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Diffusion transients in convection rolls
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We numerically investigated the phenomenon of non-Gaussian normal diffusion of a
Brownian colloidal particle in a periodic array of planar counter-rotating convection
rolls. At high Péclet numbers, normal diffusion is observed to occur at all times with
non-Gaussian transient statistics. This effect vanishes with increasing the observation
time. The displacement distributions decay either slower or faster than a Gaussian
function, depending on the flow parameters. The sign of their excess kurtosis is related
to the difference between two dynamical time scales, namely, the mean exit time of the
particle out of a convection roll and its circulation period inside it.
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1. Introduction

Fick’s diffusion (Gardiner 2009) implies that the directed displacements of an overdamped
Brownian particle, say, in the x direction, Δx(t) = x(t)− x(0), grow with time following
the Einstein law, 〈Δx2(t)〉 = 2Dt, and with Gaussian statistics. Accordingly, the
probability density function (p.d.f.) of the rescaled observable, Δx/

√
t, would be a

stationary Gaussian distribution with half-variance D.
Recent observations (Wang et al. 2009; Wang et al. 2012; Bhattacharya et al. 2013;

Kim, Kim & Sung 2013; Guan, Wang & Granick 2014; Kwon, Sung & Yethiraj 2014)
of Brownian motion in fluctuating crowded environments led to questions regarding the
generality of such a notion. Indeed, there are no a priori reasons why the diffusion of
a physical Brownian tracer should be of Fickian type. For instance, in real biophysical
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systems displacement p.d.f.s often exhibit prominent exponential tails over wide intervals
of the observation time, t, well after the condition of normal diffusion has set in. Such
a transient effect, termed here non-Gaussian normal diffusion (NGND), is expected
to disappear for asymptotically large observation times (possibly inaccessible to real
experiments Wang et al. 2009), as stipulated by the central limit theorem. In that limit, the
Δx distributions turn eventually Gaussian, with half-variance equal to 〈Δx2(t)〉. Persistent
diffusive transients of this type have been detected in diverse experimental set-ups (Weeks
et al. 2000; Eaves & Reichman 2009; Leptos et al. 2009; Wang et al. 2009; Wang et al.
2012; Bhattacharya et al. 2013), and further confirmed by extensive numerical simulations
(Kegel & van Blaaderen 2000; Chaudhuri, Berthier & Kob 2007; Guan et al. 2014; Kwon
et al. 2014; Ghosh et al. 2016; He et al. 2016).

The current interpretation of this phenomenon postulates that diffusion occurs in a
fluctuating environment with finite relaxation time, τ (Wang et al. 2009). For observation
times comparable with τ , the tracer displacements are likely to obey a non-Gaussian
statistics. The rescaled p.d.f.s, p(Δx/

√
t), are typically Gaussian for either much shorter or

much larger t values, although with different half-variance: the free diffusion constant, D0,
for t → 0 (no crowding effect) and the asymptotic diffusion constant, D, defined above,
for t → ∞ (central limit theorem). There is no fundamental reason why non-Gaussian
transients should necessarily lead to the emergence of slowly decaying distribution tails
(leptokurtic transients), as reported in the current literature; on the contrary, one cannot
rule out the possibility that, under certain conditions, their tails decay faster than a
Gaussian tail (platykurtic transients). Moreover, the NGND phenomenon can also occur in
low-dimensional models, though restricted to relatively narrow t domains (Li et al. 2019).

We investigate here, both numerically and analytically, the Brownian diffusion of an
overdamped particle suspended in a periodic array of planar convection rolls, subjected
to thermal fluctuations of strength D0. This is an archetypal model with well-established
applications to physical systems of the most diverse length scales (Chandrasekhar 1967;
Tabeling 2002; Kirby 2010). At high Péclet numbers, i.e. when the effects of thermal
fluctuations are negligible with respect to advection, the particle undergoes normal
diffusion with asymptotic diffusion constant, D, which depends on both D0 and the flow
parameters (Rosenbluth et al. 1987). The ensuing NGND is characterized by a single
transient time, τ , but, in contrast with other elementary models (Li et al. 2019), τ is
controlled by two competing microscopic mechanisms depending on D0. At low thermal
noise, the transient dynamics of the particle is governed by its isotropic random jumps
from roll to roll, a stochastic process quite insensitive to the details of the particle’s
trajectory inside each individual roll. On the contrary, upon raising the thermal noise
(but still at high Péclet numbers), roll jumping grows faster compared with the circulation
inside the rolls. The diffusion transient dynamics is then dominated by the advective drag.
Accordingly, one defines two distinct time scales, namely, the mean time for the particle
to first exit the convection rolls and its average revolution period inside a single roll. The
peculiarity of this system is that, upon increasing the noise strength, the NGND transients
can change from lepto- to platykurtic, depending on which of such two time scales is larger
and, thus, plays the role of effective transient time, τ .

The problem we address is also of practical interest in view of its applications to
microfluidics (Kirby 2010), chemical engineering and combustion (Moffatt et al. 1992)
and the modelling of large-scale geodynamic processes (Tabeling 2002). Indeed, the
experimental or numerical determination of the asymptotic mean-square displacement of
a tracer in a convective flow can take exceedingly long times to allow it to jump repeatedly
from convection roll to convection roll. On the contrary, in a number of physical situations

912 A14-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1127


Diffusion transients in convection rolls

the observer only needs to determine how long a trapped tracer will sojourn inside a
single roll before crossing its flow boundary layer into a neighbouring one. This quantity
is more easily accessible to direct observation and, as shown at the end of this paper,
influences the non-Gaussian properties of the tracer’s transient displacement distributions.
Stated otherwise, from displacement distributions obtained for finite observation times, we
cannot extract the asymptotic diffusion constant, D, with a high degree of confidence, if
the non-Gaussian transients of the underlying diffusive process are unpredictably long.

The present paper is organized as follows. In § 2 we introduce the Langevin equations
that describe Brownian diffusion in a two-dimensional laminar flow patterned as a
periodic array of counter-rotating convection rolls. Following Rosenbluth et al. (1987),
we distinguish between the regime of high Péclet numbers, relevant to this work, where
diffusion is governed by advection, and the best known regime of thermal diffusion,
dominated by equilibrium fluctuations. In § 3 we investigate the two time scales controlling
Brownian diffusion in a periodic array of convection rolls, namely, the average period of
fluid circulation inside a roll (§ 3.1) and the particle’s mean first-exit time out of a single
roll (§ 3.2). In § 4 we present detailed numerical evidence of the NGND phenomenon.
Lepto- and platykurtic transients are qualitatively explained by time coarse graining
the microscopic particle dynamics and quantified by fitting our numerical displacement
distributions by means of a phenomenological one-parameter function. Finally, in § 5 we
draw some concluding remarks.

2. Model: periodic array of counter-rotating convection rolls

For this purpose we investigated the diffusion of an overdamped particle of unit mass,
coordinates x and y, suspended in a two-dimensional (2-D) stationary laminar flow with
periodic centre-symmetric streamfunction

ψ(x, y) = (U0L/2π) sin(2πx/L) sin(2πy/L), (2.1)

where U0 is the maximum advection speed and L the size of the flow unit cell. Following
the earlier literature (Chandrasekhar 1967; Childress 1979; Rosenbluth et al. 1987; Soward
1987), we assumed that the particle is perfectly spherical and so small that it can be
taken as point like. Accordingly, away from confining boundaries or other particles (low
particle density approximation) hydrodynamic interactions and flow torques were ignored.
Its dynamics can thus be formulated by means of two translational Langevin equations,

ẋ = ux + ξx(t), ẏ = uy + ξy(t), (2.2a,b)

where the vector u = (ux, uy) = (∂y,−∂x)ψ is the advection velocity. As illustrated
in figure 1(a), ψ(x, y) defines four counter-rotating flow subcells, also termed
convection rolls. The translational noises, ξi(t) with i = x, y are stationary, independent,
delta-correlated Gaussian noises, 〈ξi(t)ξj(0)〉 = 2D0δijδ(t), where δij and δ(t) are
respectively the Kronecker and Dirac delta. They can be regarded as modelling equilibrium
thermal fluctuations in a homogeneous, isotropic medium, with D0 proportional to its
temperature. In the present notation, D0 is the free particle diffusion constant in the
absence of advection. In our simulations, we used the flow parameters, U0 and L to set
convenient length and time units, respectively, L and L/2πU0. Therefore, the only tuneable
parameter left in our analysis is the noise strength, D0. As we are interested in the diffusion
properties under stationary conditions, we assumed a uniform random distribution of
the particle’s initial coordinates, x0 and y0. Indeed, due to the incompressibility of the
advection vector, (ux, uy), in the presence of thermal noise, a particle’s trajectory is known
to eventually fill up the x, y plane uniformly.
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Figure 1. Diffusion of a Brownian particle in a two-dimensional periodic pattern of stationary convection rolls.
(a) Unit flow cell, (2.1), consisting of four counter-rotating subcells. (b) Trajectory sample of length t = 100,
for D0 = 0.001. Flow parameters are: U0 = 1 and L = 2π.

The amplitude of ψ(x, y) in (2.1) provides a natural diffusion scale of the convective
flow, DL = U0L/2π; accordingly the Péclet number of the advected Brownian particle is
defined here as Pe ≡ DL/D0 > 1.

The stochastic differential equations (2.2a,b) were numerically integrated by means of a
standard Mil’shtein scheme (Kloeden & Platen 1992). Particular caution was exerted when
computing the values of the asymptotic diffusion constant

D = lim
t→∞〈Δx2(t)〉/2t. (2.3)

Indeed, upon lowering the noise strength, D0, the roll jumping of the advected particle
is suppressed; accordingly, the transient time, τ , grows exceedingly long. Even if during
such transients instances of anomalous diffusion may become detectable (Young, Pumir
& Pomeau 1989), in this paper we focus on the normal diffusion limit in (2.3).

Particle transport in such a flow pattern has been studied under diverse physical
conditions and a rich phenomenology has emerged (Shraiman 1987; Solomon & Gollub
1988; Young et al. 1989; Solomon & Mezić 2003; Torney & Neufeld 2007; Young &
Shelley 2007; Manikantan & Saintillan 2013; Sarracino et al. 2016; Li et al. 2020). For
instance, in the presence of external periodic perturbations the deterministic dynamics
of a noiseless particle exhibits remarkable chaotic properties (Solomon & Gollub 1988;
Solomon & Mezić 2003). Especially relevant to the present work are the results for
the diffusivity of a point-like Brownian tracer first reported in Rosenbluth et al. (1987).
The problem of how a flow field of streamfunction ψ(x, y) affects the diffusion of a
self-propelled particle has been investigated in Torney & Neufeld (2007) and Li et al.
(2020).

The Langevin equations (2.2a,b) model particle diffusion under the simultaneous action
of translational fluctuations and advective drag. An important property of this system
is illustrated in figure 2, where we have plotted the asymptotic diffusion constant, D,
as a function on the noise intensity (and free diffusion constant), D0. The mean-square
displacement approaches asymptotically the Einstein law for any choice of D0. However,
on increasing D0, the asymptotic diffusion constant, D, changes from

D = κ
√

DLD0, (2.4)
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Figure 2. Diffusion in the periodic convective flow pattern of (2.1): D vs. D0, both rescaled by DL = U0L/2π.
The analytical predictions for low-noise, (2.4), and high-noise, (2.5), strengths are represented by solid lines.
Within our numerical accuracy, the fitted value of κ is consistent with the predicted value, 1.06 (Rosenbluth
et al. 1987). The streamfunction parameters are U0 = 1 and L = 2π, so that DL = 1.

for D0 < DL (dispersive transport), to

D = D0, (2.5)

for D0 > DL (diffusive transport). The constant κ in (2.4) depends on the geometry of
the flow cells (Rosenbluth et al. 1987; Young et al. 1989). For the 2-D array of square
counter-rotating convection rolls of (2.1), κ � 1.06 (Rosenbluth et al. 1987), in close
agreement with the numerical results displayed in figure 2.

The cross-over between the two diffusion regimes occurs at D0 � DL and appears to
be quite sharp (Li et al. 2020). This property was explained (Rosenbluth et al. 1987;
Soward 1987; Young et al. 1989) by noticing that, for D < DL, spatial diffusion occurs
within the boundary flow layers delimiting the four subcells of the streamfunction,ψ(x, y),
as illustrated in figure 3(a). Stated otherwise, the diffusion process is governed by the
advection velocity field. Vice versa, for D0 > DL, the effects of advection on the particle’s
diffusion become negligible. In view of the above, NGND is more likely to happen in
the regime of advective transport; therefore, we focus our discussion on the high Péclet
number domain.

3. Relevant time scales

The particle dynamics of (2.1) and (2.2a,b) results from the superposition of an advective
drag with velocity u and a free Brownian motion driven by thermal fluctuations.
Advection pulls the particle along closed orbits inside each ψ(x, y) subcell, either clock-
or anticlockwise, whereas thermal noise pushes the particle eventually over the subcell
boundaries. Both mechanisms play a key role in our discussion of the ensuing NGND
phenomenon. Therefore, in the next subsections we briefly derive their characteristic time
scales.

3.1. Advection period
To analyse roll circulation we consider the ‘positive’ ψ(x, y) subcell centred at (L/4, L/4),
see figure 1(a), where the particle circulates anticlockwise. In the noiseless regime with
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Figure 3. Exit mechanism from a flow cell. (a) Spatial distribution of a particle injected at the centre of the
top-left roll, (−L/2,L/2), in a box with absorbing boundaries x, y = ±L/2, and subjected to noise of strength
D0 = 0.01; the side bar is the relevant amplitude colour code on a natural logarithmic scale. Distribution
computed over 107 trajectories with integration time step of 10−5. (b) Distributions, P(T), of the particle’s
exit times, T , for different D0 (filled symbols, see legend). For comparison (see text), the P(T) curves for
D0 = 3 × 10−3 and 10−2 have been ‘stretched’ by rescaling T → 4T (empty symbols). The streamfunction
parameters are U0 = 1 and L = 2π. Power laws are drawn to fit the T → 0 branches of the low- and high-noise
distributions. Note that in dimensionless units, simulation results for U0 = 0 correspond to taking the limit
D0 → ∞.

D0 = 0, a simple time derivation of both sides of (2.1) yields two decoupled equations,

ẍ′ = Ω2
L sin x′, ÿ′ = Ω2

L sin y′, (3.1a,b)

for the rescaled coordinates x′ = 2(2πx/L) and y′ = 2(2πy/L). Here, the angular
frequency ΩL = 2πU0/L coincides with the maximum vorticity, ∇ ∧ u = −∇2ψ , at the
centre of the convection roll. Both (3.1a,b) describe a mathematical pendulum centred at
(π,π) – the subcell centre. This implies that, due to the x ↔ y symmetry of ψ(x, y), the
period of the particle’s orbits, TL, depends on their maximum amplitude, a0, along either
the x or y direction (orbits are not circular!) with a0 < π. The function TL(a0) can be
expressed analytically as the period of either physical pendulum in (3.1a,b),

TL(a0) = 2T0

π
K(k), (3.2)

where T0 = 2π/ΩL, k = sin(a0/2) and K(k) is a complete elliptic integral of first kind
(Cromer 1995). The logarithmic divergence of TL for a0 → π is best approximated by
(Cromer 1995) TL(a0) = (2T0/π) ln[4/ cos(a0/2)]. This implies that, in the absence of
thermal fluctuations, the particle gets trapped in a convection roll. Despite its simple
derivation, our result for TL is consistent with earlier estimates (Weiss 1966).

Under stationary conditions, the particle’s spatial distribution is uniform. Accordingly,
the density function of a0 is well approximated by 2a0/π. In the limit of very high Péclet
numbers, Pe  1, a useful estimate of the advection period can be obtained by averaging
TL(a0) with respect to a0, namely (Gradshteyn & Ryzhik 2007),

TL = 〈TL(a0)〉 = 2.786T0. (3.3)

In view of our derivation, it is clear that this result holds only in the limit D0 → 0+ (Yin
et al. 2021). We reiterate that, for D0 ≡ 0, diffusion is completely suppressed.
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3.2. Mean first-exit time
To estimate the mean first-exit time (MFET) of the particle out of the flow unit cell, we
calculate first the MFET of a free Brownian particle out of a square box of size L. In the
absence of advection, U0 = 0, this can be done analytically by standard stochastic methods
– see (5.4.37) of Gardiner (2009), where a typo had to be corrected. For a particle starting
at (x0, y0) inside a box of vertices x = ±L/2 and y = ±L/2, the MFET is

T(x0, y0) = 1
D0

(
L

2π

)2 (
8
π

)2 (odd)∑
m,n

1
mn

1
m2 + n2

× sin
[
πn

(
x0

L
− 1

2

)]
sin

[
πm

(
y0

L
− 1

2

)]
, (3.4)

where the summation is restricted to the odd values of m and n. Under stationary
conditions, the spatial distribution of the particle is uniform. Therefore, we average
T(x0, y0) with respect the particle’s initial position, (x0, y0), to obtain the spatially
averaged MFET,

〈T(x0, y0)〉 = L2

D0

(
2
π

)6 (odd)∑
m,n

1
m2

1
n2

1
m2 + n2 . (3.5)

We next investigate the MFET for a Brownian tracer to escape from a unit cell of the
streamfunction ψ(x, y). Let TD denote the spatial average of such a MFET, with spatial
average taken over a unit flow cell. In the purely diffusive regime of (2.5), D0  DL,
the effect of advection is negligible; hence, TD = 〈T(x0, y0)〉. In the opposite limit of
advective diffusion, D0 � DL, as apparent from figures 1(b) and 3(a), the exit process
consists of a slow activation mechanism, where the particle thermally diffuses from the
centre of a subcell toward its boundaries, followed by a relatively faster propagation
driven by the laminar flow, which runs parallel to the separatrices delimiting the adjacent
counter-rotating subcells. This statement is based on the fact that, for D0 → 0, TD diverges
like 1/D0, (3.5), whereas TL diverges like TL ∼ (T0/π) ln(DL/D0). This last result follows
from the logarithmic divergence of TL in the limit a0 → π, which we derived in § 3.1.
There, |π − a0| was a measure of the particle’s distance from the roll separatrices, which,
in dimensional units, reads δ = (L/2π)|1 − a0/π|. In the presence of noise, the particle
mean-square displacement over the advection period T0 gives a simple estimate of δ,
δ2 = 2D0T0, which one may interpret as the effective width of the rolls’ boundary flow
layers (Rosenbluth et al. 1987).

Consider now a particle trapped in a convection roll, say, in the top-left ψ(x, y) subcell
of figure 3(a). To leave the simulation box, it first slowly free diffuses inside the trapping
subcell; it is only upon reaching the subcell boundary layer, that it gets swept away by
the advection flow along the square net formed by the roll separatrices, as illustrated in
figure 1(b). In the limit D0/DL → 0, the advection period TL grows negligible with respect
to any exit diffusion time, so that the particle’s MFET out of a unit ψ(x, y) cell, TD, tends
to coincide with the particle’s free diffusion time out of a single subcell. The latter time
can be calculated by simply replacing L with L/2 in (3.5). In conclusion, we expect that
for Pe  1, TD = (1/4)〈T(x0, y0)〉. Our analytical estimates of TD are in good agreement
with the numerical data displayed in figure 4, which well illustrates the transition between
the low- and high-noise regimes of TD.

Both limiting estimates for TD ignore advection and, therefore, differ by just a geometric
factor 4, that is the ratio of the cell-to-subcell areas. The predominance of this geometric
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Figure 4. Diffusion mechanisms in the periodic flow pattern of streamfunction ψ(x, y), (2.1): (a) TD,
vs. thermal noise, D0. The asymptotic solid lines on the left and right are respectively 〈T(x0, y0)〉 and
(1/4)〈T(x0, y0)〉, (3.5); the horizontal dashed line represents the advection period T0. Three D0 intervals with
distinct ranges of the fitting parameter β of (4.1) are delimited by the vertical lines D0 = D∗ and D0 = DL and
shaded in different colours; no NGND was detected for D0 > DL. The value of D∗ was obtained by numerically
solving the equation TD = T0 (see text). (b) Value of 〈Δx2(t)〉 vs. t for different D0. Vertical arrows denote the
onset time of normal diffusion, t = TD. Convection flow parameters are U0 = 1 and L = 2π.

factor is apparent also in figure 3(b), where first-exit time distributions, P(T), have
been plotted for low- and high-noise strengths. To numerically determine P(T), first we
computed the first-exit times, T , for a fixed starting point (x0, y0); then we averaged the
relevant p.d.f.s by taking a uniform distribution of (x0, y0) over a full unit flow cell. For
the sake of a comparison, we also plotted the distributions for the two lowest values of
D0 on the dilated scale T → 4T . The high-noise distributions, P(T), and such ‘stretched’
low-noise distributions, P(4T), seemingly overlap, which corroborates our estimates of
TD in the limits D0 → 0 and D0 → ∞. Another interesting feature of the T distributions
plotted in figure 3(b) is their behaviour in the limit T → 0. Our numerical data clearly
show that for small T all distributions diverge according to a power law T−α , with α slowly
decreasing with increasing D0, from α = 0.75 to approximately α = 0.64. The divergence
of P(T) for T → 0 is dominated by the trajectories originating in the (sub)cell boundary
layers; indeed, this effect disappears if we set the starting point (x0, y0), say, at the centre
of the (sub)cells. At large T , all distributions decay exponentially, consistently with the
asymptotic normal diffusion law of (2.3).

4. Results: NGND

The Brownian particle diffuses in the x, y plane by jumping from convection roll to
convection roll, thanks to thermal fluctuations. Therefore, its motion can be coarse grained
as a discrete random walker with time constant TD (Gardiner 2009). Accordingly, for large
observation times, t � TD, the diffusive process is expected to be normal. This statement
is confirmed by the numerical data for 〈Δx2(t)〉 reported in figure 4(b), where the relevant
TD is indicated by vertical arrows. However, for Pe  1 (very low thermal noise), we
proved that TL < TD, that is, the particle executes several orbits inside a single subcell
before exiting it. Therefore, for short observation times, t < TD, the particle is seen to
travel distances of the order of the subcell half-width, L/4, and then turn back toward
its starting point, with a period of the order of T0. Such a particle intra-roll dynamics
qualitatively explains the magnitude and position of the short-t bumps clearly detectable
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Figure 5. Rescaled displacement distributions for different transient times: (a) D0 = 0.001, (b) D0 = 0.1 and
(c) D0 = 0.6. The observation times, t, and the fitting parameters, β, are reported in the legends; convection
flow parameters are U0 = 1 and L = 2π. All transient p.d.f.s were taken after normal diffusion was established,
see figure 4(b). The value of β was obtained by standard least-squares regression analysis with standard error
Δβ/β � 0.01 and adjusted coefficient of determination R2

adj > 0.993 in (a,c). As discussed in the text and
apparent on inspection, the quality of the fit is not as good in (b).

in the 〈Δx2(t)〉 curves of figure 4(b) at low D0. We notice that for D0 → 0 such bumps
grow insensitive to D0, while the curve 〈Δx2(t)〉 flattens out, as the particle gets trapped
for longer and longer time periods inside a convection roll.

By contrast, for t � TD, 〈Δx2(t)〉 follows a normal diffusion law with D in close
agreement with the analytical prediction of (2.4). For the flow field parameters adopted
in figure 5, the cross-over between low- and high-noise estimates of TD, respectively
(1/4)〈T(x0, y0)〉 and 〈T(x0, y0)〉, occurs within the advective transport regime, D0 < DL.
By inspecting figure 4(a), it is also apparent that at the cross-over the two competing time
scales introduced in § 3 to characterize the particle dynamics in a convective roll, tend to
coincide. The equation TD = T0 defines a unique D0 value, D∗, which splits the advective
diffusion domain into the two distinct intervals D0 < D∗ and D∗ < D0 < DL.

Similarly to other low-dimensional models (Li et al. 2020), numerical integration
of (2.1) and (2.2a,b) shows compelling evidence of the NGND phenomenon, with the
non-Gaussian transients of the displacement distributions gradually disappearing upon
increasing the observation time. Contrary to the superstatistical (Wang et al. 2009) and
diffusing diffusivity models (Chubynsky & Slater 2014), here, the predicted transient
rescaled distributions are not ‘universal’ D functions over large t intervals. Accordingly, to
capture the t dependence of the numerical curves presented in figure 5, one needs at least
one additional fitting parameter. For this purpose, we introduced and tested the following
one-parameter fitting function,

pβ

(
Δx√

t

)
= β

Γ

(
1
β

)3/2

⎡
⎢⎢⎣
Γ

(
3
β

)

2D

⎤
⎥⎥⎦

1/2

exp

⎡
⎢⎢⎢⎣−

⎛
⎜⎜⎝Δx2

2Dt

Γ

(
3
β

)

Γ

(
1
β

)
⎞
⎟⎟⎠
β/2⎤

⎥⎥⎥⎦ . (4.1)

This function has been derived phenomenologically starting from the stretched exponential
distribution, pβ(Δx/

√
t) = A exp[−B(Δx/

√
t)β] (Kendall & Stuart 1976). The constants

A and B have then be determined by normalizing pβ(Δx/
√

t) to one and ensuring that its
second moment be 〈Δx2〉/t = 2D for any value of the free parameter β, which, instead,
is allowed to vary with t; β assumes values in the range 1 ≤ β ≤ 2 for leptokurtic
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distributions (positive excess kurtosis) and β ≥ 2 for platykurtic distributions (negative
excess kurtosis).

The fits of the p.d.f.s drawn in figure 5 have been generated from (4.1) by setting D equal
to the diffusion constant that best fitted the corresponding diffusion data of figure 4(b)
at large t and, then, computing β to best fit the rescaled displacement distributions
numerically obtained for different t. For an easier comparison with the experimental data
we used there the rescaled observable Δx/

√
tD0.

The range of β values fitted according to this procedure is reported in figure 4(a) for each
D0 interval. As corroborated by the transient p.d.f.s displayed in figure 5, NGND transients
are leptokurtic for D0 < D∗ and platykurtic for D∗ < D0 < DL (Kendall & Stuart 1976).
This interesting property can be explained with the fact that in the present system the
role of transient time, τ , is played respectively by TD for D0 < D∗ and by TL for D0 >
D∗. In particular, for D0 > D∗ the slowest time modulation of the particle’s dynamics
is attributable to the advective circulation inside the convection rolls, TL > TD, which
explains the emergence of a platykurtic NGND transient. Indeed, a microscopic rotational
(random) dynamics suffices to determine sub-Gaussian distributions, i.e. a negative excess
kurtosis, of the unidirectional particle displacements (Zheng et al. 2013).

As far as the quality of the proposed fitting procedure is concerned, we notice that it is
quite accurate in both limits, D0 � D∗ and D0  D∗, where the effective transient time,
τ , can be positively identified respectively with TD and TL. For intermediate values of D0,
D0 ∼ D∗, the one-parameter function pβ(Δx/

√
t) seems to provide less accurate fits of the

numerical data, see figure 5(b).

5. Conclusions

The diffusive model investigated in this paper provides a suggestive example of a
low-dimensional system exhibiting NGND. As an additional peculiarity, its transient
displacement distributions can be either lepto- or platykurtic, depending on the choice
of the model’s parameters. Variations of this system are plenty. For instance, one could
design different convective roll patterns or consider roll arrays in confined geometries
(Shraiman 1987; Young et al. 1989). Also interesting would be replacing the passive
Brownian particle in (2.1) with a self-propelling swimmer (Li et al. 2020). All these
systems are likely to manifest the NGND phenomenon. In view of the growing attention to
the diffusion of active particles, we will report on NGND of microswimmers in convection
rolls in a forthcoming publication. Finally, we remark that all these diffusive systems are
easily accessible to direct experimental observation (Solomon & Mezić 2003; Young &
Shelley 2007; Li et al. 2020).
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