicle.

Fig. 13b. Responses of the end effector while considering and neglecting the hydrodynamic forces upon heave
motion of the vehicle.
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Fig. 13c. Responses of the end effector while considering and neglecting the hydrodynamic forces upon pitch
and heave motions of the vehicle.
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