Bull. Aust. Math. Soc. 102 (2020), 430–438 doi:10.1017/S0004972720000246

FINITE GROUPS WITH COMPLEMENTED 2-MINIMAL *p*-SUBGROUPS

YU ZENG[®]

(Received 28 January 2020; accepted 15 February 2020; first published online 11 March 2020)

Abstract

For a given prime p, we investigate the finite groups all of whose 2-minimal p-subgroups are complemented.

2010 *Mathematics subject classification*: primary 20D10. *Keywords and phrases*: finite group, complemented subgroup.

1. Introduction

In this paper, G always denotes a finite group and p always denotes a prime. A subgroup H of G is said to be complemented in G if there exists a subgroup K of G such that G = HK and $H \cap K = 1$. Given a finite group, its structure can be determined if certain types of subgroups have complements. For instance, a classical theorem of P. Hall says that G is solvable if and only if all its Sylow subgroups have complements. When all subgroups of G are complemented, Hall proved that G is necessarily supersolvable [4]. Gorchakov [2] showed that Hall's requirement of the complementability of all subgroups can be reduced to the complementability of all minimal subgroups.

We say that *G* is a \mathfrak{C}_{p^d} -group if all its subgroups of order p^d are complemented. In particular, *G* is a \mathfrak{C}_{p^2} -group if every 2-minimal *p*-subgroup of *G* is complemented. A \mathfrak{C}_{p^d} -group *G* is said to be nontrivial if $|G|_p \ge p^d$. Recently, Monakhov and Kniahina [6] studied \mathfrak{C}_p -groups and established criteria for their solvability and supersolvabilty. In [11], we gave a classification for nontrivial \mathfrak{C}_p -groups. In this paper, we study the \mathfrak{C}_{p^2} -groups.

Let $\Phi(G)$, Soc(*G*), *F*(*G*) and *F*^{*}(*G*) denote the Frattini subgroup, the socle, the Fitting subgroup and the generalised Fitting subgroup, respectively, of *G*. Note that $F^*(G) = F(G)E(G)$ with [F(G), E(G)] = 1, where E(G) is the subgroup generated by all components of *G*. Let *V* be a finite-dimensional \mathbb{F}_p -space (where \mathbb{F}_p is the

Project supported by the NSF of China (no. 11671324).

^{© 2020} Australian Mathematical Publishing Association Inc.

field of p elements). A Borel subgroup of GL(V) is the normaliser of a Sylow p-subgroup of GL(V). The notation S_n and \mathcal{A}_n stands for the symmetric group and the alternating group of degree n, respectively. We use $M_p(1, 1, 1)$ to denote an extraspecial p-subgroup of order p^3 with exponent an odd prime p, D_8 to denote the dihedral group of order eight, $E(p^n)$ to denote an elementary abelian group of order p^n and \mathbb{Z}_n to denote a cyclic group of order n.

According to [1], if $S \cong PSL(n, q)$, then $Out(S) = \langle d, f \rangle \rtimes \langle g \rangle$, where d, f and g are a diagonal, a field and a graph automorphism of S, respectively. We use $Out_{df}(S)$ to denote the normal subgroup $\langle d, f \rangle$.

The main result of our paper is the following theorem.

THEOREM 1.1. Let T be a finite group, $G = T/O_{p'}(T)$ and $P \in Syl_p(G)$. Then T is a nontrivial \mathfrak{C}_{p^2} -group if and only if one of the following statements is true.

- (1) $G = H \ltimes P$, where $H \leq \mathbb{Z}_{p-1}$ and $P \cong \mathbb{Z}_{p^2}$ such that $C_H(P) = 1$.
- (2) $G = B \ltimes V$, where $V \cong E(p^2)$ with $C_G(V) = V$ and B is a subgroup of a Borel subgroup of GL(V) with $|B|_p = p$.
- (3) $F^*(G) \cong \operatorname{PSL}(n,q), G/F^*(G) \leq \operatorname{Out}_{df}(F^*(G)) \text{ and } P \cong \mathbb{Z}_{p^2}, \text{ where } p^2 = \frac{q^{n-1}}{a-1} \geq 9.$
- (4) $F^*(G) = O^{p'}(G) = S_1 \times S_2$ is minimal normal in G, where S_1 and S_2 are isomorphic nonabelian simple groups and $N_G(S_1) = N_G(S_2)$ are both \mathfrak{C}_p -groups.
- (5) $G = H \ltimes (N_1 \times \cdots \times N_t)$, where $H \in \operatorname{Hall}_{p'}(G)$ and all N_i are H-isomorphic irreducible $\mathbb{F}_p[H]$ -modules of dimension two. Furthermore, if t > 1, then H is cyclic.
- (6) *G* is a nontrivial \mathfrak{C}_p -group.

REMARK 1.2. If t = 1 in (5), then *H* is not necessarily cyclic. For example, let $G = H \ltimes N$ be a Frobenius group with kernel $N \cong E(11^2)$ and complement $H \cong SL(2, 5)$. Then *G* is a \mathfrak{C}_{11^2} -group with *N* the unique minimal subgroup of *G* and $H \in \text{Hall}_{11'}(G)$.

2. Preliminaries

We begin with the following facts which will be used freely in the proof.

LEMMA 2.1 [7]. Let G be a group and N a minimal normal subgroup of G such that N is a direct product of t isomorphic nonabelian simple groups, say $N = S_1 \times \cdots \times S_t$. Assume that M is a maximal subgroup of G such that G = MN. Then one of the following statements holds.

(1) $M \cap N = M_1 \times \cdots \times M_i$, where $|S_i : M_i| = |S_1 : M_1| > 1$ for all *i*.

(2) $M \cap N = E_1 \times \cdots \times E_k$ is minimal normal in M, where $E_1 \cong \cdots \cong E_k \cong S_1$, $k \mid t$.

LEMMA 2.2. Let G be a group and N a minimal normal subgroup of G such that N is a direct product of t isomorphic simple groups. Suppose that G has a proper subgroup H so that G = HN and $|G : H| = p^k > 1$. Then $t \le k$. Y. Zeng

PROOF. Let $N = S_1 \times \cdots \times S_t$, where the S_i are isomorphic simple groups, and let M be a maximal subgroup of G which contains H. If N is abelian, then $G = HN = H \ltimes N$ and hence $t \le k$. Suppose that N is nonabelian. Then G = MN is such that

$$|N: M \cap N| = |G: M| := p^s \mid p^k.$$

It follows from Lemma 2.1 that $N \cap M = M_1 \times \cdots \times M_t$, where $|S_1 : M_1|^t = p^s$. Thus, $t \le s \le k$.

LEMMA 2.3. Let G be a group and E a normal subgroup of G. Suppose that $Q \in Syl_p(E)$.

- (1) Then $G = EN_G(Q)$ and $G/E \cong N_G(Q)/N_E(Q)$ with $|G|_p = |N_G(Q)|_p$.
- (2) If D is a minimal normal subgroup of G with $D \cap E = 1$, then D is minimal normal in $N_G(Q)$ and DE/E is minimal normal in G/E.

PROOF. (1) The statement follows from the Frattini argument.

(2) Since *D* is a minimal normal subgroup of *G* with $D \cap E = 1$, it follows from $G = EN_G(Q)$ that *D* is minimal normal in $N_G(Q)$. Let $X/E \leq G/E$ so that $E < X \leq DE$ and hence $X = X \cap DE = (X \cap D)E$. Since $1 < X \cap D \leq G$, we have $X \cap D = D$ and therefore X = DE, as desired.

LEMMA 2.4. Let $\Gamma = G \ltimes V$, where V is an abelian minimal normal subgroup of Γ so that $p \mid |V|$. Suppose that $O_{p'}(\Gamma/V) > 1$ and $O_{p'}(\Gamma) = 1$. Then all complements of V in Γ are conjugate.

PROOF. Write $L/V = O_{p'}(\Gamma/V)$ so that $G \cap L \trianglelefteq G$ and $N_{\Gamma}(G \cap L) = GN_V(G \cap L)$. Since V is an abelian minimal normal subgroup of Γ , we conclude that $N_V(G \cap L) \in \{1, V\}$. It follows from $O_{p'}(\Gamma) = 1$ that $N_V(G \cap L) = 1$ and $G = N_{\Gamma}(G \cap L)$. Let H be another complement for V in Γ so that $H = N_{\Gamma}(H \cap L)$. Since $H \cap L$ and $G \cap L$ are both complements of V in L, it follows that $(H \cap L)^x = G \cap L$ for some $x \in V$ by the Schur–Zassenhaus theorem. Thus, $H^x = (N_{\Gamma}(H \cap L))^x = N_{\Gamma}(G \cap L) = G$, as desired.

Now we present some lemmas related to nonabelian simple groups.

LEMMA 2.5 [8]. Let *S* be a nonabelian simple group and $S \le G \le Aut(S)$. Suppose that $p \mid (|S|, |G : S|)$. Then *G* has nonabelian Sylow *p*-subgroups.

LEMMA 2.6 [11]. Let $S \le G \le \text{Aut}(S)$, where S is a nonabelian simple group with $p \mid \mid S \mid$. Then G is a \mathfrak{C}_p -group if and only if one of the following holds:

(1)
$$S = \mathcal{A}_p;$$

(2)
$$S = G = PSL(2, 11), p = 11;$$

- (3) $S = M_{11}, p = 11;$
- (4) $S = M_{23}, p = 23;$
- (5) $S = \text{PSL}(n, q), \ p = (q^n 1)/(q 1) \ and \ G/S \le \text{Out}_{df}(S).$

3. The proof of the main theorem

LEMMA 3.1. For a \mathfrak{C}_{p^d} -group G, the following statements hold.

- (1) If $H \leq G$, then H is also a \mathfrak{C}_{p^d} -group.
- (2) If N is minimal normal in G with $p \mid |N|$, then N is a direct product of at most d copies of a simple group S.
- (3) If N is a normal subgroup of G with $|N|_p = p^e \le p^d$, then G/N is a $\mathfrak{C}_{p^{d-e}}$ -group. Furthermore, if e = 0, then G/N being a $\mathfrak{C}_{p^{d-e}}$ -group implies that G is a \mathfrak{C}_{p^d} -group.
- (4) If $|G|_p \ge p^d$ and $N \triangleleft G$ with $|N|_p = p^e$, then N is a \mathfrak{C}_{p^m} -group, where $m = \min\{d, e\}$.
- (5) *G* is a $\mathfrak{C}_{p^{md}}$ -group for every positive integer *m*.

PROOF. (1) If $P \le H$ is of order p^d and K is a complement of P in G, then $K \cap H$ is a complement of P in H.

(2) Suppose that $|N|_p \ge p^d$. Let $P \le N$ be of order p^d and let *K* be a complement of *P* in *G*. Then G = KP = KN with $|G : K| = p^d$. Thus, (2) follows from Lemma 2.2.

(3) Suppose that N is a p-group. Let $Q/N \le G/N$ be of order p^{d-e} . Then Q has order p^d and has a complement K in G. Now KN/N is a complement of Q/N in G/N.

Suppose that *N* is not a *p*-group. Let $P \in \text{Syl}_p(N)$. We proceed by induction on *e*. For e = 0, the statement can be checked by a standard argument. By Lemma 2.3(1), we know that $G/N \cong N_G(P)/N_N(P)$ and $|G|_p = |N_G(P)|_p$. Therefore, $N_G(P)$ is a \mathfrak{C}_{p^d} -group by (1). According to the previous statement, $N_G(P)/P$ is a $\mathfrak{C}_{p^{d-e}}$ -group. Since $|N_N(P)/P|_p = p^0$, it follows that $G/N \cong N_G(P)/N_N(P)$ is a $\mathfrak{C}_{p^{d-e}}$ -group by induction.

Suppose that e = 0 and hence N is a p'-group. Let $Q \le G$ be of order p^d . Then $QN/N \le G/N$ also has order p^d . Note that G/N is a \mathfrak{C}_{p^d} -group and QN/N has a complement K/N in G/N. Now K is a complement of Q in G, as desired.

(4) We may assume by (1) and induction that m = e < d and $N \leq G$. Let $P \in Syl_p(N)$ and Q be a *p*-subgroup of order p^d with P < Q. Observe that $Q \in Syl_p(QN)$ has a complement K in QN by (1). It follows that K is also a complement of P in N.

(5) The statement follows directly from [6, Lemma 1(1)].

REMARK 3.2. If e > 0 in (3), then the fact that G/N is a $\mathfrak{C}_{p^{d-e}}$ -group does not imply that G is a \mathfrak{C}_{p^d} -group. For example, if G is an extraspecial p-group of order p^5 and $N = \Phi(G)$, then G is not a \mathfrak{C}_{p^2} -group (see Lemma 3.3), even if G/N is a \mathfrak{C}_p -group.

LEMMA 3.3. Let G be a group of order p^n with $n \ge 3$. Then G is a \mathfrak{C}_{p^2} -group if and only if G is isomorphic to $E(p^n)$, D_8 or $M_p(1, 1, 1)$.

PROOF. We only prove the necessity. Write $|\Phi(G)| = p^s$. Assume that *G* is not elementary abelian. Then $s \ge 1$ and $2 \cdot 2 \ge n + s$ by [9, Proposition F]. Hence, n = 3 and *G* is an extraspecial *p*-group of order p^3 . Let $\Omega_1(G)$ be the subgroup of *G* generated by all elements of order *p*. Since *G* is a \mathfrak{C}_{p^2} -group, as shown in [9, Proposition F], $\Omega_1(G) = G$. It follows that $G \cong D_8$ when p = 2. Now suppose that p > 2. Since *G* has class two, all elements in $\Omega_1(G)$ have order *p*. This implies that $G \cong M_p(1, 1, 1)$.

LEMMA 3.4. Let $S \leq G \leq \operatorname{Aut}(S)$, where S is a nonabelian simple group with $p \mid |S|$, and let $P \in \operatorname{Syl}_p(G)$. Then G is a nontrivial \mathfrak{C}_{p^2} -group if and only if $S \cong \operatorname{PSL}(n, q)$, $G/S \leq \operatorname{Out}_{df}(S)$ and $P \cong \mathbb{Z}_{p^2}$, where $p^2 = (q^n - 1)/(q - 1) \geq 9$.

PROOF. (\Leftarrow) Suppose that $S \cong PSL(n, q)$. Since $|G|_p = p^2$, to see that G is a \mathfrak{C}_{p^2} -group, it suffices to show that G admits a Hall p'-subgroup. Let $H \le S$ be a stabiliser of a line (or a hyperplane) so that H is a maximal subgroup of S. From $|S|_p = p^2$, it follows that $H \in Hall_{p'}(S)$. Conversely, by [3, Theorem 1], every Hall p'-subgroup of S is also a stabiliser of a line or a hyperplane. Now we claim that $|G : N_G(H)| = |S : N_S(H)|$. If n = 2, the claim follows because all Hall p'-subgroups of S are conjugate in S by [11, Lemma 2.3]. If $n \ge 3$, since $\{H^s \mid s \in S\}$ is fixed by both diagonal and field automorphisms of S by [11, Lemma 2.4], then $|\{H^g \mid g \in G\}| = |\{H^s \mid s \in S\}|$. This yields $|G : N_G(H)| = |S : N_S(H)|$. Now we conclude that $|G : N_G(H)| = |S : N_S(H)| = |S : H| = p^2$, where the second equality holds because H is a maximal subgroup of S. Therefore, $N_G(H)$ is a Hall p'-subgroup of G.

(⇒) Suppose that *G* is a nontrivial \mathfrak{C}_{p^2} -group. If $|S|_p = p$, then Lemma 2.5 implies that $|\operatorname{Aut}(S)|_p = p$, which is a contradiction. Hence, $|S|_p \ge p^2$ and *S* is a nontrivial \mathfrak{C}_{p^2} -group by Lemma 3.1(1). Note that if $S \cong \mathcal{A}_{p^2}$, where $p^2 > 4$, then $Q \in \operatorname{Syl}_p(\mathcal{A}_{p^2})$ is also a \mathfrak{C}_{p^2} -group. However, *Q* is not elementary abelian with $|Q| \ge p^4$ and Lemma 3.3 yields a contradiction. Since *S* is a \mathfrak{C}_{p^2} -group and thus admits a subgroup with index p^2 , we conclude by [3, Theorem 1] that $S \cong \operatorname{PSL}(n, q)$, where $p^2 = (q^n - 1)/(q - 1)$ and *n* is a prime.

Note that if p = 2, then *S* has a subgroup of index four and this implies that $S \leq S_4$ is solvable. Hence, $p \geq 3$. Suppose that n = p. Then $p^2 = (q^n - 1)/(q - 1) \geq 2^n - 1 = 2^p - 1$ and hence p = 3 and $9 = p^2 = q^2 + q + 1$, which is a contradiction. Therefore, $n \neq p$ and hence $(n, (q^n - 1)/(q - 1)) = 1$. It follows from [5, Kap. II, Theorem 7.3] that PSL(n, q) admits a cyclic subgroup (Singer cycle) of order $(q^n - 1)/(q - 1) = p^2$. Since $P \in \text{Syl}_p(G)$ and *P* is a \mathfrak{C}_{p^2} -group which has an element of order p^2 , it follows from Lemma 3.3 that $P \cong \mathbb{Z}_{p^2}$ since $p \geq 3$.

Since *G* is a \mathfrak{C}_{p^2} -group, *P* admits a complement *K* in *G*. We may assume that $n \ge 3$ provided that PSL(2, q) has only the trivial graph automorphism. It follows from G = PK = SK that $|S : K \cap S| = p^2$. Applying [3, Theorem 1] to *S* and $K \cap S$ shows that $K \cap S$ is a stabiliser of a line or a hyperplane. Suppose that G/S is not isomorphic to a subgroup of $\operatorname{Out}_{df}(S)$. Then, by [1], there is $\theta \in G/S$ such that $\theta = dgf$, where $d, g (\neq 1)$ and f are respectively a diagonal, a graph and a field automorphism of *S*. Since $S = \operatorname{PSL}(n, q)$ with $n \ge 3$, we have o(g) = 2. By [11, Lemma 2.4],

$$|G: N_G(K \cap S)| = 2|S: N_S(K \cap S)| = 2|S: K \cap S| = 2p^2.$$

But $K \leq N_G(K \cap S)$ and $|G:K| = p^2$, which is a contradiction. Therefore, $G/S \leq Out_{df}(S)$.

LEMMA 3.5. Let $G = A \times B$ be a \mathfrak{C}_{p^2} -group, where $|A|_p \ge p$ and $|B|_p \ge p$. Then B is a \mathfrak{C}_p -group. If in addition B is simple, then $|B|_p = p$.

PROOF. By induction, we may assume that |A| = p. Now Lemma 3.1(3) implies that $B \cong G/A$ is a \mathfrak{C}_p -group. Assume that B is simple. Since B has a subgroup of index p, we have $B \leq S_p$ and therefore $|B|_p = p$.

HYPOTHESIS 3.6. Let G be a nontrivial \mathfrak{C}_{p^2} -group with $O_{p'}(G) = 1$ and let $P \in Syl_p(G)$.

LEMMA 3.7. Assume that G satisfies Hypothesis 3.6. Then all components of G are simple. In particular, $E(G) \leq Soc(G)$ and $F^*(G) = F(G) \times E(G)$.

PROOF. Let *S* be a component of *G*. By Lemma 3.1(4), *S* is a \mathbb{C}_{p^d} -group with $d = \min\{2, \log_p |S|_p\}$. Also, since $O_{p'}(G) = 1$, we know that Z(S) is a *p*-group with $|S|_p \ge p$. Assume that Z(S) > 1. Note that $\Phi(S) = Z(S)$ for a quasisimple group *S* and $\Phi(S)$ is not complemented in *S*. It follows that $|Z(S)| = |\Phi(S)| = p$ and $|S/Z(S)|_p \ge p$. Since S/Z(S) is a \mathbb{C}_p -group by Lemma 3.1(3), by Lemma 2.6, S/Z(S) is isomorphic to \mathcal{A}_p , PSL(2, 11), M_{11} , M_{23} or PSL(*n*, *q*) with $p = (q^n - 1)/(q - 1)$. Checking the Schur multipliers of those groups in [1], we get a contradiction. Hence, *S* is simple.

LEMMA 3.8. Assume that G satisfies Hypothesis 3.6 and admits different minimal normal subgroups. Then one of the following statements holds.

(1) All minimal normal subgroups E of G are simple with $|E|_p = p$.

(2) All minimal normal subgroups E of G are isomorphic to $E(p^2)$.

PROOF. Let *D* and *E* be different minimal normal subgroups of *G*. Since *G* satisfies Hypothesis 3.6, $|D|_p$, $|E|_p \in \{p, p^2\}$ by Lemmas 3.1(2), 3.4 and 3.5.

(1) Suppose that $|E|_p = p$. By Lemma 3.1(3), G/E is a \mathfrak{C}_p -group. If $L/E = O_{p'}(G/E)$, then $D \cap L = 1$. It follows from Lemmas 2.3(2) and 3.1(3) that G/L is a \mathfrak{C}_p -group with a minimal normal subgroup DL/L. Since $|DL/L| = |D/D \cap L| = |D|$, we conclude from [11, Theorem 1.1] that $|D|_p = |DL/L|_p = p$, as desired.

(2) Suppose that $|E|_p = |D|_p = p^2$. Write $P \in \text{Syl}_p(G)$ so that $|P| \ge |DE|_p = p^4$. It follows from Lemma 3.3 that *P* is elementary abelian and hence $E = S_1 \times S_2$, where S_i are simple by Lemma 3.4. Suppose that $Q \in \text{Syl}_p(E)$, $H = N_G(Q)$, $\overline{H} = H/O_{p'}(H)$ and $\overline{U} (\le \overline{Q})$ is a minimal normal subgroup of \overline{H} . By Lemmas 2.3 and 3.1(3), \overline{H} satisfies Hypothesis 3.6, so it has different minimal normal subgroups $\overline{U} (\le E(p^2))$ and \overline{D} (with $|\overline{D}|_p = p^2$). It follows by (1) that $\overline{U} = \overline{Q} \cong E(p^2)$. Thus, by induction, we may assume that one of *D* and *E* is abelian, say *E*. Let $x \in D$ and $y \in E$ both be elements of order *p* so that $G = \langle x, y \rangle M$, where $\langle x, y \rangle \cap M = 1$, and $|G : M| = p^2$ and $G = (D \times E)M$. Write $N = D \times E$ so that $N \cap M$ is a complement of $\langle x, y \rangle$ in *N*. Considering $N_N(M \cap D)$, we have $M \cap N \le N_N(M \cap D) = N_D(M \cap D) \times E$. Since *E* is abelian, $E \cap M \le G$. Now $y \notin M$, so $E \cap (M \cap N) \le E \cap M = 1$. However, $|N : M \cap N| = |MN : M| = p^2$. It follows that $N = (M \cap N)E \le N_D(M \cap D) \times E \le N$. Hence, $M \cap D = 1$ provided that $M \cap D \le G$ and $x \notin M$. Thus, $|D| = |DM|/|M| = |G|/|M| = p^2$. Thus, *D* and *E* are both isomorphic to $E(p^2)$.

LEMMA 3.9. Assume that G and P satisfy Hypothesis 3.6 with $\Phi(G) > 1$. Then P is not elementary abelian. Moreover, each of the following statements is true.

[6]

Y. Zeng

- (1) $G = H \ltimes P$, where $H \leq \mathbb{Z}_{p-1}$ and $P \cong \mathbb{Z}_{p^2}$ such that $C_H(P) = 1$.
- (2) $G = B \ltimes V$, where $V \cong E(p^2)$ with $C_G(V) = V$ and B is a subgroup of a Borel subgroup of GL(V) with $|B|_p = p$.

PROOF. Let $\Phi = \Phi(G)$. Since *G* is a nontrivial \mathfrak{C}_{p^2} -group with $\Phi > 1$, it follows from $O_{p'}(G) = 1$ that $|\Phi| = p$. By Lemma 3.1(3), $\overline{G} := G/\Phi$ is a nontrivial \mathfrak{C}_p -group. Let $\overline{N} := N/\Phi$ be a minimal normal subgroup of \overline{G} and note that $G/C_G(\Phi) \leq \operatorname{Aut}(\Phi) \cong \mathbb{Z}_{p-1}$ and $O_{p'}(\overline{G}) = 1$. We conclude from [11, Theorem 1.1] that $\overline{N} \leq F^*(\overline{G}) = O^{p'}(\overline{G}) \leq \overline{C_G}(\Phi)$ and $|\overline{N}|_p = p$. Then $N \leq C_G(\Phi)$ and hence $\Phi \leq Z(N)$. Since *N* is not quasisimple by Lemma 3.7, \overline{N} is either abelian or $N = S \times \Phi$ with S ($\leq G$) a nonabelian simple group. Suppose that $N = S \times \Phi$ with *S* a nonabelian simple group. Let *U* be a subgroup of *S* with order *p* and *K* a complement of ΦU in *G*. (We remark that *K* exists because *G* is a \mathfrak{C}_{p^2} -group.) Therefore, $G = \Phi S K = S K$, which is a contradiction. Since every minimal normal subgroup of \overline{G} is abelian, $\overline{P} = F^*(\overline{G}) = O^{p'}(\overline{G}) \leq \overline{G}$ by [11, Theorem 1.1] and hence $P \leq G$. Thus, $\Phi(P) = P \cap \Phi = \Phi$ by [10, Lemma 2.4] and therefore *P* is not elementary abelian. By Lemma 3.3, *P* is isomorphic to one of the groups \mathbb{Z}_{p^2} , D_8 and $M_p(1, 1, 1)$. Also, $G = H \ltimes P$ with $H \in \operatorname{Hall}_{p'}(G)$ by the Schur–Zassenhaus theorem.

(1) Suppose that $P \cong \mathbb{Z}_{p^2}$. Since $\overline{P} = F^*(\overline{G})$, it follows from $\overline{C_G(P)} \le C_{\overline{G}}(\overline{P}) \le \overline{P}$ that $C_G(P) = P$. Thus,

$$G/P = G/C_G(P) \lesssim \operatorname{Aut}(P) \cong \mathbb{Z}_p \times \mathbb{Z}_{p-1}.$$

Hence, $G = H \ltimes P$, where $H \leq \mathbb{Z}_{p-1}$ and $P \cong \mathbb{Z}_{p^2}$ such that $C_H(P) = 1$.

(2) Suppose that $P \cong D_8$ or $M_p(1, 1, 1)$. Since $|N| = |\overline{N}||\Phi| = p^2$, it follows that $C_G(N)$ is a \mathfrak{C}_{p^2} -group by Lemma 3.1(1) and hence $C_G(N) = N \times L$, where *L* is a Hall *p'*-subgroup of $C_G(N)$. Therefore, $L \trianglelefteq G$. However, $O_{p'}(G) = 1$, so L = 1 and then $C_G(N) = N$. It follows that $G = B \ltimes N$ and $B \cong G/C_G(N) \lesssim \operatorname{Aut}(N)$, since *G* is a \mathfrak{C}_{p^2} -group. If $N \cong \mathbb{Z}_{p^2}$, then $G \cong D_8$ with p = 2. Suppose that $N \cong E(p^2)$. Then $B \lesssim \operatorname{GL}(2, p)$. As $P \cap B \trianglelefteq B$ and $|\operatorname{GL}(2, p)|_p = |P \cap B| = p$, we see that *B* is isomorphic to a subgroup of a Borel subgroup of $\operatorname{GL}(2, p)$. Note that D_8 is also of this type. Our result follows.

LEMMA 3.10. Assume that G and P satisfy Hypothesis 3.6 with $\Phi(G) = 1$. Then P is abelian.

PROOF. Let *G* be a counterexample of minimal order. Then *P* is a nonabelian subgroup of order p^3 by Lemma 3.3. Since the hypothesis is inherited by normal subgroups with order divisible by p^2 , *P* is not normal in *G*. Furthermore, if $N \triangleleft G$, then $|N|_p \le p^2$. Hence, $G = O^{p'}(G)$ does not have a nontrivial direct factor provided that $O_{p'}(G) = 1$. Let *E* be a minimal normal subgroup of *G*. Suppose that $|E|_p = p$. Then $p \nmid |G/EC_G(E)|$ by Lemma 2.5 and hence $G = EC_G(E)$. If *E* is nonabelian, then $G = E \times C_G(E)$, which is a contradiction. If *E* is abelian, then $G = C_G(E) = E \times M$, where *M* is a maximal subgroup of *G* since $\Phi(G) = 1$, which is a contradiction too. Hence, $|E|_p = p^2$. By Lemma 3.4, $F^*(G) = \text{Soc}(G)$ as $\Phi(G) = 1$ and hence $|F^*(G)|_p \le p^2$. It follows that $E = F^*(G)$. If *E* is nonabelian simple, then $|G|_p = p^2$ by Lemma 3.4, which is a

436

contradiction. Suppose that $E = S_1 \times S_2$, where the S_i are isomorphic nonabelian simple groups. Then S_i are \mathfrak{C}_p -groups by Lemma 3.1(4) and hence p > 2. Notice that $G/E \leq \operatorname{Out}(E) \cong \mathbb{Z}_2 \ltimes (\operatorname{Out}(S_1) \times \operatorname{Out}(S_2))$. It follows from Lemma 2.5 that $p \nmid |G/E|$, which is a contradiction. Hence, $E \cong E(p^2)$. Since G is a \mathfrak{C}_{p^2} -group with $F^*(G) = E$, we know that $G = E \rtimes H$ and $H \leq \operatorname{GL}(2, p)$. Since H has more than two Sylow psubgroups, $H \cong \operatorname{SL}(2, p)$ provided that $G = O^{p'}(G)$. Let $U = (P \cap H)Z(P)$ and K be a complement of U in G. We conclude from $E \nleq K$ and $|G : K| = |E| = p^2$ that $G = E \rtimes K$. Since $O_{p'}(G) = 1$ and $O_{p'}(G/E) > 1$, it follows from Lemma 2.4 that $H^x = K$ for some $x \in E$. Then $G = UK = UH^x = U^{x^{-1}}H = UH$, where the last equality holds since $U \triangleleft P$. However, $U \cap H = P \cap H > 1$, which is a contradiction. Thus, P is abelian, as desired.

PROOF OF THEOREM 1.1. Let *P* be a Sylow *p*-subgroup of *G*. Note that *T* is a \mathfrak{C}_{p^2} -group if and only if $G = T/O_{p'}(T)$ is a \mathfrak{C}_{p^2} -group by Lemma 3.1(3).

(⇒) Suppose first that $\Phi(G) > 1$. Then (1) and (2) follow by Lemma 3.9.

Now suppose that $\Phi(G) = 1$. Then $F^*(G) = F(G) \times E(G) = \text{Soc}(G)$ by Lemma 3.7 and *P* is abelian by Lemma 3.10. If *G* is simple, then, by Lemma 3.4, $G \cong \text{PSL}(n, q)$, where $|G|_p = (q^n - 1)/(q - 1) = p^2 \ge 9$.

Suppose *G* contains the unique minimal normal subgroup *E*. Then $E = F^*(G)$ and $C_G(E) \le E$. If *E* is abelian, then E = P and therefore $G = H \ltimes E$, where $H \in \operatorname{Hall}_{p'}(G)$ and $E \cong E(p^2)$. Suppose that *E* is nonabelian. If *E* is simple, then our result follows from Lemma 3.4. Otherwise, by Lemmas 3.1(2) and 3.5, $E = S_1 \times S_2$, where the S_i are isomorphic nonabelian simple groups with $|S_i|_p = p$ provided that $O_{p'}(G) = 1$. Since $E = S_1 \times S_2$ is minimal normal in *G*, we have that $M := N_G(S_1) = N_G(S_2)$ is normal in *G* with index two. Since *p* is the largest prime divisor of $|S_i|$, we have $O^{p'}(G) = O^{p'}(M)$. Now *M* is a \mathfrak{C}_{p^2} -group with $O_{p'}(M) = 1$ and, from Lemma 3.1(3), M/S_1 and M/S_2 are both \mathfrak{C}_p -groups. Therefore, $M \le M/S_1 \times M/S_2$ is also a \mathfrak{C}_p -group by [11, Lemma 3.2]. Applying [11, Theorem 1.1], $F^*(M) = O^{p'}(M)$. Since $F^*(M) = M \cap F^*(G) = F^*(G)$ because $M \le G$, it follows that $F^*(G) = O^{p'}(G)$.

Suppose that *G* contains at least two minimal normal subgroups. Then we can write $F^*(G) = N_1 \times \cdots \times N_t$, where t > 1, and so either $|N_i|_p = p$ for all *i* or $N_i \cong E(p^2)$ for all *i* by Lemma 3.8(2). Suppose that $|N_i|_p = p$ for all *i*. Then, by Lemma 3.1(3), we know that G/N_1 and G/N_2 are nontrivial \mathfrak{C}_p -groups. We deduce from $G \leq G/N_1 \times G/N_2$ that *G* is a nontrivial \mathfrak{C}_p -group by [11, Lemma 3.2]. Thus, (6) holds. Suppose that $N_i \cong E(p^2)$. Since $|P| \geq p^4$, we see that *P* is elementary abelian by Lemma 3.3 and hence $P = F^*(G)$. It follows that $G = H \ltimes P$, where $H \in \operatorname{Hall}_{p'}(G)$. Then, by [10, Corollary 2.10] and [10, Theorem B'], (5) holds.

(\Leftarrow) By Lemma 3.1(5), Lemma 3.4, [10, Corollary 2.10] and [10, Theorem B'], it suffices to verify when (2) or (4) holds.

Suppose that (2) holds. Then $B = (P \cap B) \rtimes K$, where $|K| | (p-1)^2$ since *B* is a subgroup of a Borel subgroup of GL(*V*). Furthermore, since $P \cap B \trianglelefteq B$, we know that $P = (P \cap B)V \trianglelefteq G$. Considering the coprime action of *K* on *V* by conjugation, $V = Q \times Z(P)$, where *Q* and *Z*(*P*) are both *K*-invariant. Choose a subgroup *U* of

Y. Zeng

order p^2 . We may assume that $U \neq V$. Then $Q \not\leq U$ and hence $G = U \cdot (QK)$. Now $U \cap (QK) = 1$ follows from $P \cap K = 1$. Thus, G is a \mathfrak{C}_{p^2} -group, as desired.

Suppose that (4) holds. Since $|N_G(S_1)|_p = |G|_p = p^2$, it follows that $N_G(S_1)$ is a \mathfrak{C}_{p^2} -group by Lemma 3.1(5). Hence, $P \leq F^*(G) \leq N_G(S_1)$. Therefore, $N_G(S_1) = P \cdot H$, where $P \cap H = 1$. Since $N_G(S_1) = F^*(G)H$, there is a maximal subgroup M of G such that H < M. It follows that $G = F^*(G)M$ and $|G:M| | |G:H| = 2p^2$. We conclude from Lemma 2.1 that $|G:M| = p^2$ and thus G is a \mathfrak{C}_{p^2} -group.

References

- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, *ATLAS of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups* (Oxford University Press, Oxford, 1985).
- Y. M. Gorchakov, 'Primitively factorizable groups', *Dokl. Akad. Nauk* 131(6) (1960), 1246–1248; (in Russian).
- [3] R. M. Guralnick, 'Subgroups of prime power index in a simple group', J. Algebra 81(2) (1983), 304–311.
- [4] P. Hall, 'Complemented groups', J. Lond. Math. Soc. (2) 12(3) (1937), 201–204.
- [5] B. Huppert, Endliche Gruppen I (Springer, Berlin, 1967).
- [6] V. S. Monakhov and V. N. Kniahina, 'Finite groups with complemented subgroups of prime orders', J. Group Theory 18(6) (2015), 905–912.
- [7] G. Qian, 'Nonsolvable groups with few primitive character degrees', J. Group Theory 21(2) (2018), 295–318.
- [8] G. Qian and W. Shi, 'The largest character degree and the Sylow subgroups of finite groups', J. Algebra 277 (2004), 165–171.
- [9] G. Qian and F. Tang, 'Finite groups with certain subgroups of prime power order complemented', J. Algebra 423 (2015), 950–962.
- [10] G. Qian and Y. Zeng, 'On partial cap-subgroups of finite groups', J. Algebra 546 (2020), 553–565.
- [11] Y. Zeng, 'Finite groups with complemented minimal *p*-subgroups', *Comm. Algebra*, **48**(2) (2020), 644–650.

YU ZENG, Department of Mathematics and Statistics, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China e-mail: yuzeng2004@163.com