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NUMBER SYSTEMS WITH SIMPLICITY HIERARCHIES:
A GENERALIZATION OF CONWAY’S THEORY OF SURREAL

NUMBERS II

PHILIP EHRLICH AND ELLIOT KAPLAN

Abstract. In [16], the algebraico-tree-theoretic simplicity hierarchical structure of J. H. Conway’s
ordered field No of surreal numbers was brought to the fore and employed to provide necessary and
sufficient conditions for an ordered field to be isomorphic to an initial subfield of No, i.e., a subfield of
No that is an initial subtree of No. In this sequel to [16], analogous results for ordered abelian groups and
ordered domains are established which in turn are employed to characterize the convex subgroups and
convex subdomains of initial subfields of No that are themselves initial. It is further shown that an initial
subdomain of No is discrete if and only if it is a subdomain of No’s canonical integer part Oz of omnific
integers. Finally, making use of class models the results of [16] are extended by showing that the theories of
nontrivial divisible ordered abelian groups and real-closed ordered fields are the sole theories of nontrivial
densely ordered abelian groups and ordered fields all of whose models are isomorphic to initial subgroups
and initial subfields of No.

§1. Introduction. J. H. Conway [10] introduced a real-closed field of surreal
numbers embracing the reals and the ordinals as well as a great many less familiar
numbers including −�, �/2, 1/�,√�, and e� , to name only a few. This particular
real-closed field, which Conway calls No, is so remarkably inclusive that, subject to
the proviso that numbers—construed here as members of ordered fields—be indi-
vidually definable in terms of sets of von Neumann-Bernays-Gödel set theory with
global choice (NBG) [24], it may be said to contain “AllNumbersGreat and Small.”
In this respect, No bears much the same relation to ordered fields that the ordered
field R of real numbers bears to Archimedean ordered fields [14,16,20].
In addition to its inclusive structure as an ordered field, No has a rich simplicity
hierarchical (or s-hierarchical) structure [15,16], that depends upon its structure as a
lexicographically ordered full binary tree and arises from the fact that the sums and
products of any twomembers of the tree are the simplest possible elements of the tree
consistent withNo’s structure as an ordered group and an ordered field, respectively,
it being understood that x is simpler than y just in case x is a predecessor of y in
the tree.
Among the striking s–hierarchical features of No that emerged from [16] is that
much as the surreal numbers emerge from the empty set of surreal numbers by
means of a transfinite recursion that provides an unfolding of the entire spectrum
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of numbers great and small (modulo the aforementioned provisos), the recursive
process of defining No’s arithmetic in turn provides an unfolding of the entire
spectrumof ordered abelian groups (ordered fields) in such away that an isomorphic
copy of every such system either emerges as an initial subtree of No or is contained
in a theoretically distinguished instance of such a system that does. In particular,
it was shown that every divisible ordered abelian group (real-closed ordered field)
is isomorphic to an initial subgroup (initial subfield) of No.
The divisible ordered abelian groups and real-closed ordered fields, however,
do not exhaust the ordered abelian groups and ordered fields that are isomor-
phic to initial subgroups and subfields of No. For example, every 2-divisible
Archimedean ordered abelian group has an initial isomorphic copy in No, as does
every Archimedean ordered field [16, Theorem 8], and these groups and fields of
course are not in general divisible or real-closed. In the case of ordered fields, more
generally, in [16, Theorem 18] it was shown that:

An ordered field is isomorphic to an initial subfield ofNo if and only if it is isomorphic
to a truncation closed, cross sectional subfield of a power series field R((tΓ))On where
Γ is isomorphic to an initial subgroup of No.

The present paper is a sequel to [16]. Following some preliminary material, in
Sections 5 and 6 we generalize for ordered abelian groups and ordered domains the
just-said result for ordered fields, and in Section 7 we employ these generalizations
to characterize the convex subgroups and convex subdomains of initial subfields
of No that are themselves initial. We further show that an initial subdomain of No
is discrete if and only if it is a subdomain of No’s canonical integer part Oz of
omnific integers. And in Section 8, making use of class models, we extend results
of [16] by showing that the theories of nontrivial divisible ordered abelian groups
and real-closed ordered fields are the sole theories of nontrivial densely ordered
abelian groups and ordered fields all of whose models are isomorphic to initial
subgroups and initial subfields of No. Finally, in Section 9 we state a pair of open
questions regarding s-hierarchical ordered algebraic systems that supplement an
open question raised in Section 8 about the dispensability of the just-said reliance
on class models.
Throughout the paper, the underlying set theory is assumed to be NBG and as
such by classwemean set or proper class, the latter of which, in virtue of the axioms
of global choice and foundation, always has the “cardinality” of the universe of sets.
For additional information on formalizing the theory of surreal numbers in NBG,
we refer the reader to [13].
The authors gratefully acknowledge the referee’s helpful comments which led to
a number of improvements in the exposition.

§2. Preliminaries I: Lexicographically ordered binary trees and surreal numbers.
A tree 〈A,<s 〉 is a partially ordered class such that for each x ∈ A, the class
{y ∈ A : y <s x} of predecessors of x, written ‘prA (x)’, is a set well ordered by
<s . A maximal subclass of A well ordered by <s is called a branch of the tree. Two
elements x and y of A are said to be incomparable if x �= y, x �<s y, and y �<s x.
An initial subtree of 〈A,<s 〉 is a subclass A′ of A with the induced order such that
for each x ∈ A′, prA′ (x) = prA (x). The tree-rank of x ∈ A, written ‘�A(x)’, is the
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ordinal corresponding to the well-ordered set 〈prA (x) , <s〉; the αth level of A is
〈x ∈ A : �A(x) = α〉; and a root of A is a member of the zeroth level. If x, y ∈ A,
then y is said to be an immediate successor of x if x <s y and �A(y) = �A(x) + 1;
and if (xα)α<� is a chain in A (i.e., a subclass of A totally ordered by <s), then y is
said to be an immediate successor of the chain if xα <s y for all α < � and �A(y) is
the least ordinal greater than the tree-ranks of the members of the chain. The length
of a chain (xα)α<� in A is the ordinal � .
A tree 〈A,<s 〉 is said to be binary if each member ofA has at most two immediate
successors and every chain inA of limit length has at most one immediate successor.
If every member of A has two immediate successors and every chain in A of limit
length (including the empty chain) has an immediate successor, then the binary tree
is said to be full. Since a full binary tree has a level for each ordinal, the universe of
a full binary tree is a proper class.
Following [16, Definition 1], a binary tree 〈A,<s 〉 together with a total ordering
< defined on A will be said to be lexicographically ordered if for all x, y ∈ A,
x is incomparable with y if and only if x and y have a common predecessor lying
between them (i.e., there is a z ∈ A such that z <s x, z <s y and either x < z < y
or y < z < x). The appellation “lexicographically ordered” is motivated by the fact
that: 〈A,<,<s 〉 is a lexicographically ordered binary tree if and only if 〈A,<,<s〉 is
isomorphic to an initial ordered subtree of the lexicographically ordered canonical
full binary tree 〈B,<lex(B), <B〉, where B is the class of all sequences of −s and +s
indexed over some ordinal, x <B y signifies that x is a proper initial subsequence
of y, and (xα)α<� <lex(B) (yα)α<� if and only if x� = y� for all � < some �, but
x� < y� , it being understood that− < undefined < + [16, Theorem 1].
Notation conventions 2.1. Let 〈A,<,<s〉 be a lexicographically ordered
binary tree. If (L,R) is a pair of subclasses of A for which every member of L
precedes every member of R, then we will write ‘L < R’. Also, if x and y are mem-
bers of A, then ‘x <s y’ will be read “x is simpler than y”; and if there is an
x ∈ I = {y ∈ A : L < {y} < R} such that x <s y for all y ∈ I − {x}, then we will
denote this simplest member ofA lying between the members of L and the members
of R by ‘{L |R}’. Finally, by ‘Ls(x)’ we mean {a ∈ A : a <s x and a < x} and by
‘Rs(x)’ we mean {a ∈ A : a <s x and x < a}.
The following three propositions collect together a number of properties of, or results
about, lexicographically ordered binary trees that will be appealed to in subsequent
portions of the paper.

Proposition 2.2 ([16, Theorem 2]). Let 〈A,<,<s 〉 be a lexicographically ordered
binary tree. (i) For all x ∈ A, x = {

Ls(x) |Rs(x)
}
; (ii) for all x, y ∈ A, x <s y if

and only if Ls(x) < {y} < Rs(x) and y �= x; (iii) for all x ∈ A and all L,R ⊆ A,
x = {L |R} if and only ifL is cofinal withLs(x) andR is coinitial withRs(x) if and only
if L < {x} < R and {y ∈ A : L < {y} < R} ⊆ {y ∈ A : Ls(x) < {y} < Rs(x)}.
Let 〈No, <,<s 〉 be the lexicographically ordered binary tree of surreal numbers
constructed in any of the manners found in the literature [11,15–17,20,25], includ-
ing simply letting 〈No, <,<s〉 = 〈B,<lex(B), <B〉.1 Central to the development of
1Conway’s cut construction [10] and the related construction based on Cuesta Dutari cuts introduced

by the first author in [12] (and adopted in [3] and [4]), do not include No’s lexicographically ordered
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the s-hierarchical theory of surreal numbers is the following result where a lexico-
graphically ordered binary tree 〈A,<,<s〉 is said to be complete [16, Definition 6],
if whenever L and R are subsets of A for which L < R, there is an x ∈ A such that
x = {L |R}.
Proposition 2.3 ([16, Theorem 4], [18]). A lexicographically ordered binary tree
is complete if and only if it is full if and only if it is isomorphic to 〈No, <,<s〉.
An immediate consequence of Proposition 2.3 is

Proposition 2.4. Let 〈A,<,<s〉 be a lexicographically ordered binary tree.
〈A,<s〉 is full if and only if 〈A,<〉 is an 	On-ordering (i.e., whenever L and R are
subsets of A for which L < R, there is an x ∈ A such that L < x < R).

§3. Preliminaries II: Conway names. Let D be the set of all surreal numbers
having finite tree-rank, and

R = D ∪ {{L |R} : (L,R) is a Dedekind gap in D} .
The following result regarding the structure ofR is essentially due to Conway [10,
pages 12, 23–25].

Proposition 3.1. R (with +,−, · and < defined à la No) is isomorphic to the
ordered field of real numbers defined in any of the more familiar ways, D being No’s
ring of dyadic rationals (i.e., rationals of the formm/2n where m and n are integers);
n = {0, . . . , n − 1 |∅} for each positive integer n, −n = {∅ | − (n − 1) , . . . , 0} for
each positive integern, 0 = {∅ |∅}, and the remainder of the dyadics are thearithmetic
means of their left and right predecessors of greatest tree-rank; e.g., 1/2 = {0 | 1}.
The systems of natural numbers and integers so defined are henceforth denoted N

and Z, respectively.

No’s canonical class On of ordinals consists of the members of the “rightmost”
branch of 〈No, <,<s〉, i.e., the unique branch of 〈No, <,<s〉whosemembers satisfy
the condition: x < y if and only if x <s y. In those formulations where surreal
numbers are pairs (L,R) of sets of previously defined surreal numbers [3, 10, 20],
the ordinals are the surreal numbers of the form (L,∅); and in the formulation
[21] where surreal numbers are sign-expansions (see Section 2), the ordinals are the
sequences (including the empty sequence) consisting solely of +s.
A striking s–hierarchical feature ofNo is that every surreal number canbe assigned
a canonical “proper name” (or normal form) that is a reflection of its characteristic
s–hierarchical properties. These Conway names, as we call them, are expressed as
formal sums of the form

∑
α<� �

yα .rα where � is an ordinal, (yα)α<� is a strictly
decreasing sequence of surreals, and (rα)α<� is a sequence of nonzero real numbers,
the Conwayname of an ordinal being just its Cantor normal form [10, pages 31–33],
[16, Sections 3.1 and 5].

binary tree structure. However, as was noted in [15, page 257], they admit relational extensions to
the ordered tree structure vis-á-vis the definition: for all x = (L,R), y ∈ No, x <s y if and only if
L < {y} < R and y �= x.
The identification 〈No, <, <s〉 = 〈B,<lex(B), <B 〉, which is employed in [1, 6, 11, 16, 23], is simply a

relational extension of the familiar (non tree-theoretic) construction ofNobasedon sign-expansions—the
members of B—introduced by Conway [10, page 65], and made popular by Gonshor [21].
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The surreal numbers having Conway names of the form �y are called leaders
since they denote the simplest positive members of the various Archimedean classes
of No. More formally, they may be inductively defined by formula

�y =
{
0, n�y

L | 1
2n
�y

R

}
, (1)

where n ranges over the positive integers, and yL and yR range over the elements of
Ls(y) and Rs(y), respectively.
There are a number of significant relations between surreal numbers that are
reflected in terms of relations between their respective Conwaynames. The following
collection of such results, which are known from the literature, will be appealed to
in the subsequent discussion.

Proposition 3.2 ([16, Theorems 11 and 15]). (i) For all x, y ∈ No, �x <s �y if
and only if x <s y; (ii)

∑
α<� �

yα · rα <s
∑
α<� �

yα · rα whenever � <s � ;

(iii)
∑
α<�

�yα · rα =
{∑
α<�

�yα · rα +�y� ·
(
r� − 12n

) ∣∣∣∣
∑
α<�

�yα · rα + �y� ·
(
r� +

1
2n

)}
,

if � is a limit ordinal (where n and � range over all positive integers and all ordinals
less than � , respectively).
We shall also appeal to the following compilation of results regarding Conway
names which, while new to the literature, essentially consists of corollaries of results
from the first author’s analysis of the surreal number tree [19] or improvements
(based on that analysis) of a result of Gonshor [21, Lemma 5.8(a)].

Lemma 3.3. Suppose a, b, r ∈ R and x, y ∈ No. Then: (i)�y ·a <s �y ·b whenever
a <s b. (ii) If either r ∈ R− D, or r ∈ D− Z and Ls(y) = ∅, then

�y · r = {�y · rL |�y · rR};
moreover, in virtue of (i), �y · rL <s �y · r and �y · rR <s �y · r for all rL ∈ Ls(r)
and rR ∈ Rs(r). (iii) If r ∈ D− Z and Ls(y) �= ∅, then

�y · r = {�y · rL + �yL · n |�y · rR − �yL · n},
wheren ranges overN;moreover,�y·rL+�yL ·n <s �y ·r and�y ·rR−�yL ·n <s �y ·r,
for all yL ∈ Ls(y), rL ∈ Ls(r) and rR ∈ Rs(r). (iv) For all n ∈ N, 12n �

y <s �
x if

y ∈ Rs(x).
Proof. (i) follows immediately from [19, Theorems 3.13 and 3.16], by considering
a number c ∈ R−D such that b = c or b <s c. Necessarily, �y · c is the immediate
successor of a chain of limit length having a cofinal subchain of the form (�y ·cn)n<�
where c is the immediate successor of (cn)n<� . As a ∈ (cn)n<� and either b ∈ (cn)n<�
or b = c, it is the case that �y · a ∈ (�y · cn)n<� and either �y · b ∈ (�y · cn)n<� or
�y ·b = �y ·c. In either case,�y ·a <s �y ·b. For (ii), if r ∈ R−D, the result can be
proved from (i) by simply forming the specified cut in the just-said cofinal subchain;
and if Ls(y) = ∅ and r ∈ D − Z, the result follows from (i) and the second part
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of Gonshor’s Lemma 5.8(a) from [21]. (iii) follows from the first part of Gonshor’s
Lemma 5.8(a) from [21] and repeated applications of [19, Theorem 3.18(ii)]. For
(iv), suppose without loss of generality that x is the immediate left successor of
y; for if it is not, the immediate left successor of y is in Rs(x) and if we show that
1
2n �

y is simpler than the immediate left successor of y for each n, then it follows
that 12n �

y is simpler than x as well. Consider the chain prNo(�x) of predecessors
of �x . Clearly, this is a chain of limit length, as �x is the immediate successor of
another surreal number if and only if x = 0, in which case Rs(x) = ∅. By [19,
Theorems 3.13 and 3.16], we may conclude that prNo(�x) contains a cofinal chain
of the form (�y · an)n<� where an = 1

2n for each n. As this chain is contained in
prNo(�x), 12n �

y <s �
x for each n. 	

Let R((tΓ))On be the ordered group (ordered domain; ordered field) of power
series (defined á la Hahn [22]) consisting of all formal power series of the form∑
α<� rαt

yα where (yα)α<�∈On is a possibly empty descending sequence of elements
of an ordered class (ordered commutative monoid; ordered abelian group) Γ and
rα ∈ R − {0} for each α < � . R((tΓ))On is a set (often simply written R((tΓ)))
if Γ is a set, and a proper class otherwise. An element x ∈ R((tΓ))On is said to
be a proper truncation of

∑
α<� rαt

yα ∈ R((tΓ))On if x =
∑
α<� rαt

yα for some
� < � . A subgroup (subdomain; subfield) A of R((tΓ))On is said to be truncation
closed if every proper truncation of every member of A is itself a member of A.
A subgroup (subdomain; subfield) A of R((tΓ))On is said to be cross sectional if
{ty : y ∈ Γ} ⊆ A. For a truncation closed, cross sectional subgroupA ofR((tΓ))On,
the set Ry = {r ∈ R : rty ∈ A} is an Archimedean ordered group, which we will
call the y-coefficient group of A. If A is also a domain, then Rx · Ry ⊆ Rx+y for all
x, y ∈ Γ, and if A is an ordered field, then R0 is a subfield of R.
Proposition 3.4 ([16, 20]). There is a canonical isomorphism of ordered groups
fromNo ontoR((tNo))On that sends each surreal number

∑
α<� �

yα ·rα to
∑
α<� rαt

yα .
The isomorphism is in fact an isomorphism of ordered domains and, hence, of ordered
fields.

Following [16, Definition 14], a class B of surreal numbers is said to be approxi-
mation complete if

∑
α<� �

yα · rα ∈ B whenever∑α<� �
yα · rα ∈ B and � < � . In

virtue of the canonical isomorphism referred to in Proposition 3.4, approximation
completeness is the analog for surreal numbers of truncation closure for formal
power series.

§4. Preliminaries III: s-hierarchical ordered structures. Following [16, Defini-
tion 2], 〈A,+, <,<s, 0〉 is said to be an s-hierarchical ordered group if (i) 〈A,+, <, 0〉
is an ordered abelian group; (ii) 〈A,<,<s〉 is a lexicographically ordered binary
tree; and (iii) for all x, y ∈ A

x + y =
{
xL + y, x + yL |xR + y, x + yR} .

〈A,+, ·, <,<s, 0, 1〉 will be said to be an s-hierarchical ordered domain if
(i) 〈A,+, ·, <, 0, 1〉 is an ordered domain; (ii) 〈A,+, <,<s , 0〉 is an s-hierarchical
ordered group; and (iii) for all x, y ∈ A
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xy = {xLy + xyL − xLyL, xRy + xyR − xRyR |
xLy + xyR − xLyR, xRy + xyL − xRyL}.

Moreover, 〈A,+, ·, <,<s , 0〉 will be said to be an s-hierarchical orderedK-module if
(i) K is an s-hierarchical ordered domain, (ii) A is an s-hierarchical ordered group,
and (iii) A is an ordered K-module in which for all x ∈ K and all y ∈ A

xy = {xLy + xyL − xLyL, xRy + xyR − xRyR |
xLy + xyR − xLyR, xRy + xyL − xRyL}.

s-hierarchical ordered domains and modules are generalizations of the
s-hierarchical ordered fields and vector spaces introduced in [16]. In virtue of
Conway’s field operations, 〈No,+, ·, <,<s , 0, 1〉 is an s-hierarchical ordered domain.
In fact, it is (up to isomorphism) the unique universal and unique maximal
s-hierarchical ordered domain (in the sense of [16, page 1239]). Moreover, if K
is an s-hierarchical ordered subdomain of No, then No is an s-hierarchical ordered
K-module. Furthermore, extending the argument for s-hierarchical ordered
subfields and subspaces of No from [16, page 1236], it is evident that
Proposition 4.1. Every initial subdomain (resp. initial submodule) of an
s-hierarchical domain (resp. s-hierarchical module) is itself s-hierarchical.
Extending the notation employed in [16], if A is an ordered module and B ⊆ A,
then by (B)A we mean the ordered submodule of A generated by B.
The next preparatory result is a modest generalization of [16, Theorem 6].
Lemma 4.2. Let M ′ be an s-hierarchical ordered K-module and M be an initial
submodule ofM ′. If (L,R) is a partition ofM and b = {L |R}M ′

, then (M ∪{b})M ′

is an initial submodule ofM ′.
Proof. Except for replacing the references to “K-vector spaces” and “subspaces”
with references to “K-modules” and “submodules”, the proof is the same as the
proof of [16, Theorem 6]. 	

§5. Initial subgroups and submodules of No. To fully characterize the initial
subgroups of No, we must first characterize the initial subgroups of R.
Lemma 5.1. An ordered group G is an initial subgroup of R if and only if either
G = {0}, D ⊆ G ⊆ R or G = { z2m : z ∈ Z} for some m ∈ N.
Proof. It follows from the definition ofR and Proposition 3.1 that the subgroups
ofR specified in the statement of the lemmaare initial.Now supposeG is a nontrivial
initial subgroup of R that does not contain D. Then there is a greatest m ∈ N such
that z2m ∈ G for some odd z ∈ Z. Using closure under subtraction and the fact
that we must always have 1 and, therefore Z in any nontrivial initial subgroup
of No, it follows that 12m ∈ G and, by closure under addition and subtraction,
{ z2m : z ∈ Z} ⊆ G . But since m is the greatest member of N for which z

2m ∈ G for
some odd z ∈ Z, the inclusion is not proper, thereby proving the lemma. 	
Our final preparatory result follows immediately from the definitions.
Proposition 5.2. IfG is a cross sectional, truncation closed subgroup ofR((tΓ))On
and

Z =

{∑
�<


r�t
y� ∈ G : 
 is an infinite limit ordinal and r0 = 1

}
,
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then {rty : y ∈ Γ, r ∈ Ry} ∪ Z constitutes a class of generators for G considered as
a Z-module.
As is noted above,No is isomorphic to R((tNo))On. We now prove more generally
Theorem 5.3. A subgroup of No is initial if and only if it is isomorphic (via the
canonical isomorphism) to a truncation closed, cross sectional subgroupG of a power
series group R((tΓ))On, where (i) Γ is an initial ordered subclass of No, (ii) every y-
coefficient groupRy ofG is an initial subgroup of R, and (iii) D ⊆ Ry for all x, y ∈ Γ
where y ∈ Rs(x).
Proof. Let A be an initial subgroup of No, Lead(A) be the class of leaders in A,
and Γ = {y : �y ∈ Lead(A)}. Since A is initial, it follows from parts (i) and (ii)
of Proposition 3.2 thatA is approximation complete (see Section 3) and Γ is initial.
Moreover, since A is a group, for each y ∈ Γ the set Ry = {r ∈ R : �y · r ∈ A} is a
subgroup ofR. Furthermore, sinceA is initial, it follows from Lemma 3.3(i) thatRy
is itself initial. Now suppose x, y ∈ Γ where y ∈ Rs(x). In virtue of Lemma 3.3(iv),
1
2n �

y <s �
x for each n ∈ N. Therefore, 12n ∈ Ry for each n ∈ N; and thus, since

groups are closed under addition and subtraction,D ⊆ Ry . Accordingly, by appeal-
ing to the restriction toA of the canonical isomorphism specified in Proposition 3.4,
it is evident that G = {∑α<� rαt

yα ∈ R((tΓ))On :
∑
α<� �

yα · rα ∈ A} is a trun-
cation closed, cross sectional subgroup of R((tΓ))On having the requisite properties
listed in the statement of the theorem, thereby establishing the “only if” portion of
the theorem.
Aspects of the “if” portion of the proof borrow from the first author’s proof of
[16, Theorem 18]. However, whereas the latter proof concerns an ordered subfield
F of R((tΓ))On, which is treated as an ordered vector space over the Archimedean
ordered field {r ∈ R : rt0 ∈ F }, here we are concerned with an ordered subgroupG
ofR((tΓ))On thatwemayonly assume to be anorderedZ-module,which complicates
the argument. To keep the argument largely self-contained, however, we repeat with
modifications portions of the earlier proof.
Let G be a subgroup of R((tΓ))On satisfying the conditions specified in the state-
ment of the theorem and let A be the isomorphic copy of G in No that is the image
of the restriction toG of the inverse of the canonical mapping referred to in Propo-
sition 3.4. That is, let A = {∑α<� �

yα · rα ∈ No :∑α<� rαt
yα ∈ G}. To show that

A is an initial subgroup of No, it suffices to show that 〈A,<s� A〉 (where <s� A is
the restriction of <s to A) is an initial subtree of 〈No, <s〉. We do this by induction
on Γ.
Let a0, . . . , aα, . . . (α < �) be a well-ordering of Γ such that �No(a�) ≤ �No(a
)
whenever � < 
 < � . We consider A as an ordered Z-module. Let Aα be the
submodule of A containing 0 as well as all of the elements in A with exponents
only from Γα = {a� : � ≤ α}. We see that, considered as an ordered Z-module,
A =

⋃
α<� Aα . Notice also that since a0 = 0, A0 = R0, which, by condition (ii), is

an initial subgroup of No. Therefore, 〈A0, <s� A0〉 is an initial subtree of No. To
complete the proof that A is an initial subtree of No, it remains to show that for all
0 < α < � , 〈Aα,<s� Aα〉 is an initial subtree of No, if 〈

⋃
�<α A�,<s�

⋃
�<α A�〉 is

an initial subtree of No.
Accordingly, let 0 < α < � and suppose 〈⋃�<α A�,<s� ⋃

�<α A�〉 is an initial
subtree of No. Also, let Zα =:
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�<


�y� · r� ∈ Aα −
⋃
�<α

A� : 
 is an infinite limit ordinal and r0 = 1

}
,

and let b0, . . . , b�, . . . (� < �) be a well-ordering of {�aα · rα : rα ∈ Raα − {0} ∪Zα
such that for all � < � < �, either:

1. b� , b� ∈ {�aα · rα : rα ∈ Raα − {0}} and �No(b�) ≤ �No(b�);
2. b� ∈ {�aα · rα : rα ∈ Raα − {0}} and b� ∈ Zα ; or
3. b� , b� ∈ Zα and the initial sequence of ordinals over which the exponents in
b� are indexed is contained in the initial sequence of ordinals over which the
exponents in b� are indexed.

By appealing to Proposition 5.2 (and recalling that (X )A denotes the ordered
submodule of A generated by X ), it is easy to see that {�aα · rα : rα ∈ Raα −
{0}}∪Zα ∪

⋃
�<α A� is a class of generators forAα , and hence that,Aα =

⋃
�<� B� ,

where B0 =
(
{b0} ∪

⋃
�<α A�

)
A
and B� =

({b�} ∪⋃
�<� B�

)
A
for 0 < � < �.

Thus to show that Aα is an initial subtree of No, it suffices to show that B� is an
initial subtree of No for each � < �. Moreover, since B� =

⋃
�<� B� , whenever

b� ∈
⋃
�<� B� , henceforth we need only consider those b� /∈

⋃
�<� B� .

We proceed by transfinite induction. First, note that b0 = �aα . Moreover, since
Γ is assumed to be initial, both Ls(aα) and Rs(aα ) ⊆ {a� : � < α}. Let aL and aR
be typical elements of Ls(aα) and Rs(aα), respectively. It follows from Equation (1)
(see Section 3) that

b0 = �aα =
{
0, n�a

L | 1
2n
�a

R

}

where n ranges over the positive integers. As every element of
⋃
�<α A� − {0} is

Archimedean equivalent to a unique member of {�a� : � < α} ⊆ ⋃
�<α A� − {0},

there is a unique partition (Lα,Rα) of
⋃
�<α A� where Lα < Rα , {0, n�a

L} is
cofinal with Lα and { 12n �a

R} is coinitial with Rα . In virtue of the well ordering,
each n�a

L

is in
⋃
�<α A� as is each �

aR . Plainly then, {n�aL} ⊆ Lα . Moreover, in
virtue of the well ordering and the fact that condition (iii) in the statement of the
theorem requires D ⊆ RaR for each aR, it follows that { 12n �a

R} ⊆ Rα . But then
by Proposition 2.2, b0 = {Lα |Rα}; and so, by Lemma 4.2, B0 is an initial subtree
of No.
Now let � > 0 and suppose B� is an initial subtree of No for all � < �. As was
mentioned above, we may assume B� �∈ ⋃

�<� B� . Since {�aα · rα : rα ∈ Z} ⊆ B0,
there are three cases that remain to consider.

Case 1: b� = �aα · rα where either rα ∈ D− Z and Ls(aα ) = ∅ or rα ∈ R \ D. By
the relevant portion of Lemma 3.3(ii), we have

b� = {�aα · rLα |�aα · rRα },
where�aα ·rLα ,�aα ·rRα <s b� ; and this together with the nature of our well ordering
implies �aα · rLα , �aα · rRα ∈ ⋃

�<� B� . In virtue of Proposition 2.2(iii), we have that
there is a partition (L′

�,R
′
�) of

⋃
�<� B� such that b� = {L′

� |R′
�}; and so, by Lemma

4.2, B� is an initial subtree of No.
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Case 2: b� = �aα · rα where rα ∈ D − Z and Ls(aα) �= ∅. By Lemma 3.3(iii),
we have

b� = {�aα · rLα + �a
L
α · n |�aα · rRα − �aLα · n},

where �y · rL+�yL ·n <s �y · r and �y · rR−�yL ·n <s �y · r, for all yL ∈ Ls(y),
rL ∈ Ls(r), rR ∈ Rs(r) and n ∈ N; and, again, this together with the nature of our
well ordering implies that all those options are contained in

⋃
�<� B� . Again, by

Proposition 2.2 (iii) and Lemma 4.2, B� is an initial subtree of No.

Case 3: b� ∈ Zα . In this case, b� has a Conway name of the form
∑
α<  �

yα .rα ,
where  is an infinite limit ordinal and r0 = 1. Moreover, by part (ii) of
Proposition 3.2, b� = {L |R} where

L =
{∑

α< �
�yα .rα + �y�.

(
r� − 12n

)}
0<n<�,�<

and

R =
{∑

α< �
�yα .rα + �y�.

(
r� +

1
2n

)}
0<n<�,�<.

But since, by construction, L ∪R ⊆ ⋃
�<� B� and b� /∈

⋃
�<� B� , there is a partition

(L′
�,R

′
�) of

⋃
�<� B� such that

b� = {L′
� |R′

�} .
Once again by Lemma 4.2, we see that B� is an initial subtree of No.

In showing that B� is an initial subtree of No for each � < �, we have shown
that Aα and, hence, 〈A,<s� A〉 are initial subtrees of No; thereby proving the
theorem. 	
Theorem 5.3 has the virtue that it relates the initial subgroups ofNo to the impor-
tant concept of a Hahn group. However, as the following immediate consequence
of Theorem 5.3 makes clear, it is possible to provide an alternative characterization
of the initial subgroups of No based solely on structures internal to No.
Corollary 5.4. A subgroup G of No is initial if and only if (i) G is approx-
imation complete; (ii) �y ∈ G whenever �y.r ∈ G for some r ∈ R − {0};
(iii) Γ = {y : �y ∈ G} is initial; (iv) for each �y ∈ G , Ry = {r ∈ R : �y.r ∈ G} is
initial; (v) D ⊆ Ry for all x, y ∈ Γ where y ∈ Rs(x).
Remark 5.5. Using the axiom of choice or global choice (if the class is a proper
class), it is a routine matter to prove that every ordered class is isomorphic to an
initial ordered subclass of No. This might seem to suggest that in the statement of
Theorem5.3 onemay omit the assumption that Γ is an initial ordered subclass ofNo.
However, the presence of condition (iii) precludes the omission of that statement.

5.1. Densely and discretely ordered initial subgroups of No. A nontrivial ordered
group 〈G,<,+, 0〉 is said to be discrete or discretely ordered if it contains a least
positive member, and it is said to be dense or densely ordered if for all a, b ∈ G where
a < b there is a c ∈ G such that a < c < b. A nontrivial ordered group 〈G,<,+, 0〉
is dense if and only if it is not discrete.
The following proposition provides a simple means of distinguishing between
nontrivial initial subgroups of No that are discrete and those that are dense.
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Proposition 5.6. A nontrivial initial subgroup G of No is discrete if and only if
there is a member of G of the form 1

2n �
−α (where n ∈ N and α ∈ On) having no left

immediate successor in G .
Proof. Note that elements of No of the form 1

2n �
−α are precisely those having 0

as their sole left predecessor.Wemust show that for any g ∈ G , g is the least positive
element of G if and only if Ls(g) = {0} and g has no left immediate successor.
First, suppose there is a least positive g ∈ G for which Ls(g) �= {0}. If 0 /∈ Ls(g),
then g is not positive, a contradiction. If there is an a ∈ Ls(g) where a �= 0, then a
is a positive element less than g, another contradiction.
Next, notice that any least positive g ∈ G must have no immediate left successor,
since, if g has a left immediate successor, this successor must be a positive element
less than g.
To show the other direction, suppose G is initial. Further suppose g has no left
immediate successor, Ls(g) = {0} and there is an a ∈ G where 0 < a < g. Since
G is lexicographically ordered, it follows that for any x, y ∈ G where x < y, x
is incomparable with y if and only if x and y have a common predecessor z such
that x < z < y (see Section 2). Clearly, a must be incomparable with g, as the
only surreal less than g and comparable with g is zero. Therefore, they must have a
common predecessor z such that a < z < g, but by the assumption thatLs(g) = {0},
z must equal 0 and a must be negative, which is impossible. 	
§6. Initial subdomains of No. We now turn to the characterization of initial
subdomains of No beginning with the initial subdomains of R.
Lemma 6.1. The initial subdomains ofR are Z and the subdomains ofR containing

D. Every initial subdomain of No is an extension of an initial subdomain of R.
Proof. Let K be a subdomain of R. If K = Z, then by Proposition 3.1 K is
initial. Now suppose K �= Z. If K is initial, then Z ⊂ K and, by Proposition 3.1, K
must contain some element of the form z + 12 where z ∈ Z. By subtracting z, we see
that 12 ∈ K . But since the domain D is generated by 12 , D ⊆ K . Finally, if D ⊆ K ,
then K is initial since every predecessor of a member of R − D is a member of D,
and D is initial. The second part of the lemma is trivial. 	
Theorem 6.2. A subdomain of No is initial if and only if it is isomorphic (via the
canonical isomorphism) to a truncation closed, cross sectional subdomainK of a power
series domain R((tΓ))On, where Γ is an initial submonoid of No, every y-coefficient
groupRy ofK is an initial ordered subgroup of R, andD ⊆ Ry for any x, y ∈ Γ where
y ∈ Rs(x).
Proof. First note that the above conditions are precisely the conditions for initial
groups, with the exception of the stipulation that the initial sublass Γ of No must
be a monoid. The latter condition is necessary since: (i) 0 ∈ Γ insofar as Γ initial;
and (ii) given that the domain K is cross sectional, it follows that for all x, y ∈ Γ,
tx and ty are in K , so tx · ty = tx+y ∈ K and, hence, x + y ∈ Γ. Of course, the rest
of the conditions are necessary for integral domains as well, as they are necessary
for abelian groups. In order to show that the conditions are also sufficient, we may
treat K as a Z-module and repeat the second part of the proof of Theorem 5.3. 	
6.1. Densely ordered initial subdomains of No. An ordered domain is said to be
dense if its ordered additive group is dense.
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Corollary 6.3. A densely ordered subdomain of No is initial if and only if it is
isomorphic (via the canonical isomorphism) to a truncation closed, cross sectional
subdomain K of a power series domain R((tΓ))On, where Γ is an initial submonoid of
No and D is a subdomain of K .
Proof. Let K be a dense initial subdomain of No. In light of Theorem 6.2, to
prove the corollary it suffices to show that D is a subdomain of K if and only if (i)
every y-coefficient group Ry of K is an initial ordered subset of R, and (ii) D ⊆ Ry

for any x, y ∈ Γ where y ∈ Rs(x). Suppose D is a subdomain of K . Then D ⊆ R0.
Moreover, since K is cross sectional, R0 ⊆ Ry for all y ∈ Γ, since ty ∈ K and
r · t0 ∈ K for all r ∈ R0, which implies r · ty ∈ K for all r ∈ R0. This implies (ii) is
satisfied, which along with Lemma 6.1 implies (i) is satisfied as well. Now suppose
(i) and (ii) are the case. If D is not a subdomain of K , then by (i) and Lemma 6.1,
R0 = Z. Moreover, since K is both dense and initial, the simplest member of No
lying between 0 and 1, namely 12 , is in K . But this implies D is a subdomain of K ,
contrary to assumption. 	
The following result,which is a special case ofCorollary 6.3, is the aforementioned
result (see Section 1) categorizing the initial subfields ofNo established in [16]. Since
the special case is about ordered fields, the ordered monoid Γ must be an ordered
abelian group and the reference to D may be deleted since every ordered field is an
extension of an isomorphic copy of D, the latter of which is initial in No.
Corollary 6.4. A subfield of No is initial if and only if it is isomorphic (via the
canonical isomorphism) to a truncation closed, cross sectional subfield of a power
series field R((tΓ))On, where Γ is an initial subgroup of No.

6.2. Discretely ordered initial subdomains of No. An ordered domain is said to be
discrete if its additive group is discrete. Accordingly, an ordered domain is discrete
if and only if it is not dense. The least positive member of an ordered domain is its
multiplicative identity 1.
A discrete subdomainA of an ordered field B is said to be an integer part if every
member of B is at most a distance 1 from a member of A. Conway introduced
a canonical integer part Oz of No consisting of the surreal numbers of the form
x = {x − 1 |x + 1}. These omnific integers, as Conway calls them, are precisely the
surreal numbers having Conway names of the form

∑
α<� �

yα · rα where yα ≥ 0 for
all α < � , and rα is an integer if yα = 0.
As we will now see, Oz is in fact (up to isomorphism) the unique discrete
s-hierarchical ordered domain containing an initial isomorphic copy of every
discrete s-hierarchical ordered domain.
Theorem 6.5. An initial subdomain ofNo is discrete if and only if it is a subdomain
ofOz.
Proof. Suppose K is an initial subdomain of Oz. Since Oz is discrete [19, p. 3:
Note 2], K must be discrete as well. For the converse, suppose there is a discrete
initial subdomain K of No containing some element a /∈ Oz. Let ∑α<� �

yα · rα
be the Conway name of a. Also let b =

∑
α<� �

yα · r′α where r′α = rα if yα > 0,
r′α = 0 if yα < 0 and r

′
α is largest integer less than rα if yα = 0. Note that b ∈ Oz,

so b = {b − 1 | b + 1}. Moreover, since b − 1 < a < b + 1, b <s a; and so, as K is
initial and a ∈ K , b ∈ K . As K is a domain, a − b ∈ K ; but 0 < a − b < 1, which
contradicts the assumption thatK is discrete. 	
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§7. Initial subgroups and subdomains that are convex. Among the important sub-
groups and subdomains of ordered groups and fields are those that are convex.
Using Theorems 5.3 and 6.2, we now identify the convex subgroups of initial sub-
groups of No that are themselves initial as well as the convex subdomains of initial
subfields of No that are likewise initial. As we shall see, unlike the convex subgroups
and subdomains of ordinary ordered groups and ordered fields, the initial convex
subgroups and subdomains of initial subgroups and subfields of No are always well
ordered by inclusion.
Let A be a nontrivial initial subgroup of No and On(A) =: On ∩ A be its sub-
tree of ordinals (see Section 3). Following [16, Definition 19], A is said to be
α-Archimedean if α is the height of On(A) considered as a subtree of A. By [16,
Theorem 24], A is α-Archimedean if and only if α is the least ordinal such that for
each x ∈ A there is an ordinal � < α such that −� < x < � .
Ordinals of the form �φ are said to be additively indecomposable since they are

precisely the ordinals � > 0 such that � + 
 < � for all ordinals �, 
 < �, and
ordinals of the form ��

φ

are said to be multiplicatively indecomposable since they
are precisely the ordinals � > 2 such that �
 < � for all ordinals �, 
 < �, where the
just-said sums andproducts of ordinals are the familiar Cantorian operations. Every
nontrivial initial subgroup (resp. initial subdomain) is �φ-Archimedean for some
nonzero ordinal (resp. nonzero additively indecomposable ordinal) φ; moreover, if
A is an ordered field, then A is Archimedean if and only if A is �-Archimedean
[16, Theorem 24].
LetA be an�φ-Archimedean initial subgroup of No and for each nonzero ordinal
� ≤ φ, let

A[��] =: {x ∈ A : −α < x < α for some α < ��}.
Proposition 7.1. Let A be an �φ-Archimedean initial subgroup of No and � be a
nonzero ordinal ≤ φ ≤ On.
(i) A[��] = A if and only if � = φ.
(ii) A[��] = {x ∈ A : −nα < x < nα for some n ∈ N and some α < ��}.
(iii) The class of ordinals< �� is a cofinal subclass of A[�� ].
(iv) For each leader �y ∈ A there is a unique leader �α ∈ A where α is an ordinal

< φ such that �y ≤ �α and �α ≤s �y . If �y �= �α , then �α is the least
ordinal > �y . Moverover, if �x <s �y , then �x ≤ �α .

Proof. (i) is trivial, (ii) follows from the additively indecomposable nature of�� ,
and (iii) follows from the definition of A[��] and the initial nature of A. For (iv),
note that for each z > 0 in No, there is a unique ordinal α such that z ≤ α and
α ≤s z; moreover, if y �= α, then α is the least ordinal> y. But by [16, Theorem 11]
and [19, Proposition 3.6(i)] for all z, y ∈ No, z <s y if and only if �z <s �y , which
implies the first two parts of (iv). Finally, suppose �z <s �y . If z is an ordinal,
then plainly �z ≤ �α ; and if z is not an ordinal, then its sign-expansion begins with
�α pluses followed by a minus, which implies it is < �α , thereby completing the
proof. 	
Theorem 7.2. Let A be an �φ-Archimedean initial subgroup of No. Then K is a
nontrivial initial convex subgroup of A if and only if K = A[�� ] for some additively
indecomposable infinite ordinal �� ≤ �φ.
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Proof. First suppose K is a nontrivial initial convex subgroup of A. Since K is
a nontrivial initial subgroup of A, K is ��-Archimedean for some nonzero ordinal
� ≤ φ. Moreover, since K is a convex subgroup of A, A[��] ⊆ K . Furthermore, if
A[��] �= K , there is an x ∈ K such that A[��] < {x} < ��. But then �� <s x,
which implies K is not initial, since �� /∈ K ; and so K = A[��].
Now suppose K = A[��] for some additively indecomposable infinite ordinal
�� ≤ �φ . If � = φ, then K = A, which is a trivial initial convex subgroup of A.
Now suppose 1 ≤ � < φ. In virtue of the definition of A[��],K is a convex subclass
of A. Moreover, by Proposition 7.1(ii) and the convex nature of K , every element
of A that is Archimedean equivalent to some x ∈ K is likewise in K . Plainly then,
x + y ∈ K whenever x, y ∈ K , since x + y is in the Archimedean class containing
�z , where z is the maximal member in the supports of x and the supports of y,
which shows K is a group. To establish K is initial, first note that since A is cross
sectional and closed under truncation, it follows from the fact that K is a convex
subgroup ofA (in which every element ofA that is Archimedean equivalent to some
x ∈ K is likewise in K) that K is also cross sectional and closed under truncation.
In addition, since K is a convex subgroup of A and A is initial, the y-coefficient
groups of K satisfy conditions (ii) and (iii) of Theorem 5.3. Therefore, in virtue
of Theorem 5.3, to complete the proof it remains to show {y ∈ No : �y ∈ K} is
an initial subtree of No. For this purpose, suppose �y ∈ K and further suppose
�x <s �

y . Since x <s y if and only if�x <s �y for all x, y ∈ No, it suffices to show
�x ∈ K . To this end, note that by Proposition 7.1(iii), there is an ordinal � ∈ K
such that �y < � < �� . Moreover, by Proposition 7.1(iv), there is an ordinal �α

such that either �α = �y or �α is the least ordinal > �y and �x ≤ �α . Plainly
then, �x ≤ �α ≤ � . And so, since K is a convex subgroup of A, �x ∈ K . 	
Theorem 7.3. Let A be an �φ-Archimedean initial subfield of No. Then K is an
initial convex subdomain of A if and only if K = A[��] for some multiplicatively
indecomposable ordinal �� ≤ �φ .
Proof. Since A is a field, it follows that for each �y ∈ K , {r ∈ R : �y.r ∈ K} =

{r ∈ R : �0.r ∈ K} and so, for each leader �y ∈ K , D is a subdomain of
{r ∈ R : �y.r ∈ K}. Accordingly, in virtue of Theorems 7.2 and 6.2, to complete
the proof it suffices to show that K (which is convex) is a subdomain of A if and
only if K = A[��] for some multiplicatively indecomposable ordinal �� ≤ �φ .
If �� is not multiplicatively indecomposable, there are ordinals α, � ∈ K where
α� > �� and, hence, α� /∈ K , which shows K is not a domain. Now suppose
�� is multiplicatively indecomposable. If � = 1, K consists of the finitely bounded
members of A, in which case K is obviously a subdomain of A. Moreover, if
1 < � < φ, then {�� : � < �} is a cofinal subclass of K without a greatest member.
Accordingly, if x, y ∈ K , |x| ≤ some �� ∈ K and |y| ≤ some �� ∈ K , where �, �
are ordinals < �, and so |xy| ≤ ��+� < �� . But then ��+� and, hence, |xy| are in
K , which suffices to show K is a domain. 	
Remark 7.4. Since every real-closed ordered field is isomorphic to an initial
subfield of No, it is natural to inquire if this is true for real-closed ordered domains
more generally, the latter of which coincide with the convex subdomains of real-
closed ordered fields [8]. However, since the convex subdomains of real-closed
ordered fields are not in general well-ordered by inclusion, Theorem 7.3 implies this
is not the case.
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§8. Optimality results and an open question. As we mentioned above, in [16] it
was shown that every divisible ordered abelian group (real-closed ordered field)
is isomorphic to an initial subgroup (initial subfield) of No. The following result
shows that in a important sense these results are optimal.
Let TD and TDIV be the theories of nontrivial densely ordered abelian groups
and nontrivial divisible ordered abelian groups in the language {≤,+, 0} of ordered
additive groups, and let TOF and TRCF be the theories of ordered fields and real-
closed ordered fields in the language {≤,+, ·, 0, 1} of ordered fields.
Theorem 8.1. (i) If T is a theory in {≤,+, 0} containing TD , then every model
of T is isomorphic to an initial subgroup of No if and only if T = TDIV . (ii) If T is
a theory in {≤,+, ·, 0, 1} containing TOF , then every model of T is isomorphic to an
initial subfield of No if and only if T = TRCF .

Proof. In light of the above-mentioned results ondivisible ordered abelian groups
and real-closed fields from [16], it remains to consider the cases where T �= TDIV
and T �= TRCF . Let TD ⊆ T �= TDIV where T is a theory in {≤,+, 0} and let
M be a countable model of T . There is an elementary chain Mα (α < On) of
models of T such that for each α, Mα is an �α+1-saturated elementary extension
of M of power 2�α [9, Lemma 5.1.4]. Since each Mα is an 	α+1-ordering ([9,
Page 369]; also see [5]), the unionM ′ of the chain is a model of T that is an 	On-
ordering (see Proposition 2.4). However, sinceNo is a lexicographically ordered full
binary tree and no lexicographically ordered binary tree contains a proper initial
ordered subtree that is isomorphic to itself [16, Lemmas 1 and 2], it follows from
Propositions 2.3 and 2.4 that an initial ordered subtree of No is an 	On-ordering
if and only if it is No itself. But since No is divisible and M ′ is not, there is no
isomorphism ofM ′ onto an initial subgroup ofNo. Except for trivial modifications,
the same argument applies to (ii), which suffices to prove the theorem. 	
The above proof of the “only if” portion of Theorem 8.1 makes critical use of
class models. This naturally suggests:

Question 8.2. Can the “only if” portion of Theorem 8.1 be established in NBG
appealing solely to models whose universes are sets?

An ordered field K is said to be n-real-closed [7, page 327] if every polynomial
of degree at most n admitting a root in a real closure of K admits a root in K .
Boughattas [7] has shown that, for each positive integer n, there is a model of the
theory of n-real-closed fields whose universe is a set that does not have an integer
part. Therefore, since every initial subfield of No has a canonical integer part [16,
Theorem 25], it follows that for each positive integer n, there is amodel of the theory
of n-real-closed fields whose universe is a set that is not isomorphic to an initial
subfield ofNo. This, however, does not provide a positive answer to the field portion
of Question 1 since there are theories of ordered fields that are not equivalent to
the theory of n-real-closed fields for any n. One can also find theories of ordered
abelian groups having models whose universes are sets that are not isomorphic to
initial subgroups of No. For example, if we say that a nontrivial ordered abelian
group is n-divisible if every element is divisible by n, then for each prime p > 2
the p-divisible ordered abelian group generated by 1 is not isomorphic to an initial
subgroup of No. However, we are not aware of a proof that applies to every theory
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of ordered abelian groups lacking full divisibility, which leaves the group portion of
Question 8.2 open as well.

§9. Further open questions. Unlike discrete initial subdomains of No, discrete
initial subgroups ofNo need not be subgroups ofOz. A case in point is the subgroup
of No consisting of all elements of the form d + (a/�), where d ∈ D and a ∈ Z.
On the other hand, this discrete initial subgroup of No is isomorphic to an initial
subgroup of Oz, as is evident from the mapping f(d + (a/�)) = �.d + a for all
d ∈ D and all a ∈ Z. This motivates
Question 9.1. Is every discrete initial subgroup of No isomorphic to an initial
subgroup of Oz?
Question 9.2. What is a set of conditions that are individually necessary and
collectively sufficient for an arbitrary ordered commutative monoid to be isomorphic
to an initial submonoid of No?
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