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Abstract

For a given prime p, we investigate the finite groups all of whose 2-minimal p-subgroups are
complemented.
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1. Introduction

In this paper, G always denotes a finite group and p always denotes a prime. A
subgroup H of G is said to be complemented in G if there exists a subgroup K
of G such that G = HK and H ∩ K = 1. Given a finite group, its structure can be
determined if certain types of subgroups have complements. For instance, a classical
theorem of P. Hall says that G is solvable if and only if all its Sylow subgroups have
complements. When all subgroups of G are complemented, Hall proved that G is
necessarily supersolvable [4]. Gorchakov [2] showed that Hall’s requirement of the
complementability of all subgroups can be reduced to the complementability of all
minimal subgroups.

We say that G is a Cpd -group if all its subgroups of order pd are complemented. In
particular, G is a Cp2 -group if every 2-minimal p-subgroup of G is complemented. A
Cpd -group G is said to be nontrivial if |G|p ≥ pd. Recently, Monakhov and Kniahina [6]
studied Cp-groups and established criteria for their solvability and supersolvabilty.
In [11], we gave a classification for nontrivial Cp-groups. In this paper, we study the
Cp2 -groups.

Let Φ(G), Soc(G), F(G) and F∗(G) denote the Frattini subgroup, the socle, the
Fitting subgroup and the generalised Fitting subgroup, respectively, of G. Note that
F∗(G) = F(G)E(G) with [F(G), E(G)] = 1, where E(G) is the subgroup generated
by all components of G. Let V be a finite-dimensional Fp-space (where Fp is the
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field of p elements). A Borel subgroup of GL(V) is the normaliser of a Sylow p-
subgroup of GL(V). The notation Sn and An stands for the symmetric group and the
alternating group of degree n, respectively. We use Mp(1,1,1) to denote an extraspecial
p-subgroup of order p3 with exponent an odd prime p, D8 to denote the dihedral group
of order eight, E(pn) to denote an elementary abelian group of order pn and Zn to
denote a cyclic group of order n.

According to [1], if S � PSL(n, q), then Out(S ) = 〈d, f 〉 o 〈g〉, where d, f and g are
a diagonal, a field and a graph automorphism of S , respectively. We use Outd f (S ) to
denote the normal subgroup 〈d, f 〉.

The main result of our paper is the following theorem.

Theorem 1.1. Let T be a finite group, G = T/Op′(T ) and P ∈ Sylp(G). Then T is a
nontrivial Cp2 -group if and only if one of the following statements is true.

(1) G = H n P, where H . Zp−1 and P � Zp2 such that CH(P) = 1.
(2) G = B n V, where V � E(p2) with CG(V) = V and B is a subgroup of a Borel

subgroup of GL(V) with |B|p = p.
(3) F∗(G) � PSL(n, q), G/F∗(G) . Outd f (F∗(G)) and P � Zp2 , where p2 =

qn−1
q−1 ≥ 9.

(4) F∗(G) = Op′(G) = S 1 × S 2 is minimal normal in G, where S 1 and S 2 are
isomorphic nonabelian simple groups and NG(S 1) = NG(S 2) are both Cp-groups.

(5) G = H n (N1 × · · · × Nt), where H ∈ Hallp′(G) and all Ni are H-isomorphic
irreducible Fp[H]-modules of dimension two. Furthermore, if t > 1, then H is
cyclic.

(6) G is a nontrivial Cp-group.

Remark 1.2. If t = 1 in (5), then H is not necessarily cyclic. For example, let G =

H n N be a Frobenius group with kernel N � E(112) and complement H � SL(2, 5).
Then G is a C112 -group with N the unique minimal subgroup of G and H ∈ Hall11′(G).

2. Preliminaries

We begin with the following facts which will be used freely in the proof.

Lemma 2.1 [7]. Let G be a group and N a minimal normal subgroup of G such that N
is a direct product of t isomorphic nonabelian simple groups, say N = S 1 × · · · × S t.
Assume that M is a maximal subgroup of G such that G = MN. Then one of the
following statements holds.

(1) M ∩ N = M1 × · · · × Mt, where |S i : Mi| = |S 1 : M1| > 1 for all i.
(2) M ∩ N = E1 × · · · × Ek is minimal normal in M, where E1 � · · · � Ek � S 1, k | t.

Lemma 2.2. Let G be a group and N a minimal normal subgroup of G such that N is
a direct product of t isomorphic simple groups. Suppose that G has a proper subgroup
H so that G = HN and |G : H| = pk > 1. Then t ≤ k.
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Proof. Let N = S 1 × · · · × S t, where the S i are isomorphic simple groups, and let M
be a maximal subgroup of G which contains H. If N is abelian, then G = HN = H n N
and hence t ≤ k. Suppose that N is nonabelian. Then G = MN is such that

|N : M ∩ N| = |G : M| := ps | pk.

It follows from Lemma 2.1 that N ∩ M = M1 × · · · × Mt, where |S 1 : M1|
t = ps. Thus,

t ≤ s ≤ k. �

Lemma 2.3. Let G be a group and E a normal subgroup of G. Suppose that Q ∈
Sylp(E).

(1) Then G = ENG(Q) and G/E � NG(Q)/NE(Q) with |G|p = |NG(Q)|p.
(2) If D is a minimal normal subgroup of G with D ∩ E = 1, then D is minimal

normal in NG(Q) and DE/E is minimal normal in G/E.

Proof. (1) The statement follows from the Frattini argument.
(2) Since D is a minimal normal subgroup of G with D ∩ E = 1, it follows from

G = ENG(Q) that D is minimal normal in NG(Q). Let X/E EG/E so that E < X ≤ DE
and hence X = X ∩ DE = (X ∩ D)E. Since 1 < X ∩ D EG, we have X ∩ D = D and
therefore X = DE, as desired. �

Lemma 2.4. Let Γ = G n V, where V is an abelian minimal normal subgroup of Γ so
that p | |V |. Suppose that Op′(Γ/V) > 1 and Op′(Γ) = 1. Then all complements of V in
Γ are conjugate.

Proof. Write L/V = Op′(Γ/V) so that G ∩ L EG and NΓ(G ∩ L) = GNV (G ∩ L). Since
V is an abelian minimal normal subgroup of Γ, we conclude that NV (G ∩ L) ∈ {1,V}. It
follows from Op′(Γ) = 1 that NV (G ∩ L) = 1 and G = NΓ(G ∩ L). Let H be another
complement for V in Γ so that H = NΓ(H ∩ L). Since H ∩ L and G ∩ L are both
complements of V in L, it follows that (H ∩ L)x = G ∩ L for some x ∈ V by the Schur–
Zassenhaus theorem. Thus, Hx = (NΓ(H ∩ L))x = NΓ(G ∩ L) = G, as desired. �

Now we present some lemmas related to nonabelian simple groups.

Lemma 2.5 [8]. Let S be a nonabelian simple group and S ≤G ≤ Aut(S ). Suppose that
p | (|S |, |G : S |). Then G has nonabelian Sylow p-subgroups.

Lemma 2.6 [11]. Let S ≤ G ≤ Aut(S ), where S is a nonabelian simple group with
p | |S |. Then G is a Cp-group if and only if one of the following holds:

(1) S =Ap;
(2) S = G = PSL(2, 11), p = 11;
(3) S = M11, p = 11;
(4) S = M23, p = 23;
(5) S = PSL(n, q), p = (qn − 1)/(q − 1) and G/S ≤ Outd f (S ).
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3. The proof of the main theorem

Lemma 3.1. For a Cpd -group G, the following statements hold.

(1) If H ≤ G, then H is also a Cpd -group.
(2) If N is minimal normal in G with p | |N|, then N is a direct product of at most d

copies of a simple group S .
(3) If N is a normal subgroup of G with |N|p = pe ≤ pd, then G/N is a Cpd−e -group.

Furthermore, if e = 0, then G/N being a Cpd−e -group implies that G is a Cpd -
group.

(4) If |G|p ≥ pd and N CC G with |N|p = pe, then N is a Cpm -group, where m =

min{d, e}.
(5) G is a Cpmd -group for every positive integer m.

Proof. (1) If P ≤ H is of order pd and K is a complement of P in G, then K ∩ H is a
complement of P in H.

(2) Suppose that |N|p ≥ pd. Let P ≤ N be of order pd and let K be a complement of
P in G. Then G = KP = KN with |G : K| = pd. Thus, (2) follows from Lemma 2.2.

(3) Suppose that N is a p-group. Let Q/N ≤G/N be of order pd−e. Then Q has order
pd and has a complement K in G. Now KN/N is a complement of Q/N in G/N.

Suppose that N is not a p-group. Let P ∈ Sylp(N). We proceed by induction on e.
For e = 0, the statement can be checked by a standard argument. By Lemma 2.3(1),
we know that G/N � NG(P)/NN(P) and |G|p = |NG(P)|p. Therefore, NG(P) is a Cpd -
group by (1). According to the previous statement, NG(P)/P is a Cpd−e -group. Since
|NN(P)/P|p = p0, it follows that G/N � NG(P)/NN(P) is a Cpd−e -group by induction.

Suppose that e = 0 and hence N is a p′-group. Let Q ≤ G be of order pd. Then
QN/N ≤ G/N also has order pd. Note that G/N is a Cpd -group and QN/N has a
complement K/N in G/N. Now K is a complement of Q in G, as desired.

(4) We may assume by (1) and induction that m = e < d and N EG. Let P ∈ Sylp(N)
and Q be a p-subgroup of order pd with P < Q. Observe that Q ∈ Sylp(QN) has a
complement K in QN by (1). It follows that K is also a complement of P in N.

(5) The statement follows directly from [6, Lemma 1(1)]. �

Remark 3.2. If e > 0 in (3), then the fact that G/N is a Cpd−e -group does not imply
that G is a Cpd -group. For example, if G is an extraspecial p-group of order p5 and
N = Φ(G), then G is not a Cp2 -group (see Lemma 3.3), even if G/N is a Cp-group.

Lemma 3.3. Let G be a group of order pn with n ≥ 3. Then G is a Cp2 -group if and only
if G is isomorphic to E(pn), D8 or Mp(1, 1, 1).

Proof. We only prove the necessity. Write |Φ(G)| = ps. Assume that G is not
elementary abelian. Then s ≥ 1 and 2 · 2 ≥ n + s by [9, Proposition F]. Hence, n = 3 and
G is an extraspecial p-group of order p3. Let Ω1(G) be the subgroup of G generated
by all elements of order p. Since G is a Cp2 -group, as shown in [9, Proposition F],
Ω1(G) = G. It follows that G � D8 when p = 2. Now suppose that p > 2. Since G has
class two, all elements in Ω1(G) have order p. This implies that G � Mp(1, 1, 1). �
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Lemma 3.4. Let S ≤ G ≤ Aut(S ), where S is a nonabelian simple group with p | |S |,
and let P ∈ Sylp(G). Then G is a nontrivial Cp2 -group if and only if S � PSL(n, q),
G/S ≤ Outd f (S ) and P � Zp2 , where p2 = (qn − 1)/(q − 1) ≥ 9.

Proof. (⇐) Suppose that S � PSL(n, q). Since |G|p = p2, to see that G is a Cp2 -group,
it suffices to show that G admits a Hall p′-subgroup. Let H ≤ S be a stabiliser of a line
(or a hyperplane) so that H is a maximal subgroup of S . From |S |p = p2, it follows
that H ∈ Hallp′(S ). Conversely, by [3, Theorem 1], every Hall p′-subgroup of S is also
a stabiliser of a line or a hyperplane. Now we claim that |G : NG(H)| = |S : NS (H)|.
If n = 2, the claim follows because all Hall p′-subgroups of S are conjugate in S
by [11, Lemma 2.3]. If n ≥ 3, since {Hs | s ∈ S } is fixed by both diagonal and field
automorphisms of S by [11, Lemma 2.4], then |{Hg | g ∈ G}| = |{Hs | s ∈ S }|. This
yields |G : NG(H)| = |S : NS (H)|. Now we conclude that |G : NG(H)| = |S : NS (H)| =
|S : H| = p2, where the second equality holds because H is a maximal subgroup of S .
Therefore, NG(H) is a Hall p′-subgroup of G.

(⇒) Suppose that G is a nontrivial Cp2 -group. If |S |p = p, then Lemma 2.5 implies
that |Aut(S )|p = p, which is a contradiction. Hence, |S |p ≥ p2 and S is a nontrivial Cp2 -
group by Lemma 3.1(1). Note that if S � Ap2 , where p2 > 4, then Q ∈ Sylp(Ap2 ) is
also a Cp2 -group. However, Q is not elementary abelian with |Q| ≥ p4 and Lemma 3.3
yields a contradiction. Since S is a Cp2 -group and thus admits a subgroup with index
p2, we conclude by [3, Theorem 1] that S � PSL(n, q), where p2 = (qn − 1)/(q − 1)
and n is a prime.

Note that if p = 2, then S has a subgroup of index four and this implies that S . S4

is solvable. Hence, p ≥ 3. Suppose that n = p. Then p2 = (qn − 1)/(q − 1) ≥ 2n − 1 =

2p − 1 and hence p = 3 and 9 = p2 = q2 + q + 1, which is a contradiction. Therefore,
n , p and hence (n, (qn − 1)/(q − 1)) = 1. It follows from [5, Kap. II, Theorem 7.3]
that PSL(n, q) admits a cyclic subgroup (Singer cycle) of order (qn − 1)/(q − 1) = p2.
Since P ∈ Sylp(G) and P is a Cp2 -group which has an element of order p2, it follows
from Lemma 3.3 that P � Zp2 since p ≥ 3.

Since G is a Cp2 -group, P admits a complement K in G. We may assume that
n ≥ 3 provided that PSL(2, q) has only the trivial graph automorphism. It follows from
G = PK = S K that |S : K ∩ S | = p2. Applying [3, Theorem 1] to S and K ∩ S shows
that K ∩ S is a stabiliser of a line or a hyperplane. Suppose that G/S is not isomorphic
to a subgroup of Outd f (S ). Then, by [1], there is θ ∈ G/S such that θ = dg f , where
d, g (, 1) and f are respectively a diagonal, a graph and a field automorphism of S .
Since S = PSL(n, q) with n ≥ 3, we have o(g) = 2. By [11, Lemma 2.4],

|G : NG(K ∩ S )| = 2|S : NS (K ∩ S )| = 2|S : K ∩ S | = 2p2.

But K ≤ NG(K ∩ S ) and |G : K| = p2, which is a contradiction. Therefore, G/S ≤
Outd f (S ). �

Lemma 3.5. Let G = A × B be a Cp2 -group, where |A|p ≥ p and |B|p ≥ p. Then B is a
Cp-group. If in addition B is simple, then |B|p = p.
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Proof. By induction, we may assume that |A| = p. Now Lemma 3.1(3) implies that
B � G/A is a Cp-group. Assume that B is simple. Since B has a subgroup of index p,
we have B . Sp and therefore |B|p = p. �

Hypothesis 3.6. Let G be a nontrivial Cp2 -group with Op′(G) = 1 and let P ∈ Sylp(G).

Lemma 3.7. Assume that G satisfies Hypothesis 3.6. Then all components of G are
simple. In particular, E(G) ≤ Soc(G) and F∗(G) = F(G) × E(G).

Proof. Let S be a component of G. By Lemma 3.1(4), S is a Cpd -group with d =

min{2, logp |S |p}. Also, since Op′(G) = 1, we know that Z(S ) is a p-group with |S |p ≥ p.
Assume that Z(S ) > 1. Note that Φ(S ) = Z(S ) for a quasisimple group S and Φ(S ) is
not complemented in S . It follows that |Z(S )| = |Φ(S )| = p and |S/Z(S )|p ≥ p. Since
S/Z(S ) is a Cp-group by Lemma 3.1(3), by Lemma 2.6, S/Z(S ) is isomorphic to
Ap, PSL(2, 11), M11, M23 or PSL(n, q) with p = (qn − 1)/(q − 1). Checking the Schur
multipliers of those groups in [1], we get a contradiction. Hence, S is simple. �

Lemma 3.8. Assume that G satisfies Hypothesis 3.6 and admits different minimal
normal subgroups. Then one of the following statements holds.

(1) All minimal normal subgroups E of G are simple with |E|p = p.
(2) All minimal normal subgroups E of G are isomorphic to E(p2).

Proof. Let D and E be different minimal normal subgroups of G. Since G satisfies
Hypothesis 3.6, |D|p, |E|p ∈ {p, p2} by Lemmas 3.1(2), 3.4 and 3.5.

(1) Suppose that |E|p = p. By Lemma 3.1(3), G/E is a Cp-group. If L/E =

Op′(G/E), then D ∩ L = 1. It follows from Lemmas 2.3(2) and 3.1(3) that G/L is a
Cp-group with a minimal normal subgroup DL/L. Since |DL/L| = |D/D ∩ L| = |D|, we
conclude from [11, Theorem 1.1] that |D|p = |DL/L|p = p, as desired.

(2) Suppose that |E|p = |D|p = p2. Write P ∈ Sylp(G) so that |P| ≥ |DE|p = p4. It
follows from Lemma 3.3 that P is elementary abelian and hence E = S 1 × S 2, where
S i are simple by Lemma 3.4. Suppose that Q ∈ Sylp(E), H = NG(Q), H = H/Op′(H)
and U(≤ Q) is a minimal normal subgroup of H. By Lemmas 2.3 and 3.1(3), H satisfies
Hypothesis 3.6, so it has different minimal normal subgroups U(. E(p2)) and D (with
|D|p = p2). It follows by (1) that U = Q � E(p2). Thus, by induction, we may assume
that one of D and E is abelian, say E. Let x ∈ D and y ∈ E both be elements of order p
so that G = 〈x, y〉M, where 〈x, y〉 ∩ M = 1, and |G : M| = p2 and G = (D × E)M. Write
N = D × E so that N ∩ M is a complement of 〈x, y〉 in N. Considering NN(M ∩ D),
we have M ∩ N ≤ NN(M ∩ D) = ND(M ∩ D) × E. Since E is abelian, E ∩ M E G.
Now y < M, so E ∩ (M ∩ N) ≤ E ∩ M = 1. However, |N : M ∩ N| = |MN : M| = p2.
It follows that N = (M ∩ N)E ≤ ND(M ∩ D) × E ≤ N. Hence, M ∩ D = 1 provided
that M ∩ D EG and x < M. Thus, |D| = |DM|/|M| = |G|/|M| = p2. Thus, D and E are
both isomorphic to E(p2). �

Lemma 3.9. Assume that G and P satisfy Hypothesis 3.6 with Φ(G) > 1. Then P is not
elementary abelian. Moreover, each of the following statements is true.
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(1) G = H n P, where H . Zp−1 and P � Zp2 such that CH(P) = 1.
(2) G = B n V, where V � E(p2) with CG(V) = V and B is a subgroup of a Borel

subgroup of GL(V) with |B|p = p.

Proof. Let Φ = Φ(G). Since G is a nontrivial Cp2 -group with Φ > 1, it follows from
Op′(G) = 1 that |Φ| = p. By Lemma 3.1(3), G := G/Φ is a nontrivial Cp-group. Let N :=
N/Φ be a minimal normal subgroup of G and note that G/CG(Φ) . Aut(Φ) � Zp−1 and
Op′(G) = 1. We conclude from [11, Theorem 1.1] that N ≤ F∗(G) = Op′(G) ≤ CG(Φ)
and |N|p = p. Then N ≤ CG(Φ) and hence Φ ≤ Z(N). Since N is not quasisimple by
Lemma 3.7, N is either abelian or N = S ×Φ with S (EG) a nonabelian simple group.
Suppose that N = S × Φ with S a nonabelian simple group. Let U be a subgroup of S
with order p and K a complement of ΦU in G. (We remark that K exists because G is a
Cp2 -group.) Therefore, G = ΦS K = S K, which is a contradiction. Since every minimal
normal subgroup of G is abelian, P = F∗(G) = Op′(G) EG by [11, Theorem 1.1] and
hence P E G. Thus, Φ(P) = P ∩ Φ = Φ by [10, Lemma 2.4] and therefore P is not
elementary abelian. By Lemma 3.3, P is isomorphic to one of the groups Zp2 , D8 and
Mp(1, 1, 1). Also, G = H n P with H ∈ Hallp′(G) by the Schur–Zassenhaus theorem.

(1) Suppose that P � Zp2 . Since P = F∗(G), it follows from CG(P) ≤ CG(P) ≤ P that
CG(P) = P. Thus,

G/P = G/CG(P) . Aut(P) � Zp × Zp−1.
Hence, G = H n P, where H . Zp−1 and P � Zp2 such that CH(P) = 1.

(2) Suppose that P � D8 or Mp(1, 1, 1). Since |N| = |N||Φ| = p2, it follows that
CG(N) is a Cp2 -group by Lemma 3.1(1) and hence CG(N) = N × L, where L is a
Hall p′-subgroup of CG(N). Therefore, L E G. However, Op′(G) = 1, so L = 1 and
then CG(N) = N. It follows that G = B n N and B � G/CG(N) . Aut(N), since G is
a Cp2 -group. If N � Zp2 , then G � D8 with p = 2. Suppose that N � E(p2). Then
B . GL(2, p). As P ∩ B E B and |GL(2, p)|p = |P ∩ B| = p, we see that B is isomorphic
to a subgroup of a Borel subgroup of GL(2, p). Note that D8 is also of this type. Our
result follows. �

Lemma 3.10. Assume that G and P satisfy Hypothesis 3.6 with Φ(G) = 1. Then P is
abelian.

Proof. Let G be a counterexample of minimal order. Then P is a nonabelian subgroup
of order p3 by Lemma 3.3. Since the hypothesis is inherited by normal subgroups with
order divisible by p2, P is not normal in G. Furthermore, if N CG, then |N|p ≤ p2.
Hence, G = Op′(G) does not have a nontrivial direct factor provided that Op′(G) = 1.
Let E be a minimal normal subgroup of G. Suppose that |E|p = p. Then p - |G/ECG(E)|
by Lemma 2.5 and hence G = ECG(E). If E is nonabelian, then G = E ×CG(E), which
is a contradiction. If E is abelian, then G = CG(E) = E × M, where M is a maximal
subgroup of G since Φ(G) = 1, which is a contradiction too. Hence, |E|p = p2. By
Lemma 3.4, F∗(G) = Soc(G) as Φ(G) = 1 and hence |F∗(G)|p ≤ p2. It follows that
E = F∗(G). If E is nonabelian simple, then |G|p = p2 by Lemma 3.4, which is a
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contradiction. Suppose that E = S 1 × S 2, where the S i are isomorphic nonabelian
simple groups. Then S i are Cp-groups by Lemma 3.1(4) and hence p > 2. Notice that
G/E . Out(E) � Z2 n (Out(S 1) ×Out(S 2)). It follows from Lemma 2.5 that p - |G/E|,
which is a contradiction. Hence, E � E(p2). Since G is a Cp2 -group with F∗(G) = E,
we know that G = E o H and H . GL(2, p). Since H has more than two Sylow p-
subgroups, H � SL(2, p) provided that G = Op′(G). Let U = (P ∩ H)Z(P) and K be a
complement of U in G. We conclude from E � K and |G : K| = |E| = p2 that G = E o K.
Since Op′(G) = 1 and Op′(G/E) > 1, it follows from Lemma 2.4 that Hx = K for
some x ∈ E. Then G = UK = UHx = U x−1

H = UH, where the last equality holds since
U C P. However, U ∩ H = P ∩ H > 1, which is a contradiction. Thus, P is abelian, as
desired. �

Proof of Theorem 1.1. Let P be a Sylow p-subgroup of G. Note that T is a Cp2 -group
if and only if G = T/Op′(T ) is a Cp2 -group by Lemma 3.1(3).

(⇒) Suppose first that Φ(G) > 1. Then (1) and (2) follow by Lemma 3.9.
Now suppose that Φ(G) = 1. Then F∗(G) = F(G) × E(G) = Soc(G) by Lemma 3.7

and P is abelian by Lemma 3.10. If G is simple, then, by Lemma 3.4, G � PSL(n, q),
where |G|p = (qn − 1)/(q − 1) = p2 ≥ 9.

Suppose G contains the unique minimal normal subgroup E. Then E = F∗(G) and
CG(E) ≤ E. If E is abelian, then E = P and therefore G = H n E, where H ∈ Hallp′(G)
and E � E(p2). Suppose that E is nonabelian. If E is simple, then our result follows
from Lemma 3.4. Otherwise, by Lemmas 3.1(2) and 3.5, E = S 1 × S 2, where the S i are
isomorphic nonabelian simple groups with |S i|p = p provided that Op′(G) = 1. Since
E = S 1 × S 2 is minimal normal in G, we have that M := NG(S 1) = NG(S 2) is normal in
G with index two. Since p is the largest prime divisor of |S i|, we have Op′(G) = Op′(M).
Now M is a Cp2 -group with Op′(M) = 1 and, from Lemma 3.1(3), M/S 1 and M/S 2 are
both Cp-groups. Therefore, M . M/S 1 × M/S 2 is also a Cp-group by [11, Lemma 3.2].
Applying [11, Theorem 1.1], F∗(M) = Op′(M). Since F∗(M) = M ∩ F∗(G) = F∗(G)
because M EG, it follows that F∗(G) = Op′(G).

Suppose that G contains at least two minimal normal subgroups. Then we can write
F∗(G) = N1 × · · · × Nt, where t > 1, and so either |Ni|p = p for all i or Ni � E(p2) for all
i by Lemma 3.8(2). Suppose that |Ni|p = p for all i. Then, by Lemma 3.1(3), we know
that G/N1 and G/N2 are nontrivial Cp-groups. We deduce from G . G/N1 × G/N2

that G is a nontrivial Cp-group by [11, Lemma 3.2]. Thus, (6) holds. Suppose that
Ni � E(p2). Since |P| ≥ p4, we see that P is elementary abelian by Lemma 3.3 and
hence P = F∗(G). It follows that G = H n P, where H ∈ Hallp′(G). Then, by [10,
Corollary 2.10] and [10, Theorem B′], (5) holds.

(⇐) By Lemma 3.1(5), Lemma 3.4, [10, Corollary 2.10] and [10, Theorem B′], it
suffices to verify when (2) or (4) holds.

Suppose that (2) holds. Then B = (P ∩ B) o K, where |K| | (p − 1)2 since B is a
subgroup of a Borel subgroup of GL(V). Furthermore, since P ∩ B E B, we know
that P = (P ∩ B)V E G. Considering the coprime action of K on V by conjugation,
V = Q × Z(P), where Q and Z(P) are both K-invariant. Choose a subgroup U of
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order p2. We may assume that U , V . Then Q � U and hence G = U · (QK). Now
U ∩ (QK) = 1 follows from P ∩ K = 1. Thus, G is a Cp2 -group, as desired.

Suppose that (4) holds. Since |NG(S 1)|p = |G|p = p2, it follows that NG(S 1) is a
Cp2 -group by Lemma 3.1(5). Hence, P ≤ F∗(G) ≤ NG(S 1). Therefore, NG(S 1) = P · H,
where P ∩ H = 1. Since NG(S 1) = F∗(G)H, there is a maximal subgroup M of G such
that H < M. It follows that G = F∗(G)M and |G : M| | |G : H| = 2p2. We conclude from
Lemma 2.1 that |G : M| = p2 and thus G is a Cp2 -group. �
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