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Characteristics of turbulent square duct flows
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Particle image velocimetry measurements have been carried out to assess the fully
developed turbulence in square-sectioned porous duct flows. To the bottom duct wall,
this study applies two types of porous media whose porosities are approximately 0.8
and ratios of wall-normal to streamwise permeabilities are 0.8 and 7.8. Both over-
and under-surface turbulence of the porous layers are discussed at inlet flow Reynolds
numbers of Re' 3500 and 7500. Cross-sectional secondary flows are detected with an
enhanced magnitude of approximately 6 % of the inlet bulk velocity. The secondary
flow pattern consisting of four large vortices is observed to be insensitive to the porous
structures. Over the porous wall, although turbulence is enhanced by the permeability,
it is confirmed that turbulence over and under the porous surfaces is rather insensitive
to the wall-normal permeability compared with the streamwise permeability as seen in
porous-wall channel flows. In the present range of streamwise permeability Reynolds
numbers of ReKx = 2.49–6.37, the wall-normal fluctuations become dominant once
underneath the porous surface while the streamwise ones become dominant again deep
inside the porous layer. Applying streamwise–spanwise plane averaging, which covers
a 52 % area in the middle of the duct, to the flow quantities, it is confirmed that
the correlations between the pore-scale Reynolds number and the log-law parameters
are similar to those seen in a wide range of porous-wall channels. The above
characteristics are generally the same as those of porous-wall channels in the same
range of porosities and permeability Reynolds numbers even with the enhanced
secondary flows. However, from the spectral analysis of flows at the porous walls, it
is found that, near the symmetry planes, the wavelengths of the Kelvin–Helmholtz
waves become a little shorter than those in turbulent porous-wall channels possibly
because of the sidewall boundary layers, particularly at low Reynolds numbers.

Key words: turbulent boundary layers, porous media

1. Introduction

Since engineering flow passages are usually ducts or pipes and are often bounded
by permeable porous surfaces, discussions on turbulent porous duct flows are essential
for industrial applications. For example, carbon papers, which are anisotropic porous
media, are usually used for gas diffusion layers of proton-exchange membrane fuel
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cells (PEMFCs). As the flow Reynolds number of a rectangular channel (duct) flow
over a gas diffusion layer in a PEMFC often reaches Re' 3000 (Suga et al. 2014),
for designing PEMFCs, it is important to understand turbulence over porous media
in a rectangular duct. Nevertheless, to the best of the authors’ knowledge, there are
only a few studies that have performed detailed discussions on such a topic in the
literature. Among them, the recent particle image velocimetry (PIV) measurements by
Kim et al. (2018) discussed square duct turbulence over an isotropic porous bed by
the refractive-index matching method with an aqueous solution of sodium iodide (NaI).
Their porous beds consisted of acrylic spheres with porosity ϕ= 0.48. However, their
measurements were for the developing flow region and the flows were not affected by
the sidewalls.

The direct numerical simulation (DNS) study for a turbulent porous duct flow by
Samanta et al. (2015) treated a square duct flow with an isotropic porous bottom
wall. They applied the volume-averaged Navier–Stokes (VANS) equation to model the
flow inside the porous wall, assuming that the porosity of the porous medium, and
the bulk and permeability Reynolds numbers were ϕ = 0.95, Reb = 5000 and ReK =
8.9, respectively. The permeability Reynolds number is defined as ReK = up

τ

√
K/ν,

which is based on the friction velocity up
τ on the porous wall, the fluid kinematic

viscosity ν and the wall permeability K. Although the flows were affected by the
sidewalls, the obtained general flow trends near the symmetry plane seemed similar
to those of the porous-wall turbulence in two-dimensional (2-D) flow systems such
as channels or boundary layers. They were that the flow became more turbulent over
the porous wall and that the emergence of short spanwise roller vortices, which were
generated by a Kelvin–Helmholtz (KH) type of instability, replaced the streaky wall-
bounded turbulence structure. Although these trends followed those of the porous-wall
turbulence in 2-D flow systems, it was uncertain how similar they were. Since they
reported that the magnitude of the secondary flow exceeded that of a regular solid
duct of Vinuesa et al. (2014) by a factor of four, it is important to know whether the
secondary flows change the flow characteristics around the porous interface.

As for the porous-wall turbulence in 2-D flow systems, many researchers, including
the present authors, have reported turbulent flow characteristics (e.g. Lovera &
Kennedy 1969; Ruff & Gelhar 1972; Zagni & Smith 1976; Zippe & Graf 1983;
Breugem, Boersma & Uittenbogaard 2006; Manes et al. 2009; Pokrajac & Manes
2009; Suga et al. 2010; Manes, Poggi & Ridol 2011; Suga, Mori & Kaneda 2011;
Kuwata & Suga 2016a; Suga 2016; Suga, Nakagawa & Kaneda 2017). From those
studies, what we have learnt is that the wall permeability significantly affects
turbulence near a wall, enhancing momentum exchange. Since vortex flow motions
may penetrate into a porous wall, wall blocking effects on turbulence are relaxed,
resulting in strong wall-normal velocity fluctuations and thus shear stress at the wall.
Most of the above-cited studies applied to isotropic porous media and hence some of
the understanding may lack generality.

Thus, to extend our knowledge to cover turbulence over anisotropic porous
media, the present authors have performed PIV experiments of turbulent flows
over orthotropic porous media (Suga et al. 2018). Here, orthotropic porous media
are kinds of anisotropic porous media whose structures are uniform along the
coordinate axes. We suggest that turbulence generation over porous media was
relatively insensitive to the wall-normal permeability K yy when the ratio between
the wall-normal and streamwise permeabilities is Ry/x = K yy/K xx > 1.0. Note that
permeability is defined as a second-rank tensor as K ij (Whitaker 1986) and in
this study its diagonal components K xx, K yy and K zz are simply called streamwise,
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wall-normal and spanwise permeabilities, respectively. The above-suggested trend was
supported by our DNS study (Kuwata & Suga 2017). However, for the cases at
Ry/x < 1.0, the DNS studies of Abderrahaman-Elena & García-Mayoral (2017) and
Gómez-de Segura, Sharma & García-Mayoral (2018) suggested that turbulent drag
might reduce compared with that over a solid smooth wall when 1/Ry/x was extremely
large. Those drag reduction DNS studies considered flows at very low permeability
Reynolds numbers of ReKy < 1. This Reynolds number is defined as ReKα = up

τ

√
K αα/ν,

which is based on K αα (α = x, y, z without summation convention). (For isotropic
porous media, the permeability Reynolds number ReK , which is equivalent to ReKα ,
is used, since K = K αα.) They commented that the KH instability, which is the main
factor to enhance turbulence over permeable surfaces, was not induced at ReKy < 1.
Rosti, Brandt & Pinelli (2018) supported this discussion, showing drag reduction at
1/Ry/x> 16, while the drag was increased at Ry/x> 1.0. Those results may show us the
way to go for devising new drag-reducing surfaces. However, the realizability of such
a drag-reducing condition may not be fully satisfied since the flows inside porous
media of those studies were modelled by the Brinkman equation (Abderrahaman-Elena
& García-Mayoral 2017; Gómez-de Segura et al. 2018) or were not solved by using
idealized surface boundary conditions (Rosti et al. 2018).

Turbulence characteristics under porous surfaces are also important because they
affect heat and mass transfer performance across porous walls. It is considered
that such characteristics depend on the structure of the porous medium. However,
since resolving a porous structure is very cost-demanding for numerical simulations,
DNS studies such as those by Breugem et al. (2006) and Samanta et al. (2015)
applied the VANS model for the porous media. With the VANS model for flow
inside a porous medium of ϕ = 0.95 at ReK = 9.35, Breugem et al. (2006) predicted
that turbulence immediately became isotropic just underneath the porous interface.
On the other hand, another DNS by these authors (Breugem & Boersma 2005)
showed a different turbulence trend inside a fully resolved porous medium. Their
porous medium consisted of a three-dimensional (3-D) Cartesian grid of floating
cubical blocks whose porosity was ϕ = 0.875. At ReK = 12.4, turbulence anisotropy
was maintained deep inside the porous medium. The streamwise turbulent intensity
was always most dominant inside the porous layer, while the wall-normal intensity
surpassed the spanwise component. DNS studies by the present authors (Kuwata
& Suga 2016b, 2017) also resolved porous structures. Kuwata & Suga (2016b)
applied interconnected staggered cube arrays to construct a porous medium and
reported structure-dependent turbulence profiles inside the porous layer of ϕ = 0.71,
at ReK = 3.8. The notable point was that their wall-normal turbulent intensity became
most dominant, surpassing the streamwise component below one pore length depth
from the porous surface while turbulence eventually became isotropic deep inside the
porous layer. In a different porous structure that consisted of a 3-D Cartesian grid
of cubic pores of ϕ = 0.84, Kuwata & Suga (2017) showed that the wall-normal
turbulent intensity at ReK = 6.1 was the most dominant component until one pore
length depth from the surface.

Since vegetation canopies are kinds of porous media, open-channel flows with
submerged vegetation canopies have been measured by civil and environmental
researchers (e.g. Dunn, López & García 1996; Nezu & Sanjou 2008). For laser
Doppler anemometry measurements, Nezu & Sanjou (2008) applied regular arrays of
rectangular plates to model the vegetation canopy of ϕ = 0.985. Dunn et al. (1996)
applied staggered circular cylinder arrays of ϕ= 0.988 for their 3-D acoustic Doppler
velocimetry measurements. Although they did not report them, the permeability
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Reynolds numbers estimated by Kuwata & Suga (2015) were ReKy ' 140 and 1200
for the cases of Nezu & Sanjou (2008) and Dunn et al. (1996), respectively. For both
cases, since the porosities and the permeability Reynolds numbers were extremely
high, near-surface turbulence anisotropy was maintained inside the canopies. The
most dominant turbulent intensity was the streamwise component while the smallest
one was the wall-normal component. We thus understand that turbulence anisotropy
under a porous surface depends on the Reynolds number and the porous structure if
the porosity is relatively high. (Since it is generally difficult to optically access deep
inside porous media, we do not find so many other detailed experimental reports
on turbulence under porous surfaces in the literature. Although the aforementioned
PIV study by Kim et al. (2018) also measured turbulence inside an isotropic porous
medium, they only showed the wall-normal turbulent intensity inside porous beds.)

Consequently, although our knowledge on porous-wall turbulence is not deep
enough yet even for 2-D flow systems, it is still useful to understand whether we
can apply the knowledge to rectangular porous duct systems. Hence, to assess the
turbulence in square-sectioned porous duct flows, this study measures both over- and
under-surface turbulence of porous layers. The permeability ratios of the present
porous media are Ry/x = 0.8 and 7.8. Those anisotropic porous layers are made
of square acrylic rods; the porosity of the former case is ϕ = 0.77 while that of
the latter case is ϕ = 0.75. For both cases, flows at the Reynolds numbers of
Re = U0H/ν ' 3500 and 7500 are measured by a planar PIV system. Here, U0 and
H are the inlet mean velocity to the square duct and the duct height, respectively.
The corresponding permeability Reynolds numbers are ReKy = 2.37–16.20, which are
for enhancing turbulence and mass transfer. Note that the conditions of the DNS
studies of Abderrahaman-Elena & García-Mayoral (2017) and Gómez-de Segura et al.
(2018) were very different from those of the present experiments. Their assumption of
ReKy < 1 indicated that the scales of the wall-normal permeabilities were smaller than
the size of the smallest turbulent eddies. Moreover, because the DNS of Samanta et al.
(2015) assumed an isotropic porous medium and applied the VANS equation to the
flow inside it, anisotropic permeability and structural effects could not be discussed.
Therefore, this study discusses the structural effects on porous duct turbulence and
tries to confirm whether common features of turbulence over porous media are
maintained under enhanced secondary flows.

2. Experimental method

Figure 1(a) illustrates the flow facility and the test section of the present
experimental set-up. Tap water, whose temperature is maintained by a cooler at
292±1 K, is pumped to a straightener and nozzle section through a digital flow meter
(FD-MH200A, Keyence), which measured the total flow rate. The water temperature
is recorded by a digital thermometer (FD-T1, Keyence) set in the nozzle. The flow,
conditioned by a honeycomb-bundled nozzle with turbulence grids at the exit, enters
a 3.0 m long duct whose cross-section (height × width) is 100 mm × 50 mm as
shown in figure 1(b). The fully developed flow is measured at 2.7 m from the duct
entrance. (See Appendix for the confirmation of the flow development.) As seen
in figure 1(b), the duct consists of solid smooth acrylic walls and a porous layer
filling the bottom half of the duct. The height and width of the clear fluid region are
H= 50 mm. To maintain optical access to the porous region, transparent acrylic rods
with 3 mm× 3 mm square cross-sections are used to construct two different porous
media: cases A and B, as shown in figure 2(a,b). To construct the porous media, the
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x 0.1 m (2H) Measuring section

Porous layer 3 m
Flow
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Flow
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FIGURE 1. Experimental set-up: (a) flow facility and (b) test section.

Porous K xx K yy K zz CF
xx CF

yy CF
zz

medium ϕ Ry/x (mm2) (mm2) (mm2) (mm) (mm) (mm)

Case A 0.77 0.8 0.19 0.15 0.19 0.0075 0.014 0.0075
Case B 0.75 7.8 0.16 1.25 0.16 0.0096 0.033 0.0096

TABLE 1. Characteristics of porous media. The porosity ϕ is calculated from the porous
structure. The diagonal components of the permeability tensor K αα and the coefficient of
the Forchheimer tensor CF

αα are measured values; and Ry/x = K yy/K xx.

rod pitches in the streamwise and spanwise directions are set to 13 mm, forming
square pores whose side length is D = 10 mm. To avoid the surface layer of rods
acting as a surface roughness, the porous surfaces are covered with mesh having the
same square pores. (We understand that not covering the surfaces by such a mesh
may be more desirable. However, our experiments of similar flows with rib roughness
(Okazaki, Kuwata & Suga 2018) found that surface turbulence was more significantly
modified by the rib roughness than by the permeability.) As seen in figure 2(a,b), the
rods are piled up in the staggered manner in the streamwise and spanwise direction
for case A, while the rods are piled up in the straight manner for case B.

The porosities of the porous media are ϕ = 0.77 and 0.75 for cases A and B,
respectively. The measured permeabilities and Forchheimer coefficients are listed in
table 1. The wall-normal diagonal component of the permeability tensor is designed
to be different from the other components by factors of 0.8 and 7.8 for cases A
and B, respectively. The diagonal components of the permeability tensor K αα and the
Forchheimer tensor Fαα are measured using the horizontal duct flow facility. With
measured pressure drops ∂〈p〉f /∂xα along the α-axis of the media and several different
flow rates, the diagonal components of the permeability and Forchheimer tensors are
calculated using the Darcy–Forchheimer equation of Whitaker (1986):

〈ui〉 =−K ij

µ

∂〈p〉f
∂xj
− F ij〈uj〉, (2.1)

where 〈ui〉, 〈p〉f and µ are the superficially volume-averaged velocity ui, the volume-
averaged fluid-phase pressure and the dynamic viscosity of the fluid, respectively. Note
that, since the porous media are orthotropic, for measuring the values of each axis we
turned the media by arranging the axis of the medium and the flow direction in line.
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FIGURE 2. Structures of porous media, measuring sections and definition of the
coordinates: (a) case A, (b) case B, (c) measurement planes of x–z plane measurements
and (d) measurement planes of x–y plane measurements.

The superscript ‘f ’ denotes a value in the fluid phase. The Forchheimer tensor F ij is
modelled as F ij = ρCF

ij |〈u〉|/µ, where ρ is the density of the fluid. Note that for a
material whose structure is symmetric in the x-, y- and z-directions, the permeability
and Forchheimer tensors become diagonal.

The present planar PIV system consists of a diode-pumped solid-state laser (Ray
Power 2000, Dantec Dynamics) with the wavelength of 532 nm, a high-speed
complementary metal oxide semiconductor (CMOS) camera (Speed Sense 9040,
Phantom), a camera lens with a long-pass filter whose cutoff wavelength is 570 nm
and a computer for data sampling. For the tracer particles, fluorescent polymer
particles containing Rhodamine B, whose mean diameter and specific gravity are
respectively 10 mm and 1.50, are used. The seeding density is adjusted to obtain 16
particle images in each interrogation window whose size is set to 32× 32 pixels. The
interrogation windows are overlapped 50 % in each direction. The aspect ratio of the
high-speed camera frame is 1.36 : 1 and the frame resolution is 1632 × 1200 pixels.
The laser light sheet is approximately 1.0 mm thick and illuminates the measuring
sections. The streamwise–spanwise (x–z) and streamwise–wall-normal (x–y) plane
measurements are performed at Re= U0H/ν ' 3500 and 7500. Here, the mean inlet
velocity U0 is the mean velocity at the nozzle exit of H × H. For the x–z plane
measurements, as shown in figure 2(c), for case B, 13 planes (planes y1–y13) at
y/H =−0.21, −0.15, −0.09, −0.03, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 are
measured. For the x–y plane measurements, as shown in figure 2(d), seven planes
(planes z1–z7) at z/H= 0.0, 0.065, 0.13, 0.195, 0.26, 0.325 and 0.39 are measured for
both cases A and B. Note that the porous interface is at y/H = 0 and the spanwise
symmetry plane is at z/H= 0. To maintain the measuring accuracy inside the porous
media, a single measuring section of an x–y plane is divided into two zones: clear
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flow and porous medium zones, with an overlapping region under the porous surface.
For these zones, a single recorded frame of the camera covers 75 mm× 55 mm and
65 mm× 48 mm, respectively. Thus, the measurement sampling volumes (x× y× z)
are 1.47 mm× 1.47 mm× 1.0 mm and 1.28 mm× 1.28 mm× 1.0 mm, respectively.
The trigger rate of the high-speed camera is adjusted depending on the averaged
particle displacement during the time interval. Hence, the image sampling rate varies
in the range of 200–500 Hz. The averaged particle displacement is set to be 25 %
length (8 pixels) of the interrogation window cell.

To obtain the statistical data, at each location, depending on the sampling rate,
16 000–45 000 image pairs are processed in this study. (For the convergence of the
statistics, in the preliminary measurements, we compared the data from 3000 to
75 000 image pairs at Re' 8000. Then, although we confirmed that the convergence
was seen with 30 000 image pairs for the clear channel region, we processed 45 000
image pairs. For the porous region, processing 16 000 image pairs was good enough.)
The recorded data are processed by the Dynamics Studio 2015a software (Dantec
Dynamics) with the fast Fourier transform cross-correlation technique. Each image
is processed to produce instantaneous 101 × 74 vectors. When the ratio of the first
and the second correlation peaks in an interrogation window is smaller than 1.3,
it is removed from the process as an error vector. The moving-average validation
proposed by Host-Madsen & McCluskey (1994), which evaluates each velocity vector
compared to its neighbouring vectors, is also applied with the acceptance factor of
0.1. The removed error vectors are approximately 3 % and 5 % of the total numbers
processed for the clear flow and porous medium zones, respectively. The averaged
number of pixels for a particle image captured by the CMOS camera in this study
is confirmed to be more than 4 pixels. This indicates that the particle images are
well resolved and the uncertainty in the measured displacement can be expected to
be roughly less than one-tenth of the particle image diameter according to Prasad
et al. (1992). Normalizing this uncertainty by the mean displacement length of the
particles (Adrian, Meinhart & Tomkins 2000) indicates that the estimated error in the
magnitude of the instantaneous velocity is less than 4 % of the maximum velocity in
the measuring frame.

3. Results and discussion
3.1. Mean velocity and secondary flows

Figure 3 shows contour maps of the time- and streamwise-averaged streamwise
velocity:

[ū]fx =

∫ 4(D+d)

0
ū dxf∫ 4(D+d)

0
dxf

, (3.1)

with the cross-sectional velocity vectors of case B at Re = 3400 and 7700. (The
vectors at y/H = 0 are produced by interpolating the values at planes y4 and y5.)
Here, the overbar denotes time averaging and [·]fx denotes fluid-phase averaging in the
x-direction. The contour maps are painted with the x–z plane measurement data while
the vectors are produced using the x–y and x–z plane measurement data. Irrespective
of the Reynolds number, it is seen that the cross-sectional secondary flow pattern
is very different from the well-known pattern in square duct flow. A large single
recirculation is seen near the upper corner and relatively weak recirculation can be
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FIGURE 3. Cross-sectional mean velocity and secondary flows of case B: (a) at Re= 3400
and (b) at Re= 7700.

seen near the porous interface, while in a turbulent square duct flow (without a
porous layer), the secondary flow consists of four pairs of counter-rotating vortices
located at the duct corners. Accordingly, upward flows across the porous interface
are observed in the middle region, though their magnitudes are rather small. Owing
to the cross-sectional secondary flows, [ū]fx shows a skewed distribution near the top
wall at y/H = 1.0. However, its distribution becomes much flatter near the porous
interface at y/H = 0.0.

These flow features verify the numerical simulation of Samanta et al. (2015) using
the VANS equation for the porous region. Although Samanta et al. (2015) reported
that the maximum magnitude of the secondary currents is approximately 8 % of the
bulk velocity, which was four times as large as that of a regular duct of Vinuesa et al.
(2014), the present results indicate approximately 6 % of the inlet velocity U0. (The
flow rates inside the porous layers are estimated as less than 5 % of the total flow
rate by the mean velocity distribution discussed later. Hence, the difference between
U0 and the bulk velocity in the duct is in such an order.) It is considered that the
magnitude difference of the secondary flows between the DNS and this study comes
from the structural effects. Supporting this, our recent thermal field DNS (Kuwata,
Tsuda & Suga 2019) for the same flow geometry predicted the same order of the
magnitude.

For the kinetic energy of the secondary flow Kc= (ū2+ v̄2)/2, Vinuesa, Schlatter &
Nagib (2018) discussed spanwise variations of its wall-normal averaged values: [Kc]y=
(1/H)

∫ H
0 Kc dy, in several turbulent rectangular ducts. They reported that, in turbulent

square duct flows, the minimum [Kc]y was located near the symmetry plane and [Kc]y
increased towards the sidewall, having a couple of local maxima. However, figure 4
indicates that, for both the Reynolds numbers, [Kc]y tends to be larger towards the
symmetry plane at z/H= 0 by the strong downward motions. Owing to the centre of
the large recirculation, which looks to be located near z/H= 0.2 (figure 3), [Kc]y has
a local minimum there. Towards the sidewall at z/H = 0.5, [Kc]y tends to rise again
due to the energetic vertical motion along the sidewall. For Re = 7700, although a
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FIGURE 4. Spanwise variation of the kinetic energy of the secondary flow averaged over
the wall-normal direction in case B.

local kink is seen near z/H = 0.065–0.13, its reason is unclear. Since the number of
secondary flow data is 10 (y)× 7 (z), it is not fine enough to capture local trends in
detail, unfortunately. Since the magnitude of the present secondary flow velocity is
significantly enhanced by the porous wall (three times larger than that in a square
duct), the level of [Kc]y is approximately one order higher than those presented in
Vinuesa et al. (2018). The magnitude level seems to be increased by the Reynolds
number. Overall, in the porous duct flows, a higher concentration of energy appears
near the symmetry plane as well as near the sidewall for both the Reynolds numbers.

To see the effects of porous structures on the general flow fields, figure 5 compares
the time- and streamwise-averaged vertical and streamwise velocity contour maps
which are reconstructed using the x–y plane measurement data. Although the structures
of cases A and B are very different, irrespective of the Reynolds numbers, the
mean velocity distributions in the clear duct region do not look very different from
each other. For both the structures, strong downward velocity regions appear at
0.4 < y/H < 0.9 near the symmetry planes of the clear ducts, while strong upward
velocity regions appear towards the top corners. Those distributions are consistent
with the secondary currents (figure 3) and the trend of [Kc]y (figure 4). It is then
suggested that the present structural difference does not significantly change the
secondary flow patterns in the clear duct regions. As for the flows under the porous
interfaces, case B shows stronger upward flows in the central regions than case A
due to the structural difference.

3.2. Sectional flow characteristics
To show the examples of the detailed flow distributions inside the porous region,
figures 6 and 7 show time-averaged streamwise velocity ū, Reynolds shear stress
−u′v′ and turbulent intensities (root-mean-square (r.m.s.) velocities) u′, v′ in the
symmetry planes of z/H = 0 at Re= 7400 and 7700 for cases A and B, respectively.
The position of x/D = 0 corresponds to the symmetry plane of the transverse rods
shown in figure 2(d). It is clear that, depending on the porous structure, the profiles
of the turbulence quantities change significantly. Owing to the structures, the mean
velocity shows apparent sinusoidal distribution profiles under the porous surfaces as
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FIGURE 5. Cross-sectional mean velocity contour maps: (a) case A at Re= 3300, (b) case
A at Re= 7400, (c) case B at Re= 3400 and (d) case B at Re= 7700. The z/H location
for [v̄]fx is reversed for presentation.
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FIGURE 6. Time-averaged turbulence quantities in the symmetry plane (plane z1 at
z/H = 0) in case A at Re = 7400: (a) streamwise velocity, (b) Reynolds shear stress,
(c) streamwise r.m.s. velocity and (d) wall-normal r.m.s. velocity. Red broken lines show
positions at y= 0 and y=−d.

seen in figures 6(a) and 7(a). However, when we focus on the penetration depth of
the Reynolds shear stress shown in figures 6(b) and 7(b), which is assumed to be the
length needed for the quantity to reach the asymptotic value under the interface, it
is approximately equivalent to the rod height d. Indeed, the Reynolds shear stress is
damped and almost vanishes up to y=−d. As for the r.m.s. velocities, figure 7(c,d)
indicates that the penetration lengths are much longer, suggesting that turbulent fine
eddies go deeply into the porous media depending on the porous structure. The
budget term analysis for the turbulent flow over a permeable porous layer by Kuwata
& Suga (2016b) found that the greater turbulence penetration towards the porous layer
was due to the increased redistribution and pressure diffusion processes intensified
significantly by the pressure fluctuations. Hence, it is considered that the enhanced
turbulent intensities under the porous layer are primarily due to the enhanced pressure
fluctuations.

Figures 8 and 9 compare the sectional distributions of time- and streamwise-
averaged quantities for cases A and B at Re =7400 and 7700, respectively. Among
the seven planes, planes z1, z4 and z6 are plotted. For the streamwise mean velocity,
it is clear that the distribution profiles are significantly skewed in the clear duct
region of y/H > 0 as seen in figures 8(a) and 9(a). In both cases, the profiles look
narrower in the symmetry plane (plane z1) than in the other planes. This trend is
considered to be from the secondary currents and was also seen in Samanta et al.
(2015). Owing to the sidewalls, the secondary flow motions towards the duct corners
enhance the flow rate around the duct corners, leading to flatter velocity profiles near
the sidewalls. Although the maximum velocities in cases A and B are 1.3U0, the
locations of the maximum velocities are at y/H = 0.50 and y/H = 0.52, respectively,
which are slightly different from y/H = 0.55 predicted by Samanta et al. (2015).
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FIGURE 7. Time-averaged turbulence quantities in the symmetry plane (plane z1 at
z/H = 0) in case B at Re = 7700: (a) streamwise velocity, (b) Reynolds shear stress,
(c) streamwise r.m.s. velocity and (d) wall-normal r.m.s. velocity. Red broken lines show
positions at y= 0 and y=−d.

Since the maximum values of the sinusoidal velocity profiles inside the porous layers
are around 0.1U0, the flow rates inside the porous layers are estimated to be less
than 5 % of the inlet flow rates. It is clear that the mean velocities in both cases are
significantly damped just under the porous surfaces and this trend is consistent with
that observed in figures 6(a) and 7(a).

Corresponding to the mean velocities, the streamwise-averaged Reynolds shear
stresses of figures 8(b) and 9(b) show asymmetrical profiles in the clear duct region
and are steeply damped just under the porous interfaces. As seen in figures 8(c,d)
and 9(c,d), the streamwise-averaged r.m.s. velocity fluctuations show significantly
different distribution profiles between cases A and B due to the structural difference.
It is clear that, although the streamwise r.m.s. profiles drop steeply under the porous
surfaces like the mean velocity and the shear stress profiles, the wall-normal r.m.s.
profiles do not show such a trend in both cases.

3.3. Streamwise–spanwise plane-averaged flow characteristics

As discussed for figure 3, although the flows are not two-dimensional over the
porous surfaces, to see the general characteristics of porous medium flows, x–z plane
averaging is applied by the trapezoidal rule using the x–y plane measurement data
of planes z1–z5 for 0 6 z/H 6 0.26. Here, the x–z plane-averaged value is denoted
as [·]xz. By this procedure, the control area (x–z plane) covers 4× 1 unit cells of the
porous structure along the symmetry plane of the duct. From the time-averaged and
x–z plane-averaged (double-averaged) momentum equation (Whitaker 1996), the total
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FIGURE 8. Distributions of streamwise-averaged turbulence quantities of case A at Re=
7400: (a) streamwise velocity, (b) Reynolds shear stress, (c) streamwise r.m.s. velocity and
(d) wall-normal r.m.s. velocity.

momentum flux across the pores on the porous surface can be written as

τp =
(
−ρ[u′v′]fxz − ρ[ū]fxz[v̄]fxz − ρ[ ˜̄u ˜̄v]fxz +µ

∂[ū]fxz

∂y

)
y=0

, (3.2)

where [ ˜̄u ˜̄v]fxz is the dispersion stress in which the dispersion of ūi is defined as ˜̄ui =
ūi − [ūi]fxz. Hence, by using the measured quantities, the friction velocity up

τ =
√
τp/ρ

on the porous surface can be obtained. Table 2 lists those friction velocities with the
other parameters such as the permeability Reynolds numbers.

Figure 10 compares the plane-averaged streamwise mean velocity, Reynolds stress
and r.m.s. velocities at Re ' 7500. For the velocity profiles in the clear flow region

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

91
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.914


884 A7-14 K. Suga, Y. Okazaki and Y. Kuwata

0 0.1 0.2 0.3 0 0.1 0.2 0.3

0 0.5 1.0 1.5 0 0.01 0.02

1.0

0.5

0

-0.5

-1.0

1.0

0.5

0

-0.5

-1.0

1.0

0.5

0

-0.5

-1.0

1.0

0.5

0

-0.5

-1.0

y/H

y/H

Case B Re = 7700
p-z1
p-z4
p-z6

(a) (b)

(c) (d)

[u-]x
f/U0 -[u�√�]f

x/U2
0

[u�2]f
x/U0 [√�2]f

x/U0

FIGURE 9. Distributions of streamwise-averaged turbulence quantities of case B at Re=
7700: (a) streamwise velocity, (b) Reynolds shear stress, (c) streamwise r.m.s. velocity and
(d) wall-normal r.m.s. velocity.

shown in figure 10(a), although there are slight discrepancies between the cases A and
B, these two cases show nearly the same profiles. The shown DNS profile of Samanta
et al. (2015) is for the symmetry plane and the Reynolds number is Reb= 5000. Also
their porous structure is different from those of the present cases. Even with such
differences, the present results are in good accord with the DNS data. The slip velocity
Uw at the porous surface and δw, which is the location where the mean velocity has
the maximum value, also do not significantly change in the two cases as listed in
table 2. They are Uw= 0.28U0 and 0.30U0 for cases A and B and δw= 0.52H for both
cases. From the velocity profiles under the surface, although the sinusoidal profiles of
cases A and B are different underneath the surface due to the structural difference, the
general trends are similar to each other. When we define the penetration depth as the
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Porous Re ReKx ReKy Re∗∗K up
τ/U0 δw/H Uw/U0 κ dp+

0 hp+ x–y x–z
medium

Case A 3300 2.67 2.37 16.1 0.095 0.47 0.28 0.16 55 20 X —
7400 6.37 5.66 38.5 0.102 0.52 0.28 0.16 172 70 X —

Case B 3400 2.49 6.97 16.4 0.094 0.49 0.30 0.16 40 18 X X
7700 5.80 16.20 38.1 0.097 0.52 0.30 0.16 115 52 X X

TABLE 2. Experimental conditions and measured parameters of the mean velocity fields.
Here Re, ReKx , ReKy and Re∗∗K are the Reynolds number based on the inlet velocity U0,
the permeability Reynolds numbers based on

√
K xx and

√
K yy and the pore-scale Reynolds

number defined by (3.5); up
τ is the friction velocity over the porous wall calculated with

the streamwise–spanwise plane-averaged values by (3.2); the boundary layer thickness δw
and the slip velocity Uw are from the plane-averaged mean velocity; κ , d0 and h are the
von Kármán coefficient, the zero plane displacement and the roughness scale, respectively;
and (·)p+ corresponds to a value normalized by using up

τ .

location to the first local minimum, it is clear that the penetration depths of the mean
velocity of both cases are less than y/H = 0.06, which is the height d of the square
rod constructing the porous media. Corresponding to the mean velocities, the shear
stresses of both cases damp quickly until y/H= 0.06. Although some weak sinusoidal
profiles are observed in the upper region of the porous layer, they eventually vanish
deep inside the porous layer while the mean velocity does not show such a decay.
Even though K yy is 8.3 times larger in case B, the penetration depths of the mean
velocity and the Reynolds shear stress do not seem to increase.

The trend that the flow variables look insensitive to the wall-normal permeability
supports our previous conclusion in Suga et al. (2018), which suggested that, although
turbulence generation over porous media was enhanced by the permeable surface, it
is rather insensitive to the wall-normal permeability K yy compared with K xx when
Ry/x > 1.0. We then suggested that flow was reasonably correlated to the permeability
Reynolds number ReKx based on the streamwise permeability. Indeed, although K yy

of case B is 8.3 times larger than that of case A, the discrepancy between the
two cases cannot be considered to reflect such a large difference. Instead of the
insensitivity to K yy, Suga et al. (2018) showed that a 25 % increase of K xx produced
a certain amount of turbulence enhancement. While the fluids penetrating into the
porous layer move towards the streamwise or spanwise direction, due to the large
turbulent surface shear, most of the penetrating fluids move towards the streamwise
direction. Since the penetration depth is not large, it is considered that the moving
distances of the penetrating fluids in the streamwise direction are longer than those
in the wall-normal direction. Hence, it is considered that among the wall-normal and
streamwise permeabilities, the streamwise permeability affects more the turbulence
near the porous surface. For the present data including the case at Ry/x= 0.8 (case A),
as seen in figure 10(b), case A whose K xx is 19 % larger than that of case B shows
9.8 % larger shear stress near the interface. Also, the profiles of the streamwise r.m.s.
velocities shown in figure 10(c) indicate that case A at ReKx = 6.37 is more turbulent
than case B at ReKx = 5.80. Hence, the level of surface turbulence follows the order
of ReKx even including the case of Ry/x < 1.0

As for the r.m.s. velocities in figure 10(c), although the plots of the DNS by
Samanta et al. (2015) are for the symmetry plane and applied the averaged friction
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FIGURE 10. Comparison of plane-averaged turbulence quantities at Re ' 7500 (at Re =
7400 for case A and Re= 7700 for case B): (a) streamwise velocity, (b) Reynolds shear
stress, (c) streamwise and wall-normal r.m.s. velocities and (d) dispersion stresses. The
DNS data (Samanta et al. 2015) are at Reb = 5000 in the symmetry plane.

velocity over the whole porous surface, comparison is made to confirm the turbulence
level. The corresponding streamwise permeability Reynolds numbers are ReKx = 8.90,
6.37 and 5.80 for the DNS, cases A and B, respectively. Here, for the abscissa δw

is the location of the maximum plane-averaged velocity. Although the levels of the
present r.m.s. results are in the order of ReKx , the level of the DNS is somewhat
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lower than the present experiments even with the higher ReKx . Indeed, it is seen
that, although the levels of the r.m.s. velocities by the DNS are similar to those of
the present data, the peak value of the streamwise component and the levels of the
r.m.s. velocities in the porous layer are lower than the present experiments. Following
Breugem et al. (2006), Samanta et al. (2015) assumed the permeability and the
Forchheimer coefficient as K αα = d2

pϕ
3/[180(1− ϕ)2] and CF

αα = ϕdp/[100(1− ϕ)],
where dp is the particle size for the loosely packed beds. In the DNS, ϕ = 0.95 and
dp/H = 0.01 were applied and these values produced the Forchheimer coefficient
as CF

αα/H = 1.9 × 10−3, while in the present cases CF
αα/H is in the range of

(1.5–6.6) × 10−4, which is one order smaller than that of the DNS. Since the
effect of a smaller CF

αα is comparable to that of a larger K αα, it is considered that,
when the larger permeability enhances turbulence, the smaller Forchheimer coefficient
also enhances turbulence. Note that in connection with (2.1), the drag force term in
the momentum equation can be written as fi = ϕµK−1

ij 〈uj〉f + ϕµK−1
ik F kj〈uj〉f . Hence,

the Forchheimer tensor works similarly to the inverse of the permeability tensor in
the double-averaged equation system. Also the larger Forchheimer coefficient and
thus larger form drag caused the steep damping for the r.m.s. velocities inside the
porous layer for the DNS.

As far as the profiles inside the porous layer are concerned, both cases A and B
show very similar levels of the streamwise and wall-normal r.m.s. velocities while
some minor structural effects are seen. Unlike the shear stress profiles, both r.m.s.
velocities maintain certain levels and continue decaying inside the porous layer.
Obviously the decaying rate is more gentle than those of the mean velocity and
the shear stress. It is considered that, although the shear generation is very weak,
turbulent vortices penetrate against the upward secondary flow motion and dissipate at
a deeper position inside the porous media. Particularly for the wall-normal direction,
it is supposed that flow fluctuations are induced by the pressure fluctuations over the
surface, which propagate more deeply inside the porous media. These trends confirm
the results reported by Breugem et al. (2006) who applied the VANS equation for
the porous medium region. Figure 10(d) compares the dispersion stresses [ ˜̄ui ˜̄uj]fxz. It
is obvious that the dispersion stresses are generally very small compared with the
turbulent stresses. However, the streamwise component [ ˜̄u ˜̄u]fxz becomes comparable
to the turbulent stress only in the region across the porous interface. This trend is
consistent with that shown in Kuwata & Suga (2016b).

To see the trend of the r.m.s. velocity in more detail, to smooth the sinusoidal
profiles, the square-root values of the volume-averaged u′ 2i ,

〈u′ 2i 〉f =
1

4V f
REV

∫ D+d

0

∫ y+Dpy

y

∫ 4(D+d)

0
u′ 2i dvf , (3.3)

are plotted in figure 11, where V f
REV is a representative elementary volume (REV) of

the porous media defined as the fluid-phase volume of (D + d) × Dpy × (D + d) in
the homogeneous structure region. To the REV size in the y-direction, Dpy = 4d is
applied. Although case B has the structural interval of 2d, the structural interval of
case A is used for comparison. (Since for both cases the structures are homogeneous
at y<−d, figure 11 shows the values under y/Dpy =−0.75, which is the uppermost
location of the REV centre.) For both Reynolds numbers, although the streamwise
component is dominant over the surfaces, the wall-normal component surpasses it
below the surfaces and becomes dominant until y/Dpy '−1.25 and y/Dpy '−1.5 for
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FIGURE 11. R.m.s. velocities by the REV averaging: (a) case A and (b) case B, for
Dpy = 4d.

cases A and B, respectively. Then, the streamwise component becomes dominant again
and maintains the dominance deep inside the porous layer. This trend confirms that the
wall-normal fluctuations penetrate more deeply than the streamwise ones while their
decaying rate is higher, suggesting that turbulence anisotropy is maintained inside the
porous layer. The effects of the wall-normal permeability are not significant enough
to change the trend since the difference between the locations where the streamwise
component surpasses the wall-normal component is rather small. The present trend
of turbulence anisotropy at ϕ ' 0.8 and in the range of ReKx = 2.49–6.37 is thus
consistent with those observed in our previous DNS studies (Kuwata & Suga 2016b,
2017), which are for ϕ = 0.7–0.84 at ReK = 3.8–6.1.

To confirm whether the mean velocity profiles near the symmetry plane are similar
to those over two-dimensional porous-wall flows, figure 12(a) shows the mean
velocities over the porous surfaces in semi-logarithmic charts with fitting lines of the
log law:

[ū]p+xz =
1
κ

ln
(

y+ d0

h

)
. (3.4)

This log-law form is usually applied to flows over porous media and canopies (Best
1935; Nikora et al. 2002; Nepf & Ghisalberti 2008). Our previous report (Suga et al.
2018) showed that, irrespective of anisotropy of the permeability, the von Kármán
coefficient κ , the zero-plane displacement d0 and the roughness scale h were generally
well correlated with the pore-scale Reynolds number Re∗∗K . The pore-scale Reynolds
number was defined as

Re∗∗K =
up
τDpx

3.8ν
, (3.5)
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FIGURE 12. Distributions of the mean velocities and log-law parameters against the
pore-scale Reynolds number: (a) streamwise mean velocity distributions in semi-log scale,
(b) zero-plane displacement, (c) von Kármán coefficient and (d) roughness scale. The red
lines in panel (a) are fitting lines. The data of Breugem et al. (2006), Suga et al. (2010,
2017), Manes et al. (2011) and Kuwata & Suga (2016a) are for isotropic porous media,
while the data of Kuwata & Suga (2017) and Suga et al. (2018) are for anisotropic porous
media.

where Dpx is the streamwise length of the pore. (Note that, since this Reynolds
number has a strong correlation with a permeability Reynolds number based on the
porosity and the streamwise permeability, Suga et al. (2018) called it the ‘surrogate’
permeability Reynolds number.) Table 2 lists the values of κ , dp+

0 (= up
τd0/ν) and

hp+ (= up
τh/ν) that are obtained by the fitting procedure described in Breugem

et al. (2006) and Suga et al. (2010, 2017, 2018). The corresponding figure 12(b–d)
shows that the present parameters are well in the clusters of the plots of a wide
range of porous-wall flows. This confirms that the turbulent flow over the porous
surfaces near the symmetry plane of the square duct maintains the general trend
of the mean velocity in the two-dimensional porous-wall turbulence even though

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

91
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.914


884 A7-20 K. Suga, Y. Okazaki and Y. Kuwata

the secondary flows are enhanced. Note that for the von Kármán coefficient, the
correlation with the pore-scale Reynolds number is not strong compared with the
other parameters. Since the zero-plane displacement and the roughness scale are
geometrical parameters related to the porous structure, the pore scale is a reasonable
parameter for the characteristic length scale. However, κy corresponds to the mixing
length for near-wall turbulence and thus it is considered that the correlation between
κ and the pore scale is not very strong.

3.4. Kelvin–Helmholtz instability waves
Samanta et al. (2015) observed that there were short spanwise rollers in the middle
region and their spanwise size was approximately 0.4H. Following the discussion by
Jiménez et al. (2001), those spanwise rollers are considered to be induced by the KH
instability since the mean velocity has an inflection point under the porous surface as
seen in figure 10. Although Samanta et al. (2015) did not analyse the characteristics
of those rollers, we try to detect and analyse the wave motions over porous media.
Figure 13 shows the one-dimensional spectrum of streamwise velocity fluctuations
E11,x at y/H= 0.1, 0.0 and −0.02 in the symmetry planes. Those locations correspond
to over, at and under the surface, respectively. For Re' 3500, y/H = 0.1 and −0.02
correspond to yp+ ' 30 and −6, respectively, while for Re ' 7500, they correspond
to yp+ ' 75 and −15, respectively. Both cases A and B at the surfaces (y/H = 0)
show clear peaks. At Re ' 3500 shown in figure 13(a,b), the peaks of y/H = 0.0
are located at f = 0.25 Hz, which corresponds to the wavelength of λw = Uw/f =
1.4H due to the slippage velocity of Uw = 0.28U0 as listed in table 2. At Re' 7500
of case A, the peak of y/H = 0.0 is located at f = 0.5 Hz, which corresponds to
the wavelength of λw = 1.8H, while for case B, it is located at f = 0.6 Hz, which
corresponds to the wavelength of λw= 1.6H since Uw increases to 0.3U0. Accordingly,
clear effects of the wall-normal permeability on the wavelengths are not observed
also. Although the locations of the peaks of y/H = −0.02 shift slightly from those
of y/H = 0.0, the corresponding frequencies are very similar to those of y/H = 0.0.
This is because the energy of the waves generated at the surfaces propagates to both
over- and under-surface regions.

In the fully developed mixing layers, the wavelength of the KH-type coherent
eddies normalized by the vorticity thickness, Cλ= λx/δΩ , is known to be 3.56Cλ6 5
(Dimotakis & Brown 1976; Rogers & Moser 1994). For flows over porous walls, the
DNS by Breugem et al. (2006) and Kuwata & Suga (2017) and the experiments by
Suga et al. (2018) indicated 3.4 6 Cλ 6 5.5 when the boundary layer thickness δw is
considered to be equivalent to the vorticity thickness δΩ . The wavelength λw of cases
A and B at Re' 3500 produces Cλ= λw/δw= 3.0 and 2.9, respectively. At Re' 7500,
for cases A and B they are Cλ = 3.5 and 3.1, respectively. Although these values are
close to the range of the reported values for KH waves, they are somewhat smaller
than the reported values of turbulence over porous media. Although there are many
unknown things regarding the interaction between the KH instability and the sidewall
turbulent boundary layers, we believe that such interaction influences the instability,
resulting in shorter wavelengths than those in two-dimensional boundary layer type of
flows. This sidewall confinement effect is stronger at lower Reynolds numbers since
the sidewall boundary layer is thicker at lower Reynolds number as seen in figure 3.

4. Conclusions
PIV measurements have been carried out for fully developed turbulent square

duct flows over two transparent anisotropic porous media whose porosity is ϕ ' 0.8
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FIGURE 13. One-dimensional streamwise spectrum of u′ in the symmetry plane: (a) case
A at Re = 3300, (b) case B at Re = 3400, (c) case A at Re = 7400 and (d) case B at
Re= 7700. Black broken vertical lines correspond to the frequencies of peak locations at
the surface: y/H = 0.0.

and ratios of the wall-normal to streamwise permeabilities are Ry/x = 0.8 and 7.8 at
Re ' 3500 and 7500. The corresponding streamwise permeability Reynolds numbers
are ReKx = 2.49–6.37, while the wall-normal permeability Reynolds numbers are
ReKy = 2.37–16.20. It is observed that, irrespective of the porous structure, the
well-known four sets of counter-rotating secondary flow patterns in the square
cross-section changes to a flow pattern having one large recirculation near each
solid corner accompanied by a weak counter-rotation towards the porous corner.
Although the porous structure is very different, this flow pattern is the same as
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that shown in the DNS of Samanta et al. (2015). The maximum magnitude of the
secondary currents is approximately 6 % of the inlet bulk velocity, which is a little
smaller than that of the DNS.

It is confirmed that, although turbulence is enhanced by the permeability, turbulence
over and under the porous surface is rather insensitive to the wall-normal permeability
compared with the streamwise component. Accordingly, ReKx is a better parameter that
correlates to the porous-wall turbulence at least for Ry/x > 0.8. It is also confirmed
that the r.m.s. velocities penetrate more deeply than the mean velocity and the wall-
normal fluctuations need a longer distance to be damped in the porous media than
the streamwise component. This suggests that, although there is no shear generation,
turbulent vortices penetrate against the upward secondary flow motion and dissipate
at deeper locations inside porous media. It is considered that velocity fluctuations
are drawn into the porous media by the pressure fluctuations over the surface, which
propagate more deeply inside the porous media. Accordingly, a little under the surface
the wall-normal r.m.s. velocity becomes larger than the streamwise component while
the streamwise r.m.s. velocity becomes dominant again deep inside the porous layer.
However, interestingly, the effect of the wall-normal permeability is also insignificant
even for the penetration.

For the streamwise–spanwise plane-averaged mean velocity near the symmetry
plane, the correlations between the pore-scale Reynolds number and the log-law
parameters such as the zero plane displacement, the von Kármán coefficient and
the roughness scale are confirmed to be similar to those seen in a wide range of
porous-wall turbulence. The wavelengths of the spanwise rollers near the symmetry
planes generated by a KH-type instability are detected at the porous surfaces. While
significant effects of the porous structure on the wavelengths are not observed, it is
found that the wavelength tends to be shorter than those of porous-wall channels
possibly by the sidewall effects while such a trend becomes weaker at higher
Reynolds numbers. Overall, even with the enhanced secondary flows, near-porous-wall
turbulence characteristics in the middle of the porous square duct are very similar
to those of porous-wall turbulent boundary layers while the sidewall effects become
apparent at low Reynolds numbers.
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Appendix. Confirmation of the flow development
The position of the measuring section in this study is located at X= 2.7 m (X/H=

54) from the duct inlet. Here, X is the streamwise distance from the duct inlet. In the
preliminary experiments, we measured flow quantities in the centre (symmetry) plane
of the clear fluid region at several locations. Figure 14 compares turbulence quantities
at X/H = 38, 50 and 54 for Re ' 8000. It is seen that, although the mean velocity
profiles at the three locations are almost the same, the Reynolds shear stress and the
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FIGURE 14. Comparison of the centre-plane turbulence quantities of case B at Re' 8000:
(a) mean velocity, (b) Reynolds shear stress, (c) streamwise r.m.s. velocity and (d) wall-
normal r.m.s. velocity.

r.m.s. velocities at X/H= 38 do not converge at the same levels of those at X/H > 50.
It thus indicates that the flow is not fully developed yet at X/H=38. Since there is no
meaningful difference in the turbulence quantities at X/H= 50 and 54, it can be said
that the flow is fully developed at least by x/D= 50. Therefore, it is confirmed that
the presently measured flows are fully developed at the present measuring position at
X/H = 54 for the cases at Re 6 8000.
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