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Near-wall rising behaviour of a deformable
bubble at high Reynolds number
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The dynamics of a large deformable bubble (Re ∼ O(103)) rising near a vertical
wall in quiescent water is experimentally investigated. The reference (without the
wall) rising path of the considered bubble is a two-dimensional zigzag. For a
range of wall configurations (i.e. initial wall distance and boundary condition),
using high-speed shadowgraphy, various rising behaviours such as periodic bouncing,
sliding, migrating away, and non-periodic oscillation without collisions are measured
and analysed. Unlike low-Reynolds- and Weber-number bubbles, the contribution of
the surface deformation to the transport between the energy components becomes
significant during the bubble’s rise. In particular, across the bubble–wall collision, the
excess surface energy compensates the deficit of kinetic energy. This enables a large
deformable bubble to maintain a relatively constant bouncing kinematics, despite the
obvious wall-induced energy dissipation. The wall effect, predominantly appearing
as energy loss, is found to decrease as the initial distance from the bubble centre
to the wall increases. Compared to the regular (no-slip) wall, a hydrophobic surface
enhances or reduces the wall effect depending on the wall distance, whereas a porous
surface reduces the energy loss due to the wall, regardless of the initial distance from
the wall. Furthermore, the bubble–wall collision behaviour is assessed in terms of
a restitution coefficient and modified impact Stokes number (ratio of the inertia to
viscous forces), which shows a good correlation, the trends of which agree well with
the variations in the energy components. The dependence of near-wall bubble motion
on the wall distance and boundary condition may suggest a way of predicting or
controlling the near-wall gas void-fraction distribution in gas–liquid flow systems.

Key words: bubble dynamics, drops and bubbles, gas/liquid flow

1. Introduction

It has been reported that the perturbation by rising bubbles substantially modulates
the hydrodynamic properties (e.g. turbulence) of the liquid phase in gas–liquid flows
(Rensen, Luther & Lohse 2005; Balachandar & Eaton 2010; Hosokawa & Tomiyama
2013), if the ratio of bubble size to the integral length scale of the liquid phase is
larger than ∼0.1 (Gore & Crowe 1989). Therefore, in various engineering systems
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Near-wall rising behaviour of a deformable bubble 565

(e.g. power plants, bioreactors, mineral processing, waste water treatment and air-lift
systems) which involve the transport of mass, momentum and heat between two
phases, the accurate evaluation of bubble motion and the subsequent gas void-fraction
distribution are very important.

So far, the rise of a bubble driven by buoyancy in a still liquid has been investigated
mainly for an unbounded configuration. Despite its simple appearance, interestingly
the shape and trajectory of a bubble show quite complex trends depending on
the relative dominance among inertia, viscosity and surface tension, and also the
contamination of the bubble surface (Clift, Grace & Weber 1978; Magnaudet &
Eames 2000). In clean water, a small bubble whose diameter is less than ∼1.3 mm
tends to retain a spherical shape and to follow a simple rectilinear trajectory. As the
bubble size increases, however, its shape changes to an oblate ellipsoid and it follows
a plane zigzag and/or three-dimensional helical path. This so-called path instability is
attributed to the asymmetry of the vortical structures in the wake (i.e. wake instability)
caused by the excess vorticity accumulated on the bubble surface (Ellingsen &
Risso 2001; Mougin & Magnaudet 2002, 2006; Yang & Prosperetti 2007; Zenit &
Magnaudet 2008; Ern et al. 2012).

In many practical situations, on the other hand, the rising bubbles encounter solid
boundaries (e.g. vertical walls). Without concerning their hydrodynamics in detail,
early works focused on the retarding of the rise velocity of the bubble due to the wall
(Uno & Kinter 1956; Krishna et al. 1999). However, it is well known that the wall
effect, combined with the wake instability, may cause a more complex path instability
for the rising bubbles. For example, de Vries (2001) observed that a bubble slides or
bounces a few times on a wall depending on the bubble size and the initial distance
between the bubble and wall.

Previous studies successfully explained the mechanism of repulsive and attractive
lift (i.e. wall-normal) forces which cause different near-wall movements of a spherical
bubble rising at very small Reynolds numbers of O(610); otherwise it would rise in
a straight line without the wall. When the Reynolds number (Re), based on the rise
velocity and the equivalent bubble diameter, is small (.30) so that the viscous effects
are dominant, the rising bubble migrates away from the wall due to the repulsive lift
caused by strong diffusion of the vorticity in the interaction between the wall and
bubble wake (Takemura et al. 2002; Takemura & Magnaudet 2003). As Re increases,
however, the vorticity generated remains confined in a thin boundary layer on the
bubble surface and instead a finite liquid velocity is induced between the bubble and
the wall. The wall-normal pressure gradient due to this velocity distribution around
the bubble (which is well-predicted by the potential flow theory) causes the bubble to
be attracted toward the wall (Takemura & Magnaudet 2003). When the gap between
the bubble and the wall becomes much narrower because of this attraction, on the
other hand, the sign of lift force is reversed due to the effect of viscosity in the thin
liquid layer between the bubble and the wall (lubrication theory), and the rising bubble
bounces off the wall (Takemura & Magnaudet 2003; Sugiyama & Takemura 2010).

For high-Re (and high Weber number, We) bubbles, the circumstances are more
complex due to the shape instability (i.e. deformation) (Magnaudet & Eames 2000).
Moctezuma, Lima-Ochoterena & Zenit (2005) modelled the bouncing motion of a
spherical bubble near a vertical wall in still water using the potential flow theory,
representing the case of high Re and low We, and pointed out the importance of effects
of viscosity in predicting the bubble’s bouncing behaviour accurately. Zaruba et al.
(2007) constructed the equation of motion for a rising bubble (Re= 220–1000) near
a vertical wall, under an upward shear, by considering associated force components
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acting on the bubble. They predicted the changes in the bubble’s bouncing motion
with varying liquid velocity, and hypothesized that at a low liquid velocity, the bubble
obtains additional energy from the shape oscillation to compensate the damping effect
during bubble–wall collisions and maintains the bouncing amplitude almost constant.
Figueroa-Espinoza, Zenit & Legendre (2008) also found that at Re> 100, the strong
wall effect imposes a transition between attractive and repulsive lift forces on a rising
bubble in a confined (by two closely spaced sidewalls) condition, which triggers a path
instability at lower Re (∼70) than that (∼660) (Duineveld 1995) of a freely rising
bubble in pure water.

On the other hand, the changes in the bubble–wall collision dynamics with wall
boundary condition have been tested for the normal bouncing on a horizontal top-wall
(Krasowska & Malysa 2007; Zawala et al. 2007). In these studies, the rising bubble
was originally spherical and deformed only when it collided with the horizontal wall.
Krasowska & Malysa (2007) reported that air pockets trapped on a slippery wall
cause the approaching bubble to attach on the wall after a smaller number of bounces
than on a no-slip wall. Zawala et al. (2007) estimated the transfer of kinetic energy
to surface energy during those collisions. In the case of a hydrophobic surface, the
energy transfer was small (i.e. large energy loss) such that the approaching bubble
attaches to the wall, but the bubble stayed under the hydrophilic wall after multiple
collisions where the energy transfer is larger (i.e. smaller loss of energy). For the
normal bubble collision, an interesting analysis was given by Zenit & Legendre (2009)
who investigated the ratio of the wall-normal velocities of the bubble after and before
the impact, as an indirect measure of energy dissipation, resulting from the bubble–
wall collision. They found that the process of normal collision is well characterized
by the modified Stokes number (where the added-mass effect is considered as well)
and the capillary number, which is different from the collision of solid particles.

Despite these previous intensive efforts, more investigations on the near-wall
dynamics of a rising bubble are still necessary. First, most previous studies on
the interaction between a rising bubble and a vertical wall focused on a spherical
bubble (whose Reynolds and Weber numbers ranged from small to moderate), thus
the reference bubble trajectory (without the wall) is considered to be straight and
the shape deformation is negligible (or mild). Thus it is necessary to study the
wall-induced path variation on a large deformable bubble further. In addition, a
systematic investigation on the effect of initial distance between the bubble and the
wall would be informative. Second, previous studies have considered walls with a
conventional no-slip boundary condition, and the effects of having a different material
(i.e. different boundary condition) on the movement of rising bubbles have not been
studied.

Therefore, in the present study, the path of a single bubble rising near a vertical
wall is experimentally investigated in a quiescent water tank. We specifically consider
the rise of a large deformable bubble, i.e. the reference bubble (without the wall)
already has its own path (two-dimensional zigzag path) and shape instabilities,
and systematically vary the initial distance between the bubble and the wall. The
considered Re and We are high enough for the bubble to become an oblate ellipsoid
and deform as well. Four different types of wall are considered to change the
boundary condition at the surface, such as a no-slip, porous and hydrophobic ones.
The initial distance between the bubble centre and the wall is also varied for each
wall. This approach will help the understanding of wall-induced path instability for a
high-Re and high-We (large and deformable) bubble, and furthermore the predicting or
controlling of the near-wall void fraction distribution in gas–liquid flow systems. Also,
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FIGURE 1. (Colour online) (a) Experimental set-up for a single bubble rising near a
vertical wall in a stagnant water tank. (b) Reference zigzag motion of a freely rising
bubble at Re ' 1100. (c) Modelling of a periodically bouncing bubble’s trajectory with
a sinusoidal function and definitions of bubble geometry.

we hope that the current results can be extended to a wide range of applications such
as power conversion systems, cavitating flows, waste water treatment, oil extraction,
mineral processing, froth flotation, and reactors. In these systems, commonly, (i) the
consequence of bubble–wall collision or the underlying dynamics is very important
in assessing their performance and (ii) complex mass transfer between agents is
important.

2. Experimental set-up and procedures
2.1. Single bubble rising in quiescent water

The experimental set-up is composed of a water tank, a high-speed camera
(Troubleshooter, Fastec Imaging Co.) and a halogen lamp to facilitate high-speed
shadowgraph imaging (figure 1a). The water tank is an acrylic cube container
(500 × 500 × 500 mm3) with a stainless steel nozzle (inner diameter of 0.8 mm)
located at the centre of the bottom. A bubble, generated from compressed air through
the nozzle, rises due to buoyancy in quiescent water. The size of the bubble and the
frequency of bubble generation are controlled by a pressure regulator and a solenoid
valve. The container is fully filled up with tap water to minimize the free-surface
effect on the bubble motion.

We fix the bubble Reynolds number as Re=Udeqν
−1'1100 based on the equivalent

diameter (deq) and the mean rise velocity (U = 0.284 m s−1) of a freely rising
(i.e. without the wall) bubble (ν is the kinematic viscosity of water). Corresponding
Weber and Eötvös numbers are We=ρlU2deqσ

−1'4.4 and Eo=g(ρl−ρg)d2
eqσ
−1'2.1,

respectively, which are higher than those considered in previous studies. Here, ρl and
σ are the density and surface tension of water, respectively, g is the gravitational
acceleration, and ρg is the density of air. The equivalent diameter is estimated
from the projected shape as deq = (d2

hdv)1/3 ' 3.92 mm, where dh and dv are the
length of horizontal (major) and vertical (minor) axes of an oblate ellipsoidal bubble,
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respectively (see figure 1c). The typical wobbling shape of the bubble (see figures
1b and 3) in the present set-up is in a good agreement with the classification of
the bubble shape depending on Re and Eo, proposed by Clift et al. (1978). Note
that the present wobbling bubble shape is approximated as an oblate ellipsoid
and its geometric variables are calculated accordingly, as done by many previous
studies (Zaruba et al. 2007; Zenit & Magnaudet 2008; Cano-Lozano, Bohorquez
& Martínez-Bazán 2013). On the other hand, for the present deq and Re, it is
known that a freely rising bubble follows an in-plane zigzag oscillation (Clift et al.
1978; Ellingsen & Risso 2001; Zenit & Magnaudet 2008), which we also confirmed
(figure 1b).

In air–water two-phase flows where the surface tension is relatively high, surfactants
(i.e. bubble surface contamination) may cause a drastic change in the hydrodynamics
of the flow (Clift et al. 1978; Cuenot, Magnaudet & Spennato 1997; Magnaudet &
Eames 2000; Takagi & Matsumoto 2010). As understood by the Marangoni effect
due to the localized contamination of bubble surface, the effects of surfactants on the
motion of a single bubble are summarized as (i) the reduction of the rise velocity
(increase of drag) and (ii) the change in the lateral migration (decrease of lift) in the
presence of liquid shear (Takagi & Matsumoto 2010). Since the surrounding water is
stationary in the present set-up, the effect of surface contamination may be indirectly
examined through the bubble’s rise velocity. We compared the rise velocity of the
current bubble with the empirical estimation by Clift et al. (1978) and confirmed that
the current condition is close to that of a clean bubble.

On the other hand, the time that the bubble has travelled in the liquid (Bachhuber
& Sanford 1974) and the bubble size (Duineveld 1994) are also important factors to
determine the effect of surface contamination. According to them, if a bubble diameter
is large enough (&2.5 mm) and the experiment duration is not too long, the behaviour
of bubbles rising in tap water can be approximated as that in pure water. Currently, we
think that the bubble motion was not filmed for a long enough time for the surfactants
to have a great influence. In the present study, no special care was taken to maintain
the bubble surface super-clean (but the tap water was replaced for each data set);
however, based on the above reasoning, we may say that the surface of the present
bubble is not fully immobilized.

2.2. Characterization of different types of wall
To establish the wall effect on the dynamics of a rising bubble in detail, we
consider two parameters: (i) the distance (s) between the wall and the centre of
nozzle exit (i.e. the initial distance between the bubble centre and the wall) and
(ii) the wall boundary condition. The normalized initial distance (s∗ = s/req, where
req = 0.5deq) is varied from 0.26 to 4.08. As material for the wall, we consider
an acrylic, a polyurethane sponge, polytetrafluoroethylene (PTFE) and roughened
PTFE to obtain the wall boundary condition as no-slip, porous, hydrophobic and
enhanced hydrophobic, respectively. The porous characteristics and its applications
in flow control of a regular polyurethane sponge (foam) have been well documented
previously (Saleh, Thovert & Adler 1993; Manes, Poggi & Ridolfi 2011). As a
hydrophobic surface, we use a Teflonr which is a commercially available patented
PTFE. It is well known that the addition of roughness enhances the hydrophobicity
of the surface (Cassie & Baxter 1944). The so-called Cassie–Baxter model states
that, in the de-wetted (or fakir) state, the surface roughness makes the surface appear
more hydrophobic (i.e. the apparent contact angle (CA) is larger than the intrinsic
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(a) (b) (c)

FIGURE 2. SEM images (100×) (top) and measurement of the contact angle (CA) of a
water droplet (bottom) for three of the wall types considered: (a) polyurethane sponge;
(b) regular PTFE; (c) roughened PTFE.

CA of the surface). We modified the surface of a regular Teflon plate with an
abrasive paper (grit No. 80) and achieved an increase of the apparent CA of a water
droplet from 95◦ to 120◦ (figure 2). Achievement of enhanced hydrophobicity by this
simple manipulation of a Teflonr surface has been proposed by Nilsson, Daniello
& Rothstein (2010). Figure 2 shows scanning electron microscopy (SEM) images of
the considered sponge and PTFE walls, and the shape of a water droplet on them
to measure the static CA. For the PTFE walls, the root-mean-square size of the
roughness is calculated to be ∼3.7 µm and ∼42 µm for the regular and roughened
surface, respectively, based on cross-sectional SEM images.

2.3. Image capture and data processing
In the present study, the shadowgraph images (induced by a halogen lamp) of
a rising bubble in the x–y plane (figure 1) are captured by a high-speed camera
(640 pixel × 480 pixel) at 500 f.p.s. The spatial resolution of the camera is
set to be about 280 µm pixel−1 so that the field of view (FoV) has a size of
177 mm× 133 mm (which is equivalent to about 70req in the vertical (x) direction),
positioned at 20 mm above the nozzle exit. The location of the measurement plane
was determined to be near the nozzle to exclude the possibility of having a transition
from a zigzag to a helical path due to external perturbations, if any.

To analyse the shape and motion of a rising bubble qualitatively, we processed
sequential shadow images of the bubble using the method introduced by Bröder &
Sommerfeld (2007). First, we set the optimal threshold of the grey value to distinguish
the bubble from the background by which the raw images are binarized. Then we
apply the Sobel filter which evaluates the grey-value gradient on each pixel to detect
the edge of the bubble. Based on the detected contour of the bubble, we pick a
number of points on the bubble edge with a uniform spacing. Connecting each point
on the edge to a certain point inside the bubble (i.e. a guessed bubble centre), the
bubble can be divided into several segments. As a result, the actual bubble centre
is determined by calculating the centre of gravity on each segment. The trajectory
of the bubble is tracked based on the bubble centre at each instant and the bubble
shape deformation is indirectly evaluated by calculating the aspect ratio, χ = dh/dv
(figure 1c).

On the other hand, for the case of a periodically rebounding bubble which
was observed to collide against the wall 1–4 times within the considered FoV,
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FIGURE 3. Variations in the trajectories (in the x–y plane) of a rising bubble with s∗
near a vertical wall of (a) acrylic, (b) polyurethane sponge, (c) PTFE and (d) roughened
PTFE. The time interval between adjacent bubbles is 10 ms (i.e. 100 f.p.s.), being reduced
from the raw 500 f.p.s. videos. The insets next to the first column of (c) and (d) show a
close-up view of the sliding bubble shape.
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FIGURE 4. Variations in the trajectories (in the x–z plane) of a rising bubble with s∗ near
the acrylic wall at (a) 90. x∗. 165; (b) 10. x∗. 80. The time interval between adjacent
bubbles is 10 ms (i.e. 100 f.p.s.), being reduced from the raw 500 f.p.s. videos. Clearly,
the oscillation in the x–z plane is much smaller that in the x–y plane.

its trajectory is fitted with a harmonic function (figure 1c), where h, λ and r are the
amplitude, wavelength and wall-normal shift of the periodic bouncing, respectively.
The sinusoidal modelling of a periodic rebounding motion of a bubble has been also
adopted by Takemura & Magnaudet (2003) and Figueroa-Espinoza et al. (2008).

3. Results and discussion
Shown in figure 3 are representative trajectories of a rising bubble in the x–y

plane with increasing s∗ for each considered wall type. We measured the bubble’s
trajectory more than 10 times for each case and the repeatability error is within 5 %
in terms of the rise velocity. To check the two-dimensionality of the bubble motion,
maintaining the same conditions such as req and s∗, the shadow images (trajectories)
of a rising bubble were taken in the x–z plane (i.e. out-of-plane movement) for the
acrylic wall (figure 4). Due to the limited accessibility of the high-speed camera,
the trajectories in figure 4 were not taken at the same instants as those in figure 3.
However, it is adequate to check the two- or three-dimensionality of the measured
trajectories. As shown in the figure, it is clear that the bubble motion in the x–z
plane is almost straight for the considered s∗ values, even after a collision against the
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wall (highlighted with dashed-line boxes at s∗ = 0.26), and shows a slight oscillation
at large s∗ (figure 4b). This is interesting because the vertical wall could encourage
the instability of the bubble path to evolve into the three-dimensional one, but this
did not occur. As introduced above, the path instability of a rising bubble is a
direct consequence of the vortex dynamics in the bubble wake (i.e. wake instability)
(Zenit & Magnaudet 2008). Therefore, it is conceivable that the collision against the
wall does not produce three-dimensional vortical structures in the bubble wake. The
modification of flow structures due to the presence of the wall (known as a ground
effect) has been investigated for various geometries. For the wake behind a sphere
(similar to the present bubble), it has been reported that the vortical structures are
stabilized (i.e. wake instability is not triggered) in the close vicinity of the wall, both
at low (Lee 2012) and high (Tsutsui 2008) Reynolds numbers. Similar stabilization of
the wake structure has been reported for the flow behind a two-dimensional circular
cylinder located very close to the wall (Bearman & Zdravkovich 1978; Huang &
Sung 2007). Thus, we may attribute the two-dimensional bubble motion even in the
vicinity of the wall to the stabilizing effect of the wall, which should be confirmed
through the detailed measurement of the liquid velocity field between the bubble
and the wall in the future. Thus, in the present set-up, it is understood that the
out-of-plane movement of the bubble is negligibly small compared to the in-plane
movement, i.e. two-dimensional. By moving the camera vertically, it is also confirmed
that the same behaviours of the bubbles are retained at 90 . x∗ . 165 (figure 4a),
above the original location of measurement (0 . x∗ . 70) (figure 4b). Although it
was not possible to observe the bubble motions in the x–z plane for other types of
wall material due to their opacity, we think that the two-dimensionality of the bubble
motion is still valid for them.

Based on the data in figure 3, it is found that the effect of different wall materials
on the bubble motion is significant at s∗. 2.0 and becomes less at s∗> 2.0. Thus, we
start by analysing the near-wall rising motions in these regimes separately.

3.1. Near-wall rising behaviour of a large deformable bubble at s∗ . 2.0
3.1.1. Rebounding bubbles

At s∗ . 2.0, a rising bubble near the acrylic and polyurethane sponge walls shows
periodic or non-periodic rebounding motions (figure 3a,b). The periodic bouncing
motions are nicely fitted with a sinusoidal function (selected examples are plotted in
figure 5a) and the variations of corresponding parameters (amplitude and wavelength)
are plotted in figure 5(b,c). The cases of non-periodic bouncing were not plotted. In
addition to the visual confirmation, we used the value of r/req to determine whether
the bubble actually collides with the wall or not; that is, r/req < 1.0 for all the
cases shown in figure 5(b,c), and the same criterion has been used by Takemura &
Magnaudet (2003).

For the acrylic wall (having a conventional no-slip boundary condition at the
surface), the rising bubble bounces off the wall repeatedly at s∗ 6 2.04 (figure 3a).
Among them, the example (s∗ = 0.26) of periodic bouncing motion (0.26 6 s∗ 6 1.53)
is shown to be nicely fitted with a sinusoidal function in figure 5(a). Except in the
close vicinity of the wall (i.e. s∗ = 0.26), the non-dimensional amplitude (h∗ = h/req)
of the periodic bouncing is maintained roughly the same at s∗ 6 1.53 (figure 5b). On
the other hand, the wavelength (λ) tends to increase with increasing s∗ (figure 5c). It
is noted that the bubble still bounces on the acrylic wall at s∗= 2.04, but its trajectory
oscillates non-periodically.
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FIGURE 5. (a) Measured trace (symbols) of a bubble (selected from figure 2) and
corresponding curve fit (lines): E, ——, acrylic at s∗ = 0.26; f, – · – · –, polyurethane
sponge at 0.26;A, - - - -, PTFE at 1.53;p, · · · · · ·, roughened PTFE at 2.04. Variations of
the (b) normalized amplitude (h∗) and (c) wavelength (λ) with s∗ are plotted for acrylic
(E), sponge (f), PTFE (A) and roughened PTFE (p) walls. In (b) and (c), dashed lines
denote h∗ and λ of a freely rising bubble (i.e. without the wall) at the same Re and We.
Here, superscript ∗ denotes normalization by the equivalent bubble radius (req).

Figure 3(b) shows the case of arising bubble near a polyurethane sponge wall.
Similar to the case of the acrylic wall, when s∗ 6 0.51 the rising bubble bounces
repeatedly off the wall with an approximately constant h∗ and λ which are smaller
than those for the acrylic wall at the same s∗ value (figure 5b,c). Functionally, the
effective boundary condition on a porous wall, such as the present polyurethane
sponge, felt by the fluid flow over it, has been modelled as a slip velocity in a
tangential direction (Beavers & Joseph 1967; Hahn, Je & Choi 2002; Gangloff,
Hwang & Advani 2014), and has been also validated through a direct simulation using
a continuum approach (Breugem, Boersma & Uittenbogaard 2006) and experimental
measurement (Manes et al. 2011). On the other hand, according to Gangloff et al.
(2014), the tangential slip boundary condition is only valid when the bubble is
separated sufficiently from the wall, because seepage (i.e. non-zero wall-normal
velocity) into the wall may happen as the bubble approaches the wall. Since the
surrounding water is static and the fluid flow over the porous wall is solely induced
by the bubble motion in the present set-up, the effective boundary condition on
the sponge wall is hypothesized as the combination of tangential slip (when the
bubble is away from the wall) and non-zero wall-normal velocity (when the bubble
is approaching the wall). Therefore, at the same s∗ value, the smaller amplitude and
wavelength of bouncing motion on the polyurethane sponge wall than on the acrylic
wall is thought to be caused by the interaction between the non-zero water velocity
(induced at the wall) and the bubble wake.

In this regime of s∗ (.2.0), considering that the reference bubble trajectory is a
two-dimensional zigzag, it is interesting to see that the existence of a vertical wall
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(with no-slip and porous boundary conditions) does not drastically change the bubble
motion, such as the transition to a three-dimensional helical motion; instead, only the
amplitude and wavelength of lateral oscillation are affected while elastic rebounding
motion occurs. Further discussion on the effects of wall boundary conditions on the
bubble motion, in terms of energy components, will be provided in § 3.5.

3.1.2. Sliding bubbles
When the wall has hydrophobicity (figure 3c), interestingly, the rising bubble slides

on the wall, at small s∗ (60.51), while being slanted slightly. Previously, de Vries
(2001) and Zaruba et al. (2007) observed that a spherical rising bubble (deq < 1 mm),
smaller than the current one, also slides on the wall after a few bounces with gradually
decreasing amplitudes. They attributed the cause of a transition from bouncing to
sliding to the weakened inertia compared to the surface tension (de Vries 2001) or the
balance between the wall-normal lift and drag forces (Zaruba et al. 2007). Although
the present bubble is much larger (∼3.9 mm) and bouncing amplitude tends to
be maintained approximately constant (i.e. the inertia is not lessened significantly),
we were able to make the bubble slide by changing the wall boundary condition,
i.e. possibly based on a different mechanism from those previously suggested, which
will be discussed below. As s∗ increases, on the other hand, transitions to periodic
bouncing (1.02 6 s∗ 6 2.04) and then to irregular oscillations (s∗ > 2.55) appear in
turn. For periodic bounces, h∗ is roughly similar, but λ increases with s∗ (figure 5b,c).

Figure 3(d) shows the case when the hydrophobicity of the wall is enhanced, i.e. the
roughened PTFE wall. When s∗ is small (60.51), the rising bubble also slides on the
wall, but the bubble deforms more (see the insets in figure 3c,d, at s∗= 0.26; a larger
perimeter of the bubble is in contact with the roughened PTFE). Due to the enhanced
hydrophobicity, unlike the regular PTFE wall, the transition from bouncing to sliding
is observed at a fixed s∗ (1.02 6 s∗ 6 2.04). Even if the transition to sliding is not
captured in the present FoV, the bouncing amplitude is gradually reduced after each
collision even at larger s∗ (>2.55), and the bubble will eventually slide on the wall
outside of the present FoV. For the cases of periodic rebounding on the roughened
PTFE wall (2.04 6 s∗ 6 2.55), on the other hand, h∗ and λ is smaller and larger,
respectively, than those on the regular PTFE wall (figure 5b,c).

As mentioned above, next we discuss the cause of bubble sliding. As the bubble
approaches closer to the wall, the liquid layer between the bubble and the wall thins
(figure 6). Below the critical thickness of this liquid layer, a three-phase (gas–liquid–
solid) contact (TPC) is formed, the dynamics of which is an important phenomenon
used in (i) adhesion, spreading of droplets and bubbles on solid substrate (Wasan
& Nikolov 2003; Stancik & Fuller 2004) and (ii) bubble–particle flotation separation
processes (Leja 1982; Nguyen & Schulze 2004; Malysa, Kraswska & Krzan 2005;
Krasowska & Malysa 2007). The temporal rate of change in the thickness (hl) of the
liquid layer between the (no-slip) soild wall and gas bubble (free surface) has been
suggested by Sheludko (1967), as

d(1/h2
l )

dt
= 16

3µR2
F
1P, (3.1)

where µ is the viscosity of the liquid, RF is the radius of the liquid film, and
1P ('2σ/req) is the difference between the pressures in the thin layer and in the
bulk region. According to Princen (1969), R2

F ' (req/πσ)F, where req is the radius
of the bubble, σ is the surface tension, and F is the force causing the thinning
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Thinning liquid layer

Bubble

Wall

F

FIGURE 6. (Colour online) Conceptual schematic to describe the thinning liquid layer
between the rising bubble and the wall. Here the driving force (F) mainly originates from
the circulation by the vortices in the bubble wake (drawn not to scale).

of the liquid layer (figure 6). As mentioned above, for the formation of TPC and
subsequent bubble adhesion to the wall, the intervening liquid layer between the
bubble and the wall should reach a critical thickness of a rupture (Leja 1982;
Nguyen & Schulze 2004). Although it may vary depending on the conditions such as
the surface roughness of the wall and liquid viscosity, the critical thickness has been
reported as roughly O(.1 µm) (Schulze, Stockelhuber & Wenger 2001; Krasowska,
Zawala & Malysa 2009). Once the rupture occurs, the TPC nucleus (i.e. hole in the
liquid) is formed and expands until the wetting perimeter of the bubble becomes long
enough to make the bubble attach to the wall (Leja 1982; Nguyen & Schulze 2004).

As shown by many studies, on the other hand, a counter-rotating vortex pair
is formed in the wake behind a laterally oscillating bubble while rising (de Vries
2001; Ellingsen & Risso 2001; Mougin & Magnaudet 2002, 2006; Magnaudet &
Mougin 2007; Yang & Prosperetti 2007; Cano-Lozano et al. 2013). Clearly, the same
vortical structure would not exist under the interaction with the wall. As explained
above, known as the ground effect, the rebounds and diffusion of a single vortex
near the no-slip or slip surface (Barker & Crow 1977; Peace & Riley 1983) and the
stabilization of wake vortices behind a sphere in the vicinity of the wall (Tsutsui 2008;
Lee 2012) have been well reported. However, it is reasonable to assume that the force
that contributes most to induce the thinning of liquid layer is the wake-induced lift
(i.e. wall-normal) force (F), which is the main cause of the oscillating (zigzagging in
the present study) bubble path (Mougin & Magnaudet 2006). Since the liquid velocity
fields are not available, to calculate the wake-induced force (Mougin & Magnaudet
2006), we roughly estimate F based on the circulation (Γ ' 2πvireq) in the wake,
where vi is the lateral component of induced liquid velocity in the wake and the
equivalent bubble radius (req) is used as a characteristic length (figure 6). Then, the
wall-normal force F is estimated as an inviscid lift force (by the Kutta–Joukowski
theorem), F' ρluΓ req= 2πρlur2

eqvi, where u is the bubble’s rise velocity. Using these
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relations, (3.1) is integrated to yield

1
h2

l
' 16

3
σ 2

µρluvir4
eq

t, (3.2)

where t is the duration of bubble–wall collision. Let us first estimate hl for a bouncing
bubble on the acrylic wall (s∗ = 0.26). From the current measurements, the contact
duration (t) is about 10 ms and the bubble’s rise velocity is u ' 0.27 m s−1 (see
figure 9a below). For a zigzagging bubble, the maximum induced liquid velocity in
the wake is vi ' (0.05–0.1)u (Ellingsen & Risso 2001). The wake structure would
be affected by the interaction with the wall, but we think the order of magnitude
estimation based on this value would be valid. As a result, the liquid layer thickness
corresponding to bubble–wall collision is estimated to be hl ' 15–20 µm, which is
one order of magnitude larger than the critical thickness for rupture. In the case of
an acrylic wall, therefore, the bubble–wall collision time is too short to form a TPC,
and thus the bubble just bounces off the wall, due to the high pressure in the liquid
layer (lubrication theory) (Takemura & Magnaudet 2003; Sugiyama & Takemura
2010). Similarly, many previous studies have shown evidence that the most critical
parameter in TPC formation is the bubble–wall contact duration, which should be
long enough to ensure the expansion of the TPC for stable bubble attachment.

On the other hand, for the roughened PTFE wall, the increase of the bubble–wall
collision time (&100 ms) is clearly shown (figures 3d, 5a) and the estimated liquid
layer thickness is hl . 3 µm, which is of similar order to the reported critical
thickness. It is well known that air pockets are trapped on the rough hydrophobic
surface when immersed underwater (Rothstein 2010; Park, Sun & Kim 2014, to name
only a few), and this air layer would encourage the formation of a TPC through the
lengthening of the contact time (Krasowska & Malysa 2007; Krasowska et al. 2009).
Therefore, the sliding motion and deformed bubble shape indicate that the main
mechanism of a large bubble sliding on a hydrophobic wall at small s∗ is related to
the fast formation of a TPC. Also, it is interesting to see that the submicron-sized air
pockets, possibly existing on the regular (not perfectly smooth) Teflonr, are enough
to promote bubble sliding (figure 3c).

In the context of having a surface slip boundary condition, as stated above, the
porous (polyurethane sponge) wall is similar to the current hydrophobic walls on
which the effective slip is generated on the interface between water and trapped air
pockets. Most numerical approaches have used the same slip boundary condition
to model both the porous (Beavers & Joseph 1967; Hahn et al. 2002; Bruneau &
Mortazavi 2008) and hydrophobic (Min & Kim 2004; Martell, Perot & Rothstein
2009; Park, Parn & Kim 2013) walls. However, as shown in figure 3(b), the rising
bubble does not slide on the sponge wall. This is because the fully immersed porous
wall does not have air pockets physically. Therefore, even with the same slip boundary
condition, functionally, the behaviour of a rising bubble shows a different trend.

3.2. Near-wall rising behaviour of a large deformable bubble at s∗ > 2.0
As s∗ increases further (>2.0), the rebounding motion of a rising bubble on the
acrylic wall transitions. That is, the rising bubble oscillates in the wall-normal
direction non-periodically and does not touch the wall (figure 3a). When s∗ is
relatively large enough, it is assumed that the hydrodynamic forces on the rising
bubble, induced by the wall (e.g. wall-induced lift and drag forces) are reduced. A
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weaker hydrodynamic force then indicates that the bubble is more susceptible to the
path and shape instabilities that already persist in the considered Re and We regime.
This would cause the bubble trajectory to appear non-periodic and unpredictable, as
shown. However, it is necessary to measure the liquid velocity fields in detail to assess
the exact cause of these phenomena. Interestingly the bubble trajectories under the
reduced wall effect are not exactly same as the reference case of a two-dimensional
zigzag path (figure 1b) nor do they evolve into the three-dimensional helical one. At
s∗ = 4.08, slight out-of-plane motion of the bubble is observed (figure 4), but it is
different from the typical three-dimensional helical path and thus the bubble trajectory
can be assumed to be roughly two-dimensional.

A similar change of the bubble motion occurs for the other types of wall, as s∗
increases in this regime. However, compared to other cases, the rising bubble starts
to move away from the polyurethane sponge wall at the smaller s∗= 1.53 (figure 3b).
In addition, the gradual migration of the rising bubble (while oscillating in the
wall-normal direction) away from the polyurethane sponge wall is also observed, as
clearly shown at s∗ = 1.02, 1.53 and 4.08 (figure 3b), which is not observed for the
other types of wall. For the roughened PTFE wall, the successive rebounding motion
with gradually decreasing bouncing amplitude persists to s∗ = 3.57 and the irregular
oscillation starts to occur at s∗ = 4.08.

In summary, the near-wall behaviour of a rising deformable bubble at high Re
and We is described as a transition from periodic bouncing to non-periodic oscillation
without colliding against the wall, and the critical s∗ for transition varies depending on
the wall boundary condition. The repeated bouncing of a rising bubble on the vertical
wall are similar to the trajectory of two bubbles rising side by side (Duineveld 1998;
Legendre, Magnaudet & Mougin 2003; Sanada et al. 2009; Hallez & Legendre 2011).
As Re and We increase, two interacting rising bubbles tend to avoid coalescence
and bounce off each other. It has been claimed that for a certain condition, this
bubble–bubble bounce triggers the path (i.e. wake) instability of the bubbles to make
them rebound repeatedly, similar to the present rebounding bubbles. However, a
detailed comparison between the two phenomena is beyond the scope of the present
study, but would be interesting as a future study. On the other hand, at small s∗,
it is also found that hydrophobicity causes the bubble to slide on the wall before
periodic bouncing appears, and the rising bubble migrates away from the wall in the
case of the porous wall. As shown in figure 5, λ of the periodic bouncing gradually
increases (i.e. the bubble collision frequency decreases) with increasing s∗, but h∗
shows a wide scatter depending on the wall boundary condition. Moctezuma et al.
(2005) also predicted that λ of periodic bouncing increases with increasing s∗ and
explained the reason as the reduced hydrodynamic forces, like the wall-induced lift
force. Compared to the reference in-plane zigzag motion of a freely rising bubble
without a wall (dashed lines in figure 5b,c), a comparable magnitude of h∗ is obtained
in some cases for the acrylic and PTFE walls; however, in general, we find that h∗
of oscillation is reduced due to the wall. On the other hand, due to the wall, λ of
oscillation becomes smaller than that of a freely rising bubble at s∗ . 2.0 (when the
effect of wall boundary condition is relatively strong) but becomes larger at s∗ > 2.0
(when the rising bubble no longer touches the wall).

3.3. Bubble orientation
In this section, we discuss the variation of bubble’s orientation during its rise. Since
the current bubble has an oblate ellipsoidal shape and deforms greatly during rising,
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Acrylic Sponge PTFE Roughened PTFE

(a)

(b)

(c)
(d)

Wall

Bubble

FIGURE 7. (Colour online) Typical motion of a bubble when it is closest to the wall
during its oscillatory rise, which includes bouncing and sliding, depending on wall type,
at s∗= (a) 0.26; (b) 1.02; (c) 2.04. The solid lines on the bubbles illustrate their horizontal
axis (dh). (d) Definition of the inclination angle (β).

its movement (i.e. orientation) shows a specific dependence on the wall boundary
condition, especially when the bubble is closest to the wall during its oscillatory rise.
Figure 7 shows close-up views of the typical motion of bouncing bubble on each type
of the wall, at three different s∗ values. As shown, the bubble’s orientation appears
to vary as the bubble approaches towards and migrates away from the wall. There
are obvious differences in the collision dynamics depending on the wall boundary
condition, such as the sliding with the increased collision time for hydrophobic
surfaces (see the cases of roughened PTFE in figure 7b,c), related to the formation of
a TPC as mentioned above. However, irrespective of the wall type, the rising bubble
tends to align along its trajectory in the same way, i.e. its major axis (denoted as dh
in figure 7d) becomes perpendicular to the direction of motion. During the collision,
interestingly, it is observed that the bubble actually rolls over the wall (the advancing
and receding side of the bubble is reversed after the collision), not just simply bounce
off. In the reference two-dimensional zigzag path, the orientation of the bubble is not
reversed during its rise (figure 1b). As the rising bubble does not touch the wall at
larger s∗, it is observed that the bubble’s orientation is not reversed (see the cases
of acrylic and sponge in figure 7b,c). Previously, Zaruba et al. (2007) showed that
the orientation of a rising bubble near a vertical wall, under an upward shear, varies
depending on the liquid velocity. For example, the bubble tends to stretch along
the liquid flow direction (i.e. tries to maintain a fixed orientation) when the liquid
velocity is high. At low liquid velocity, on the other hand, the bubble’s orientation
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FIGURE 8. Variation of inclination angle (β) with bubble trajectory: (a) acrylic wall at
s∗= 0.26 and (b) at 4.08; (c) polyurethane sponge wall at 0.26 and (d) at 4.08; (e) PTFE
wall at 1.02 and (f ) at 4.08; (g) roughened PTFE wall at 2.04 and (h) at 4.08. Here,
E denotes β and the solid line the trajectory of the bubble centre.

fluctuates much during the rise, which somewhat agrees with the current findings.
For the sliding bubble, on the other hand, the inclination angle β (see figure 7d) is
about 120◦ on the regular PTFE wall and about 90◦ on the roughened PTFE wall,
indicating that the adhesion of the bubble becomes stronger.

To quantify the effect of the wall on the bubble’s orientation during its rise further,
we analyse the history of inclination angle (β), defined as the angle between the
horizontal axis of the oblate bubble shape and the vertical wall (figure 7d). Figure 8
shows the variation of β for the cases of rebounding (figure 8a,c,e,g) and non-periodic
oscillations without touching the wall (figure 8b,d, f,h) for each wall type. For the
rebounding cases (i.e. at s∗ . 2.0), analysis at the same s∗ is not possible since
the bubble shows different behaviour such as bouncing, sliding and migrating away,
depending on the wall material (see figure 3 and § 3.1). Thus, we chose to discuss
the trend at the smallest s∗ at which the bubble experiences a discernible bouncing
for each wall type (figure 8a,c,e,g).

When the bubble bounces off the wall, in general, β increases as the bubble
approaches the wall and drops down suddenly at the instant of collision
(figure 8a,c,e,g). After the impact, β recovers back as the bubble moves away from
the wall. Depending on the wall type, on the other hand, the detailed trend in β differs.
For example, β increases gradually after the collision for an acrylic wall (figure 8a);
however, for the polyurethane sponge wall, it is maintained approximately constant
while the bubble moves away from the wall and increases sharply as the bubble is
attracted toward the wall (figure 8c). For hydrophobic surfaces, β remains constant as
the bubble moves away from and toward the wall (i.e. β does not experience a sharp
increase after the impact), respectively (figure 8e,g), indicating that the wall effect
is strong enough to balance the hydrodynamic forces acting on the bubble and keep
the same orientation. This is also associated with the lengthened contact time due to
the formation of a TPC during the collision. Based on the data in figure 8(a,c,e,g),
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FIGURE 9. History of instantaneous velocity of rising bubble near the (a,c,e,g) acrylic and
(b,d,f,h) polyurethane sponge walls, at s∗ = (a,b) 0.26; (c,d) 1.53; (e, f ) 2.55; (g,h) 4.08.
Here, E and u denote the vertical (u) and wall-normal (v) components of the velocity,
respectively, and the solid line the corresponding trajectory of the bubble centre. In (a–c),
the dashed-line boxes highlight the bubble–wall collisions.

the change in β across the bubble–wall collision is calculated for each wall type as
95◦ ± 12◦ for the acrylic, 70◦ ± 10◦ for the sponge, 125◦ ± 15◦ for the PTFE, and
144◦± 15◦ for the roughened PTFE. This indicates that compared to the conventional
no-slip surface, the bouncing bubble rotates less (i.e. smaller angular momentum is
required) on the porous wall; however, it rotates more (i.e. larger angular momentum
is required) on the hydrophobic surfaces. This is related to the wall effect on the
energy dissipation during the bubble–wall collision, as explained in § 3.5.

When the rising bubble does not touch the wall as s∗ increases, the variation of
β becomes less significant during the rise. At s∗ = 4.08, for example, where the
bubble’s movement becomes irregular (figure 3) without colliding against the wall,
the bubble still tends to be aligned along its trajectory (the horizontal axis of the
bubble is perpendicular to its trajectory) (figure 8b,d, f,h). Compared to the cases of
rebounding, however, the correlation between β and bubble trajectory is weaker and
no discernible dependence on the wall material is measured, which indicates that the
wall effect is reduced.

3.4. Instantaneous and mean velocities of rising bubbles
The history of instantaneous bubble velocity (decomposed into vertical (u) and wall-
normal (v) components) is calculated and shown in figures 9 and 10. For all cases,
it is measured that the oscillation of vertical velocity is relatively mild but the wall-
normal velocity (although its absolute value is smaller than the vertical one) varies
significantly according to the oscillating bubble path.

For the rebounding bubbles on the acrylic (figure 9a) and sponge (figure 9b) walls
(at s∗ = 0.26), the wall-normal velocity (v) is accelerated, towards the wall, as the
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FIGURE 10. History of instantaneous velocity of rising bubble near the (a,c,e,g) PTFE
and (b,d,f,h) roughened PTFE walls, at s∗ = (a,b) 0.26; (c,d) 1.53; (e,f ) 2.55; (g,h) 4.08.
Here, E and u denote the vertical (u) and wall-normal (v) components of the velocity,
respectively, and the solid line the corresponding trajectory of the bubble centre. In (c,d,f ),
the dashed-line boxes highlight the bubble–wall collisions.

bubble is attracted to the wall. Then v reaches its negative peak before the collision.
From this moment on, during collision, v is instantly reduced and changes its sign
to approach the positive (out of the wall) peak (highlighted with dashed-line boxes in
figure 9a,b). As the bubble is shifted to the maximum distance from the wall after the
collision, v remains almost constant and the same process is repeated as the bubble
rebounds. After each collision, no significant reductions of u or v are measured in
the present configuration. Since the bubble–wall contact time on the sponge wall is
slightly longer than on the acrylic wall, the rate of change in wall-normal velocity
across the collision on the sponge wall is less sharp than that on the acrylic wall.
Although a slight deceleration of u is captured during the bubble–wall collision, its
variation is not strong compared to that of v. As s∗ increases, the unsteady scattering
of u becomes more pronounced (figure 9e–h), which is consistent with the findings
that the bubble trajectory is less regulated at s∗ > 2.0 (figure 3a,b).

On the other hand, figure 10 shows the variation of bubble velocity near the
hydrophobic walls. When the bubble shows the sliding motion (at s∗ = 0.26), the
vertical (u) and wall-normal (v) velocities remain almost constant during the rising
and the wall-normal velocity is zero (figure 10a,b). As s∗ increases to 1.53, the
bubble velocity on the regular PTFE wall shows the same trend (figure 10c) as those
of rebounding bubbles on the acrylic and sponge walls (note that a similar trend is
shown at s∗ = 2.55 for the roughened PTFE wall (figure 10f )). At the same s∗, the
bouncing–sliding transition on the roughened PTFE wall is also clearly captured by
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FIGURE 11. Variations of the normalized mean rise velocity (ū/U) with s∗: E, acrylic;
f, polyurethane sponge;A, PTFE;p, roughened PTFE walls.

the bubble velocity variation; that is, u is reduced more than 50 % and v becomes
zero after the transition (figure 10d). On increasing s∗ further, the bubble velocity
still aligns with the irregular bubble motion but the unsteady scattering of the data is
pronounced.

Next, to see the global effect of the wall on the bubble dynamics, the mean rise
velocity (ū) of the bubble, normalized by that (U) of a freely rising bubble (without
the wall) is plotted in figure 11. In general, the existence of the wall reduces the rise
velocity of the bubble (ū/U< 1) as shown by Uno & Kinter (1956) and Krishna et al.
(1999). In addition, we can classify two regimes depending on the variation of rise
velocity with s∗, as we did in §§ 3.1 and 3.2. Very close to the wall (s∗. 2.0) where
the rising bubble bounces periodically or slides on the wall (figure 3), the rise velocity
of the bubble is significantly affected by the wall boundary condition, i.e. the bouncing
bubble rises faster than the sliding one. In this regime, the bubble near the sponge wall
rises faster than the other cases, which is consistent with the smaller h of the bouncing
on the sponge wall (figure 11), i.e. u ∼ λ/h from the sinusoidal curve fitting of the
periodic bouncing motion. By modelling the porous wall as a slip boundary condition,
Gangloff et al. (2014) also numerically showed that the rise velocity of a bubble near
the wall increases due to its porosity. For a bubble rising near the PTFE wall, the rise
velocity is the slowest when it slides on the wall (s∗ . 0.5) but increases sharply as
the transition to the periodic bouncing happens. For other (acrylic, roughened PTFE
and sponge) cases, the rise velocity remains almost constant with s∗ in this regime. At
s∗> 2.0 where the bubble’s oscillating trajectory loses its periodicity without colliding
with the wall, on the other hand, the effects of wall boundary condition and s∗ on the
rise velocity become relatively small, although the rise velocity of a bubble near the
PTFE wall is slower than those of the other walls which are approximately constant
with s∗. The transient (unsteady) behaviour of the bubble seems unpredictable in this
regime as mentioned above, but the global features, like the mean rise velocity, are
not affected much by the wall.

3.5. Energy components associated with the rise of a bubble near a wall
As a bubble (while deforming as well in the present case) approaches a wall, the
surrounding fluid is accelerated with it (the so-called added-mass effect, Batchelor
1967; Clift et al. 1978) and thus the transport between the kinetic (Ek) and surface (Es)
energies and to dissipation (ED), are closely associated with the behaviour of a rising
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bubble under the wall effect, especially at the instant of collision. Here, we investigate
the interplay between the above-mentioned energies to understand the physics of near-
wall bubble motions, observed in figure 3. First, the kinetic energy (Ek) is calculated
as

Ek = π

12
(ρg + cmρl)d3

eq(u
2 + v2)= Eku + Ekv, (3.3)

where Eku and Ekv denote the contributions of vertical (u) and wall-normal (v)
velocities to Ek. For the added-mass coefficient (cm), we use the following relation
between cm and χ (Milne-Thomson 1968):

cm = α

2− α , α = 2χ 2

χ 2 − 1

(
1− 1√

χ 2 − 1
cos−1(1/χ)

)
. (3.4)

Here, the aspect ratio (χ = dh/dv) of the bubble is defined as the ratio of the length of
the horizontal (major) to vertical (minor) axes of the approximated oblate ellipsoidal
shape (see figure 1c). On the other hand, the surface energy (Es) is calculated as Es=
σA, where σ is the surface tension at the air–water interface. The surface area (A) of
an oblate ellipsoid is expressed as a function of dh and χ :

A= πd2
h

2

(
1+ 1− e2

e
tanh−1 e

)
, e2 = 1− 1/χ 2. (3.5)

If we define Et as the sum of kinetic and surface energies as Et=Eku+Ekv +Es, then
the energy would be balanced as E= Et + ED where ED is the energy dissipated due
to the viscosity (Ev) and wall effect (Ew), for instance. The viscous dissipation (Ev)
is defined as

Ev =
∫ t

0

∫
V
Φ dv dt,

Φ = 2µ

[(
∂u
∂x

)2

+
(
∂v

∂y

)2

+
(
∂w
∂z

)2

+ 1
2

{(
∂v

∂x
+ ∂u
∂y

)2

+
(
∂w
∂y
+ ∂v
∂z

)2

+
(
∂u
∂z
+ ∂w
∂x

)2
}]

, (3.6)

where V is the control volume which includes the bubble. To fully evaluate ED,
therefore, the spatially and temporally resolved velocity field data inside and outside
the bubble are required (Nam, Kim & Shin 2013; Zawala & Dabros 2013), which are
not available in the present study. Therefore, as an alternative way, we try to roughly
estimate ED as the deficit of Et, expressed as ED = Eto − Et where Eto is the value
of Et when the bubble is displaced furthest from the wall, as an index for dissipated
energy, especially for the purpose of focusing on the loss due to the wall. Since the
buoyancy identically applies to all cases, once the volume and the location of the
bubble are fixed, the potential energy due to the buoyancy is not considered here.

The variations of each energy component (Eku, Ekv, Es, and ED) for selected cases
of a rebounding bubble (at the smallest s∗ where the rebounding initiates for each
wall type) are plotted in figures 12 and 13. In each figure, the corresponding bubble
trajectory is also plotted (in subfigure i) and the instants of bubble–wall collision are
highlighted with dashed-line boxes.
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FIGURE 12. Variations in energy components along x∗ for (a) acrylic wall at s∗=0.26 and
(b) polyurethane sponge wall at 0.26: (i)u, Eku/Ek;E, Ekv/Ek; (ii)u, Eku/Et;E, Ekv/Et;
A, Es/Et; (iii) u, χ ; (iv) p, Es; (v) @, Et; (vi) ♦, ED/Eto. In (i), the solid lines denote
the corresponding bubble trajectory.
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FIGURE 13. Variations in energy components along x∗ for (a) PTFE wall at s∗ = 1.02
and (b) roughened PTFE wall at 2.04: (i)u, Eku/Ek;E, Ekv/Ek; (ii)u, Eku/Et;E, Ekv/Et;
A, Es/Et; (iii) u, χ ; (iv) p, Es; (v) @, Et; (vi) ♦, ED/Eto. In (i), the solid lines denote
the corresponding bubble trajectory.
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3.5.1. Typical trends in the variations of energy components for bouncing bubbles
Let us first describe the typical trends of energy components for bouncing bubbles,

which are found to be highly correlated with each other. Due to the deforming nature
of a high-Re and high-We bubble, the aspect ratio (χ ) of the present bubble fluctuates
greatly during its rise (the aspect ratio of the reference bubble is measured to vary
within 2.5±0.6) but also shows a trend specific to the bouncing motion; that is, as the
bubble approaches the wall, χ decreases and then increases as the bubble moves away
from the wall after the collision (subfigure iii in figures 12 and 13). As expected from
(3.5), the surface energy (Es) also follows this trend, especially across a bubble–wall
collision, i.e. as the bubble approaches the wall, Es decreases with χ (subfigure iv in
figures 12 and 13). Although it is clearly observed that Es has a local minimum during
the collision, its fluctuating nature makes it difficult to discern any characteristic trend
relevant to the bubble motion. After trying many parameters to explain the role of Es
in the bubble motion, we find that the ratio of Es to Et (where Et is the sum of Es
and Ek) shows a good correlation with the bubble motion. As shown in subfigure (ii)
in figures 12 and 13, Es/Et varies periodically according to the rebounding trajectory
of the bubble, and Es has a larger contribution to Et than Eku and Ekv, indicating that
Es is a dominant source for maintaining the present rebounding bubble motion.

Interestingly, Es/Et shows the opposite trend to Es during the bubble–wall collisions.
As the bubble moves away from the wall, Es/Et decreases (Es increases) while χ
increases, and is kept to a moderate level (∼0.5); however, it increases significantly as
the bubble approaches the wall while χ decreases. After the collision, Es/Et decreases
back and this oscillating behaviour is repeated along the bubble’s rise.

On the other hand, Eku/Et (the contribution of the vertical component of bubble
kinetic energy to Et) shows the opposite trend to that of Es/Et (subfigure ii in
figures 12 and 13). That is, Eku/Et decreases as the bubble is attracted toward the
wall and recovers after the collision, in step with Es/Et. This sharp decrease of
rise velocity, i.e. Eku, just before the bubble–wall collision has been also reported
by Moctezuma et al. (2005) and Figueroa-Espinoza et al. (2008). The wall-normal
component of Ek (Ekv) contributes less to Et than the others, but shows a small peak
just before the collision.

When the instant of bubble–wall collision is examined closely (see the dashed-line
boxes in figures 12 and 13), we can discuss the transport between energy components
and the opposite trend of Es/Et to Es. Closer to the collision, both Es and Eku are
reduced while Ekv and energy dissipation (ED) increase (subfigures i, ii and vi in
figures 12 and 13). Then, the increase of Es/Et before the collision indicates that
the loss of Eku (to ED, for example) is larger than the release of Es. Although it
is difficult to quantitatively characterize the transport between energy components, it
is thought that some of the deficits of Es and Eku are converted to Ekv before the
collision and also some are dissipated. Across the collision, Eku/Et and Ekv/Et become
very small and Es contributes most to Et, indicating that most of Ek(= Eku + Ekv)

has dissipated. Just after the impact, most of Ekv and Eku is recovered. As the bubble
moves away from the wall after the collision, both Es and Eku increase while ED and
Ekv are reduced. Based on the reduction of Es/Et at this stage, we can say that the
recovery of Eku is larger than the increased Es (i.e. the enlarged bubble surface area).
When the bubble is shifted furthest from the wall (when ED is smallest), therefore,
the deformation-related force (energy) is small while the hydrodynamic forces (wake-
induced forces, for example) prevail again, which eventually attracts the bubble toward
the wall for rebounding motion. Therefore, it is understood that the accumulation of
available (or excess) kinetic energy in the shape deformation (i.e. Es) and then the
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transport back to Ekv across the collision is responsible for the rebounding motion with
a large amplitude, even considering the large energy dissipation during the process
(Zaruba et al. 2007).

3.5.2. Variation in energy components with wall configuration
We now look into the variation of energy components specific to each wall type.

Figure 12(a) shows the result for the rebounding bubble on the acrylic wall at
s∗ = 0.26. This case fits well the general picture explained above. That is, Ek is
mostly dominated by the vertical component (Eku) except just before the collision
when Ekv takes up to 40 % of Ek (figure 12ai), which is similar to the suggestion by
Figueroa-Espinoza et al. (2008) that the bubble may experience an enhanced bouncing
(i.e. larger amplitude) due to the transfer from vertical to horizontal (i.e. wall-normal)
momentum, despite the obvious loss of energy during collisions. Note that in the
previous section, we approximately described the transport between Eku, Ekv, Es and
ED. The contribution of Es to Et becomes almost 90 % at the instant of collision
but that of Eku recovers to be comparable to that of Es when the bubble is at the
maximum distance from the wall (figure 12aii). The variations of Es/Ek and Ek/Et

are well correlated with the change in χ (in figure 12aiii) along the bubble trajectory.
As the bubble approaches the wall, χ decreases while Es/Et and Eku/Et increase
and decrease, respectively. The trend is reversed after the collision. Et shows a
local minimum during the bubble–wall collision (figure 12av), while the wall effect
(i.e. ED) shows a sharp peak at the instant of collision (figure 12avi).

For a porous wall at s∗ = 0.26 (figure 12b), general trends of energy components
are similar to those for the acrylic wall. However, the rates of change of each energy
component are not significant, compared to those on the no-slip wall; the contribution
of Ekv to Et (Ekv/Et) and the reduction of Eku just before the collision become smaller
than those on the acrylic wall (figure 12bi), which indirectly indicates the existence of
non-negligible wall-normal velocity (i.e. seepage effect) into the wall (Gangloff et al.
2014). And this will result in the reduced repulsive force that makes the bouncing
amplitude become smaller than others (see figure 5a). Since the bubble’s momentum
is spent less on the bouncing (and also on the bubble’s rolling movement during the
collision, see figure 8), estimated ED is smaller than other cases and thus the large Et

is achieved (figure 12bv,vi).
Figures 13(a) and 13(b) show the rebounding and bouncing–sliding transition events

on the regular and roughened PTFE walls, respectively. For both walls, the trends
of each energy component with bubble trajectory are similar, but the reduction of
Eku is measured to be larger than on the acrylic and sponge walls. On the other
hand, the role of hydrophobicity is identified more clearly for the roughened PTFE
wall. For example, after the first two collisions with a broad peak in ED (note that
ED had a relatively sharp peak for the acrylic and sponge walls), the kinetic energy
(and also the bouncing amplitude) is reduced gradually and the bubble starts to
slide when the available inertia (or Ekv) does not preclude the formation of a TPC
(figure 13bi,ii). When the bubble slides, Es contributes to Et more than 90 % and
ED remains very large. As shown in figure 3(d), the rate of shape deformation is
very large (figure 13biii) for the roughened PTFE wall. As a result, it is understood
that the hydrophobicity increases ED on a bouncing bubble, compared to that of the
rebounding bubble on the acrylic wall, i.e. at 1.02 6 s∗ 6 2.04 for regular PTFE and
at 2.04 6 s∗ 6 2.55 for roughened PTFE (figure 14).
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FIGURE 14. Variations of ED/Eto with s∗ for its (a) average and (b) maximum peak:
E, acrylic;f, polyurethane sponge,A, PTFE andp, roughened PTFE walls.

3.5.3. Wall effect on the energy dissipation
Shown in subfigure (v) in figures 12(a,b) and 13(a,b) are the variations of Et along

x∗. It is calculated that Et is maintained approximately constant during the rise but
decreases locally at the collision and thus the wall effect (Ew) on the energy (i.e. loss,
ED) shows a peak at that time (subfigure vi in figures 12a,b and 13a,b). There may
be various sources of the energy loss during the bubble’s rise near the wall, such
as a viscous dissipation (especially in a thin liquid film between the bubble and the
wall), damping due to surface deformation and the diffusion of fluid energy into
the secondary vortices generated by the interaction between the bubble and the wall.
Contrary to the unsteady liquid droplet motion in air (Nam et al. 2013), the viscous
dissipation due to the motion inside the air bubble is assumed to be relatively small.
In the present case, on the other hand, the wall effect (Ew) is thought to be dominant,
because ED decreases remarkably with increasing s∗. Note also that a sharp change
in the bubble orientation (due to the tumbling motion) accompanies the bubble–wall
collision (figure 8). As shown in (3.6), detailed velocity field measurements around
the bubble and the wall are required to identify the exact causes. However, the current
estimation of ED according to various wall configurations would also provide useful
insight.

Figures 14(a) and 14(b) show the variations of normalized ED with s∗, for its
average and maximum peak, respectively. The maximum peak occurs during the
bubble–wall collision. As shown, the maximum peak and average values of normalized
ED show the same trend with s∗ and wall boundary condition, indicating that the trend
of ED explained here is not limited to local events during the collision. As s∗ increases,
in general, ED tends to decrease, indicating the reduced wall effect on the energy
dissipation. According to Figueroa-Espinoza et al. (2008), the wall-induced vorticity
decreases as (s∗)3, which might be one of the explanations for the trend in figure 14.

As can be expected from the different bubble rises depending on the wall boundary
conditions at s∗ . 2.0, the estimated ED also shows a discernible deviation at smaller
s∗ values. As shown in figure 14, for example, normalized ED on the porous wall
is smaller than that on the acrylic wall. Less energy loss seems to be related to
the slip boundary condition at the porous wall. That is, the interaction between the
bubble wake and the porous wall may produce a weaker secondary vortex than that
for the no-slip wall, due to the apparent surface slip. Also, we showed that the
slip condition requires less angular momentum to be used for the bubble during the
collision (figure 8). Therefore, the wall-induced energy loss on the porous wall is
smaller than for the other walls, and this agrees well with the fact that the bubble
rises faster over the sponge wall than the other cases (figure 11).
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An interesting trend of ED is found on hydrophobic walls. As shown in figure 14,
the energy dissipation on the hydrophobic surfaces is larger than that on the no-slip
surface at s∗ . 2.0 for regular PTFE and at s∗ . 2.5 for roughened PTFE walls. In
these ranges of s∗, the bubble actually touches the wall for sliding or bouncing. As
explained in § 3.1.2, the three-phase-contact (TPC) formation encouraged by the air
pockets trapped on the hydrophobic surface will retard the rebounding motion of the
bubble, which is evidenced by the elongated bubble–wall contact time (figure 3d) and
larger change rate in the bubble orientation during collision (figure 8). Therefore, even
with the same (functionally) slip boundary condition as the porous wall, the existence
of air pockets on the surface induces strong energy dissipation when colliding. When
the bubble does not touch the hydrophobic surface (s∗ > 2.0 for regular PTFE and
s∗ > 2.5 for roughened PTFE walls), conversely, ED becomes smaller than that on
the no-slip surface (figure 14). Now the bubble does not touch the wall, and thus
the direct contact with the trapped air pockets has little effect on ED while the slip
boundary condition is in place. With the same reason for small ED on the porous wall,
the hydrophobic surfaces impose smaller ED on the rising bubbles than that imposed
by the no-slip wall.

As s∗ increases (&3.0), on the other hand, the difference in ED with wall boundary
condition is reduced, and the dominating variable affecting ED seems to be s∗. In
previous sections, we showed that the bubble motion and variation of mean rise
velocity are also classified with a similar criterion for s∗.

3.5.4. Coefficient of restitution
In previous sections, we discussed that the interplay between the energy storage

(i.e. transport between surface and kinetic energies) and the energy dissipation
determines the detailed motion of a rising bubble near a wall. The same conclusion
has been drawn from studies of the dynamics of normal bouncing of solid (Joseph
et al. 2001; Gondret, Lance & Petit 2002) and liquid (Legendre, Daniel & Guiraud
2005) particles on a horizontal wall. These studies adopted the coefficient of restitution
(ε), defined as ε = |vdeparture/vapproach|, as an indirect measure of energy dissipation
resulting from a collision. Here, vdeparture and vapproach denote the wall-normal velocity
of the particle, after and before the collision, respectively. For example, ε of a solid
particle scales well as ε∼ f (St), where the impact Stokes number (ratio of the particle
inertia to the viscous forces) is defined as St=ρpdeqvapproach/(9µ) based on the particle
density ρp (Joseph et al. 2001; Gondret et al. 2002). As St increases, ε increases
sharply. On the other hand, for the normal collision of a liquid droplet, Legendre
et al. (2005) suggested a correlation of ε∼ f (St∗), where the modified Stokes number
includes the effect of added mass such that St∗ = (ρp + cmρ)deqvapproach/(9µ). Here,
cm is the added mass coefficient (3.4). Unlike the solid particle, the normal bouncing
of a liquid droplet was highly dissipative and thus the added-mass effect should be
considered.

Zenit & Legendre (2009) tried to show that the above correlation also works
for the normal bouncing of a gas bubble. From a wide range of experiments
(Re = 4–540; We = 0.02–3.52), they found the relationship −log ε ∼ (Ca/St∗)1/2,
where Ca=µU/σ is the capillary number.

Although the bubble considered herein collides with the vertical wall (i.e. lateral
bouncing) (figure 3), it would be interesting to study the bubble–wall collision events
in terms of ε. Figure 15 shows the variation of ε with modified Stokes number, St∗,
for all rebounding (ε > 0) and bouncing–sliding transition (ε = 0) events measured
for all types of wall. As shown, even the lateral bouncing of the large deformable
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FIGURE 15. Variation of the coefficient of restitution (ε) with the modified impact
Stokes number (St∗) for the rebounding and bouncing–sliding transition events:E, acrylic;
f, polyurethane sponge;A, PTFE andp, roughened PTFE walls.

bubble is well presented in terms of St∗; that is, log ε∼ St∗. Here, St∗ is calculated for
each event, based on the maximum wall-normal velocity of the bubble approaching the
wall. The best fit is given by ε = exp(5St∗)/30. Compared to the acrylic wall, ε (and
the corresponding St∗) on the sponge wall are larger, indicating that the dominance
of inertia over the viscous effect is more pronounced (i.e. less energy loss). On the
other hand, ε on the hydrophobic walls is smaller than on the acrylic wall and the
corresponding St∗ is small to represent the increased viscous effect (i.e. more energy
loss). Clearly, this trend is closely associated with the analysis of transports between
energy components in previous sections.

In the present analysis, we find that the correlation between ε and Ca/St∗, as
suggested by Zenit & Legendre (2009), is not clear as that with St∗. This may
due to the difference between normal and lateral bouncing or the fact that the
present bubble (deq ' 3.9 mm) is larger than the capillary length of an air–water
system, λc =√σ/ρg' 2.7 mm. In Zenit & Legendre (2009), the size of the bubble
considered was smaller than or equivalent to λc.

4. Conclusions
In the present study, the near-wall rising behaviour of a large deformable bubble

has been measured and analysed while varying the initial bubble–wall distance (s)
and boundary condition (no-slip, porous and hydrophobic). In the present set-up,
the rising bubble already oscillates laterally (i.e. with an instability path that is a
two-dimensional zigzag) even without the wall, and more complex path variations
(i.e. sliding, periodic rebounding, migrating away, and non-periodic oscillation without
collisions) due to the wall effect were observed. First of all, the wall effect on the
bubble motion depended on the initial bubble–wall distance. That is, at s/req . 2.0,
the bubble motion changes significantly with the wall boundary condition; however,
the variation is reduced when s/req > 2.0. In the regime where the wall effect is
strong, especially on the hydrophobic surface, trapped air pockets encouraged the fast
formation of a TPC such that a large air bubble slides on the wall, accompanied by a
significant shape deformation. Investigation of the bubble inclination angle and energy
components shows that the hydrophobicity enhances or reduces the wall effect (loss
of inertia) depending on the distance to the wall, but the porosity (i.e. combination
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of tangential slip and wall-normal seepage) only reduces it. In addition, the effect of
relative dominance of inertia and viscous forces on the bubble motion is examined
in terms of a restitution coefficient and a good correlation with the modified Stokes
number is established.

Previously, in a low-Re regime, the attraction and repulsion of the bubble with
respect to the wall was attributed to the wall-normal pressure gradient predicted
by the potential theory and viscous effects from the lubrication theory, respectively
(Takemura & Magnaudet 2003; Sugiyama & Takemura 2010); however, the shape
deformation (surface energy) contributed significantly to the oscillatory motion of
the current bubble in a high-Re and high-We regime. As a result, a much larger
oscillating amplitude (h/req ∼ 2.5–3) for the rebounding bubble was achieved than
that (∼0.5) for a low-Re bubble (Takemura & Magnaudet 2003). Also, despite the
apparent loss of momentum during bubble–wall collisions, the rising bubble was able
to obtain additional energy from the surface deformation and could retain an almost
constant rebounding motion, within the observed field of view.

The significant changes in bubble motion identified, caused by modifying the wall
configuration, may provide an idea for a way of predicting or controlling the near-wall
gas void fraction distribution in gas–liquid flow systems. To deepen our understanding,
a future study performing detailed velocity measurements around a rising bubble near
a wall by two-phase particle image velocimetry would be worthwhile. For example,
it has been previously shown that the vorticity in the two counter-rotating vortices
in the bubble wake changes its sign twice during one period of the zigzagging path
(Mougin & Magnaudet 2002, 2006). In the present study, we measured that the
period (i.e. wavelength) of the lateral oscillation (i.e. periodic bouncing) increases or
decreases depending on the wall interaction, indicating a substantial change in the
wake structures (e.g. the ground effect). Thus it would be informative to see how the
bubble wake structure is modified near the wall, depending on the wall configurations
considered here. Also, it would be interesting to investigate how the existence of the
wall affects the dynamics of a rising bubble in a helical (three-dimensional) motion.
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